1
|
Di Rienzi SC, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. FASEB J 2025; 39:e70408. [PMID: 40098558 PMCID: PMC11914943 DOI: 10.1096/fj.202401669r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Intestinal microbes can beneficially impact host physiology, prompting investigations into the therapeutic usage of such microbes in a range of diseases. For example, human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments, including colic, infection, and inflammation, as well as for non-intestinal ailments, including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses, we postulated that L. reuteri may also regulate intestinal hormones to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promote the secretion of enteric hormones, including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta, and identify by metabolomics metabolites potentially mediating these effects on hormones. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Heather A. Danhof
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Micah D. Forshee
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Ari Roberts
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| | - Robert A. Britton
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTexasUSA
- Alkek Center for Metagenomics and Microbiome ResearchBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
2
|
Roberts CT, Raabe N, Wiegand L, Kadar Shahib A, Rastegar M. Diverse Applications of the Anti-Diabetic Drug Metformin in Treating Human Disease. Pharmaceuticals (Basel) 2024; 17:1601. [PMID: 39770443 PMCID: PMC11677501 DOI: 10.3390/ph17121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Metformin is a commonly used drug for treating type 2 diabetes. Metformin is an inexpensive drug with low/no side effects and is well tolerated in human patients of different ages. Recent therapeutic strategies for human disease have considered the benefits of drug repurposing. This includes the use of the anti-diabetic drug metformin. Accordingly, the anti-inflammatory, anti-cancer, anti-viral, neuroprotective, and cardioprotective potentials of metformin have deemed it a suitable candidate for treating a plethora of human diseases. As results from preclinical studies using cellular and animal model systems appear promising, clinical trials with metformin in the context of non-diabetes-related illnesses have been started. Here, we aim to provide a comprehensive overview of the therapeutic potential of metformin in different animal models of human disease and its suggested relationship to epigenetics and ailments with epigenetic components.
Collapse
Affiliation(s)
| | | | | | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
3
|
Goto H, Yamamoto Y, Tsujiguchi H, Sato T, Yamamoto R, Takeshita Y, Nakano Y, Kannon T, Hosomichi K, Suzuki K, Nakamura M, Kambayashi Y, Zhao J, Asai A, Katano K, Ogawa A, Fukushima S, Shibata A, Suzuki F, Tsuboi H, Hara A, Kometani M, Karashima S, Yoneda T, Tajima A, Nakamura H, Takamura T. Oxytocin Receptor Polymorphism Is Associated With Sleep Apnea Symptoms. J Endocr Soc 2024; 9:bvae198. [PMID: 39606181 PMCID: PMC11590662 DOI: 10.1210/jendso/bvae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 11/29/2024] Open
Abstract
Context Oxytocin supplementation improves obstructive sleep apnea (OSA), and animal studies suggest involvement of oxytocin in respiratory control. However, the relationship between endogenous oxytocin signaling and human sleep status remains undetermined. Objective In this study, we approached the contribution of the intrinsic oxytocin-oxytocin receptor (OXTR) system to OSA by genetic association analysis. Methods We analyzed the relationship between OXTR gene polymorphisms and sleep parameters using questionnaire data and sleep measurements in 305 Japanese participants. OSA symptoms were assessed in 225 of these individuals. Results The OXTR rs2254298 A allele was more frequent in those with OSA symptoms than in those without (P = .0087). Although total scores on the Pittsburgh Sleep Quality Index questionnaire did not differ between the genotypes, breathlessness and snoring symptoms associated with OSA were significantly more frequent in individuals with rs2254298 A genotype (P = .00045 and P = .0089 for recessive models, respectively) than the G genotype. A multivariable analysis confirmed these genotype-phenotype associations even after adjusting for age, sex, and body mass index in a sensitivity analysis. Furthermore, objective sleep efficiency measured by actigraph was not significantly different between genotypes; however, subjective sleep efficiency was significantly lower in the rs2254298 A genotype (P = .013) compared with the G genotype. The frequency of the A allele is higher in East Asians, which may contribute to their lean OSA phenotype. Conclusion The OXTR gene may contribute to OSA symptoms via the respiratory control system, although it could be in linkage disequilibrium with a true causal gene.
Collapse
Affiliation(s)
- Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Takehiro Sato
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Reina Yamamoto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| | - Takayuki Kannon
- Department of Biomedical Data Science, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keita Suzuki
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
| | - Yasuhiro Kambayashi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
| | - Jiaye Zhao
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
| | - Atsushi Asai
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Koji Katano
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Aya Ogawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
| | - Shinobu Fukushima
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
| | - Fumihiko Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Department of Geriatric Dentistry, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan
| | - Hirohito Tsuboi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Graduate School of Human Sciences, The University of Shiga Prefecture, Hikone, Shiga 522-8533, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mitsuhiro Kometani
- Department of Health Promotion and Medicine of the Future, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takashi Yoneda
- Department of Health Promotion and Medicine of the Future, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
4
|
Petersson M, Uvnäs-Moberg K. Interactions of Oxytocin and Dopamine-Effects on Behavior in Health and Disease. Biomedicines 2024; 12:2440. [PMID: 39595007 PMCID: PMC11591571 DOI: 10.3390/biomedicines12112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
The hypothalamic neuropeptide and hormone oxytocin are of fundamental importance for maternal, social, and sexual behavior. Deviations in oxytocin levels have also been associated with anxiety, autism spectrum disorders (ASD), depression, ADHD (attention deficit hyperactivity disorder), and schizophrenia. Both oxytocin and dopamine are often considered reward- and feel-good hormones, and dopamine is associated with the above-mentioned behaviors and, and dopamine is also associated with the above-mentioned behaviors and disorders. Although being structurally totally different, oxytocin, a peptide, and dopamine, a monoamine, they have a number of similar effects. They are synthesized both in the brain and in the periphery, and they affect each other's release and receptors. In addition, oxytocin and dopamine are released in response to, for example, social interaction, sex, feeding, and massage. This review discusses interactions between oxytocin and dopamine with a specific focus on behavioral effects and possible roles of oxytocin and dopamine in various mental disorders and functional diversities.
Collapse
Affiliation(s)
- Maria Petersson
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kerstin Uvnäs-Moberg
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, 532 31 Skara, Sweden
| |
Collapse
|
5
|
Rienzi SCD, Danhof HA, Forshee MD, Roberts A, Britton RA. Limosilactobacillus reuteri promotes the expression and secretion of enteroendocrine- and enterocyte-derived hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610555. [PMID: 39257733 PMCID: PMC11384013 DOI: 10.1101/2024.08.30.610555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Observations that intestinal microbes can beneficially impact host physiology have prompted investigations into the therapeutic usage of such microbes in a range of diseases. For example, the human intestinal microbe Limosilactobacillus reuteri strains ATCC PTA 6475 and DSM 17938 are being considered for use for intestinal ailments including colic, infection, and inflammation as well as non-intestinal ailments including osteoporosis, wound healing, and autism spectrum disorder. While many of their beneficial properties are attributed to suppressing inflammatory responses in the gut, we postulated that L. reuteri may also regulate hormones of the gastrointestinal tract to affect physiology within and outside of the gut. To determine if L. reuteri secreted factors impact the secretion of enteric hormones, we treated an engineered jejunal organoid line, NGN3-HIO, which can be induced to be enriched in enteroendocrine cells, with L. reuteri 6475 or 17938 conditioned medium and performed transcriptomics. Our data suggest that these L. reuteri strains affect the transcription of many gut hormones, including vasopressin and luteinizing hormone subunit beta, which have not been previously recognized as being produced in the gut epithelium. Moreover, we find that these hormones appear to be produced in enterocytes, in contrast to canonical gut hormones which are produced in enteroendocrine cells. Finally, we show that L. reuteri conditioned media promotes the secretion of several enteric hormones including serotonin, GIP, PYY, vasopressin, and luteinizing hormone subunit beta. These results support L. reuteri affecting host physiology through intestinal hormone secretion, thereby expanding our understanding of the mechanistic actions of this microbe.
