1
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
2
|
Cheng K, Pan J, Liu Q, Ji Y, Liu L, Guo X, Wang Q, Li S, Sun J, Gong M, Zhang Y, Yuan Y. Exosomal lncRNA XIST promotes perineural invasion of pancreatic cancer cells via miR-211-5p/GDNF. Oncogene 2024; 43:1341-1352. [PMID: 38454138 DOI: 10.1038/s41388-024-02994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Perineural invasion (PNI) is an essential form of tumor metastasis in multiple malignant cancers, such as pancreatic cancer, prostate cancer, and head and neck cancer. Growing evidence has revealed that pancreatic cancer recurrence and neuropathic pain positively correlate with PNI. Therefore, targeting PNI is a proper strategy for pancreatic cancer treatment. Exosomal lncRNA derived from pancreatic cancer cells is an essential component of the tumor microenvironment. However, whether exosomal lncXIST derived from pancreatic cancer cells can promote PNI and its exact mechanism remains to be elucidated. We show that lncXIST mediates nerve-tumor crosstalk via exosomal delivery. Our data reveal that exosomal lncXIST derived from pancreatic cancer cells is delivered to neural cells and promotes their release of glial-cell-line-derived neurotrophic factor (GDNF), essential in facilitating the PNI of pancreatic cancer. Mechanistically, microRNA-211-5p negatively regulates GDNF, and lncXIST serves as a miR-211-5p sponge. The function of exosomes in the dynamic interplay between nerves and cancer is confirmed in both in vivo and in vitro PNI models. Therefore, targeting pancreatic cancer cell-derived exosomal lncXIST may provide clues for a promising approach for developing a new strategy to combat PNI of pancreatic cancer.
Collapse
Affiliation(s)
- Ke Cheng
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinjin Pan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Yuke Ji
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Liang Liu
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Xiangqian Guo
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Qiang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 47500, China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinyue Sun
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Miaomiao Gong
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Ying Zhang
- Sixth Department of liver disease, Dalian Public Health Clinical Center, Dalian, 116044, China.
| | - Yuhui Yuan
- The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Wienholtz NKF, Christensen CE, Ashina H, Jørgensen NR, Egeberg A, Thyssen JP, Ashina M. Elevated plasma levels of calcitonin gene-related peptide in individuals with rosacea: A cross-sectional case-control study. J Eur Acad Dermatol Venereol 2024. [PMID: 38558478 DOI: 10.1111/jdv.19954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Understanding the role of calcitonin gene-related peptide (CGRP) in the pathogenesis of rosacea might provide new therapeutic avenues for individuals with this disease. OBJECTIVE To compare plasma levels of CGRP between individuals with rosacea and healthy controls. METHODS In this cross-sectional case-control study conducted in Copenhagen, Denmark, we collected blood samples from the antecubital vein from adults with rosacea and from healthy controls. RESULTS We enrolled 123 individuals with rosacea and 68 healthy controls. After adjusting for age and sex, plasma levels of CGRP were significantly higher in individuals with rosacea (mean, 95% confidence interval: 140.21 pmol/L, 128.50-151.92 pmol/L), compared with controls (110.77 pmol/L, 99.91-120.14 pmol/L, p = 0.002). Plasma levels of CGRP were not affected by age, sex, BMI, concomitant migraine, rosacea sub- or phenotype, concomitant disease or current treatment. LIMITATIONS Participants were not age-, sex- and BMI-matched. CONCLUSIONS AND RELEVANCE Elevated plasma levels of CGRP in individuals with rosacea suggest a role of CGRP in the pathogenesis of rosacea. Targeting CGRP signalling might hold therapeutic promise in people affected by this disease. CLINICALTRIALS GOV LISTING NCT03872050.
Collapse
Affiliation(s)
- Nita K F Wienholtz
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Dermatology, Bispebjerg and Frederiksberg, Copenhagen University, Copenhagen, Denmark
| | - Casper E Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Niklas R Jørgensen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Alexander Egeberg
- Department of Dermatology, Bispebjerg and Frederiksberg, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Anand U, Anand P, Sodergren MH. Terpenes in Cannabis sativa Inhibit Capsaicin Responses in Rat DRG Neurons via Na +/K + ATPase Activation. Int J Mol Sci 2023; 24:16340. [PMID: 38003528 PMCID: PMC10671062 DOI: 10.3390/ijms242216340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Terpenes in Cannabis sativa exert analgesic effects, but the mechanisms are uncertain. We examined the effects of 10 terpenes on capsaicin responses in an established model of neuronal hypersensitivity. Adult rat DRG neurons cultured with neurotrophic factors NGF and GDNF were loaded with Fura2AM for calcium imaging, and treated with individual terpenes or vehicle for 5 min, followed by 1 µMol capsaicin. In vehicle treated control experiments, capsaicin elicited immediate and sustained calcium influx. Most neurons treated with terpenes responded to capsaicin after 6-8 min. Few neurons showed immediate capsaicin responses that were transient or normal. The delayed responses were found to be due to calcium released from the endoplasmic reticulum, as they were maintained in calcium/magnesium free media, but not after thapsigargin pre-treatment. Terpene inhibition of calcium influx was reversed after washout of medium, in the absence of terpenes, and in the presence of the Na+/K+ ATPase inhibitor ouabain, but not CB1 or CB2 receptor antagonists. Thus, terpenes inhibit capsaicin evoked calcium influx by Na+/K+ ATPase activation. Immunofluorescence showed TRPV1 co-expression with α1β1 Na+/K+ ATPase in most neurons while others were either TRPV1 or α1β1 Na+/K+ ATPase positive.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
| | - Mikael Hans Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK; (P.A.); (M.H.S.)
- Curaleaf International Ltd., 179 Great Portland Street, London W1W 5PL, UK
| |
Collapse
|
5
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Xu F, Zhao L, Zhuang J, Gao X. Peripheral Neuroplasticity of Respiratory Chemoreflexes, Induced by Prenatal Nicotinic Exposure: Implication for SIDS. Respir Physiol Neurobiol 2023; 313:104053. [PMID: 37019251 DOI: 10.1016/j.resp.2023.104053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1β and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.
Collapse
|
7
|
Anand U, Pacchetti B, Anand P, Sodergren MH. The Endocannabinoid Analgesic Entourage Effect: Investigations in Cultured DRG Neurons. J Pain Res 2022; 15:3493-3507. [PMID: 36394060 PMCID: PMC9642605 DOI: 10.2147/jpr.s378876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The endocannabinoid 2-Arachidonyl glycerol (2-AG) exerts dose-related anti-nociceptive effects, which are potentiated by the related but inactive 2-palmitoyl glycerol (2-PG) and 2-linoleoyl glycerol (2-LG). This potentiation of analgesia and other in vivo measures was described as the "entourage effect". We investigated this effect on TRPV1 signalling in cultured dorsal root ganglion (DRG) nociceptors. METHODS Adult rat DRG neurons were cultured in medium containing NGF and GDNF at 37°C. 48 h later cultures were loaded with 2 µM Fura2AM for calcium imaging, and treated with 2-AG, 2-PG and 2-LG, individually or combined, for 5 min, followed by 1 µMol capsaicin. The amplitude and latency of capsaicin responses were measured (N=3-7 rats, controls N=16), and analysed. RESULTS In controls, 1 µMol capsaicin elicited immediate calcium influx in a subset of neurons, with average latency of 1.27 ± 0.2 s and amplitude of 0.15 ± 0.01 Units. 2-AG (10-100 µMol) elicited calcium influx in some neurons. In the presence of 2-AG (0.001-100 µMol), capsaicin responses were markedly delayed in 64% neurons by up to 320 s (P<0.001). 2-PG increased capsaicin response latency at 0.1 nMol-100 µMol (P<0.001), in 60% neurons, as did 2-LG at 0.1-100 µMol (P<0.001), in 76% neurons. Increased capsaicin response latency due to 2-AG and 2-PG was sensitive to the CB2 but not to the CB1 receptor antagonist. Combined application of 1 µMol 2-AG, 5 µMol 2-PG and 10 µMol 2-LG, also resulted in significantly increased capsaicin response latency up to 281.5 ± 41.5 s (P<0.001), in 96% neurons, that was partially restored by the CB2, but not the CB1 antagonist. CONCLUSION 2-AG, 2-LG and 2-PG significantly delayed TRPV1 signalling in the majority of capsaicin-sensitive DRG neurons, that was markedly increased following combined application. Further studies of these endocannabinoids are required to identify the underlying mechanisms.
