1
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
2
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
3
|
Yaghoobi Z, Seyed Bagher Nazeri SS, Asadi A, Derafsh E, Talebi Taheri A, Tamtaji Z, Dadgostar E, Rahmati-Dehkordi F, Aschner M, Mirzaei H, Tamtaji OR, Nabavizadeh F. Non-coding RNAs and Aquaporin 4: Their Role in the Pathogenesis of Neurological Disorders. Neurochem Res 2024; 49:583-596. [PMID: 38114727 DOI: 10.1007/s11064-023-04067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.
Collapse
Affiliation(s)
- Zahra Yaghoobi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | | | - Amir Asadi
- Psychiatry and Behavioral Sciences Research Center, School of Medicine, Addiction Institute, and Department of Psychiatry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, St Kitts and Nevis
| | - Abdolkarim Talebi Taheri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R. of Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, I.R. of Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, I.R. of Iran.
| |
Collapse
|
4
|
Guo YL, Zhai QY, Ye YH, Ren YQ, Song ZH, Ge KL, Cheng BH. Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation. Neural Regen Res 2023; 18:618-625. [DOI: 10.4103/1673-5374.350207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Przykaza Ł. Understanding the Connection Between Common Stroke Comorbidities, Their Associated Inflammation, and the Course of the Cerebral Ischemia/Reperfusion Cascade. Front Immunol 2021; 12:782569. [PMID: 34868060 PMCID: PMC8634336 DOI: 10.3389/fimmu.2021.782569] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023] Open
Abstract
Despite the enormous progress in the understanding of the course of the ischemic stroke over the last few decades, a therapy that effectively protects neurovascular units (NVUs) and significantly improves neurological functions in stroke patients has still not been achieved. The reasons for this state are unclear, but it is obvious that the cerebral ischemia and reperfusion cascade is a highly complex phenomenon, which includes the intense neuroinflammatory processes, and comorbid stroke risk factors strongly worsen stroke outcomes and likely make a substantial contribution to the pathophysiology of the ischemia/reperfusion, enhancing difficulties in searching of successful treatment. Common concomitant stroke risk factors (arterial hypertension, diabetes mellitus and hyperlipidemia) strongly drive inflammatory processes during cerebral ischemia/reperfusion; because these factors are often present for a long time before a stroke, causing low-grade background inflammation in the brain, and already initially disrupting the proper functions of NVUs. Broad consideration of this situation in basic research may prove to be crucial for the success of future clinical trials of neuroprotection, vasculoprotection and immunomodulation in stroke. This review focuses on the mechanism by which coexisting common risk factors for stroke intertwine in cerebral ischemic/reperfusion cascade and the dysfunction and disintegration of NVUs through inflammatory processes, principally activation of pattern recognition receptors, alterations in the expression of adhesion molecules and the subsequent pathophysiological consequences.
Collapse
Affiliation(s)
- Łukasz Przykaza
- Laboratory of Experimental and Clinical Neurosurgery, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Mamtilahun M, Tang G, Zhang Z, Wang Y, Tang Y, Yang GY. Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema. Curr Drug Targets 2019; 20:748-755. [DOI: 10.2174/1389450120666190214115309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
Abstract
Brain edema primarily occurs as a consequence of various cerebral injuries including
ischemic stroke. Excessive accumulation of brain water content causes a gradual expansion of brain
parenchyma, decreased blood flow and increased intracranial pressure and, ultimately, cerebral herniation
and death. Current clinical treatment for ischemic edema is very limited, therefore, it is urgent to
develop novel treatment strategies. Mounting evidence has demonstrated that AQP4, a water channel
protein, is closely correlated with brain edema and could be an optimal therapeutic target for the reduction
of ischemic brain edema. AQP4 is prevalently distributed in the central nervous system, and
mainly regulates water flux in brain cells under normal and pathological conditions. This review focuses
on the underlying mechanisms of AQP4 related to its dual role in edema formation and elimination.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guanghui Tang
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
7
|
Hei Y, Chen R, Mao X, Wang J, Long Q, Liu W. Neuregulin1 attenuates cognitive deficits and hippocampal CA1 neuronal apoptosis partly via ErbB4 receptor in a rat model of chronic cerebral hypoperfusion. Behav Brain Res 2019; 365:141-149. [PMID: 30826297 DOI: 10.1016/j.bbr.2019.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
Abstract