Collapse
Affiliation(s)
- Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Micah D. Forshee
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Ari Roberts
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Yuan W, Li J, Gao S, Sun W, Zhao F. Novel therapeutic targets for primary open-angle glaucoma identified through multicenter proteome-wide mendelian randomization. Front Pharmacol 2024; 15:1428472. [PMID: 39221148 PMCID: PMC11362091 DOI: 10.3389/fphar.2024.1428472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background This study aimed to identify novel therapeutic targets for primary open-angle glaucoma (POAG). Methods The summary-data-based Mendelian randomization (SMR) method was used to evaluate the genetic association between plasma proteins and POAG. Two sets of plasma protein quantitative trait loci (pQTLs) data considered exposures were obtained from the Icelandic Decoding Genetics Study and UK Biobank Pharma Proteomics Project. The summary-level genome-wide association studies data for POAG were extracted from the latest Round 10 release of the FinnGen consortium (8,530 cases and 391,275 controls) and the UK Biobank (4,737 cases and 458,196 controls). Colocalization analysis was used to screen out pQTLs that share the same variant with POAG as drug targets identified. The two-sample Mendelian randomization, reverse causality testing and phenotype scanning were performed to further validate the main findings. Protein-protein interaction, pathway enrichment analysis and druggability assessment were conducted to determine whether the identified plasma proteins have potential as drug targets. Results After systematic analysis, this study identified eight circulating proteins as potential therapeutic targets for POAG. Three causal proteins with strong evidence of colocalization, ROBO1 (OR = 1.38, p = 1.48 × 10-4, PPH4 = 0.865), FOXO3 (OR = 0.35, p = 4.34 × 10-3, PPH4 = 0.796), ITIH3 (OR = 0.89, p = 2.76 × 10-4, PPH4 = 0.767), were considered tier one targets. Five proteins with medium support evidence of colocalization, NCR1 (OR = 1.25, p = 4.18 × 10-4, PPH4 = 0.682), NID1 (OR = 1.38, p = 1.54 × 10-3, PPH4 = 0.664), TIMP3 (OR = 0.91, p = 4.01 × 10-5, PPH4 = 0.659), SERPINF1 (OR = 0.81, p = 2.77 × 10-4, PPH4 = 0.59), OXT (OR = 1.17, p = 9.51 × 10-4, PPH4 = 0.526), were classified as tier two targets. Additional sensitivity analyses further validated the robustness and directionality of these findings. According to druggability assessment, Pimagedine, Resveratrol, Syringaresinol and Clozapine may potentially be important in the development of new anti-glaucoma agents. Conclusion Our integrated study identified eight potential associated proteins for POAG. These proteins play important roles in neuroprotection, extracellular matrix regulation and oxidative stress. Therefore, they have promising potential as therapeutic targets to combat POAG.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jun Li
- Department of Ultrasonography, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shang Gao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Wei Sun
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Yin H, Jiang M, Han T, Xu X. Intranasal oxytocin as a treatment for anxiety and autism: From subclinical to clinical applications. Peptides 2024; 176:171211. [PMID: 38579916 DOI: 10.1016/j.peptides.2024.171211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Animal and human studies have demonstrated that intranasal oxytocin (OT) can penetrate the brain and induce cognitive, emotional, and behavioral changes, particularly in social functioning. Consequently, numerous investigations have explored the potential of OT as a treatment for anxiety and autism, conditions characterized by social deficits. Although both subclinical and clinical studies provide converging evidence of the therapeutic effects of OT in reducing anxiety levels and improving social symptoms in autism, results are not always consistent. Additionally, the pharmacological mechanism of OT requires further elucidation for its effective clinical application. Therefore, this review aims to examine the contentious findings concerning the effects of OT on anxiety and autism, offer interpretations of the inconsistent results from the perspectives of individual differences and varying approaches to OT administration, and shed light on the underlying mechanisms of OT. Ultimately, standardization of dosage, frequency of administration, formulation characteristics, and nasal spray devices is proposed as essential for future human studies and clinical applications of OT treatment.
Collapse
Affiliation(s)
- Hailian Yin
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Meiyun Jiang
- School of psychology, Shandong Normal University, Jinan 250014, China
| | - Tao Han
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250000, China.
| | - Xiaolei Xu
- School of psychology, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
8
|
Ghamari R, Tahmaseb M, Sarabi-Jamab A, Etesami SA, Mohammadzadeh A, Alizadeh F, Tehrani-Doost M. Association of verbal and non-verbal theory of mind abilities with non-coding variants of OXTR in youth with autism spectrum disorder and typically developing individuals: a case-control study. BMC Psychiatry 2024; 24:30. [PMID: 38191308 PMCID: PMC10773038 DOI: 10.1186/s12888-023-05461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The ability to attribute mental states to others is called theory of mind (ToM) and is a substantial component of social cognition. This ability is abnormally developed in individuals with autism spectrum disorder (ASD). Several studies over the past decade have identified the oxytocin receptor gene (OXTR) and its variants as promising components for explaining the molecular mechanisms underlying Theory of Mind (ToM). The main aim of this study is to examine the association between rs2268498 and rs53576, two functional single nucleotide polymorphisms (SNPs), and verbal and non-verbal ToM in children and adolescents with ASD and a group of typically developing youth. METHODS The study involved 44 children and adolescents with high-functioning ASD aged 8 to 18 years old and 44 TD individuals who were matched on age and sex. In all participants, blood samples were collected and rs2268498 and rs53576 were genotyped. Happe's Strange Stories test and the moving shapes paradigm were used to measure verbal and non-verbal ToM in all participants. RESULTS The results of permutation tests and logistic regression suggested that in TD group, rs2268498 AA carriers showed significant higher scores in variables representing verbal ToM (ToM stories and appropriateness score) whereas, in ASD group, rs53576 AA carriers exhibited significant better performance in parameters related to non-verbal ToM (ToM general rule and intentionality score). The results of hierarchical clustering in both groups support the findings by distinguishing between language-related and language-independent aspects of ToM. CONCLUSIONS In the present study, we examined the association between rs2268498 and rs53576 and social functioning in individuals with ASD and TD group. We found preliminary evidence that rs2268498 and rs53576 are associated with ToM related abilities in healthy individuals as well as in autistic individuals. Accordingly, rs2268498 and rs53576 may play an important role in predicting ToM capabilities. It will be necessary to conduct further research to address the association of genetic variants with a deficit in ToM in individuals with ASD.
Collapse
Affiliation(s)
- Rana Ghamari
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Tahmaseb
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Atiye Sarabi-Jamab
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | | - Azar Mohammadzadeh
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alizadeh
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), School of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mehdi Tehrani-Doost
- Research Center for Cognitive and Behavioral Sciences, Roozbeh Psychiatry Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Skiba SA, Hansen A, McCall R, Byers A, Waldron S, Epping AJ, Taglialatela JP, Hudson ML. Linked OXTR Variants Are Associated with Social Behavior Differences in Bonobos ( Pan paniscus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573122. [PMID: 38187727 PMCID: PMC10769379 DOI: 10.1101/2023.12.22.573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) in forkhead box protein P2 (FOXP2) and oxytocin receptor (OXTR) genes have been associated with linguistic and social development in humans, as well as to symptom severity in autism spectrum disorder (ASD). Studying biobehavioral mechanisms in the species most closely related to humans can provide insights into the origins of human communication, and the impact of genetic variation on complex behavioral phenotypes. Here, we aimed to determine if bonobos (Pan paniscus) exhibit individual variation in FOXP2 and OXTR loci that have been associated with human social development and behavior. Although the ASD-related variants were reported in 13-41% of the human population, we did not find variation at these loci in our sample of 13 bonobos. However, we did identify a novel variant in bonobo FOXP2, as well as four novel variants in bonobo OXTR that were 17-184 base pairs from the human ASD variants. We also found the same linked, homozygous allelic combination across the 4 novel OXTR SNPs (homozygous TGTC) in 6 of the 13 bonobos, indicating that this combination may be under positive selection. When comparing the combined OXTR genotypes, we found significant group differences in social behavior; bonobos with zero copies of the TGTC combination were less social than bonobos with one copy of the TGTC combination. Taken together, our findings suggest that these OXTR variants may influence individual-level social behavior in bonobos and support the notion that linked genetic variants are promising risk factors for social communication deficits in humans.
Collapse
Affiliation(s)
- Sara A. Skiba
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Alek Hansen
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Ryan McCall
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Azeeza Byers
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Sarah Waldron
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| | - Amanda J. Epping
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
| | - Jared P. Taglialatela
- Ape Cognition and Conservation Initiative (Ape Initiative), Des Moines, IA
- Kennesaw State University, Department of Ecology, Evolution, and Organismal Biology, Kennesaw, GA
| | - Martin L. Hudson
- Kennesaw State University, Department of Molecular and Cellular Biology, Kennesaw, GA
| |
Collapse
|
10
|
Fry R, Li X, Evans TC, Esterman M, Tanaka J, DeGutis J. Investigating the Influence of Autism Spectrum Traits on Face Processing Mechanisms in Developmental Prosopagnosia. J Autism Dev Disord 2023; 53:4787-4808. [PMID: 36173532 PMCID: PMC10812037 DOI: 10.1007/s10803-022-05705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2022] [Indexed: 10/14/2022]
Abstract
Autism traits are common exclusionary criteria in developmental prosopagnosia (DP) studies. We investigated whether autism traits produce qualitatively different face processing in 43 DPs with high vs. low autism quotient (AQ) scores. Compared to controls (n = 27), face memory and perception were similarly deficient in the high- and low-AQ DPs, with the high-AQ DP group additionally showing deficient face emotion recognition. Task-based fMRI revealed reduced occipito-temporal face selectivity in both groups, with high-AQ DPs additionally demonstrating decreased posterior superior temporal sulcus selectivity. Resting-state fMRI showed similar reduced face-selective network connectivity in both DP groups compared with controls. Together, this demonstrates that high- and low-AQ DP groups have very similar face processing deficits, with additional facial emotion deficits in high-AQ DPs.