Collapse
Affiliation(s)
- Uma Anand
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, W12 0HS, UK
| | | | - Praveen Anand
- Professor of Clinical Neurology, Department of Brain Sciences, Imperial College London, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, London, W12 0HS, UK
- Curaleaf International Limited, London, EC2A 2EW, UK
| |
Collapse
|
8
|
Shi DD, Guo JA, Hoffman HI, Su J, Mino-Kenudson M, Barth JL, Schenkel JM, Loeffler JS, Shih HA, Hong TS, Wo JY, Aguirre AJ, Jacks T, Zheng L, Wen PY, Wang TC, Hwang WL. Therapeutic avenues for cancer neuroscience: translational frontiers and clinical opportunities. Lancet Oncol 2022; 23:e62-e74. [PMID: 35114133 PMCID: PMC9516432 DOI: 10.1016/s1470-2045(21)00596-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
With increasing attention on the essential roles of the tumour microenvironment in recent years, the nervous system has emerged as a novel and crucial facilitator of cancer growth. In this Review, we describe the foundational, translational, and clinical advances illustrating how nerves contribute to tumour proliferation, stress adaptation, immunomodulation, metastasis, electrical hyperactivity and seizures, and neuropathic pain. Collectively, this expanding knowledge base reveals multiple therapeutic avenues for cancer neuroscience that warrant further exploration in clinical studies. We discuss the available clinical data, including ongoing trials investigating novel agents targeting the tumour-nerve axis, and the therapeutic potential for repurposing existing neuroactive drugs as an anti-cancer approach, particularly in combination with established treatment regimens. Lastly, we discuss the clinical challenges of these treatment strategies and highlight unanswered questions and future directions in the burgeoning field of cancer neuroscience.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jimmy A Guo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; School of Medicine, University of California, San Francisco, San Francisco, CA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hannah I Hoffman
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Health Sciences and Technology Program, Harvard Medical School, Boston, MA, USA
| | - Jennifer Su
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Schenkel
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tyler Jacks
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Zheng
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - William L Hwang
- Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
|
10
|
Anand U, Oldfield C, Pacchetti B, Anand P, Sodergren MH. Dose-Related Inhibition of Capsaicin Responses by Cannabinoids CBG, CBD, THC and their Combination in Cultured Sensory Neurons. J Pain Res 2021; 14:3603-3614. [PMID: 34853533 PMCID: PMC8627890 DOI: 10.2147/jpr.s336773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The analgesic effects of Cannabis sativa are mediated by ∆9 tetrahydrocannabinol (THC), but the contributions of other bioactive complex components, including cannabigerol (CBG) and cannabidiol (CBD), are unclear. We describe the individual and combined effects of CBG, CBD and THC, on blocking capsaicin responses in dorsal root ganglion (DRG) neurons, in an in vitro model of nociceptor hypersensitivity. MATERIALS AND METHODS Adult rat DRG were dissected and enzyme digested to obtain a neuronal suspension in BSF2 medium containing 2% fetal calf serum, and the neurotrophic factors NGF and GDNF. After 48 h, cultured neurons were loaded with Fura-2 AM, to determine the effects of cannabinoids on capsaicin responses using calcium imaging. In control experiments, neurons were treated with vehicle, followed by 1 µM capsaicin. In cannabinoid treated cultures, CBG, CBD or THC were applied individually, or combined (1:1:1 ratio), followed by 1 µM capsaicin. Data from n = 6 experiments were analysed with Student's t-test and Pearson's correlation coefficient. RESULTS CBG, CBD and THC, applied individually, elicited dose-related calcium influx in a subset of DRG neurons, and a corresponding dose-related reduction of subsequent responses to capsaicin. Maximum inhibition of capsaicin responses was observed at 30 µM CBG, 100 µM CBD, and 100 µM THC individually, and with combined CBD+CBG+THC (1:1:1) at 90 µM. THC+CBD+CBG combined in a 1:1:1 proportion has the potential to enhance the potency of these compounds applied individually. There was a high correlation between cannabinoid-mediated calcium influx and reduction of capsaicin responses: CBG = -0.88, THC = -0.97, CBD = -0.99 and combined CBG + THC + CBD = -1.00. CONCLUSION CBG, CBD and THC demonstrated potent dose-related inhibition of capsaicin responses in DRG neurons when applied individually in vitro, and enhanced when applied in combination, being most effective at 90 μM. Thus, efficacy and tolerability of THC could be improved in combination with CBG and CBD at optimal concentrations, which deserve further studies in vivo.
Collapse
Affiliation(s)
- Uma Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | - Christian Oldfield
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | | | - Praveen Anand
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
| | - Mikael H Sodergren
- Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 ONN, UK
- EMMAC Life Sciences Ltd, London, UK
| |
Collapse
|
11
|
Atmaramani R, Veeramachaneni S, Mogas LV, Koppikar P, Black BJ, Hammack A, Pancrazio JJ, Granja-Vazquez R. Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. MICROMACHINES 2021; 12:mi12111317. [PMID: 34832729 PMCID: PMC8621475 DOI: 10.3390/mi12111317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
A critical role of the peripheral axons of nociceptors of the dorsal root ganglion (DRG) is the conduction of all-or-nothing action potentials from peripheral nerve endings to the central nervous system for the perception of noxious stimuli. Plasticity along multiple sites along the pain axis has now been widely implicated in the maladaptive changes that occur in pathological pain states such as neuropathic and inflammatory pain. Notably, increasing evidence suggests that nociceptive axons actively participate through the local expression of ion channels, receptors, and signal transduction molecules through axonal mRNA translation machinery that is independent of the soma component. In this report, we explore the sensitization of sensory neurons through the treatment of compartmentalized axon-like structures spanning microchannels that have been treated with the cytokine IL-6 and, subsequently, capsaicin. These data demonstrate the utility of isolating DRG axon-like structures using microfluidic systems, laying the groundwork for constructing the complex in vitro models of cellular networks that are involved in pain signaling for targeted pharmacological and genetic perturbations.
Collapse
Affiliation(s)
- Rahul Atmaramani
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Srivennela Veeramachaneni
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Liz Valeria Mogas
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Pratik Koppikar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Bryan J. Black
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Audrey Hammack
- Department of Research, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Rafael Granja-Vazquez
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Correspondence: ; Tel.: +1-972-883-2138
| |
Collapse
|
12
|
Infusion of Pituitary Adenylate Cyclase-Activating Polypeptide-38 in Patients with Rosacea Induces Flushing and Facial Edema that Can Be Attenuated by Sumatriptan. J Invest Dermatol 2021; 141:1687-1698. [PMID: 33600826 DOI: 10.1016/j.jid.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The pathogenesis of rosacea is incompletely understood. Signaling neuropeptides, including PACAP, a regulator of vasodilation and edema, are upregulated in rosacea skin. Here, we evaluated PACAP38-induced rosacea features and examined whether a 5-HT1B/1D receptor agonist could reduce these features. METHODS A total of 35 patients with erythematotelangiectatic rosacea received an intravenous infusion of 10 pmol/kg/minute of PACAP38 followed by an intravenous infusion of 4 mg sumatriptan or placebo (saline) on two study days in a double-blind, randomized, placebo-controlled, and cross-over trial. RESULTS PACAP38 increased facial skin blood flow by 90%, dilated the superficial temporal artery by 56%, and induced prolonged flushing and facial edema. Compared with placebo, sumatriptan reduced PACAP38-induced facial skin blood flow for 50 minutes (P = 0.023), constricted the superficial temporal artery for 80 minutes (P = 0.010), and reduced duration of flushing (P = 0.001) and facial edema (P < 0.001). CONCLUSIONS We established a clinical experimental model of rosacea features and showed that sumatriptan was able to attenuate PACAP38-induced rosacea flushing and edema. Findings support a key role of PACAP38 in rosacea flushing pathogenesis. It remains unknown whether PACAP38 inhibition can improve rosacea. TRIAL REGISTER The trial was registered at ClinicalTrials.govNCT03878784 in March 2019.
Collapse
|
13
|
Ruppenstein A, Limberg MM, Loser K, Kremer AE, Homey B, Raap U. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions. Front Med (Lausanne) 2021; 8:627985. [PMID: 33681256 PMCID: PMC7930738 DOI: 10.3389/fmed.2021.627985] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Pruritus is a common, but very challenging symptom with a wide diversity of underlying causes like dermatological, systemic, neurological and psychiatric diseases. In dermatology, pruritus is the most frequent symptom both in its acute and chronic form (over 6 weeks in duration). Treatment of chronic pruritus often remains challenging. Affected patients who suffer from moderate to severe pruritus have a significantly reduced quality of life. The underlying physiology of pruritus is very complex, involving a diverse network of components in the skin including resident cells such as keratinocytes and sensory neurons as well as transiently infiltrating cells such as certain immune cells. Previous research has established that there is a significant crosstalk among the stratum corneum, nerve fibers and various immune cells, such as keratinocytes, T cells, basophils, eosinophils and mast cells. In this regard, interactions between receptors on cutaneous and spinal neurons or on different immune cells play an important role in the processing of signals which are important for the transmission of pruritus. In this review, we discuss the role of various receptors involved in pruritus and inflammation, such as TRPV1 and TRPA1, IL-31RA and OSMR, TSLPR, PAR-2, NK1R, H1R and H4R, MRGPRs as well as TrkA, with a focus on interaction between nerve fibers and different immune cells. Emerging evidence shows that neuro-immune interactions play a pivotal role in mediating pruritus-associated inflammatory skin diseases such as atopic dermatitis, psoriasis or chronic spontaneous urticaria. Targeting these bidirectional neuro-immune interactions and the involved pruritus-specific receptors is likely to contribute to novel insights into the underlying pathogenesis and targeted treatment options of pruritus.
