1
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Steiner A, Owen BM, Bauer JP, Seanez L, Kwon S, Biddinger JE, Huffman R, Ayala JE, Nobis WP, Lewis AS. Glucagon-like peptide-1 receptor differentially controls mossy cell activity across the dentate gyrus longitudinal axis. Hippocampus 2022; 32:797-807. [PMID: 36063105 PMCID: PMC9675713 DOI: 10.1002/hipo.23469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 01/07/2023]
Abstract
Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and location or context discrimination. Less well understood is how MC activity is modulated by neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and hippocampal-dependent mnemonic function, might regulate MC function through expression of its receptor, GLP-1R. RNA-seq demonstrated that most, though not all, Glp1r in hippocampal principal neurons is expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r-expressing hilar neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r, and Glp1r was also expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral administration of the GLP-1R agonist exendin-4 (5 μg/kg) increased cFos expression in ventral but not dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, this study adds to known MC activity modulators a neurohormonal mechanism that may preferentially affect ventral DG physiology and may potentially be targetable by several GLP-1R pharmacotherapies already in clinical use.
Collapse
Affiliation(s)
- Alex Steiner
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin M. Owen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James P. Bauer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leann Seanez
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sam Kwon
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica E. Biddinger
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ragan Huffman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - William P. Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan S. Lewis
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
5
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
6
|
Beneficial Influence of Exendin-4 on Specific Organs and Mechanisms Favourable for the Elderly with Concomitant Obstructive Lung Diseases. Brain Sci 2022; 12:brainsci12081090. [PMID: 36009152 PMCID: PMC9405576 DOI: 10.3390/brainsci12081090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Exendin-4 (Ex-4), better known in its synthetic form and used clinically as exenatide, currently applied in the treatment of diabetes, induces a beneficial impact on nerve cells, and shows promising effects in obstructive lung diseases. At an advanced age, the development of the neurodegenerative process of brain tissue is masked by numerous concomitant diseases. The initial latent phase of neurodegenerative disease results in occurrence of manifestations at an advanced stage. To protect the brain and to simultaneously ensure proper treatment of common coexisting conditions in late life, such as diabetes, chronic obstructive pulmonary disease, or asthma, a pleiotropic medication should be chosen. Molecular mechanisms of Ex-4 exert neuroprotective effects or lead to secondary neurogenesis. Additionally, Ex-4 plays an important role in anti-inflammatory actions which are necessary both in the case of asthma and Parkinson’s disease. Specific receptors in the lungs also reduce the secretion of surfactants, which decreases the risk of exacerbation in chronic obstructive lung disease. In a great number of patients suffering from diabetes, asthma, or chronic lung disease, there is a great potential for both treatment of the main condition and protection against brain neurodegeneration.
Collapse
|
7
|
Géa LP, da Rosa ED, Panizzutti BS, de Aguiar ÉZ, de Oliveira LF, Ferrari P, Piato A, Gomez R, Colombo R, Rosa AR. Reduction of hippocampal IL-6 levels in LPS-injected rats following acute exendin-4 treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1303-1311. [PMID: 32363414 DOI: 10.1007/s00210-020-01867-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Preclinical evidence on the role of glucagon-like peptide-1 receptor (GLP-1r) agonists in the brain led to an increased interest in repurposing these compounds as a therapy for central nervous system (CNS) disorders and associated comorbidities. We aimed to investigate the neuroprotective effects of acute treatment with exendin (EX)-4, a GLP-1r agonist, in an animal model of inflammation. We evaluated the effect of different doses of EX-4 on inflammatory, neurotrophic, and oxidative stress parameters in the hippocampus and serum of lipopolysaccharide (LPS)-injected animals. Male Wistar rats were injected with LPS (0.25 mg/kg i.p.) and treated with different doses of EX-4 (0.1, 0.3, or 0.5 μg/kg i.p.). Sickness behavior was assessed by locomotor activity and body weight, and depressive-like behavior was also evaluated using forced swim test (FST). Brain-derived neurotrophic factor (BDNF), thiobarbituric acid reactive species (TBARS), and interleukin (IL)-6 were quantified in the serum and hippocampus. Glycemia was also analyzed pre- and post-EX-4 treatment. LPS groups exhibited decreased frequency of crossing and reduced body weight (p < 0.001), while alterations on FST were not observed. The higher dose of EX-4 reduced IL-6 in the hippocampus of LPS-injected animals (p = 0.018), and EX-4 per se reduced TBARS serum levels with a modest antioxidant effect in the LPS groups (p ≤ 0.005). BDNF hippocampal levels seemed to be increased in the LPS+EX-4 0.5 group compared with LPS+Saline (p > 0.05). Our study provides evidence on acute anti-inflammatory effects of EX-4 in the hippocampus of rats injected with LPS, contributing to future studies on repurposing compounds with potential neuroprotective properties.