Collapse
Affiliation(s)
- Regan Fry
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Xian Li
- Psychological and Brain Science Department, Johns Hopkins University, Baltimore, MD, USA
| | - Travis C Evans
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Michael Esterman
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
| | - James Tanaka
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, 150 S. Huntington Ave., 182JP, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Delikishkina E, Cohen-Zimerman S, Kachian ZR, Krueger F, Gordon B, Grafman J. Understanding altruistic behavior: The joint role of prefrontal damage and OXTR genotype. Neuropsychologia 2023; 190:108686. [PMID: 37741549 DOI: 10.1016/j.neuropsychologia.2023.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Altruism is a type of prosocial behavior that is carried out in the absence of personal benefit or even at an expense to self. Trait altruism varies greatly across individuals, and the reasons for this variability are still not fully understood. Growing evidence suggests that altruism may be partly determined by the oxytocin receptor (OXTR) gene, which regulates the emotions underlying altruistic attitudes, such as empathy and trust. Neuroimaging and lesion studies have also implied several higher-order brain regions, including the prefrontal cortex, in altruistic behaviors. Yet the existing reports are contradictory and suggest that the top-down control exercised by the prefrontal cortex may promote both altruistic and self-interested behaviors and, thus, could obscure one's natural proclivity towards altruism encoded by OXTR. Here, we hypothesized that extensive prefrontal damage would result in an increased influence of the OXTR genotype on one's altruistic attitudes and actions. To test this hypothesis, we recruited 115 male combat veterans with penetrating traumatic brain injury to the prefrontal cortex and other brain regions, as well as 35 demographically matched control subjects without brain injury. Participants completed a self-report altruism questionnaire and were genotyped for four OXTR single nucleotide polymorphisms implicated in prosocial behavior, including rs53576, rs1042778, rs2254298 and rs7632287. Consistent with the previous studies, we found that individuals homozygotic for the G allele of rs53576 and rs7632287 were significantly more altruistic than carriers of at least one "vulnerable" A allele. Remarkably, in patients with prefrontal cortex damage, greater lesion extent was associated with significantly lower altruism scores in carriers of the A allele of rs7632287, but not in G-homozygotes, suggesting that significant disruption of the prefrontal cortex increased the influence of genetic polymorphisms on prosocial behavior. This study presents the first account of an interaction effect between the OXTR genotype and the location and extent of brain damage.
Collapse
Affiliation(s)
- Ekaterina Delikishkina
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Shira Cohen-Zimerman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary R Kachian
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, 22030, USA; Department of Psychology, University of Mannheim, Mannheim, 68161, Germany
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Departments of Neurology, Psychiatry, and Cognitive Neurology & Alzheimer's Disease Center, Feinberg School of Medicine, Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
12
|
McGeoghan F, Camera E, Maiellaro M, Menon M, Huang M, Dewan P, Ziaj S, Caley MP, Donaldson M, Enright AJ, O’Toole EA. RNA sequencing and lipidomics uncovers novel pathomechanisms in recessive X-linked ichthyosis. Front Mol Biosci 2023; 10:1176802. [PMID: 37363400 PMCID: PMC10285781 DOI: 10.3389/fmolb.2023.1176802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Recessive X-linked ichthyosis (RXLI), a genetic disorder caused by deletion or point mutations of the steroid sulfatase (STS) gene, is the second most common form of ichthyosis. It is a disorder of keratinocyte cholesterol sulfate retention and the mechanism of extracutaneous phenotypes such as corneal opacities and attention deficit hyperactivity disorder are poorly understood. To understand the pathomechanisms of RXLI, the transcriptome of differentiated primary keratinocytes with STS knockdown was sequenced. The results were validated in a stable knockdown model of STS, to confirm STS specificity, and in RXLI skin. The results show that there was significantly reduced expression of genes related to epidermal differentiation and lipid metabolism, including ceramide and sphingolipid synthesis. In addition, there was significant downregulation of aldehyde dehydrogenase family members and the oxytocin receptor which have been linked to corneal transparency and behavioural disorders respectively, both of which are extracutaneous phenotypes of RXLI. These data provide a greater understanding of the causative mechanisms of RXLI's cutaneous phenotype, and show that the keratinocyte transcriptome and lipidomics can give novel insights into the phenotype of patients with RXLI.
Collapse
Affiliation(s)
- Farrell McGeoghan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute-IRCCS, Rome, Italy
| | - Manasi Menon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mei Huang
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Stela Ziaj
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Matthew P. Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Anton J. Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A. O’Toole
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
13
|
Arakawa H, Higuchi Y, Ozawa A. Oxytocin neurons in the paraventricular nucleus of the hypothalamus circuit-dependently regulates social behavior, which malfunctions in BTBR mouse model of autism. RESEARCH SQUARE 2023:rs.3.rs-2621359. [PMID: 36909537 PMCID: PMC10002846 DOI: 10.21203/rs.3.rs-2621359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oxytocin (OXT) a neuropeptide synthesized in the hypothalamic nuclei has a variety of function including socio-emotional processes in mammals. While the neural circuits and signaling pathways in central OXT converge in the paraventricular nucleus of the hypothalamus (PVN), we illuminate specific function of discrete PVN OXT circuits, which connect to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST) in mouse models. The OXTPVN→BnST projections are innervated from entire portions of the PVN, while those OXTPVN→MeA projections are asymmetrically innervated from the posterior portion of the PVN. Compared with OXT neurons in B6 wild type mice, BTBR mice that are recognized as a behavior-based autism model exhibited defect in the OXTPVN→BnST projection. We demonstrate that chemogenetic activation of OXTPVN→MeA circuit enhances anxiety-like behavior and facilitates social approach behavior, while activation of OXTPVN→BnST circuit suppresses anxiety-like behavior along with inhibiting social approach. This chemogenetic manipulation on the OXTPVN→BnST circuit proves ineffective in BTBR mice. Accordingly, chemogenetic activation of OXTPVN neurons that stimulate both OXT circuits induces OXT receptor expressions in both MeA and BnST as with those by social encounter in B6 mice. The induction of OXT receptor genes in the BnST was not observed in BTBR mice. These data support the hypothesis that OXT circuits serve as a regulator for OXT signaling in PVN to control socio-emotional approach/avoidance behavior, and a defect of OXTPVN→BnST circuit contributes to autism-like social phenotypes in BTBR mice.
Collapse
|
14
|
Higuchi Y, Tachigori SI, Arakawa H. Faded neural projection from the posterior bed nucleus of the stria terminalis to the lateral habenula contributes to social signaling deficit in male BTBR mice as a mouse model of autism. Psychoneuroendocrinology 2023; 149:106004. [PMID: 36543023 DOI: 10.1016/j.psyneuen.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice display several behavioral characteristics, including social deficits resembling the core symptoms of human autism. Atypical social behaviors include sequential processes of assembled cognitive-behavior components, such as recognition, investigatory assessment, and signaling response. This study aimed to elucidate the neural circuits responsible for the regulation of the social signaling response, as shown by scent marking behavior in male mice. We first assessed the recognition and investigatory patterns of male BTBR mice compared to those of C57BL/6 J (B6) mice. Next, we examined their scent-marking behavior as innate social signaling responses adjusted to a confronted feature of social stimuli and situations, along with the expression of c-Fos as a marker of neuronal activity in selected brain areas involved in the regulation of social behavior. The function of the targeted brain area was confirmed by chemogenetic manipulation. We also examined the social peptides, oxytocin and vasopressin neurons of the major brain regions that are associated with the regulation of social behavior. Our data indicate that male BTBR mice are less responsive to the presentation of social stimuli and the expression of social signaling responses, which is paralleled by blunted c-Fos responsivity and vasopressin neurons morphological changes in selected brain areas, including the posterior bed nucleus of the stria terminalis (pBnST) and lateral habenula (LHb) in BTBR mice. Further investigation of LHb function revealed that chemogenetic inhibition and activation of LHb activity can induce a change in scent marking responses in both B6 and BTBR mice. Our elucidation of the downstream LHb circuits controlling scent marking behavior indicates intact function in BTBR mice. The altered morphological characteristics of oxytocin neurons in the paraventricular nucleus of the hypothalamus and vasopressin-positive neurons and axonal projections in the pBnST and LHb appear to underlie the dysfunction of scent marking responses in BTBR mice. (300/300 words).