Collapse
Affiliation(s)
- Aylin Ruppenstein
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Maren M Limberg
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Loser
- Division of Immunology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, Oldenburg Clinic, Oldenburg, Germany
| |
Collapse
|
14
|
Qin L, Li J. HIF-1α inhibition alleviates the exaggerated exercise pressor reflex in rats with peripheral artery disease induced by femoral artery occlusion. Physiol Rep 2021; 8:e14676. [PMID: 33356010 PMCID: PMC7757375 DOI: 10.14814/phy2.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor mediating adaptive responses to hypoxia and ischemia. Our previous work showed that HIF-1α is increased in muscle sensory nerves of rats with peripheral artery disease (PAD) induced by femoral artery occlusion. The present study was further to examine the role played by HIF-1α in regulating the response of arterial blood pressure (BP) to the activation of muscle afferent nerve during static muscle contraction in rats with femoral artery occlusion. A rat model of femoral artery ligation was used to study PAD in this study. Western blot analysis was employed to examine the protein levels of HIF-1α in the dorsal root ganglion (DRG) tissues. BAY87, a synthesized compound with the characteristics of highly potent and specific suppressive effects on expression and activity of HIF-1α, was given into the arterial blood supply of the ischemic hindlimb muscles before the exercise pressor reflex was evoked by static muscle contraction. First, HIF-1α was increased in the DRG of occluded limbs (optical density: 0.89 ± 0.13 in control versus 1.5 ± 0.05 in occlusion; p < 0.05, n = 6 in each group). Arterial injection of BAY87 (0.2 mg/kg) then inhibited expression of HIF-1α in the DRG of occluded limbs 3 hr following its injection (optical density: 1.02 ± 0.09 in occluded limbs with BAY87 versus 1.06 ± 0.1 in control limbs; p > 0.05, n = 5 in each group). In addition, muscle contraction evoked a greater increase in BP in occluded rats. BAY87 attenuated the enhanced BP response in occluded rats to a greater degree than in control rats. Our data suggest that the inhibition of HIF-1α alleviates the exaggeration of the exercise pressor reflex in rats under ischemic circumstances of the hindlimbs in PAD induced by femoral artery occlusion.
Collapse
Affiliation(s)
- Lu Qin
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| | - Jianhua Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| |
Collapse
|
15
|
Anand U, Korchev Y, Anand P. The role of urea in neuronal degeneration and sensitization: An in vitro model of uremic neuropathy. Mol Pain 2020; 15:1744806919881038. [PMID: 31549574 PMCID: PMC6796209 DOI: 10.1177/1744806919881038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Uremic neuropathy commonly affects patients with chronic kidney disease, with
painful sensations in the feet, followed by numbness and weakness in the
legs and hands. The symptoms usually resolve following kidney
transplantation, but the mechanisms of uremic neuropathy and associated pain
symptoms remain unknown. As blood urea levels are elevated in patients with
chronic kidney disease, we examined the morphological and functional effects
of clinically observed levels of urea on sensory neurons. Methods Rat dorsal root ganglion neurons were treated with 10 or 50 mmol/L urea for
48 h, fixed and immunostained for PGP9.5 and βIII tubulin
immunofluorescence. Neurons were also immunostained for TRPV1, TRPM8 and
Gap43 expression, and the capsaicin sensitivity of urea- or vehicle-treated
neurons was determined. Results Urea-treated neurons had degenerating neurites with diminished PGP9.5
immunofluorescence, and swollen, retracted growth cones. βIII tubulin
appeared clumped after urea treatment. After 48 hours urea treatment,
neurite lengths were significantly reduced to 60 ± 2.6% (10 mmol/L,
**P < 0.01), and to 56.2 ± 3.3% (50 mmol/L, **P < 0.01), compared with
control neurons. Fewer neurons survived urea treatment, with 70.08 ± 13.3%
remaining after 10 mmol/L (*P < 0.05) and 61.49 ± 7.4% after 50 mmol/L
urea treatment (**P < 0.01), compared with controls. The proportion of
neurons expressing TRPV1 was reduced after urea treatment, but not TRPM8
expressing neurons. In functional studies, treatment with urea resulted in
dose-dependent neuronal sensitization. Capsaicin responses were
significantly increased to 115.29 ± 3.4% (10 mmol/L, **P < 0.01) and
125.3 ± 4.2% (50 mmol/L, **P < 0.01), compared with controls.
Sensitization due to urea was eliminated in the presence of the TRPV1
inhibitor SB705498, the mitogen-activated protein kinase kinase inhibitor
PD98059, the PI3 kinase inhibitor LY294002 and the TRPM8 inhibitor
N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide
(AMTB hydrochloride). Conclusion Neurite degeneration and sensitization are consistent with uremic neuropathy
and provide a disease-relevant model to test new treatments.
Collapse
Affiliation(s)
- U Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.,Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Y Korchev
- Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - P Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| |
Collapse
|
16
|
Atmaramani RR, Black BJ, de la Peña JB, Campbell ZT, Pancrazio JJ. Conserved Expression of Nav1.7 and Nav1.8 Contribute to the Spontaneous and Thermally Evoked Excitability in IL-6 and NGF-Sensitized Adult Dorsal Root Ganglion Neurons In Vitro. Bioengineering (Basel) 2020; 7:bioengineering7020044. [PMID: 32429423 PMCID: PMC7356605 DOI: 10.3390/bioengineering7020044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory neurons respond to noxious stimuli by relaying information from the periphery to the central nervous system via action potentials driven by voltage-gated sodium channels, specifically Nav1.7 and Nav1.8. These channels play a key role in the manifestation of inflammatory pain. The ability to screen compounds that modulate voltage-gated sodium channels using cell-based assays assumes that key channels present in vivo is maintained in vitro. Prior electrophysiological work in vitro utilized acutely dissociated tissues, however, maintaining this preparation for long periods is difficult. A potential alternative involves multi-electrode arrays which permit long-term measurements of neural spike activity and are well suited for assessing persistent sensitization consistent with chronic pain. Here, we demonstrate that the addition of two inflammatory mediators associated with chronic inflammatory pain, nerve growth factor (NGF) and interleukin-6 (IL-6), to adult DRG neurons increases their firing rates on multi-electrode arrays in vitro. Nav1.7 and Nav1.8 proteins are readily detected in cultured neurons and contribute to evoked activity. The blockade of both Nav1.7 and Nav1.8, has a profound impact on thermally evoked firing after treatment with IL-6 and NGF. This work underscores the utility of multi-electrode arrays for pharmacological studies of sensory neurons and may facilitate the discovery and mechanistic analyses of anti-nociceptive compounds.
Collapse
Affiliation(s)
- Rahul R. Atmaramani
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - Bryan J. Black
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
| | - June Bryan de la Peña
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zachary T. Campbell
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (J.B.d.l.P.); (Z.T.C.)
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (R.R.A.); (B.J.B.)
- Correspondence: ; Tel.: +1-972-883-2138
| |
Collapse
|
17
|
Anand U, Jones B, Korchev Y, Bloom SR, Pacchetti B, Anand P, Sodergren MH. CBD Effects on TRPV1 Signaling Pathways in Cultured DRG Neurons. J Pain Res 2020; 13:2269-2278. [PMID: 32982390 PMCID: PMC7494392 DOI: 10.2147/jpr.s258433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Cannabidiol (CBD) is reported to produce pain relief, but the clinically relevant cellular and molecular mechanisms remain uncertain. The TRPV1 receptor integrates noxious stimuli and plays a key role in pain signaling. Hence, we conducted in vitro studies, to elucidate the efficacy and mechanisms of CBD for inhibiting neuronal hypersensitivity in cultured rat sensory neurons, following activation of TRPV1. METHODS Adult rat dorsal root ganglion (DRG) neurons were cultured and supplemented with the neurotrophic factors NGF and GDNF, in an established model of neuronal hypersensitivity. Neurons were stimulated with CBD (Adven 150, EMMAC Life Sciences) at 1, 10, 100 nMol/L and 1, 10 and 50 µMol/L, 48 h after plating. In separate experiments, DRG neurons were also stimulated with capsaicin with or without CBD (1 nMol/L to10 µMol/L), in a functional calcium imaging assay. The effects of the adenylyl cyclase activator forskolin and the calcineurin inhibitor cyclosporin were determined. We also measured forskolin-stimulated cAMP levels, without and after treatment with CBD, using a homogenous time-resolved fluorescence (HTRF) assay. The results were analysed using Mann-Whitney test. RESULTS DRG neurons treated with 10 and 50 µMol/L CBD showed calcium influx, but not at lower doses. Neurons treated with capsaicin demonstrated robust calcium influx, which was dose-dependently reduced in the presence of low dose CBD (IC50 = 100 nMol/L). The inhibition or desensitization by CBD was reversed in the presence of forskolin and cyclosporin. Forskolin-stimulated cAMP levels were significantly reduced in CBD treated neurons. CONCLUSION CBD at low doses corresponding to plasma concentrations observed physiologically inhibits or desensitizes neuronal TRPV1 signalling by inhibiting the adenylyl cyclase - cAMP pathway, which is essential for maintaining TRPV1 phosphorylation and sensitization. CBD also facilitated calcineurin-mediated TRPV1 inhibition. These mechanisms may underlie nociceptor desensitization and the therapeutic effect of CBD in animal models and patients with acute and chronic pain.