Neuregulin1 (NRG1) is an effective neuroprotectant. Previously we demonstrated that the expression of hippocampal NRG1/ErbB4 gradually decreased and correlates with neuronal apoptosis during chronic cerebral hypoperfusion (CCH). Here we aimed to further investigate the protective role of NRG1 in CCH. AG1478, an ErbB4 inhibitor, was used to explore the involvement of ErbB4 receptors in NRG1's action. Permanent bilateral common carotid artery occlusion (2VO) or sham operation was performed in Sprague-Dawley rats. NRG1 (100 μM) and AG1478 (50 mM) was administered intraventricularly. Eight weeks post-surgery, cognitive impairment was analyzed using Morris water maze (MWM) and radial arm water maze (RAWM) tests, followed by histological assessment of the survival and apoptosis of hippocampal CA1 neurons using NeuN and TUNEL immunostaining respectively. Expression of apoptosis-related proteins and ErbB4 activation (pErbB4/ErbB4) was evaluated by Western blotting. The results showed that NRG1 significantly improved the performances in MWM (spatial learning and memory) and RAWM (spatial working and reference memory), attenuated hippocampal CA1 neuronal loss and apoptosis, upregulated the expression of pErbB4/ErbB4 and the anti-apoptotic protein Bcl-2, and downregulated the expression of pro-apoptotic proteins of Cleaved (Cl)-caspase3 and Bax. In addition, the protective effects of NRG1 could be partly abolished by AG1478. Taken together, our study suggested that NRG1 ameliorates cognitive impairment and neuronal apoptosis partly via ErbB4 receptors in rats with CCH.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Xingang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China
| | - Qianfa Long
- Department of Neurosurgery, Institute of Mini-invasive Neurosurgery and Translational Medicine, Xi'an Central Hospital, No. 185 Houzai Gate of North Street, Xi'an, 710003, PR China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, PR China.
| |
Collapse
|
8
|
Sifat AE, Vaidya B, Villalba H, Albekairi TH, Abbruscato TJ. Neurovascular unit transport responses to ischemia and common coexisting conditions: smoking and diabetes. Am J Physiol Cell Physiol 2018; 316:C2-C15. [PMID: 30207783 DOI: 10.1152/ajpcell.00187.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transporters at the neurovascular unit (NVU) are vital for the regulation of normal brain physiology via ion, water, and nutrients movement. In ischemic stroke, the reduction of cerebral blood flow causes several complex pathophysiological changes in the brain, one of which includes alterations of the NVU transporters, which can exacerbate stroke outcome by increased brain edema (by altering ion, water, and glutamate transporters), altered energy metabolism (by altering glucose transporters), and enhanced drug toxicity (by altering efflux transporters). Smoking and diabetes are common risk factors as well as coexisting conditions in ischemic stroke that are also reported to change the expression and function of NVU transporters. Coexistence of these conditions could cause an additive effect in terms of the alterations of brain transporters that might lead to worsened ischemic stroke prognosis and recovery. In this review, we have discussed the effects of ischemic stroke, smoking, and diabetes on some essential NVU transporters and how the simultaneous presence of these conditions can affect the clinical outcome after an ischemic episode. Further scientific investigations are required to elucidate changes in NVU transport in cerebral ischemia, which can lead to better, personalized therapeutic interventions tailor-made for these comorbid conditions.
Collapse
Affiliation(s)
- Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center , Amarillo, Texas
| |
Collapse
|
9
|
Zhang R, Liu C, Ji Y, Teng L, Guo Y. Neuregulin-1β Plays a Neuroprotective Role by Inhibiting the Cdk5 Signaling Pathway after Cerebral Ischemia-Reperfusion Injury in Rats. J Mol Neurosci 2018; 66:261-272. [PMID: 30206770 DOI: 10.1007/s12031-018-1166-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
This study investigated the effects of neuregulin-1β (NRG1β) after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats to evaluate whether they occur via the cyclin-dependent kinase (Cdk)5 signaling pathway. One hundred adult male Wistar rats were randomly divided into sham, MCAO/R, treatment (NRG1β), inhibitor (roscovitine; Ros), and inhibitor + treatment (Ros + NRG1β) groups. The MCAO/R model was established using the intraluminal thread method. The neurobehavioral function was evaluated by the modified neurological severity score (mNSS). The cerebral infarction volume (CIV) was measured by triphenyl tetrazolium chloride (TTC) staining. Morphological changes were observed by hematoxylin-eosin (HE) staining. The apoptotic cell index (ACI) was detected by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Immunohistochemistry and Western blotting were performed to detect the expression of calpain 1, p35/p25 (regulatory binding partners of Cdk5), Cdk5, and p-Tau in neurons. The neuronal morphology in the MCAO/R, NRG1β, Ros + NRG1β, and Ros groups differed compared to the sham group; the mNSS, CIV, ACI, and the expression of calpain 1, p35/p25, Cdk5, and p-Tau were significantly increased in all four groups (P < 0.05). In the NRG1β, Ros and Ros + NRG1β groups, the neuronal morphology was significantly improved compared to the MCAO/R group, as were the mNSS, CIV, and ACI. The levels of calpain 1, p35/p25, and p-Tau were decreased compared with the MCAO/R group (P < 0.05), while the Cdk5 expression was not significantly different (P > 0.05). NRG1β may exert neuroprotective effects by inhibiting the expression of calpain 1, p35/p25, and p-Tau after cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Rui Zhang
- Department of ICU, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Cui Liu
- Department Traumic Surgery, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yaqing Ji
- Institute of Integrative Medicine, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lei Teng
- Department of Biology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266003, China.