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Shun-Ichi Tachigori
- Department of Systems Physiology, University of the Ryukyus, Faculty of Medicine, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan.
| |
Collapse
|
15
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
16
|
Pierzynowska K, Gaffke L, Żabińska M, Cyske Z, Rintz E, Wiśniewska K, Podlacha M, Węgrzyn G. Roles of the Oxytocin Receptor (OXTR) in Human Diseases. Int J Mol Sci 2023; 24:ijms24043887. [PMID: 36835321 PMCID: PMC9966686 DOI: 10.3390/ijms24043887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The oxytocin receptor (OXTR), encoded by the OXTR gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities. As in the case of every regulatory system, any disturbances in the structures or functions of oxytocin and OXTR may lead to the development or modulation of various diseases related to the regulated functions, which in this case include either mental problems (autism, depression, schizophrenia, obsessive-compulsive disorders) or those related to the functioning of reproductive organs (endometriosis, uterine adenomyosis, premature birth). Nevertheless, OXTR abnormalities are also connected to other diseases, including cancer, cardiac disorders, osteoporosis, and obesity. Recent reports indicated that the changes in the levels of OXTR and the formation of its aggregates may influence the course of some inherited metabolic diseases, such as mucopolysaccharidoses. In this review, the involvement of OXTR dysfunctions and OXTR polymorphisms in the development of different diseases is summarized and discussed. The analysis of published results led us to suggest that changes in OXTR expression and OXTR abundance and activity are not specific to individual diseases, but rather they influence processes (mostly related to behavioral changes) that might modulate the course of various disorders. Moreover, a possible explanation of the discrepancies in the published results of effects of the OXTR gene polymorphisms and methylation on different diseases is proposed.
Collapse
|
17
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Hwang IS, Hong SB. Association between body mass index and subcortical volume in pre-adolescent children with autism spectrum disorder: An exploratory study. Autism Res 2022; 15:2238-2249. [PMID: 36256577 DOI: 10.1002/aur.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
Conflicting associations exist between autism spectrum disorder (ASD) and subcortical brain volumes. This study assessed whether obesity might have a confounding influence on associations between ASD and brain subcortical volumes. A comprehensive investigation evaluating the relationship between ASD, obesity, and subcortical structure volumes was conducted. Data obtained included body mass index (BMI) and T1-weighted structural magnetic resonance images for children with and without ASD diagnoses from the Autism Brain Imaging Data Exchange database. Brain subcortical volumes were calculated using vol2Brain software. Hierarchical linear regression analyses were performed to explore the subcortical volumes similarly or differentially associated with BMI in children with or without ASD and examine association and interaction effects regarding ASD and subcortical volume impact on the Social Responsiveness Scale and Vineland Adaptive Behavior Scale (VABS) scores. Bilateral caudate nuclei were smaller in children with ASD than in control participants. Significant interactions were observed between ASD diagnosis and BMI regarding the left caudate, right and left putamen, and right and left ventral diencephalon (DC) volumes (β = -0.384, p = 0.010; β = -0.336, p = 0.030; β = -0.317, p = 0.040; β = 0.322, p = 0.010; β = 0.295, p = 0.021, respectively) and between ASD diagnosis and right and left ventral DC volumes regarding the VABS scores (β = 0.434, p = 0.014; β = 0.495, p = 0.007, respectively). However, each subcortical structure volume included in the ventral DC area could not be measured separately. The results identified subcortical volumes differentially associated with obesity in children with ASD compared with typically developing peers. BMI may need to be considered an important confounder in future research examining brain subcortical volumes within ASD.
Collapse
Affiliation(s)
- In-Seong Hwang
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon-Beom Hong
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
19
|
Neuroimaging genetics of oxytocin: A transcriptomics-informed systematic review. Neurosci Biobehav Rev 2022; 142:104912. [DOI: 10.1016/j.neubiorev.2022.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
20
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
21
|
Gonzalez A, Hammock EAD. Oxytocin and microglia in the development of social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210059. [PMID: 35858111 PMCID: PMC9272152 DOI: 10.1098/rstb.2021.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin is a well-established regulator of social behaviour. Microglia, the resident immune cells of the central nervous system, regulate brain development and maintenance in health and disease. Oxytocin and microglia interact: microglia appear to regulate the oxytocin system and are, in turn, regulated by oxytocin, which appears to have anti-inflammatory effects. Both microglia and oxytocin are regulated in sex-specific ways. Oxytocin and microglia may work together to promote experience-dependent circuit refinement through multiple developmental-sensitive periods contributing to individual differences in social behaviour. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Alicia Gonzalez
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| | - Elizabeth A. D. Hammock
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| |
Collapse
|
22
|
Marazziti D, Diep PT, Carter S, Carbone MG. Oxytocin: An Old Hormone, A Novel Psychotropic Drug And Possible Use In Treating Psychiatric Disorders. Curr Med Chem 2022; 29:5615-5687. [PMID: 35894453 DOI: 10.2174/0929867329666220727120646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders. METHODS With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of art. We carried out this work through PubMed database up to June 2021 with the search terms: 1) "oxytocin and neuropsychiatric disorders"; 2) "oxytocin and neurodevelopmental disorders"; 3) "oxytocin and anorexia"; 4) "oxytocin and eating disorders"; 5) "oxytocin and obsessive-compulsive disorder"; 6) "oxytocin and schizophrenia"; 7) "oxytocin and depression"; 8) "oxytocin and bipolar disorder"; 9) "oxytocin and psychosis"; 10) "oxytocin and anxiety"; 11) "oxytocin and personality disorder"; 12) "oxytocin and PTSD". RESULTS Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions. CONCLUSION Finally, we briefly analyzed the potential pharmacological use of oxytocin in patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, anti-oxidative and immunoregulatory properties.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Phuoc-Tan Diep
- Department of Histopathology, Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom
| | - Sue Carter
- Director Kinsey Institute, Indiana University, Bloomington, IN, USA
| | - Manuel G Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
23
|
Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, Han F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022; 7:229. [PMID: 35817793 PMCID: PMC9273593 DOI: 10.1038/s41392-022-01081-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent and complex neurodevelopmental disorder which has strong genetic basis. Despite the rapidly rising incidence of autism, little is known about its aetiology, risk factors, and disease progression. There are currently neither validated biomarkers for diagnostic screening nor specific medication for autism. Over the last two decades, there have been remarkable advances in genetics, with hundreds of genes identified and validated as being associated with a high risk for autism. The convergence of neuroscience methods is becoming more widely recognized for its significance in elucidating the pathological mechanisms of autism. Efforts have been devoted to exploring the behavioural functions, key pathological mechanisms and potential treatments of autism. Here, as we highlight in this review, emerging evidence shows that signal transduction molecular events are involved in pathological processes such as transcription, translation, synaptic transmission, epigenetics and immunoinflammatory responses. This involvement has important implications for the discovery of precise molecular targets for autism. Moreover, we review recent insights into the mechanisms and clinical implications of signal transduction in autism from molecular, cellular, neural circuit, and neurobehavioural aspects. Finally, the challenges and future perspectives are discussed with regard to novel strategies predicated on the biological features of autism.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Li-Shan Lin
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Sen Long
- Department of Pharmacy, Hangzhou Seventh People's Hospital, Mental Health Center Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Han
- International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
24
|
Mpoulimari I, Zintzaras E. Synthesis of genetic association studies on autism spectrum disorders using a genetic model-free approach. Psychiatr Genet 2022; 32:91-104. [PMID: 35353796 DOI: 10.1097/ypg.0000000000000316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a clinically and genetically heterogeneous group of neurodevelopmental disorders. Despite the extensive efforts of scientists, the etiology of ASD is far from completely elucidated. In an effort to enlighten the genetic architecture of ASDs, a meta-analysis of all available genetic association studies (GAS) was conducted. METHODS We searched in the Human Genome Epidemiology Navigator (HuGE Navigator) and PubMed for available case-control GAS of ASDs. The threshold for meta-analysis was two studies per genetic variant. The association between genotype distribution and ASDs was examined using the generalized linear odds ratio (ORG). For variants with available allele frequencies, the examined model was the allele contrast. RESULTS Overall, 57 candidate genes and 128 polymorphisms were investigated in 159 articles. In total 28 genetic polymorphisms have been shown to be associated with ASDs, that are harbored in 19 genes. Statistically significant results were revealed for the variants of the following genes adenosine deaminase (ADA), bone marrow stromal cell antigen-1 (CD157/BST1), Dopamine receptor D1 (DRD1), engrailed homolog 2 (EN2), met proto-oncogene (MET), methylenetetrahydrofolate reductase (MTHFR), solute carrier family 6 member 4 (SLC6A4), Synaptosomal-associated protein, 25kDa (SNAP-25) and vitamin D receptor (VDR). In the allele contrast model of cases versus healthy controls, significant associations were observed for Adrenoceptor Alpha 1B (ADRA1B), acetyl serotonin O - methyltransferase (ASMT), complement component 4B (C4B), dopamine receptor D3 (DRD3), met proto-oncogene (MET), neuroligin 4, X-linked (NLGN4), neurexin 1 (NRXN1), oxytocin receptor (OXTR), Serine/Threonine-Protein Kinase PFTAIRE-1 (PFTK1), Reelin (RELN) and Ras-like without CAAX 2 (RIT2). CONCLUSION These significant findings provide further evidence for genetic factors' implication in ASDs offering new perspectives in means of prevention and prognosis.