Collapse
Affiliation(s)
- Luiza P Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduarda D da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-gradução em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | - Bruna S Panizzutti
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Érica Z de Aguiar
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Larissa F de Oliveira
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Pamela Ferrari
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosane Gomez
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratório de Farmacologia e Fisiologia, Universidade de Caxias do Sul (UCS), Caixas do Sul, RS, Brazil
| | - Adriane R Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Effects of obesity induced by high-calorie diet and its treatment with exenatide on muscarinic acetylcholine receptors in rat hippocampus. Biochem Pharmacol 2019; 169:113630. [DOI: 10.1016/j.bcp.2019.113630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/30/2019] [Indexed: 12/17/2022]
|
9
|
Erbil D, Eren CY, Demirel C, Küçüker MU, Solaroğlu I, Eser HY. GLP-1's role in neuroprotection: a systematic review. Brain Inj 2019; 33:734-819. [PMID: 30938196 DOI: 10.1080/02699052.2019.1587000] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a target for treatment of diabetes; however, its function in the brain is not well studied. In this systematic review, we aimed to analyze the neuroprotective role of GLP-1 and its defined mechanisms. Methods: We searched 'Web of Science' and 'Pubmed' to identify relevant studies using GLP-1 as the keyword. Two hundred and eighty-nine clinical and preclinical studies have been included. Data have been presented by grouping neurodegenerative, neurovascular and specific cell culture models. Results: Recent literature shows that GLP-1 and its agonists, DPP-4 inhibitors and combined GLP-1/GIP molecules are effective in partially or fully reversing the effects of neurotoxic compounds, neurovascular complications of diabetes, neuropathological changes related with Alzheimer's disease, Parkinson's disease or vascular occlusion. Possible mechanisms that provide neuroprotection are enhancing the viability of the neurons and restoring neurite outgrowth by increased neurotrophic factors, increasing subventricular zone progenitor cells, decreasing apoptosis, decreasing the level of pro-inflammatory factors, and strengthening blood-brain barrier. Conclusion: Based on the preclinical studies, GLP-1 modifying agents are promising targets for neuroprotection. On the other hand, the number of clinical studies that investigate GLP-1 as a treatment is low and further clinical trials are needed for a benchside to bedside translation of recent findings.
Collapse
Affiliation(s)
- Damla Erbil
- a School of Medicine , Koç University , Istanbul , Turkey
| | - Candan Yasemin Eren
- b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Cağrı Demirel
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Ihsan Solaroğlu
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Hale Yapıcı Eser
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| |
Collapse
|
10
|
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018; 9:672. [PMID: 30532733 PMCID: PMC6266510 DOI: 10.3389/fendo.2018.00672] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its "incretin effect" in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease.