Collapse
Affiliation(s)
- Uma Anand
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
- Correspondence: Uma Anand Email
| | - Ben Jones
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
| | - Yuri Korchev
- Nanomedicine Laboratory, BN5 Commonwealth Building, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
| | - Stephen R Bloom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
| | | | - Praveen Anand
- Peripheral Neuropathy Unit, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
| | - Mikael Hans Sodergren
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, LondonW12 ONN, UK
| |
Collapse
|
18
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
19
|
Granulocyte-macrophage colony-stimulating factor receptor expression in clinical pain disorder tissues and role in neuronal sensitization. Pain Rep 2018; 3:e676. [PMID: 30534627 PMCID: PMC6181465 DOI: 10.1097/pr9.0000000000000676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) is highly expressed in peripheral macrophages and microglia, and is involved in arthritis and cancer pain in animal models. However, there is limited information on GM-CSFR expression in human central nervous system (CNS), peripheral nerves, or dorsal root ganglia (DRG), particularly in chronic pain conditions. Objectives: Immunohistochemistry was used to quantify GM-CSFR expression levels in human tissues, and functional sensory effects of GM-CSF were studied in cultured DRG neurons. Results: Granulocyte-macrophage colony-stimulating factor receptor was markedly increased in microglia at lesional sites of multiple sclerosis spinal cords (P = 0.01), which co-localised with macrophage marker CD68 (P = 0.009). In human DRG, GM-CSFR was expressed in a subset of small/medium diameter cells (30%) and few large cells (10%), with no significant change in avulsion-injured DRG. In peripheral nerves, there was a marked decrease in axonal GM-CSFR after chronic painful nerve injury (P = 0.004) and in painful neuromas (P = 0.0043); CD-68–positive macrophages were increased (P = 0.017) but did not appear to express GM-CSFR. Although control synovium showed absent GM-CSFR immunostaining, this was markedly increased in macrophages of painful osteoarthritis knee synovium. Granulocyte-macrophage colony-stimulating factor receptor was expressed in 17 ± 1.7% of small-/medium-sized cultured adult rat DRG neurons, and in 27 ± 3.3% of TRPV1-positive neurons. Granulocyte-macrophage colony-stimulating factor treatment sensitized capsaicin responses in vitro, which were diminished by p38 MAPK or TrkA inhibitors. Conclusion: Our findings support GM-CSFR as a therapeutic target for pain and hypersensitivity in clinical CNS and peripheral inflammatory conditions. Although GM-CSFR was decreased in chronic painful injured peripheral nerves, it could mediate CNS neuroinflammatory effects, which deserves study.
Collapse
|
20
|
Schwaid AG, Krasowka-Zoladek A, Chi A, Cornella-Taracido I. Comparison of the Rat and Human Dorsal Root Ganglion Proteome. Sci Rep 2018; 8:13469. [PMID: 30194433 PMCID: PMC6128859 DOI: 10.1038/s41598-018-31189-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/31/2018] [Indexed: 01/09/2023] Open
Abstract
Dorsal root ganglion (DRG) are a key tissue in the nervous system that have a role in neurological disease, particularly pain. Despite the importance of this tissue, the proteome of DRG is poorly understood, and it is unknown whether the proteome varies between organisms or different DRG along the spine. Therefore, we profiled the proteome of human and rat DRG. We identified 5,245 proteins in human DRG and 4959 proteins in rat DRG. Across species the proteome is largely conserved with some notable differences. While the most abundant proteins in both rat and human DRG played a role in extracellular functions and myelin sheeth, proteins detected only in humans mapped to roles in immune function whereas those detected only in rat mapped to roles in localization and transport. The DRG proteome between human T11 and L2 vertebrae was nearly identical indicating DRG from different vertebrae are representative of one another. Finally, we asked if this data could be used to enhance translatability by identifying mechanisms that modulate cellular phenotypes representative of pain in different species. Based on our data we tested and discovered that MAP4K4 inhibitor treatment increased neurite outgrowth in rat DRG as in human SH-SY5Y cells.
Collapse
Affiliation(s)
| | | | - An Chi
- MRL, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Ivan Cornella-Taracido
- MRL, Merck & Co., Inc., Boston, MA, 02115, USA.,Cedilla Therapeutics, Cambridge, MA, 02139, USA
| |
Collapse
|
21
|
Anand U, Yiangou Y, Akbar A, Quick T, MacQuillan A, Fox M, Sinisi M, Korchev YE, Jones B, Bloom SR, Anand P. Glucagon-like peptide 1 receptor (GLP-1R) expression by nerve fibres in inflammatory bowel disease and functional effects in cultured neurons. PLoS One 2018; 13:e0198024. [PMID: 29813107 PMCID: PMC5973579 DOI: 10.1371/journal.pone.0198024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Glucagon like-peptide 1 receptor (GLP-1R) agonists diminish appetite and may contribute to the weight loss in inflammatory bowel disease (IBD). OBJECTIVES The aim of this study was to determine, for the first time, the expression of GLP-1R by colon nerve fibres in patients with IBD, and functional effects of its agonists in cultured rat and human sensory neurons. METHODS GLP-1R and other nerve markers were studied by immunohistochemistry in colon biopsies from patients with IBD (n = 16) and controls (n = 8), human dorsal root ganglia (DRG) tissue, and in GLP-1R transfected HEK293 cells. The morphological effects of incretin hormones oxyntomodulin, exendin-4 and glucagon were studied on neurite extension in cultured DRG neurons, and their functional effects on capsaicin and ATP signalling, using calcium imaging. RESULTS Significantly increased numbers of colonic mucosal nerve fibres were observed in IBD biopsies expressing GLP-1R (p = 0.0013), the pan-neuronal marker PGP9.5 (p = 0.0008), and sensory neuropeptide CGRP (p = 0.0014). An increase of GLP-1R positive nerve fibres in IBD colon was confirmed with a different antibody to GLP-1R (p = 0.016). GLP-1R immunostaining was intensely positive in small and medium-sized neurons in human DRG, and in human and rat DRG cultured neurons. Co-localization of GLP-1R expression with neuronal markers in colon and DRG confirmed the neural expression of GLP-1R, and antibody specificity was confirmed in HEK293 cells transfected with the GLP-1R. Treatment with oxyntomodulin, exendin-4 and GLP-1 increased neurite length in cultured neurons compared with controls, but did not stimulate calcium influx directly, or affect capsaicin responses. However, exendin-4 significantly enhanced ATP responses in human DRG neurons. CONCLUSION Our results show that increased GLP-1R innervation in IBD bowel could mediate enhanced visceral afferent signalling, and provide a peripheral target for therapeutic intervention. The differential effect of GLP-1R agonists on capsaicin and ATP responses in neurons suggest they may not affect pain mechanisms mediated by the capsaicin receptor TRPV1, but may enhance the effects of purinergic agonists.
Collapse
Affiliation(s)
- Uma Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Nanomedicine Research Laboratory, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ayesha Akbar
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Tom Quick
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Anthony MacQuillan
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Mike Fox
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Marco Sinisi
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Yuri E. Korchev
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ben Jones
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, London
| | - Steve R. Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Hospital, London
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
22
|
Sheahan TD, Valtcheva MV, McIlvried LA, Pullen MY, Baranger DA, Gereau RW. Metabotropic Glutamate Receptor 2/3 (mGluR2/3) Activation Suppresses TRPV1 Sensitization in Mouse, But Not Human, Sensory Neurons. eNeuro 2018; 5:ENEURO.0412-17.2018. [PMID: 29662945 PMCID: PMC5898698 DOI: 10.1523/eneuro.0412-17.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/08/2023] Open
Abstract
The use of human tissue to validate putative analgesic targets identified in rodents is a promising strategy for improving the historically poor translational record of preclinical pain research. We recently demonstrated that in mouse and human sensory neurons, agonists for metabotropic glutamate receptors 2 and 3 (mGluR2/3) reduce membrane hyperexcitability produced by the inflammatory mediator prostaglandin E2 (PGE2). Previous rodent studies indicate that mGluR2/3 can also reduce peripheral sensitization by suppressing inflammation-induced sensitization of TRPV1. Whether this observation similarly translates to human sensory neurons has not yet been tested. We found that activation of mGluR2/3 with the agonist APDC suppressed PGE2-induced sensitization of TRPV1 in mouse, but not human, sensory neurons. We also evaluated sensory neuron expression of the gene transcripts for mGluR2 (Grm2), mGluR3 (Grm3), and TRPV1 (Trpv1). The majority of Trpv1+ mouse and human sensory neurons expressed Grm2 and/or Grm3, and in both mice and humans, Grm2 was expressed in a greater percentage of sensory neurons than Grm3. Although we demonstrated a functional difference in the modulation of TRPV1 sensitization by mGluR2/3 activation between mouse and human, there were no species differences in the gene transcript colocalization of mGluR2 or mGluR3 with TRPV1 that might explain this functional difference. Taken together with our previous work, these results suggest that mGluR2/3 activation suppresses only some aspects of human sensory neuron sensitization caused by PGE2. These differences have implications for potential healthy human voluntary studies or clinical trials evaluating the analgesic efficacy of mGluR2/3 agonists or positive allosteric modulators.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Manouela V. Valtcheva
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David A.A. Baranger
- Washington University Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
- BRAIN Laboratory, Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
23
|
Queme LF, Ross JL, Jankowski MP. Peripheral Mechanisms of Ischemic Myalgia. Front Cell Neurosci 2017; 11:419. [PMID: 29311839 PMCID: PMC5743676 DOI: 10.3389/fncel.2017.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal pain due to ischemia is present in a variety of clinical conditions including peripheral vascular disease (PVD), sickle cell disease (SCD), complex regional pain syndrome (CRPS), and even fibromyalgia (FM). The clinical features associated with deep tissue ischemia are unique because although the subjective description of pain is common to other forms of myalgia, patients with ischemic muscle pain often respond poorly to conventional analgesic therapies. Moreover, these patients also display increased cardiovascular responses to muscle contraction, which often leads to exercise intolerance or exacerbation of underlying cardiovascular conditions. This suggests that the mechanisms of myalgia development and the role of altered cardiovascular function under conditions of ischemia may be distinct compared to other injuries/diseases of the muscles. It is widely accepted that group III and IV muscle afferents play an important role in the development of pain due to ischemia. These same muscle afferents also form the sensory component of the exercise pressor reflex (EPR), which is the increase in heart rate and blood pressure (BP) experienced after muscle contraction. Studies suggest that afferent sensitization after ischemia depends on interactions between purinergic (P2X and P2Y) receptors, transient receptor potential (TRP) channels, and acid sensing ion channels (ASICs) in individual populations of peripheral sensory neurons. Specific alterations in primary afferent function through these receptor mechanisms correlate with increased pain related behaviors and altered EPRs. Recent evidence suggests that factors within the muscles during ischemic conditions including upregulation of growth factors and cytokines, and microvascular changes may be linked to the overexpression of these different receptor molecules in the dorsal root ganglia (DRG) that in turn modulate pain and sympathetic reflexes. In this review article, we will discuss the peripheral mechanisms involved in the development of ischemic myalgia and the role that primary sensory neurons play in EPR modulation.