| |
Collapse
|
10
|
Qi W, Cao D, Li Y, Peng A, Wang Y, Gao K, Tao C, Wu Y. Atorvastatin ameliorates early brain injury through inhibition of apoptosis and ER stress in a rat model of subarachnoid hemorrhage. Biosci Rep 2018; 38:BSR20171035. [PMID: 29592873 PMCID: PMC5997796 DOI: 10.1042/bsr20171035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease with very poor prognosis. The aim of the present study was to evaluate the protective effects of atorvastatin on early brain injury (EBI) after SAH using a perforation SAH model. Male Sprague-Dawley rats were randomly divided into four groups: the sham group, the SAH group (model group), SAH + 10 mg.kg-1day-1 atorvastatin (low atorvastatin group), and SAH + 20 mg.kg-1day-1 atorvastatin (high atorvastatin group). Atorvastatin was administered orally by gastric gavage for 15 days before operation. At 24 h after SAH, we evaluated the effects of atorvastatin on brain water content, apoptosis by TUNEL assay and scanning electron microscope (SEM), and the expression of apoptosis-related proteins by immunofluorescence and Western blotting analysis. Compared with the sham group, we observed increased brain water content, significant apoptosis, and elevated levels of apoptosis-related proteins including caspase-3, CCAAT enhancer-binding protein homologous protein (CHOP), the 78-kDa glucose-regulated protein (GRP78), and aquaporin-4 (AQP4) in the SAH group. Atorvastatin administration under all doses could significantly reduce brain water content, apoptosis, and the expression levels of caspase-3, CHOP, GRP78, and AQP4 at 24 h after SAH. Our data show that early treatment with atorvastatin effectively ameliorates EBI after SAH through anti-apoptotic effects and the effects might be associated inhibition of caspase-3 and endoplasmic reticulum (ER) stress related proteins CHOP and GRP78.
Collapse
Affiliation(s)
- Wentao Qi
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Demao Cao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Yucheng Li
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Aijun Peng
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Youwei Wang
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Kai Gao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Cunshan Tao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Yongkang Wu
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
11
|
Gu N, Ge K, Hao C, Ji Y, Li H, Guo Y. Neuregulin1β Effects on Brain Tissue via ERK5-Dependent MAPK Pathway in a Rat Model of Cerebral Ischemia-Reperfusion Injury. J Mol Neurosci 2017; 61:607-616. [PMID: 28265860 DOI: 10.1007/s12031-017-0902-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
Neuregulin1β (NRG1β), a member of the excitomotor of tyrosine kinase receptor (erbB) family, was recently shown to play a neuroprotective role in cerebral ischemia-reperfusion injury. The present study analyzed the effects and its possible signaling pathway of NRG1β on brain tissues after cerebral ischemia-reperfusion injury. A focal cerebral ischemic model was established by inserting a monofilament thread to achieve middle cerebral artery occlusion, followed by an NRG1β injection via the internal carotid artery. NRG1β injection resulted in significantly improved neurobehavioral activity according to the modified neurological severity score test. Tetrazolium chloridestaining revealed a smaller cerebral infarction volume; hematoxylin-eosin staining and transmission electron microscopy showed significantly alleviated neurodegeneration in the middle cerebral artery occlusion rats. Moreover, expression of phosphorylated MEK5, phosphorylated ERK5, and phosphorylated MEK2C increased after NRG1β treatment, and the neuroprotective effect of NRG1β was attenuated by an injection of the MEK5 inhibitor, BIX02189. Results from the present study demonstrate that NRG1β provides neuroprotection following cerebral ischemia-reperfusion injury via the ERK5-dependent MAPK pathway.