Collapse
Affiliation(s)
| | | | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
11
|
Bagnoli E, FitzGerald U. Mitral cells and the glucagon-like peptide 1 receptor: The sweet smell of success? Eur J Neurosci 2018; 49:422-439. [PMID: 30120857 DOI: 10.1111/ejn.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/19/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022]
Abstract
The olfactory bulb (OB) is often affected at very early stages of neurodegenerative disorders, in the so-called "prodromal" phase. In Parkinson's disease (PD), olfactory disturbances appear years before motor symptoms arise. Additionally, pathological alpha-synuclein aggregates are found in olfactory regions before spreading to other areas of the brain. Being positioned at the frontier between the brain and a potentially hostile environment, could explain the particular vulnerability of the OB. Mitral cells (MCs), the principal projecting neurons of the olfactory system, are involved in the pathogenesis and in the prion-like progression of PD. They are affected by Lewy pathology and are thought to contribute to the axonal transport of misfolded alpha-synuclein to other regions of the brain. Here, we first describe the main markers reported to distinguish MCs from other olfactory neurons. We focus on the glucagon-like peptide 1 receptor (GLP-1R), a membrane protein specifically expressed in MCs. After summarizing OB pathology, we explore the idea of targeting specifically MCs with GLP-1 or its analogues. Exenatide has shown great promise as a neuroprotective and neurorestorative agent and has been used in a clinical trial for clinical PD. Since GLP-1R activation has the ability to mitigate many facets of prodromal PD pathology, we postulate that once a robust biomarker is in place that is capable of identifying individuals in the prodromal phase of PD, homing in on GLP-1R could assist in deferring, or eradicating to a significant degree, the clinical manifestation of this debilitating human disorder.
Collapse
Affiliation(s)
- Enrico Bagnoli
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
12
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
13
|
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802-18. [DOI: 10.1016/j.drudis.2016.01.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
14
|
Cho JH, Park JH, Ahn JH, Lee JC, Hwang IK, Park SM, Ahn JY, Kim DW, Cho JH, Kim JD, Kim YM, Won MH, Kang IJ. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B. Mol Med Rep 2016; 13:2949-56. [PMID: 26935641 PMCID: PMC4805080 DOI: 10.3892/mmr.2016.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
4-Hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well-known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4-HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki-67, doublecortin (DCX) immunohistochemistry and 5-bromo-2′-de-oxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4-HBA groups, the number of Ki-67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanillin and 4-HBA groups compared with the vehicle group. These results indicated that vanillin and 4-HBA enhanced cell proliferation, neuroblast differentiation and integration of granule cells in the DG of adolescent mice. These neurogenic effects of vanillin and 4-HBA may be closely associated with increases in BDNF and TrkB.
Collapse
Affiliation(s)
- Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151‑742, Republic of Korea
| | - Seung Min Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Ji Yun Ahn
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Dong Won Kim
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 200‑701, Republic of Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 200‑702, Republic of Korea
| |
Collapse
|
15
|
Girgis F, Pace J, Sweet J, Miller JP. Hippocampal Neurophysiologic Changes after Mild Traumatic Brain Injury and Potential Neuromodulation Treatment Approaches. Front Syst Neurosci 2016; 10:8. [PMID: 26903824 PMCID: PMC4746250 DOI: 10.3389/fnsys.2016.00008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in individuals below age 45, and five million Americans live with chronic disability as a result. Mild TBI (mTBI), defined as TBI in the absence of major imaging or histopathological defects, is responsible for a majority of cases. Despite the lack of overt morphological defects, victims of mTBI frequently suffer lasting cognitive deficits, memory difficulties, and behavioral disturbances. There is increasing evidence that cognitive and memory dysfunction is related to subtle physiological changes that occur in the hippocampus, and these impact both the phenotype of deficits observed and subsequent recovery. Therapeutic modulation of physiological activity by means of medications commonly used for other indications or brain stimulation may represent novel treatment approaches. This review summarizes the present body of knowledge regarding neurophysiologic changes that occur in the hippocampus after mTBI, as well as potential targets for therapeutic modulation of neurologic activity.