Collapse
Affiliation(s)
- Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jessica L Ross
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
24
|
DRG Voltage-Gated Sodium Channel 1.7 Is Upregulated in Paclitaxel-Induced Neuropathy in Rats and in Humans with Neuropathic Pain. J Neurosci 2017; 38:1124-1136. [PMID: 29255002 DOI: 10.1523/jneurosci.0899-17.2017] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 11/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse effect experienced by cancer patients receiving treatment with paclitaxel. The voltage-gated sodium channel 1.7 (Nav1.7) plays an important role in multiple preclinical models of neuropathic pain and in inherited human pain phenotypes, and its gene expression is increased in dorsal root ganglia (DRGs) of paclitaxel-treated rats. Hence, the potential of change in the expression and function of Nav1.7 protein in DRGs from male rats with paclitaxel-related CIPN and from male and female humans with cancer-related neuropathic pain was tested here. Double immunofluorescence in CIPN rats showed that Nav1.7 was upregulated in small DRG neuron somata, especially those also expressing calcitonin gene-related peptide (CGRP), and in central processes of these cells in the superficial spinal dorsal horn. Whole-cell patch-clamp recordings in rat DRG neurons revealed that paclitaxel induced an enhancement of ProTx II (a selective Nav1.7 channel blocker)-sensitive sodium currents. Bath-applied ProTx II suppressed spontaneous action potentials in DRG neurons occurring in rats with CIPN, while intrathecal injection of ProTx II significantly attenuated behavioral signs of CIPN. Complementarily, DRG neurons isolated from segments where patients had a history of neuropathic pain also showed electrophysiological and immunofluorescence results indicating an increased expression of Nav1.7 associated with spontaneous activity. Nav1.7 was also colocalized in human cells expressing transient receptor potential vanilloid 1 and CGRP. Furthermore, ProTx II decreased firing frequency in human DRGs with spontaneous action potentials. This study suggests that Nav1.7 may provide a potential new target for the treatment of neuropathic pain, including chemotherapy (paclitaxel)-induced neuropathic pain.SIGNIFICANCE STATEMENT This work demonstrates that the expression and function of the voltage-gated sodium channel Nav1.7 are increased in a preclinical model of chemotherapy-induced peripheral neuropathy (CIPN), the most common treatment-limiting side effect of all the most common anticancer therapies. This is key as gain-of-function mutations in human Nav1.7 recapitulate both the distribution and pain percept as shown by CIPN patients. This work also shows that Nav1.7 is increased in human DRG neurons only in dermatomes where patients are experiencing acquired neuropathic pain symptoms. This work therefore has major translational impact, indicating an important novel therapeutic avenue for neuropathic pain as a class.
Collapse
|
25
|
Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain 2017; 158:417-429. [PMID: 27902567 DOI: 10.1097/j.pain.0000000000000774] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here, it is shown that paclitaxel-induced neuropathy is associated with the development of spontaneous activity (SA) and hyperexcitability in dorsal root ganglion (DRG) neurons that is paralleled by increased expression of low-voltage-activated calcium channels (T-type; Cav3.2). The percentage of DRG neurons showing SA and the overall mean rate of SA were significantly higher at day 7 in rats receiving paclitaxel treatment than in rats receiving vehicle. Cav3.2 expression was increased in L4-L6 DRG and spinal cord segments in paclitaxel-treated rats, localized to small calcitonin gene-related peptide and isolectin B4 expressing DRG neurons and to glial fibrillary acidic protein-positive spinal cord cells. Cav3.2 expression was also co-localized with toll-like receptor 4 (TLR4) in both the DRG and the dorsal horn. T-type current amplitudes and density were increased at day 7 after paclitaxel treatment. Perfusion of the TLR4 agonist lipopolysaccharide directly activated DRG neurons, whereas this was prevented by pretreatment with the specific T-type calcium channel inhibitor ML218 hydrochloride. Paclitaxel-induced behavioral hypersensitivity to mechanical stimuli in rats was prevented but not reversed by spinal administration of ML218 hydrochloride or intravenous injection of the TLR4 antagonist TAK242. Paclitaxel induced inward current and action potential discharges in cultured human DRG neurons, and this was blocked by ML218 hydrochloride pretreatment. Furthermore, ML218 hydrochloride decreased firing frequency in human DRG, where spontaneous action potentials were present. In summary, Cav3.2 in concert with TLR4 in DRG neurons appears to contribute to paclitaxel-induced neuropathy.
Collapse
|
26
|
Gao X, Zhao L, Zhuang J, Zang N, Xu F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation. FASEB J 2017; 31:4325-4334. [PMID: 28615326 PMCID: PMC5602895 DOI: 10.1096/fj.201700163r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 02/03/2023]
Abstract
Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.
Collapse
Affiliation(s)
- Xiuping Gao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Lei Zhao
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Na Zang
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
27
|
Anand P, Yiangou Y, Anand U, Mukerji G, Sinisi M, Fox M, McQuillan A, Quick T, Korchev YE, Hein P. Nociceptin/orphanin FQ receptor expression in clinical pain disorders and functional effects in cultured neurons. Pain 2016; 157:1960-1969. [PMID: 27127846 DOI: 10.1097/j.pain.0000000000000597] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nociceptin/orphanin FQ peptide receptor (NOP), activated by its endogenous peptide ligand nociceptin/orphanin FQ (N/OFQ), exerts several effects including modulation of pain signalling. We have examined, for the first time, the tissue distribution of the NOP receptor in clinical visceral and somatic pain disorders by immunohistochemistry and assessed functional effects of NOP and μ-opioid receptor activation in cultured human and rat dorsal root ganglion (DRG) neurons. Quantification of NOP-positive nerve fibres within the bladder suburothelium revealed a remarkable several-fold increase in detrusor overactivity (P < 0.0001) and painful bladder syndrome patient specimens (P = 0.0014) compared with controls. In postmortem control human DRG, 75% to 80% of small/medium neurons (≤50 μm diameter) in the lumbar (somatic) and sacral (visceral) DRG were positive for NOP, and fewer large neurons; avulsion-injured cervical human DRG neurons showed similar numbers. NOP immunoreactivity was significantly decreased in injured peripheral nerves (P = 0.0004), and also in painful neuromas (P = 0.025). Calcium-imaging studies in cultured rat DRG neurons demonstrated dose-dependent inhibition of capsaicin responses in the presence of N/OFQ, with an IC50 of 8.6 pM. In cultured human DRG neurons, 32% inhibition of capsaicin responses was observed in the presence of 1 pM N/OFQ (P < 0.001). The maximum inhibition of capsaicin responses was greater with N/OFQ than μ-opioid receptor agonist DAMGO. Our findings highlight the potential of NOP agonists, particularly in urinary bladder overactivity and pain syndromes. The regulation of NOP expression in visceral and somatic sensory neurons by target-derived neurotrophic factors deserves further study, and the efficacy of NOP selective agonists in clinical trials.