Collapse
Affiliation(s)
- Ning Gu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Keli Ge
- Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Cui Hao
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yaqing Ji
- Institute of Integrated Medicine, Qingdao University Medical College, Qingdao, Shandong, China
| | - Hongyun Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
12
|
Bi M, Zhang M, Guo D, Bi W, Liu B, Zou Y, Li Q. N-Butylphthalide Alleviates Blood-Brain Barrier Impairment in Rats Exposed to Carbon Monoxide. Front Pharmacol 2016; 7:394. [PMID: 27833554 PMCID: PMC5080372 DOI: 10.3389/fphar.2016.00394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
Carbon monoxide (CO) poisoning is one of the most important health concerns and may result in neuropathologic changes and neurologic sequelae. However, few studies have addressed the correlation between CO poisoning and blood–brain barrier (BBB) impairment. In this study, we investigated the effects of N-butylphthalide (NBP) on the expressions of zonula occludens-1 (ZO-1), claudin-5 and aquaporin-4 (AQP-4) proteins in a CO poisoning rat model. The results indicated that the brain water content was obviously increased, and the tight junctions between endothelial cells were disrupted, resulting in significant cerebral edema and BBB dysfunction in a rat model of CO poisoning. Meanwhile, the ultrastructure of endothelial cells and pericytes was seriously damaged, and the expressions of ZO-1 and claudin-5 were decreased at an early stage (<7 days). NBP treatment could efficiently maintain the ultrastructural and functional integrity of BBB, alleviate cerebral edema. Besides, NBP could also markedly increase the levels of both ZO-1 and claudin-5 proteins compared with those in rats exposed to CO (P < 0.05), whereas NBP had no apparent regulatory effect on AQP-4 expression. Taken together, this study highlights the importance of ZO-1 and claudin-5 proteins in maintaining BBB ultrastructure and function after CO poisoning. NBP, as a novel treatment approach, may effectively inhibit the down-regulation of ZO-1 and claudin-5 proteins (but not AQP-4), thereby preserving the barrier function and reducing cerebral edema after CO poisoning.
Collapse
Affiliation(s)
- Mingjun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China; Emergency Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai, China
| | - Mingwei Zhang
- Affiliated Shouguang People's Hospital of Weifang Medical College Weifang, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine Jinan, China
| | - Weikang Bi
- Department of Clinical Medicine, Qingdao University Medical College Qingdao, China
| | - Bin Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine Jinan, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai, China
| |
Collapse
|
13
|
Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke. Int J Mol Sci 2016; 17:ijms17071146. [PMID: 27438832 PMCID: PMC4964519 DOI: 10.3390/ijms17071146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
Cerebral edema often manifests after the development of cerebrovascular disease, particularly in the case of stroke, both ischemic and hemorrhagic. Without clinical intervention, the influx of water into brain tissues leads to increased intracranial pressure, cerebral herniation, and ultimately death. Strategies to manage the development of edema constitute a major unmet therapeutic need. However, despite its major clinical significance, the mechanisms underlying cerebral water transport and edema formation remain elusive. Aquaporins (AQPs) are a class of water channel proteins which have been implicated in the regulation of water homeostasis and cerebral edema formation, and thus represent a promising target for alleviating stroke-induced cerebral edema. This review examines the significance of relevant AQPs in stroke injury and subsequently explores neuroprotective strategies aimed at modulating AQP expression, with a particular focus on AQP4, the most abundant AQP in the central nervous system.