Collapse
Affiliation(s)
- Ioanna Mpoulimari
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, Faculty of Medicine, University of Thessaly, Larissa, Greece
- Department of Medicine, The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Lindenmaier Z, Ellegood J, Stuive M, Easson K, Yee Y, Fernandes D, Foster J, Anagnostou E, Lerch JP. Examining the effect of chronic intranasal oxytocin administration on the neuroanatomy and behavior of three autism-related mouse models. Neuroimage 2022; 257:119243. [PMID: 35508216 DOI: 10.1016/j.neuroimage.2022.119243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Although initially showing great potential, oxytocin treatment has encountered a translational hurdle in its promise of treating the social deficits of autism. Some debate surrounds the ability of oxytocin to successfully enter the brain, and therefore modify neuroanatomy. Moreover, given the heterogeneous nature of autism, treatment will only amerliorate symptoms in a subset of patients. Therefore, to determine whether oxytocin changes brain circuitry, and whether it does so variably, depending on genotype, we implemented a large randomized, blinded, placebo-controlled, preclinical study on chronic intranasal oxytocin treatment in three different mouse models related to autism with a focus on using neuroanatomical phenotypes to assess and subset treatment response. Intranasal oxytocin (0.6IU) was administered daily, for 28 days, starting at 5 weeks of age to the 16p11.2 deletion, Shank3 (exon 4-9) knockout, and Fmr1 knockout mouse models. Given the sensitivity of structural magnetic resonance imaging (MRI) to the neurological effects of interventions like drugs, along with many other advantages, the mice underwent in vivo longitudinal and high-resolution ex vivo imaging with MRI. The scans included three in vivo T1weighted, 90um isotropic resolution scans and a T2-weighted, 3D fast spin echo with 40um isotropic resolution ex vivo scan to assess the changes in neuroanatomy using established automated image registration and deformation based morphometry approaches in response to oxytocin treatment. The behavior of the mice was assessed in multiple domains, including social behaviours and repetitive behaviours, among others. Treatment effect on the neuroanatomy did not reach significance, although the pattern of trending effects was promising. No significant effect of treatment was found on social behavior in any of the strains, although a significant effect of treatment was found in the Fmr1 mouse, with treatment normalizing a grooming deficit. No other treatment effect on behavior was observed that survived multiple comparisons correction. Overall, chronic treatment with oxytocin had limited effects on the three mouse models related to autism, and no promising pattern of response susceptibility emerged.
Collapse
Affiliation(s)
- Zsuzsa Lindenmaier
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Monique Stuive
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaitlyn Easson
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yohan Yee
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Darren Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jane Foster
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, St.Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Center, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative NeuroImaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Al-Ali Z, Yasseen AA, Al-Dujailli A, Al-Karaqully AJ, McAllister KA, Jumaah AS. The oxytocin receptor gene polymorphism rs2268491 and serum oxytocin alterations are indicative of autism spectrum disorder: A case-control paediatric study in Iraq with personalized medicine implications. PLoS One 2022; 17:e0265217. [PMID: 35316293 PMCID: PMC8939799 DOI: 10.1371/journal.pone.0265217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Impairment of social functioning skills is a key hallmark of autism. The neuropeptide oxytocin (OXT) is a blood-based biomarker of social functioning, and a candidate for individualized treatment of ASD. The effects of OXT on the social brain are mediated by the OXT receptor (OXTR). This study assessed the clinical utility of blood OXT serum levels and the OXT receptor (OXTR) genotype as biomarkers of autism and its severity in a pediatric population in Iraq.
Methods
Blood samples were collected from patients with a clinical diagnosis of ASD (n = 60) and corresponding age and gender matched healthy controls (n = 60). All clinical samples were processed at the Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa in Iraq. Blood serum was assayed for OXT by sandwich ELISA. Receiver operator analysis (ROC) determined area under the curve (AUC), cutoff values, and sensitivity and specificity of OXT values for accuracy of diagnosis of ASD. Isolated genomic DNA was genotyped for the OXTR gene rs2268491(C/T) SNP using allele-specific PCR. The significance of genotype (CC, CT, and TT) and allele (C and T) distributions in different patient groups was assessed using odd ratios (OR) with 95% confidence intervals (CI) and the Chi-square test. All statistical analysis was performed used SPSS software.
Results
Study characteristics in the ASD population revealed a high level of consanguinity (36.66%), and ASD recurrence rate (11.66%) and family history (28.33%). OXT levels in patients with ASD (157.58±28.81 pg/ml) were significantly higher (p = 0.003) compared to controls (75.03±6.38 pg/ml). Within stratified ASD severity groups—OXT levels were significantly different (P = 0.032). ROC analysis determined similar AUC values for overall ASD (0.807), and stratified mild (0.793), moderate (0.889), and severe categories (0.795). The best cutoff for diagnosis of ASD was 83.8 pg/ml OXT with a sensitivity and specificity of 80% and 72.1% respectively. OXTR gene rs2268491(C/T) genotyping found that ASD patients have significantly lower (p = 0.021) genotype CC frequency and a significantly higher (p = 0.04) occurrence of the heterozygous CT genotype relative to controls. ASD subjects produced highest OXT levels with the TT genotype. T allele distribution was higher in ASD males. ASD males had significantly lower distribution of the CC genotype (48.89%) compared to females (80%) (Chi-square test: χ2 = 4.43, df = 1, p = 0.035). Whereas distribution of the CT genotype was significantly higher in autistic males (44.45%) compared to females (13.33%) (Chi-square test: χ2 = 4.68, df = 1, p = 0.03).
Conclusion
Peripheral OXT levels and OXTR genetic alterations are potential biomarkers of social functioning in the ASD patient setting. The stratification of patients with ASD into severity categories shows significant differences both in OXT levels and OXTR (rs2268491, C/T) genotype and allele distributions, that can be sex dependent. OXT based therapies will require personalized medicine tactics to correctly identify patients with ASD who require neuropeptide boosting in social settings.
Collapse
Affiliation(s)
- Zainab Al-Ali
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kerbala, Kerbala, Kerbala Governorate, Iraq
| | - Akeel Abed Yasseen
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Arafat Al-Dujailli
- Department of Internal Medicine, Faculty of Medicine, University of Kufa, Kufa, Najaf Governorate, Iraq
| | - Ahmed Jafar Al-Karaqully
- Head of Psychiatric Department, Alhussain Teaching Hospital, Kerbala City, Kerbala Governorate, Iraq
| | | | - Alaa Salah Jumaah
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
27
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Czarzasta K, Żera T. Multiple Aspects of Inappropriate Action of Renin-Angiotensin, Vasopressin, and Oxytocin Systems in Neuropsychiatric and Neurodegenerative Diseases. J Clin Med 2022; 11:908. [PMID: 35207180 PMCID: PMC8877782 DOI: 10.3390/jcm11040908] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiovascular system and the central nervous system (CNS) closely cooperate in the regulation of primary vital functions. The autonomic nervous system and several compounds known as cardiovascular factors, especially those targeting the renin-angiotensin system (RAS), the vasopressin system (VPS), and the oxytocin system (OTS), are also efficient modulators of several other processes in the CNS. The components of the RAS, VPS, and OTS, regulating pain, emotions, learning, memory, and other cognitive processes, are present in the neurons, glial cells, and blood vessels of the CNS. Increasing evidence shows that the combined function of the RAS, VPS, and OTS is altered in neuropsychiatric/neurodegenerative diseases, and in particular in patients with depression, Alzheimer's disease, Parkinson's disease, autism, and schizophrenia. The altered function of the RAS may also contribute to CNS disorders in COVID-19. In this review, we present evidence that there are multiple causes for altered combined function of the RAS, VPS, and OTS in psychiatric and neurodegenerative disorders, such as genetic predispositions and the engagement of the RAS, VAS, and OTS in the processes underlying emotions, memory, and cognition. The neuroactive pharmaceuticals interfering with the synthesis or the action of angiotensins, vasopressin, and oxytocin can improve or worsen the effectiveness of treatment for neuropsychiatric/neurodegenerative diseases. Better knowledge of the multiple actions of the RAS, VPS, and OTS may facilitate programming the most efficient treatment for patients suffering from the comorbidity of neuropsychiatric/neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (A.W.); (A.C.-J.); (K.C.); (T.Ż.)
| | | | | | | | | |
Collapse
|
28
|
Kohlhoff J, Cibralic S, Hawes D, Eapen V. Oxytocin receptor gene (OXTR) polymorphisms and social, emotional and behavioral functioning in children and adolescents: a systematic narrative review. Neurosci Biobehav Rev 2022; 135:104573. [PMID: 35149102 DOI: 10.1016/j.neubiorev.2022.104573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
Abstract
This study systematically reviewed available evidence regarding associations between polymorphisms of the oxytocin receptor (OXTR) gene and socio-emotional and behavioral functioning in children and adolescents. The search yielded 69 articles, which were grouped into nine categories: depression, anxiety, and internalizing symptoms, alcohol abuse, borderline personality disorder, conduct disorder symptoms or diagnosis, autism spectrum disorder, Attention deficit hyperactivity disorder, early childhood attachment and behavior, pro-social skills, and resilience. Direct and/or gene x environment interactions were identified in over half of the studies. ASD and conduct disorder (including callous unemotional traits) were the diagnoses that were most studied and for which there was the strongest evidence of direct links with OXTR polymorphisms. In most studies identifying gene x environment interactions, the candidate OXTR polymorphism was rs53576. Results suggest that OXTR polymorphisms are associated with social, emotional or behavioural functioning in children and adolescents. The mixed findings do, however, highlight the need for further research.