Collapse
Affiliation(s)
- Praveen Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Yiangos Yiangou
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Uma Anand
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gaurav Mukerji
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Marco Sinisi
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Michael Fox
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Anthony McQuillan
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Tom Quick
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom
| | - Yuri E Korchev
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Peter Hein
- Grünenthal Innovation, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| |
Collapse
|
28
|
Enright HA, Felix SH, Fischer NO, Mukerjee EV, Soscia D, Mcnerney M, Kulp K, Zhang J, Page G, Miller P, Ghetti A, Wheeler EK, Pannu S. Long-term non-invasive interrogation of human dorsal root ganglion neuronal cultures on an integrated microfluidic multielectrode array platform. Analyst 2016; 141:5346-57. [PMID: 27351032 DOI: 10.1039/c5an01728a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scientific studies in drug development and toxicology rely heavily on animal models, which often inaccurately predict the true response for human exposure. This may lead to unanticipated adverse effects or misidentified risks that result in, for example, drug candidate elimination. The utilization of human cells and tissues for in vitro physiological platforms has become a growing area of interest to bridge this gap and to more accurately predict human responses to drugs and toxins. The effects of new drugs and toxins on the peripheral nervous system are often investigated with neurons isolated from dorsal root ganglia (DRG), typically with one-time measurement techniques such as patch clamping. Here, we report the use of our multi-electrode array (MEA) platform for long-term noninvasive assessment of human DRG cell health and function. In this study, we acquired simultaneous optical and electrophysiological measurements from primary human DRG neurons upon chemical stimulation repeatedly through day in vitro (DIV) 23. Distinct chemical signatures were noted for the cellular responses evoked by each chemical stimulus. Additionally, the cell viability and function of the human DRG neurons were consistent through DIV 23. To the best of our knowledge, this is the first report on long-term measurements of the cell health and function of human DRG neurons on a MEA platform. Future generations will include higher electrode numbers in customized arrangements as well as integration with different tissue types on a single device. This platform will provide a valuable testing tool for both rodent and human cells, enabling a more comprehensive risk assessment for drug candidates and toxicants.
Collapse
Affiliation(s)
- H A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liang D, Shi S, Xu J, Zhang B, Qin Y, Ji S, Xu W, Liu J, Liu L, Liu C, Long J, Ni Q, Yu X. New insights into perineural invasion of pancreatic cancer: More than pain. Biochim Biophys Acta Rev Cancer 2016; 1865:111-22. [PMID: 26794395 DOI: 10.1016/j.bbcan.2016.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/26/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Pancreatic cancer is one of the most malignant human tumors. Perineural invasion, whereby a cancer cell invades the perineural spaces surrounding nerves, is acknowledged as a gradual contributor to cancer aggressiveness. Furthermore, perineural invasion is considered one of the root causes of the recurrence and metastasis observed after pancreatic resection, and it is also an independent predictor of prognosis. Advanced research has demonstrated that the neural microenvironment is closely associated with perineural invasion in pancreatic cancer. Therapy targeting the molecular mechanism of perineural invasion may enable the durable clinical treatment of this formidable disease. This review provides an overview of the present status of perineural invasion, the relevant molecular mechanisms of perineural invasion, pain and hyperglycemia associated with perineural invasion in pancreatic cancer, and the targeted therapeutics based on these studies.
Collapse
Affiliation(s)
- Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
|
31
|
Anand U, Yiangou Y, Sinisi M, Fox M, MacQuillan A, Quick T, Korchev YE, Bountra C, McCarthy T, Anand P. Mechanisms underlying clinical efficacy of Angiotensin II type 2 receptor (AT2R) antagonist EMA401 in neuropathic pain: clinical tissue and in vitro studies. Mol Pain 2015; 11:38. [PMID: 26111701 PMCID: PMC4482278 DOI: 10.1186/s12990-015-0038-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background The clinical efficacy of the Angiotensin II (AngII) receptor AT2R antagonist EMA401, a novel peripherally-restricted analgesic, was reported recently in post-herpetic neuralgia. While previous studies have shown that AT2R is expressed by nociceptors in human DRG (hDRG), and that EMA401 inhibits capsaicin responses in cultured hDRG neurons, the expression and levels of its endogenous ligands AngII and AngIII in clinical neuropathic pain tissues, and their signalling pathways, require investigation. We have immunostained AngII, AT2R and the capsaicin receptor TRPV1 in control post-mortem and avulsion injured hDRG, control and injured human nerves, and in cultured hDRG neurons. AngII, AngIII, and Ang-(1-7) levels were quantified by ELISA. The in vitro effects of AngII, AT2R agonist C21, and Nerve growth factor (NGF) were measured on neurite lengths; AngII, NGF and EMA401 effects on expression of p38 and p42/44 MAPK were measured using quantitative immunofluorescence, and on capsaicin responses using calcium imaging. Results AngII immunostaining was observed in approximately 75% of small/medium diameter neurons in control (n = 5) and avulsion injured (n = 8) hDRG, but not large neurons i.e. similar to TRPV1. AngII was co-localised with AT2R and TRPV1 in hDRG and in vitro. AngII staining by image analysis showed no significant difference between control (n = 12) and injured (n = 13) human nerves. AngII levels by ELISA were also similar in control human nerves (4.09 ± 0.36 pmol/g, n = 31), injured nerves (3.99 ± 0.79 pmol/g, n = 7), and painful neuromas (3.43 ± 0.73 pmol/g, n = 12); AngIII and Ang-(1-7) levels were undetectable (<0.03 and 0.05 pmol/g respectively). Neurite lengths were significantly increased in the presence of NGF, AngII and C21 in cultured DRG neurons. AngII and, as expected, NGF significantly increased signal intensity of p38 and p42/44 MAPK, which was reversed by EMA401. AngII mediated sensitization of capsaicin responses was not observed in the presence of MAP kinase inhibitor PD98059, and the kinase inhibitor staurosporine. Conclusion The major AT2R ligand in human peripheral nerves is AngII, and its levels are maintained in injured nerves. EMA401 may act on paracrine/autocrine mechanisms at peripheral nerve terminals, or intracrine mechanisms, to reduce neuropathic pain signalling in AngII/NGF/TRPV1-convergent pathways.
Collapse
Affiliation(s)
- Uma Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Yiangos Yiangou
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| | - Marco Sinisi
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Michael Fox
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Anthony MacQuillan
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Tom Quick
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK. .,Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Yuri E Korchev
- Nanomedicine Research Laboratory, Division of Medicine, Hammersmith Hospital, Imperial College London, BN5 Commonwealth Building, London, W12 0NN, UK.
| | - Chas Bountra
- University of Oxford Structural Genomics Consortium, Old Road, Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | - Tom McCarthy
- Spinifex Pharmaceuticals Pty Ltd, Corporate One, Suite G5, 84 Hotham St, Preston, VIC, 3072, Australia.
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, Area A, Ground Floor, Du Cane Rd, London, W12 ONN, UK.
| |
Collapse
|
32
|
Henrich F, Magerl W, Klein T, Greffrath W, Treede RD. Capsaicin-sensitive C- and A-fibre nociceptors control long-term potentiation-like pain amplification in humans. Brain 2015; 138:2505-20. [DOI: 10.1093/brain/awv108] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 01/08/2023] Open
|
33
|
Zhuang J, Zhao L, Zang N, Xu F. Prenatal nicotinic exposure augments cardiorespiratory responses to activation of bronchopulmonary C-fibers. Am J Physiol Lung Cell Mol Physiol 2015; 308:L922-30. [PMID: 25747962 PMCID: PMC4421788 DOI: 10.1152/ajplung.00241.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 03/01/2015] [Indexed: 12/26/2022] Open
Abstract
Rat pups prenatally exposed to nicotine (PNE) present apneic (lethal ventilatory arrest) responses during severe hypoxia. To clarify whether these responses are of central origin, we tested PNE effects on ventilation and diaphragm electromyography (EMGdi) during hypoxia in conscious rat pups. PNE produced apnea (lethal ventilatory arrest) identical to EMGdi silencing during hypoxia, indicating a central origin of this apneic response. We further asked whether PNE would sensitize bronchopulmonary C-fibers (PCFs), a key player in generating central apnea, with increase of the density and transient receptor potential cation channel subfamily V member 1 (TRPV1) expression of C-fibers/neurons in the nodose/jugular (N/J) ganglia and neurotrophic factors in the airways and lungs. We compared 1) ventilatory and pulmonary C-neural responses to right atrial bolus injection of capsaicin (CAP, 0.5 μg/kg), 2) bronchial substance P-immunoreactive (SP-IR) fiber density, 3) gene and protein expressions of TRPV1 in the ganglia, and 4) nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) protein in bronchoalveolar lavage fluid (BALF) and TrkA and TrkB genes in the ganglia between control and PNE pups. PNE markedly strengthened the PCF-mediated apneic response to CAP via increasing pulmonary C-neural sensitivity. PNE also enhanced bronchial SP-IR fiber density and N/J ganglia neural TRPV1 expression associated with increased gene expression of TrkA in the N/G ganglia and decreased NGF and BDNF in BALF. Our results suggest that PNE enhances PCF sensitivity likely through increasing PCF density and TRPV1 expression via upregulation of neural TrkA and downregulation of pulmonary BDNF, which may contribute to the PNE-promoted central apnea (lethal ventilatory arrest) during hypoxia.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Lei Zhao
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Na Zang
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Fadi Xu
- Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
34
|
Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 2015; 172:2654-70. [PMID: 25625641 DOI: 10.1111/bph.13092] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.8 channel blocker of novel chemotype. EXPERIMENTAL APPROACH The inhibition of Nav 1.8 channels by PF-01247324 was studied using in vitro patch-clamp electrophysiology and the oral bioavailability and antinociceptive effects demonstrated using in vivo rodent models of inflammatory and neuropathic pain. KEY RESULTS PF-01247324 inhibited native tetrodotoxin-resistant (TTX-R) currents in human dorsal root ganglion (DRG) neurons (IC50 : 331 nM) and in recombinantly expressed h Nav 1.8 channels (IC50 : 196 nM), with 50-fold selectivity over recombinantly expressed TTX-R hNav 1.5 channels (IC50 : ∼10 μM) and 65-100-fold selectivity over TTX-sensitive (TTX-S) channels (IC50 : ∼10-18 μM). Native TTX-R currents in small-diameter rodent DRG neurons were inhibited with an IC50 448 nM, and the block of both human recombinant Nav 1.8 channels and TTX-R from rat DRG neurons was both frequency and state dependent. In vitro current clamp showed that PF-01247324 reduced excitability in both rat and human DRG neurons and also altered the waveform of the action potential. In vivo experiments n rodents demonstrated efficacy in both inflammatory and neuropathic pain models. CONCLUSIONS AND IMPLICATIONS Using PF-01247324, we have confirmed a role for Nav 1.8 channels in both inflammatory and neuropathic pain. We have also demonstrated a key role for Nav 1.8 channels in action potential upstroke and repetitive firing of rat and human DRG neurons.