Collapse
|
14
|
Vella J, Zammit C, Di Giovanni G, Muscat R, Valentino M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci 2015; 9:108. [PMID: 25904843 PMCID: PMC4389728 DOI: 10.3389/fncel.2015.00108] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022] Open
Abstract
Stroke is a complex and devastating neurological condition with limited treatment options. Brain edema is a serious complication of stroke. Early edema formation can significantly contribute to infarct formation and thus represents a promising target. Aquaporin (AQP) water channels contribute to water homeostasis by regulating water transport and are implicated in several disease pathways. At least 7 AQP subtypes have been identified in the rodent brain and the use of transgenic mice has greatly aided our understanding of their functions. AQP4, the most abundant channel in the brain, is up-regulated around the peri-infarct border in transient cerebral ischemia and AQP4 knockout mice demonstrate significantly reduced cerebral edema and improved neurological outcome. In models of vasogenic edema, brain swelling is more pronounced in AQP4-null mice than wild-type providing strong evidence of the dual role of AQP4 in the formation and resolution of both vasogenic and cytotoxic edema. AQP4 is co-localized with inwardly rectifying K(+)-channels (Kir4.1) and glial K(+) uptake is attenuated in AQP4 knockout mice compared to wild-type, indicating some form of functional interaction. AQP4-null mice also exhibit a reduction in calcium signaling, suggesting that this channel may also be involved in triggering pathological downstream signaling events. Associations with the gap junction protein Cx43 possibly recapitulate its role in edema dissipation within the astroglial syncytium. Other roles ascribed to AQP4 include facilitation of astrocyte migration, glial scar formation, modulation of inflammation and signaling functions. Treatment of ischemic cerebral edema is based on the various mechanisms in which fluid content in different brain compartments can be modified. The identification of modulators and inhibitors of AQP4 offer new therapeutic avenues in the hope of reducing the extent of morbidity and mortality in stroke.
Collapse
Affiliation(s)
| | | | | | | | - Mario Valentino
- Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
15
|
Rong L, Ding K, Zhang M, Guo Y. Neuregulin1β improves cognitive dysfunction and up-regulates expression of p-ERK1/2 in rats with chronic omethoate poisoning. Behav Brain Funct 2015; 11:5. [PMID: 25886297 PMCID: PMC4339006 DOI: 10.1186/s12993-014-0050-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/29/2014] [Indexed: 01/18/2023] Open
Abstract
Objective To observe the effects of neuregulin1β (NRG1β) on the level of phosphorylated ERK1/2 (p-ERK1/2), and explore the therapeutic mechanism of NRG1β on the cognitive dysfunction in rats with chronic omethoate poisoning. Methods Rats with strong learning and memory ability, 50 in total, were selected by Y-electric maze test. Among which, 15 rats were randomly selected into control group, and the rest 35 rats were used to establish experimental cognitive impairment models by being injected with omethoate subcutaneously. The 30 cases of successful cognitive impairment models were randomly divided into model group and treated group consisting of 15 rats, respectively. Then rats in treated group were injected with NRG1β into their lateral ventricles, while rats in control and model groups were given equal volume of PBS simultaneously. The cognitive capacity of rats was evaluated with Y-electric maze. The morphology and ultrastructure of hippocampus were observed by hematoxylin eosin (HE) staining and transmission electron microscopy (TEM) respectively. The expression of p-ERK1/2 was determined by immunohistochemical (IHC) staining and Western blotting. Results Compared with rats in model group, the cognitive ability of rats with omethoate exposed (model and treated groups) reduced significantly, along with the obvious damage of hippocampal neurons and the expression of p-ERK1/2 decreased significantly (P < 0.05). And after treatment with NRG1β, the cognitive activity of treated rats was improved obviously, and the injury of hippocampal neurons was milder and the expression of p-ERK1/2 increased significantly more than those in model rats (P < 0.05). Conclusion In chronic omethoate poisoning rats, NRG1β can promote the phosphorylation level of ERK1/2 in hippocampal neurons, and play an important role in the improvement of cognitive function.
Collapse
Affiliation(s)
- Lixia Rong
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Kun Ding
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Meizeng Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
16
|
Zhao Y, Li Z, Wang R, Wei J, Li G, Zhao H. Angiopoietin 1 counteracts vascular endothelial growth factor-induced blood–brain barrier permeability and alleviates ischemic injury in the early stages of transient focal cerebral ischemia in rats. Neurol Res 2013; 32:748-55. [DOI: 10.1179/016164109x12445616596562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
He F, Qu F, Song F. Aspirin upregulates the expression of neuregulin 1 and survivin after focal cerebral ischemia/reperfusion in rats. Exp Ther Med 2012; 3:613-616. [PMID: 22969938 DOI: 10.3892/etm.2012.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/27/2011] [Indexed: 11/06/2022] Open
Abstract
Neuregulin 1 (NGR1) and survivin have been shown to be neuroprotective. However, the link between their expression and aspirin in the treatment of cerebral ischemia remains unclear. Here, we investigated the effect of aspirin on NGR1 and survivin expression after focal cerebral ischemia/reperfusion in rats. Sprague Dawley rats were randomly divided into an aspirin treatment group (n=40) and a control group (n=40). Each group was further divided into five subgroups according to the time after reperfusion. A middle cerebral artery model was established by an occlusion suture. At 24 h, 3, 5 and 7 days after reperfusion, the Bederson neurological deficit scores were 1.47±0.11, 1.22±0.08, 0.85±0.15 and 0.59±0.12 in the treatment group, and 1.87±0.18, 1.45±0.14, 1.05±0.08 and 0.75±0.15 in the control group, respectively, indicating a significant difference at each time point (P<0.05). In the infarct center, the number of NGR1- and survivin-positive cells reached the maximum at 6 h and decreased gradually to a minimum at 7 days, while in the peri-infarct area, the number was few at 6 h, peaked at 3 days and then was reduced gradually with significant differences between the two time points (P<0.05). There were more NGR1- and survivin-positive cells in the treatment group compared to the control group (P<0.05). In conclusion, the neuroprotective effect of aspirin is at least partly mediated by the upregulation of NGR1 and survivin expression after ischemia.