Collapse
Affiliation(s)
- Jane Kohlhoff
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Karitane, P.O. Box 241, Villawood NSW 2163, Australia.
| | - Sara Cibralic
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia.
| | - David Hawes
- School of Psychology, Faculty of Science, University of Sydney, Camperdown NSW 2006, Australia.
| | - Valsamma Eapen
- School of Psychiatry, Faculty of Medicine and Health, University of New South Wales, Sydney NSW 2052, Australia; Academic Unit of Child Psychiatry and Clinical Academic, South West Sydney Local Health District, Liverpool Hospital, Elizabeth Street, Liverpool NSW 2170, Australia.
| |
Collapse
|
29
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
30
|
Navarro L, Martinón-Torres F, Salas A. Sensogenomics and the Biological Background Underlying Musical Stimuli: Perspectives for a New Era of Musical Research. Genes (Basel) 2021; 12:1454. [PMID: 34573436 PMCID: PMC8472585 DOI: 10.3390/genes12091454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/03/2023] Open
Abstract
What is the actual impact of music on the human being and the scope for scientific research in this realm? Compared to other areas, the study of the relationship between music and human biology has received limited attention. At the same time, evidence of music's value in clinical science, neuroscience, and social science keeps increasing. This review article synthesizes the existing knowledge of genetics related to music. While the success of genomics has been demonstrated in medical research, with thousands of genes that cause inherited diseases or a predisposition to multifactorial disorders identified, much less attention has been paid to other human traits. We argue for the development of a new discipline, sensogenomics, aimed at investigating the impact of the sensorial input on gene expression and taking advantage of new, discovery-based 'omic' approaches that allow for the exploration of the whole transcriptome of individuals under controlled experiments and circumstances.
Collapse
Affiliation(s)
- Laura Navarro
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, 15706 Santiago de Compostela, Spain;
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de San-tiago (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
| | - Federico Martinón-Torres
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, Galicia, 15706 Santiago de Compostela, Spain;
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de San-tiago (SERGAS), Galicia, 15706 Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidad de Santiago de Compostela (USC), Galicia, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
31
|
Popow C, Ohmann S, Plener P. Practitioner's review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2021; 35:113-134. [PMID: 34160787 PMCID: PMC8429404 DOI: 10.1007/s40211-021-00395-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 11/14/2022]
Abstract
Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/hyperactivity and oppositional defiant, conduct, and sleep disorders.
Collapse
Affiliation(s)
- Christian Popow
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Susanne Ohmann
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Paul Plener
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| |
Collapse
|
32
|
Çatli G, Acar S, Cingöz G, Rasulova K, Yarim AK, Uzun H, Küme T, Kızıldağ S, Dündar BN, Abacı A. Oxytocin receptor gene polymorphism and low serum oxytocin level are associated with hyperphagia and obesity in adolescents. Int J Obes (Lond) 2021; 45:2064-2073. [PMID: 34091593 DOI: 10.1038/s41366-021-00876-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND/OBJECTIVES In recent years, oxytocin (OXT) and polymorphisms in the oxytocin receptor (OXTR) gene have been reported to play roles in obesity pathogenesis. However, there was no study evaluating OXTR gene variants in childhood obesity. The aim of the study was to investigate the relation of OXTR gene polymorphisms and serum OXT levels with metabolic and anthropometric parameters in obese and healthy adolescents. SUBJECTS/METHODS The study was a multi-centered case-control study, which was conducted on obese and healthy adolescents aged between 12 and 17 years. Serum OXT and leptin levels were measured, and OXTR gene variants were studied by qPCR (rs53576) and RFLP (rs2254298) methods. RESULTS A total of 250 obese and 250 healthy adolescents were included in this study. In the obese group, serum OXT level was lower and leptin level was higher than the control group. In the obese group, frequencies of homozygous mutant (G/G) and heterozygous (A/G) genotypes for rs53576 polymorphism were higher than the control group. Homozygous mutant(G/G) and heterozygous (A/G) genotypes for rs53576 polymorphism were found to increase the risk of obesity compared to the wild type (A/A) genotype [OR = 6.05 and OR = 3.06; p < 0.001, respectively]. In patients with homozygous mutant (G/G) and heterozygous (A/G) genotype for rs53576 polymorphism, serum OXT levels were lower than the wild type (A/A) genotype. In the obese group, hyperphagia score was higher than the control group and correlated negatively with serum OXT level. CONCLUSIONS This study revealed that low serum OXT level, which is associated with hyperphagia may be an underlying cause for obesity in adolescents. For rs53576 polymorphism of the OXTR gene, obesity risk is higher in patients with homozygous mutant(G/G) and heterozygous(A/G)genotypes.
Collapse
Affiliation(s)
- Gönül Çatli
- Department of Pediatric Endocrinology, Izmir KatipÇelebi University, Faculty of Medicine, İzmir, Turkey.
| | - Sezer Acar
- Department of Pediatric Endocrinology, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Gülten Cingöz
- Department of Pediatrics, Sağlik Bilimleri University, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Khayala Rasulova
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Ayça Kanat Yarim
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Hamide Uzun
- Department of Nutrition and Dietetics, Sağlik Bilimleri University, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Tuncay Küme
- Department of Biochemistry, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Sefa Kızıldağ
- Department of Medical Biology and Genetics, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Izmir KatipÇelebi University, Faculty of Medicine, İzmir, Turkey
| | - Ayhan Abacı
- Department of Pediatric Endocrinology, Dokuz Eylül University, Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
33
|
Rae M, Lemos Duarte M, Gomes I, Camarini R, Devi LA. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br J Pharmacol 2021; 179:1544-1564. [PMID: 33817785 DOI: 10.1111/bph.15481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are endogenous ligands for OT and AVP receptors in the brain and in the peripheral system. Several studies demonstrate that OT and AVP have opposite roles in modulating stress, anxiety and social behaviours. Interestingly, both peptides and their receptors exhibit high sequence homology which could account for the biased signalling interaction of the peptides with OT and AVP receptors. However, how and under which conditions this crosstalk occurs in vivo remains unclear. In this review we shed light on the complexity of the roles of OT and AVP, by focusing on their signalling and behavioural differences and exploring the crosstalk between the receptor systems. Moreover, we discuss the potential of OT and AVP receptors as therapeutic targets to treat human disorders, such as autism, schizophrenia and drug abuse.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
34
|
Liu J, Liang Y, Jiang X, Xu J, Sun Y, Wang Z, Lin L, Niu Y, Song S, Zhang H, Xue Z, Lu J, Yao P. Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. Front Neurosci 2021; 15:634781. [PMID: 33633538 PMCID: PMC7900564 DOI: 10.3389/fnins.2021.634781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impaired skills in social interaction and communication in addition to restricted and repetitive behaviors. Many different factors may contribute to ASD development; in particular, oxytocin receptor (OXTR) deficiency has been reported to be associated with ASD, although the detailed mechanism has remained largely unknown. Epidemiological study has shown that maternal diabetes is associated with ASD development. In this study, we aim to investigate the potential role of OXTR on maternal diabetes-mediated social deficits in offspring. Our in vitro study of human neuron progenitor cells showed that hyperglycemia induces OXTR suppression and that this suppression remains during subsequent normoglycemia. Further investigation showed that OXTR suppression is due to hyperglycemia-induced persistent oxidative stress and epigenetic methylation in addition to the subsequent dissociation of estrogen receptor β (ERβ) from the OXTR promoter. Furthermore, our in vivo mouse study showed that maternal diabetes induces OXTR suppression; prenatal OXTR deficiency mimics and potentiates maternal diabetes-mediated anxiety-like behaviors, while there is less of an effect on autism-like behaviors. Additionally, postnatal infusion of OXTR partly, while infusion of ERβ completely, reverses maternal diabetes-induced social deficits. We conclude that OXTR may be an important factor for ASD development and that maternal diabetes-induced suppression of oxytocin receptor contributes to social deficits in offspring.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Xing Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yumeng Sun
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ling Lin
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yanbin Niu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shiqi Song
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
35
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
36
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
37
|
Siu MT, Goodman SJ, Yellan I, Butcher DT, Jangjoo M, Grafodatskaya D, Rajendram R, Lou Y, Zhang R, Zhao C, Nicolson R, Georgiades S, Szatmari P, Scherer SW, Roberts W, Anagnostou E, Weksberg R. DNA Methylation of the Oxytocin Receptor Across Neurodevelopmental Disorders. J Autism Dev Disord 2021; 51:3610-3623. [PMID: 33394241 DOI: 10.1007/s10803-020-04792-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Many neurodevelopmental disorders (NDDs) share common learning and behavioural impairments, as well as features such as dysregulation of the oxytocin hormone. Here, we examined DNA methylation (DNAm) in the 1st intron of the oxytocin receptor gene, OXTR, in patients with autism spectrum (ASD), attention deficit and hyperactivity (ADHD) and obsessive compulsive (OCD) disorders. DNAm of OXTR was assessed for cohorts of ASD (blood), ADHD (saliva), OCD (saliva), which uncovered sex-specific DNAm differences compared to neurotypical, tissue-matched controls. Individuals with ASD or ADHD exhibiting extreme DNAm values had lower IQ and more social problems, respectively, than those with DNAm within normative ranges. This suggests that OXTR DNAm patterns are altered across NDDs and may be correlated with common clinical outcomes.