Collapse
|
35
|
Hu A, Zuo B, Zhang F, Lan Q, Zhang H. Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res 2015; 7:1171-8. [PMID: 25722711 PMCID: PMC4340035 DOI: 10.3969/j.issn.1673-5374.2012.15.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 04/19/2012] [Indexed: 01/06/2023] Open
Abstract
In this study, Schwann cells, at a density of 1 × 10(5) cells/well, were cultured on regenerated silk fibroin nanofibers (305 ± 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility.
Collapse
Affiliation(s)
- Aijun Hu
- Department of Otolaryngy, the Second Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province, China
| | - Baoqi Zuo
- College of Textiles and Clothing Engineering, Soochow University, Suzhou 215021, Jiangsu Province, China ; National Engineering Laboratory for Modern Silk, Suzhou 215023, Jiangsu Province, China
| | - Feng Zhang
- Jiangsu Province Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou 215007, Jiangsu Province, China
| | - Qing Lan
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu Province, China
| | - Huanxiang Zhang
- Jiangsu Province Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou 215007, Jiangsu Province, China
| |
Collapse
|
36
|
The exercise pressor reflex and peripheral artery disease. Auton Neurosci 2014; 188:69-73. [PMID: 25458431 DOI: 10.1016/j.autneu.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
The exercise pressor reflex contributes to increases in cardiovascular and ventilatory function during exercise. These reflexive increases are caused by both mechanical stimulation and metabolic stimulation of group III and IV afferents with endings in contracting skeletal muscle. Patients with peripheral artery disease (PAD) have an augmented exercise pressor reflex. Recently, an animal model of PAD was established which allows further investigation of possible mechanisms involved in this augmented reflex. Earlier studies have identified ASIC3 channels, bradykinin receptors, P2X receptors, endoperoxide receptors, and thromboxane receptors as playing a role in evoking the exercise pressor reflex in healthy rats. This review focuses on recent studies using a rat model of PAD in order to determine possible mechanisms contributing to the exaggerated exercise pressor reflex seen in patients with this disease.
Collapse
|
37
|
Carlin KP, Wu G, Patel A, Crumley G, Ilyin VI. Phenylarsine oxide as a redox modulator of transient receptor potential vanilloid type 1 channel function. J Neurosci Res 2014; 93:309-20. [PMID: 25250537 DOI: 10.1002/jnr.23479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 11/09/2022]
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) channels are capable of detecting and integrating noxious stimuli and play an important role in nociceptor activation and sensitization. It has been demonstrated that oxidizing agents are capable of positively modulating (sensitizing) the TRPV1 channel. The present study investigates the ability of the thiol-oxidizing agent phenylarsine oxide (PAO) to modulate TRPV1 currents under voltage-clamp conditions. We assessed the ability of PAO to modulate both proton- and capsaicin-activated currents mediated by recombinant human TRPV1 channels as well as native rat and human TRPV1 channels in dorsal root ganglion (DRG) neurons. Experiments with other oxidizing and reducing agents having various membrane-permeating properties supported the intracellular oxidizing mechanism of PAO modulation. The PAO modulation of proton-activated currents was consistent across the cell types studied, with an increase in current across the proton concentrations studied. PAO modulation of the capsaicin-activated current in hTRPV1/Chinese hamster ovary cells consisted of potentiation of the current elicited with low capsaicin concentrations and inhibition of the current at higher concentrations. This same effect was seen with these recombinant cells in calcium imaging experiments and with native TRPV1 channels in rat DRG neurons. Contrary to this, currents in human DRG neurons were potentiated at all capsaicin concentrations tested after PAO treatment. These results could indicate important differences in the reduction-oxidation modulation of human TRPV1 channels in a native cellular environment.
Collapse
Affiliation(s)
- Kevin P Carlin
- Discovery Research, Purdue Pharma LP, Cranbury, New Jersey
| | | | | | | | | |
Collapse
|
38
|
Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RW. Human sensory neurons: Membrane properties and sensitization by inflammatory mediators. Pain 2014; 155:1861-1870. [PMID: 24973718 PMCID: PMC4158027 DOI: 10.1016/j.pain.2014.06.017] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 06/20/2014] [Indexed: 12/26/2022]
Abstract
Biological differences in sensory processing between human and model organisms may present significant obstacles to translational approaches in treating chronic pain. To better understand the physiology of human sensory neurons, we performed whole-cell patch-clamp recordings from 141 human dorsal root ganglion (hDRG) neurons from 5 young adult donors without chronic pain. Nearly all small-diameter hDRG neurons (<50 μm) displayed an inflection on the descending slope of the action potential, a defining feature of rodent nociceptive neurons. A high proportion of hDRG neurons were responsive to the algogens allyl isothiocyanate (AITC) and ATP, as well as the pruritogens histamine and chloroquine. We show that a subset of hDRG neurons responded to the inflammatory compounds bradykinin and prostaglandin E2 with action potential discharge and show evidence of sensitization including lower rheobase. Compared to electrically evoked action potentials, chemically induced action potentials were triggered from less depolarized thresholds and showed distinct afterhyperpolarization kinetics. These data indicate that most small/medium hDRG neurons can be classified as nociceptors, that they respond directly to compounds that produce pain and itch, and that they can be activated and sensitized by inflammatory mediators. The use of hDRG neurons as preclinical vehicles for target validation is discussed.
Collapse
Affiliation(s)
- Steve Davidson
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Guy Page
- AnaBios Corporation, San Diego, CA 92109
| | | | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
39
|
Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. Neuroscience 2014; 277:679-89. [PMID: 25088915 DOI: 10.1016/j.neuroscience.2014.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.
Collapse
|
40
|
Dib-Hajj SD. Human pain in a dish: Native DRG neurons and differentiated pluripotent stem cells. Pain 2014; 155:1681-1682. [PMID: 25047782 DOI: 10.1016/j.pain.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/09/2014] [Indexed: 11/16/2022]
Affiliation(s)
- Sulayman D Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
41
|
Xing J, Lu J, Li J. Nerve growth factor decreases in sympathetic and sensory nerves of rats with chronic heart failure. Neurochem Res 2014; 39:1564-70. [PMID: 24913185 DOI: 10.1007/s11064-014-1348-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6-20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF.
Collapse
Affiliation(s)
- Jihong Xing
- The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China,
| | | | | |
Collapse
|
42
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
43
|
Luongo L, Maione S, Di Marzo V. Endocannabinoids and neuropathic pain: focus on neuron-glia and endocannabinoid-neurotrophin interactions. Eur J Neurosci 2014; 39:401-8. [DOI: 10.1111/ejn.12440] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Livio Luongo
- Department of Experimental Medicine; Division of Pharmacology ‘L. Donatelli’; Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; Division of Pharmacology ‘L. Donatelli’; Second University of Naples; Naples Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry; Consiglio Nazionale delle Ricerche; Via Campi Flegrei 34 80078 Pozzuoli (NA) Italy
| |
Collapse
|
44
|
Tender GC, Li YY, Cui JG. The role of nerve growth factor in neuropathic pain inhibition produced by resiniferatoxin treatment in the dorsal root ganglia. Neurosurgery 2014; 73:158-65; discussion 165-6. [PMID: 23615109 DOI: 10.1227/01.neu.0000429850.37449.c8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Resiniferatoxin (RTX), an excitotoxic agonist for vanilloid receptor 1, is a promising candidate for intractable pain treatment. OBJECTIVE We evaluated the effects of RTX, applied to dorsal root ganglia (DRG) at high doses (1200 ng), in sensory-motor function and nerve growth factor (NGF) alterations in a photochemical sciatic nerve injury rat model. METHODS Following RTX injection into the L3-6 DRG at high doses and behavioral evaluation, the rats were sacrificed and the DRG were tested by immunohistochemistry and mRNA analysis for NGF and its' receptors, tyrosine kinase A (TrkA) and p75. The correlation between neuropathic pain and NGF, TrkA, and p75 expression was analyzed. RESULTS The treated rats had preserved touch, cold, pain, and high-heat sensations, and exhibited hypoalgesia to low-heat stimulation. After RTX treatment, TrkA and p75 altered their expressions from one neuronal type to another in the DRG. NGF and p75 expression changed from the small-size neurons in neuropathic rat DRG to the large- and medium-size neurons in non-neuropathic and RTX-treated animals, concomitantly with neuropathic pain suppression. TrkA was expressed in the small-size neurons in neuropathic rat DRG, and was drastically reduced in all size neurons after RTX treatment. NGF, TrkA, and p75 mRNA expression supported these phenotypic changes in the DRG. CONCLUSION The pathway of NGF-TrkA expressed in the small-size neurons, associated with neuropathic pain, was shifted to the NGF-p75 pathway expressed in the large-size neurons after RTX treatment, in association with neuropathic pain inhibition. These findings may play an important role in clinical trial designs.