Collapse
Affiliation(s)
- Fan He
- Departments of Neurology, and
| | | | | |
Collapse
|
18
|
Chen Y, Zhang M, Li Q, Guo Y, Ding W, Wang L, Zhou Z, Chen X. Interfering effect and mechanism of neuregulin on experimental dementia model in rats. Behav Brain Res 2011; 222:321-5. [DOI: 10.1016/j.bbr.2011.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/24/2011] [Accepted: 03/29/2011] [Indexed: 11/15/2022]
|
19
|
Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc Dis 2011; 31:521-31. [PMID: 21487216 PMCID: PMC3085520 DOI: 10.1159/000324328] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022] Open
Abstract
In cerebrovascular disease, edema formation is frequently observed within the first 7 days and is characterized by molecular and cellular changes in the neurovascular unit. The presence of water channels, aquaporins (AQPs), within the neurovascular unit has led to intensive research in understanding the underlying roles of each of the AQPs under normal conditions and in different diseases. In this review, we summarize some of the recent knowledge on AQPs, focusing on AQP4, the most abundant AQP in the central nervous system. Several experimental models illustrate that AQPs have dual, complex regulatory roles in edema formation and resolution. To date, no specific therapeutic agents have been developed to inhibit water flux through these channels. However, experimental results strongly suggest that this is an important area for future investigation. In fact, early inhibition of water channels may have positive effects in the prevention of edema formation. At later time points during the course of disease, AQP is important for the clearance of water from the brain into blood vessels. Thus, AQPs, and in particular AQP4, have important roles in the resolution of edema after brain injury. The function of these water channel proteins makes them an excellent therapeutic target.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Calif., USA.
| | | | | |
Collapse
|
20
|
Martijn C, Wiklund L. Effect of methylene blue on the genomic response to reperfusion injury induced by cardiac arrest and cardiopulmonary resuscitation in porcine brain. BMC Med Genomics 2010; 3:27. [PMID: 20594294 PMCID: PMC2904268 DOI: 10.1186/1755-8794-3-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/01/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury is a common secondary effect of cardiac arrest which is largely responsible for postresuscitative mortality. Therefore development of therapies which restore and protect the brain function after cardiac arrest is essential. Methylene blue (MB) has been experimentally proven neuroprotective in a porcine model of global ischemia-reperfusion in experimental cardiac arrest. However, no comprehensive analyses have been conducted at gene expression level. METHODS Pigs underwent either untreated cardiac arrest (CA) or CA with subsequent cardiopulmonary resuscitation (CPR) accompanied with an infusion of saline or an infusion of saline with MB. Genome-wide transcriptional profiling using the Affymetrix porcine microarray was performed to 1) gain understanding of delayed neuronal death initiation in porcine brain during ischemia and after 30, 60 and 180 min following reperfusion, and 2) identify the mechanisms behind the neuroprotective effect of MB after ischemic injury (at 30, 60 and 180 min). RESULTS Our results show that restoration of spontaneous circulation (ROSC) induces major transcriptional changes related to stress response, inflammation, apoptosis and even cytoprotection. In contrast, the untreated ischemic and anoxic insult affected only few genes mainly involved in intra-/extracellular ionic balance. Furthermore, our data show that the neuroprotective role of MB is diverse and fulfilled by regulation of the expression of soluble guanylate cyclase and biological processes accountable for inhibition of apoptosis, modulation of stress response, neurogenesis and neuroprotection. CONCLUSIONS Our results support that MB could be a valuable intervention and should be investigated as a therapeutic agent against neural damage associated with I/R injury induced by cardiac arrest.
Collapse
Affiliation(s)
- Cécile Martijn
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | - Lars Wiklund
- Department of Surgical Sciences/Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|