Collapse
Affiliation(s)
- Michelle T Siu
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J Goodman
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Isaac Yellan
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Darci T Butcher
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Maryam Jangjoo
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Daria Grafodatskaya
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Rageen Rajendram
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Youliang Lou
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rujun Zhang
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Chunhua Zhao
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Peter Szatmari
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Wendy Roberts
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Chaliha D, Mamo JC, Albrecht M, Lam V, Takechi R, Vaccarezza M. A Systematic Review of the MDMA Model to Address Social Impairment in Autism. Curr Neuropharmacol 2021; 19:1101-1154. [PMID: 33388021 PMCID: PMC8686313 DOI: 10.2174/1570159x19666210101130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by repetitive behaviours, cognitive rigidity/inflexibility, and social-affective impairment. Unfortunately, no gold-standard treatments exist to alleviate the core socio-behavioural impairments of ASD. Meanwhile, the prosocial empathogen/entactogen 3,4-methylene-dioxy-methamphetamine (MDMA) is known to enhance sociability and empathy in both humans and animal models of psychological disorders. OBJECTIVE We review the evidence obtained from behavioural tests across the current literature, showing how MDMA can induce prosocial effects in animals and humans, where controlled experiments were able to be performed. METHODS Six electronic databases were consulted. The search strategy was tailored to each database. Only English-language papers were reviewed. Behaviours not screened in this review may have affected the core ASD behaviours studied. Molecular analogues of MDMA have not been investigated. RESULTS We find that the social impairments may potentially be alleviated by postnatal administration of MDMA producing prosocial behaviours in mostly the animal model. CONCLUSION MDMA and/or MDMA-like molecules appear to be an effective pharmacological treatment for the social impairments of autism, at least in animal models. Notably, clinical trials based on MDMA use are now in progress. Nevertheless, larger and more extended clinical studies are warranted to prove the assumption that MDMA and MDMA-like molecules have a role in the management of the social impairments of autism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Vaccarezza
- Address correspondence to this author at the Curtin Medical School, Curtin Health Innovation Research Institute, P.O. Box 6845, WA 6102 Perth, Australia; Tel: 08 9266 7671; E-mail:
| |
Collapse
|
39
|
Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA. Is Oxytocin "Nature's Medicine"? Pharmacol Rev 2020; 72:829-861. [PMID: 32912963 PMCID: PMC7495339 DOI: 10.1124/pr.120.019398] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxytocin is a pleiotropic, peptide hormone with broad implications for general health, adaptation, development, reproduction, and social behavior. Endogenous oxytocin and stimulation of the oxytocin receptor support patterns of growth, resilience, and healing. Oxytocin can function as a stress-coping molecule, an anti-inflammatory, and an antioxidant, with protective effects especially in the face of adversity or trauma. Oxytocin influences the autonomic nervous system and the immune system. These properties of oxytocin may help explain the benefits of positive social experiences and have drawn attention to this molecule as a possible therapeutic in a host of disorders. However, as detailed here, the unique chemical properties of oxytocin, including active disulfide bonds, and its capacity to shift chemical forms and bind to other molecules make this molecule difficult to work with and to measure. The effects of oxytocin also are context-dependent, sexually dimorphic, and altered by experience. In part, this is because many of the actions of oxytocin rely on its capacity to interact with the more ancient peptide molecule, vasopressin, and the vasopressin receptors. In addition, oxytocin receptor(s) are epigenetically tuned by experience, especially in early life. Stimulation of G-protein-coupled receptors triggers subcellular cascades allowing these neuropeptides to have multiple functions. The adaptive properties of oxytocin make this ancient molecule of special importance to human evolution as well as modern medicine and health; these same characteristics also present challenges to the use of oxytocin-like molecules as drugs that are only now being recognized. SIGNIFICANCE STATEMENT: Oxytocin is an ancient molecule with a major role in mammalian behavior and health. Although oxytocin has the capacity to act as a "natural medicine" protecting against stress and illness, the unique characteristics of the oxytocin molecule and its receptors and its relationship to a related hormone, vasopressin, have created challenges for its use as a therapeutic drug.
Collapse
Affiliation(s)
- C Sue Carter
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - William M Kenkel
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Evan L MacLean
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Steven R Wilson
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Allison M Perkeybile
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jason R Yee
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Craig F Ferris
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Hossein P Nazarloo
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Stephen W Porges
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - John M Davis
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Jessica J Connelly
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| | - Marcy A Kingsbury
- Kinsey Institute, Indiana University, Bloomington, Indiana (C.S.C., W.M.K., A.M.P., H.P.N., S.W.P.); School of Anthropology, Department of Psychology, and College of Veterinary Medicine, University of Arizona, Tucson, Arizona (E.L.M.); Department of Chemistry, University of Oslo, Oslo, Norway (S.R.W.); Institute of Animal Welfare Science, University of Veterinary Medicine, Vienna, Austria (J.R.Y.); Departments of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (C.F.F.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (J.M.D.); Department of Psychology, University of Virginia, Charlottesville, Virginia (J.J.C.); and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charleston, Massachusetts (M.A.K.)
| |
Collapse
|
40
|
Bozorgmehr A, Moayedi R, Sadeghi B, Ghadirivasfi M, Joghataei MT, Shahbazi A. A Novel Link between the Oxytocin Receptor Gene and Impulsivity. Neuroscience 2020; 444:196-208. [DOI: 10.1016/j.neuroscience.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/17/2020] [Accepted: 07/18/2020] [Indexed: 10/23/2022]
|
41
|
Spanos M, Chandrasekhar T, Kim SJ, Hamer RM, King BH, McDougle CJ, Sanders KB, Gregory SG, Kolevzon A, Veenstra-VanderWeele J, Sikich L. Rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). Contemp Clin Trials 2020; 98:106103. [PMID: 32777383 DOI: 10.1016/j.cct.2020.106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To describe the rationale, design, and methods of the Autism Centers of Excellence (ACE) network Study of Oxytocin in Autism to improve Reciprocal Social Behaviors (SOARS-B). METHOD This phase 2 clinical trial was designed to evaluate the use of intranasal oxytocin treatment to improve social difficulties in individuals with autism spectrum disorder (ASD). In total, 290 participants ages 3 to 17 years with a DSM-5 diagnosis of ASD were enrolled to receive 24 weeks of treatment with either oxytocin or a matched placebo at one of seven collaborating sites. Participants were subsequently treated with open-label oxytocin for 24 additional weeks. Post-treatment assessments were done approximately 4 weeks after treatment discontinuation. Plasma oxytocin and oxytocin receptor gene (OXTR) methylation level were measured at baseline, and week 8, 24 and 36 to explore potential relationships between these biomarkers and treatment response. RESULTS This report describes the rationale, design, and methods of the SOARS-B clinical trial. CONCLUSIONS There is a tremendous unmet need for safe and effective pharmacological treatment options that target the core symptoms of ASD. Several studies support the hypothesis that intranasal oxytocin could improve social orienting and the salience of social rewards in ASD, thereby enhancing reciprocal social behaviors. However, due to conflicting results from a number of pilot studies on the prosocial effects of exogenous oxytocin, this hypothesis remains controversial and inconclusive. SOARS-B is the best powered study to date to address this hypothesis and promises to improve our understanding of the safety and efficacy of intranasal oxytocin in the treatment of social deficits in children with ASD.