Collapse
Affiliation(s)
- Gabriel C Tender
- Department of Neurosurgery, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | |
Collapse
|
45
|
Abstract
TRPV3 is a temperature-sensitive transient receptor potential (TRP) ion channel. The TRPV3 protein functions as a Ca(2+)-permeable nonselective cation channel with six transmembrane domains forming a tetrameric complex. TRPV3 is known to be activated by warm temperatures, synthetic small-molecule chemicals, and natural compounds from plants. Its function is regulated by a variety of physiological factors including extracellular divalent cations and acidic pH, intracellular adenosine triphosphate, membrane voltage, and arachidonic acid. TRPV3 shows a broad expression pattern in both neuronal and non-neuronal tissues including epidermal keratinocytes, epithelial cells in the gut, endothelial cells in blood vessels, and neurons in dorsal root ganglia and CNS. TRPV3 null mice exhibit abnormal hair morphogenesis and compromised skin barrier function. Recent advances suggest that TRPV3 may play critical roles in inflammatory skin disorders, itch, and pain sensation. Thus, identification of selective TRPV3 activators and inhibitors could potentially lead to beneficial pharmacological interventions in several diseases. The intent of this review is to summarize our current knowledge of the tissue expression, structure, function, and mechanisms of activation of TRPV3.
Collapse
Affiliation(s)
- Jialie Luo
- The Center for the Study of Itch, Washington University Pain Center, The Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Hongzhen Hu
- The Center for the Study of Itch, Washington University Pain Center, The Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
46
|
Anand U, Facer P, Yiangou Y, Sinisi M, Fox M, McCarthy T, Bountra C, Korchev YE, Anand P. Angiotensin II type 2 receptor (AT2 R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. Eur J Pain 2013; 17:1012-26. [PMID: 23255326 PMCID: PMC3748799 DOI: 10.1002/j.1532-2149.2012.00269.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND The angiotensin II (AngII) receptor subtype 2 (AT2 R) is expressed in sensory neurons and may play a role in nociception and neuronal regeneration. METHODS We used immunostaining with characterized antibodies to study the localization of AT2 R in cultured human and rat dorsal root ganglion (DRG) neurons and a range of human tissues. The effects of AngII and AT2 R antagonist EMA401 on capsaicin responses in cultured human and rat (DRG) neurons were measured with calcium imaging, on neurite length and density with Gap43 immunostaining, and on cyclic adenosine monophosphate (cAMP) expression using immunofluorescence. RESULTS AT2 R expression was localized in small-/medium-sized cultured neurons of human and rat DRG. Treatment with the AT2 R antagonist EMA401 resulted in dose-related functional inhibition of capsaicin responses (IC50 = 10 nmol/L), which was reversed by 8-bromo-cAMP, and reduced neurite length and density; AngII treatment significantly enhanced capsaicin responses, cAMP levels and neurite outgrowth. The AT1 R antagonist losartan had no effect on capsaicin responses. AT2 R was localized in sensory neurons of human DRG, and nerve fibres in peripheral nerves, skin, urinary bladder and bowel. A majority sub-population (60%) of small-/medium-diameter neuronal cells were immunopositive in both control post-mortem and avulsion-injured human DRG; some very small neurons appeared to be intensely immunoreactive, with TRPV1 co-localization. While AT2 R levels were reduced in human limb peripheral nerve segments proximal to injury, they were preserved in painful neuromas. CONCLUSIONS AT2 R antagonists could be particularly useful in the treatment of chronic pain and hypersensitivity associated with abnormal nerve sprouting.
Collapse
Affiliation(s)
- U Anand
- Peripheral Neuropathy Unit, Department of Clinical Neuroscience, Imperial College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Choi S, Kim MY, Joo KY, Park S, Kim JA, Jung JC, Oh S, Suh SH. Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism. Pharmacol Res 2012; 66:51-9. [PMID: 22414869 DOI: 10.1016/j.phrs.2012.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/18/2023]
Abstract
Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator.
Collapse
Affiliation(s)
- Shinkyu Choi
- Department of Physiology, Medical School, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Otto WR, Sarraf CE. Culturing and differentiating human mesenchymal stem cells for biocompatible scaffolds in regenerative medicine. Methods Mol Biol 2012; 806:407-426. [PMID: 22057467 DOI: 10.1007/978-1-61779-367-7_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mesenchymal stem cells from a variety of sites are a natural resource that using appropriate skills can be cultured in the laboratory, in scaffolds, to provide differentiated-cell replacement tissues, for clinical application. To perform such work with human cells, strict ethical integrity must be observed at all stages. Adipocytes, osteocytes and chrondrocytes are amongst the most desirable end-point cells. Hydrolytic degradable scaffolds allow implanted cells to synthesise their own extracellular matrix in situ after implantation, degeneration of the foreign scaffold to temporally match creation of the new innate one. For preliminary in vitro stem cell differentiation protocols, initial investigation is commonly performed with stem cells in commercially available porous collagen sponges or cell-free small intestinal submucosa. Differentiation of stem cells to a specific phenotype is achieved by culturing them in apposite culture media under precise conditions. Once the cells have differentiated, they are checked and characterised in a wide variety of systems. This chapter describes differentiation media for adipocytes, osteocytes, chondrocytes, myocytes and neural precursors and methods of observing their characteristics by microscopy using phase contrast microscopy, standard light microscopy and electron microscopy with tinctorial, immunocytochemical and electron dense stains, respectively. Cell sorting techniques are not dealt with here. Immunocytochemistry/microscopy staining for specific differentiated-cell antigens is an invaluable procedure, and the range of commercially available antibodies is wide. Precautions need to be considered for using actively proliferating cells in vivo, so that implanted cells remain controlled by the body's molecular signals and avoid development of malignancy.
Collapse
Affiliation(s)
- William R Otto
- Histopathology Laboratory, Cancer Research UK, London, UK
| | | |
Collapse
|
49
|
Usuda H, Endo T, Shimouchi A, Saito A, Tominaga M, Yamashita H, Nagai H, Inagaki N, Tanaka H. Transient Receptor Potential Vanilloid 1 — a Polymodal Nociceptive Receptor — Plays a Crucial Role in Formaldehyde-Induced Skin Inflammation in Mice. J Pharmacol Sci 2012; 118:266-74. [DOI: 10.1254/jphs.11193fp] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
50
|
Yiangou Y, Anand U, Otto WR, Sinisi M, Fox M, Birch R, Foster KA, Mukerji G, Akbar A, Agarwal SK, Anand P. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons. J Pain Res 2011; 4:347-55. [PMID: 22090803 PMCID: PMC3215514 DOI: 10.2147/jpr.s25189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background There is increasing evidence that botulinum neurotoxin A may affect sensory nociceptor fibers, but the expression of its receptors in clinical pain states, and its effects in human sensory neurons, are largely unknown. Methods We studied synaptic vesicle protein subtype SV2A, a receptor for botulinum neurotoxin A, by immunostaining in a range of clinical tissues, including human dorsal root ganglion sensory neurons, peripheral nerves, the urinary bladder, and the colon. We also determined the effects of botulinum neurotoxins A and E on localization of the capsaicin receptor, TRPV1, and functional sensitivity to capsaicin stimuli in cultured human dorsal root ganglion neurons. Results Image analysis showed that SV2A immunoreactive nerve fibers were increased in injured nerves proximal to the injury (P = 0.002), and in painful neuromas (P = 0.0027); the ratio of percentage area SV2A to neurofilaments (a structural marker) was increased proximal to injury (P = 0.0022) and in neuromas (P = 0.0001), indicating increased SV2A levels in injured nerve fibers. In the urinary bladder, SV2A nerve fibers were found in detrusor muscle and associated with blood vessels, with a significant increase in idiopathic detrusor over-activity (P = 0.002) and painful bladder syndrome (P = 0.0087). Colon biopsies showed numerous SV2A-positive nerve fibers, which were increased in quiescent inflammatory bowel disease with abdominal pain (P = 0.023), but not in inflammatory bowel disease without abdominal pain (P = 0.77) or in irritable bowel syndrome (P = 0.13). In vitro studies of botulinum neurotoxin A-treated and botulinum neurotoxin E-treated cultured human sensory neurons showed accumulation of cytoplasmic vesicles, neurite loss, and reduced immunofluorescence for the heat and capsaicin receptor, TRPV1. Functional effects included dose-related inhibition of capsaicin responses on calcium imaging after acute treatment with botulinum neurotoxins A and E. Conclusion Differential levels of SV2A protein expression in clinical disorders may identify potential new targets for botulinum neurotoxin therapy. In vitro studies indicate that treatment with botulinum neurotoxins A and E may affect receptor expression and nociceptor function in sensory neurons.
Collapse
Affiliation(s)
- Yiangos Yiangou
- Department of Clinical Neuroscience, Imperial College London, Hammersmith Hospital, London
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|