Collapse
Affiliation(s)
- Marina Spanos
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America.
| | - Tara Chandrasekhar
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| | - Soo-Jeong Kim
- Seattle Children's Autism Center, Department of Psychiatry and Behavioral Sciences, University of Washington; Seattle, WA, United States of America
| | - Robert M Hamer
- Departments of Psychiatry and Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Bryan H King
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, UCSF Benioff Children's Hospitals, San Francisco, CA, United States of America
| | - Christopher J McDougle
- Lurie Center for Autism, Massachusetts General Hospital; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Kevin B Sanders
- Neuroscience Product Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States of America; Department of Neurology, Duke University School of Medicine, Durham, NC, United States of America
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute; Center for Autism and the Developing Brain, New York-Presbyterian Hospital, United States of America
| | - Linmarie Sikich
- Duke Center for Autism and Brain Development, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, United States of America
| |
Collapse
|
42
|
Wang J, Zhang P, Li W, Wen Q, Liu F, Xu J, Xu Q, Zhu D, Ye Z, Yu C. Right Posterior Insula and Putamen Volume Mediate the Effect of Oxytocin Receptor Polygenic Risk for Autism Spectrum Disorders on Reward Dependence in Healthy Adults. Cereb Cortex 2020; 31:746-756. [PMID: 32710107 DOI: 10.1093/cercor/bhaa198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Much evidence indicates the influence of the oxytocin receptor (OXTR) gene on autism spectrum disorders (ASDs), a set of disorders characterized by a range of deficits in prosocial behaviors, which are closely related to the personality trait of reward dependence (RD). However, we do not know the effect of the OXTR polygenic risk score for ASDs (OXTR-PRSASDs) on RD and its underlying neuroanatomical substrate. Here, we aimed to investigate associations among the OXTR-PRSASDs, gray matter volume (GMV), and RD in two independent datasets of healthy young adults (n = 450 and 540). We found that the individuals with higher OXTR-PRSASDs had lower RD and significantly smaller GMV in the right posterior insula and putamen. The GMV of this region showed a positive correlation with RD and a mediation effect on the association between OXTR-PRSASDs and RD. Moreover, the correlation map between OXTR-PRSASDs and GMV showed spatial correlation with OXTR gene expression. All results were highly consistent between the two datasets. These findings highlight a possible neural pathway by which the common variants in the OXTR gene associated with ASDs may jointly impact the GMV of the right posterior insula and putamen and further affect the personality trait of RD.
Collapse
Affiliation(s)
- Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qin Wen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
43
|
López-Tobón A, Trattaro S, Testa G. The sociability spectrum: evidence from reciprocal genetic copy number variations. Mol Autism 2020; 11:50. [PMID: 32546261 PMCID: PMC7298749 DOI: 10.1186/s13229-020-00347-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/14/2023] Open
Abstract
Sociability entails some of the most complex behaviors processed by the central nervous system. It includes the detection, integration, and interpretation of social cues and elaboration of context-specific responses that are quintessentially species-specific. There is an ever-growing accumulation of molecular associations to autism spectrum disorders (ASD), from causative genes to endophenotypes across multiple functional layers; these however, have rarely been put in context with the opposite manifestation featured in hypersociability syndromes. Genetic copy number variations (CNVs) allow to investigate the relationships between gene dosage and its corresponding phenotypes. In particular, CNVs of the 7q11.23 locus, which manifest diametrically opposite social behaviors, offer a privileged window to look into the molecular substrates underlying the developmental trajectories of the social brain. As by definition sociability is studied in humans postnatally, the developmental fluctuations causing social impairments have thus far remained a black box. Here, we review key evidence of molecular players involved at both ends of the sociability spectrum, focusing on genetic and functional associations of neuroendocrine regulators and synaptic transmission pathways. We then proceed to propose the existence of a molecular axis centered around the paradigmatic dosage imbalances at the 7q11.23 locus, regulating networks responsible for the development of social behavior in humans and highlight the key role that neurodevelopmental models from reprogrammed pluripotent cells will play for its understanding.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, Università degli studi di Milano, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
44
|
Tolomeo S, Chiao B, Lei Z, Chew SH, Ebstein RP. A Novel Role of CD38 and Oxytocin as Tandem Molecular Moderators of Human Social Behavior. Neurosci Biobehav Rev 2020; 115:251-272. [PMID: 32360414 DOI: 10.1016/j.neubiorev.2020.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Oxytocin is an important modulator of human affiliative behaviors, including social skills, human pair bonding, and friendship. CD38 will be discussed as an immune marker and then in more detail the mechanisms of CD38 on releasing brain oxytocin. Mention is made of the paralogue of oxytocin, vasopressin, that has often overlapping and complementary functions with oxytocin on social behavior. Curiously, vasopressin does not require CD38 to be released from the brain. This review discusses the social salience hypothesis of oxytocin action, a novel view of how this molecule influences much of human social behaviors often in contradictory ways. The oxytocinergic-vasopressinergic systems are crucial modulators of broad aspects of human personality. Of special interest are studies of these two hormones in trust related behavior observed using behavioral economic games. This review also covers the role of oxytocin in parenting and parental attachment. In conclusion, the effects of oxytocin on human behavior depend on the individual's social context and importantly as well, the individual's cultural milieu, viz. East and West. ACRONYMS: ACC = Anterior Cingulate ADP = Adenosine diphosphate AQ = Autism Quotient cADPR = Cyclic ADP-ribose CNS = Central nervous system DA = Dopamine eQTLC = Expression Quantitative Trait Loci LC-NE = Locus Coeruleus-Norepinephrine MRI = Magnetic Resonance Imaging OFC = Orbitofrontal cortices OXT = Oxytocin RAGE = Receptor for advanced glycation end-products SARM1 = Sterile Alpha and toll/interleukin-1 receptor motif-containing 1 TRPM2= Transient Receptor Potential Cation Channel Subfamily M Member 2 AVP = Vasopressin.
Collapse
Affiliation(s)
- Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore.
| | - Benjamin Chiao
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China; PSB Paris School of Business, Paris, France
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance) & SOE (School of Economics), Southwestern University of Finance and Economics, Chengdu, China.
| |
Collapse
|
45
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
46
|
Shindler AE, Hill-Yardin EL, Petrovski S, Bishop N, Franks AE. Towards Identifying Genetic Biomarkers for Gastrointestinal Dysfunction in Autism. J Autism Dev Disord 2019; 50:76-86. [DOI: 10.1007/s10803-019-04231-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Oxytocin receptor (OXTR) gene polymorphisms and recognition memory for emotional and neutral faces: A pilot study. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.101577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Aguilar-Raab C, Eckstein M, Geracitano S, Prevost M, Gold I, Heinrichs M, Bilderbeck A, Ehlert U, Ditzen B. Oxytocin Modulates the Cognitive Appraisal of the Own and Others Close Intimate Relationships. Front Neurosci 2019; 13:714. [PMID: 31379475 PMCID: PMC6646594 DOI: 10.3389/fnins.2019.00714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Close and intimate relationships are important promoters of health. Oxytocin and its association with social cognition have been investigated in a large number of studies, especially highlighting the neuropeptide's involvement in attachment behavior and intimate relationships. However, mixed findings on exogenous oxytocin application have led to the focus on moderators and mediators, suggesting that the effects are depended on specific factors - namely context and salience. The objective of the current study was to assess the effect of intranasal oxytocin on social appraisal of own and others' close intimate relationship characteristics. Different characteristics of relationships, including trust or closeness, between romantic couples (unknown and own) were assessed using the Couple Appraisal Task. In a randomized controlled double-blind cross-over within subject design, N = 71 healthy men and women were investigated after receiving first intranasal oxytocin and 2 weeks later placebo, or vice versa. We found an oxytocin-induced increase in the positive appraisal of one's own overall relationship characteristics but not in the evaluation of the relationship of others. The present study - one of the first of its kind administrating oxytocin in a repeated measures cross-over design - adds further evidence to the mediating role of oxytocin in social cognition, specifically with regard to romantic relationship characteristics.
Collapse
Affiliation(s)
- Corina Aguilar-Raab
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Eckstein
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Geracitano
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Marie Prevost
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
| | - Ian Gold
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
| | - Markus Heinrichs
- Department of Psychology, Laboratory for Biological and Personality Psychology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Amy Bilderbeck
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulrike Ehlert
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev 2019; 102:139-152. [DOI: 10.1016/j.neubiorev.2019.04.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
|
50
|
Bludau A, Royer M, Meister G, Neumann ID, Menon R. Epigenetic Regulation of the Social Brain. Trends Neurosci 2019; 42:471-484. [PMID: 31103351 DOI: 10.1016/j.tins.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|