Collapse
Affiliation(s)
- Fady Girgis
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Jonathan Pace
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Jennifer Sweet
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Jonathan P Miller
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
16
|
Groeneveld ON, Kappelle LJ, Biessels GJ. Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Investig 2016; 7:5-16. [PMID: 26816596 PMCID: PMC4718099 DOI: 10.1111/jdi.12420] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
Patients with type 2 diabetes mellitus are at risk for accelerated cognitive decline and dementia. Furthermore, their risk of stroke is increased and their outcome after stroke is worse than in those without diabetes. Incretin-based therapies are a class of antidiabetic agents that are of interest in relation to these cerebral complications of diabetes. Two classes of incretin-based therapies are currently available: the glucagon-like-peptide-1 agonists and the dipeptidyl peptidase-4 -inhibitors. Independent of their glucose-lowering effects, incretin-based therapies might also have direct or indirect beneficial effects on the brain. In the present review, we discuss the potential of incretin-based therapies in relation to dementia, in particular Alzheimer's disease, and stroke in patients with type 2 diabetes. Experimental studies on Alzheimer's disease have found beneficial effects of incretin-based therapies on cognition, synaptic plasticity and metabolism of amyloid-β and microtubule-associated protein tau. Preclinical studies on incretin-based therapies in stroke have shown an improved functional outcome, a reduction of infarct volume as well as neuroprotective and neurotrophic properties. Both with regard to the treatment of Alzheimer's disease, and with regard to prevention and treatment of stroke, randomized controlled trials in patients with or without diabetes are underway. In conclusion, experimental studies show promising results of incretin-based therapies at improving the outcome of Alzheimer's disease and stroke through glucose-independent pleiotropic effects on the brain. If these findings would indeed be confirmed in large clinical randomized controlled trials, this would have substantial impact.
Collapse
Affiliation(s)
- Onno N Groeneveld
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - L Jaap Kappelle
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| | - Geert Jan Biessels
- University Medical Center UtrechtBrain Center Rudolf MagnusDepartment of NeurologyUtrechtthe Netherlands
| |
Collapse
|
17
|
Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience 2014; 281:269-81. [PMID: 25301749 DOI: 10.1016/j.neuroscience.2014.09.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
Stroke is a leading cause of death and serious, long-term disability worldwide. We report that rats receiving liraglutide show markedly attenuated infarct volumes and neurological deficit following ischemic insult. We have also investigated the effect of liraglutide on apoptosis and oxidative stress pathways after ischemic injury in diabetic and non-diabetic rats. Male Sprague-Dawley rats weighing 300-350g were used. Diabetes was induced by streptozotocin. Rats were pretreated with either vehicle or liraglutide (50μg/kg, s.c.) for 14days and thereafter subjected to middle cerebral artery occlusion (MCAO). Twenty-four hours after occlusion, rats were assessed for neurological deficit, motor function and subsequently sacrificed for estimation of infarct volume, oxidative stress and apoptotic markers. Vehicle-treated non-diabetic and diabetic rats showed significant (p<0.001) neurological deficit following cerebral ischemia. Liraglutide pretreatment resulted in significantly (p<0.001) less neurological deficit compared to vehicle-treated MCAO rats. Cerebral ischemia produced significant (p<0.0001) infarction in vehicle-treated rats; however, the infarct volume was significantly (p<0.001) less in liraglutide-pretreated rats. Oxidative stress markers were increased following ischemia but were attenuated in liraglutide-treated rats. Anti-apoptotic protein Bcl-2 expression was decreased and pro-apoptotic protein Bax expression was increased in vehicle-treated MCAO rats compared to sham (p<0.0001). On the other hand liraglutide pretreatment showed significantly (p<0.01) increased expression of Bcl-2 and decreased expression of Bax in MCAO rats. In vehicle-treated group, the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells significantly (p<0.0001) increased in the ischemic hemisphere compared to sham-operated group. The number of TUNEL-positive cells in vehicle group was 73.5±3.3 and 85.5±5.2/750μm(2) in non-diabetic and diabetic vehicle-treated MCAO rats, respectively. Following liraglutide treatment the number of TUNEL-positive cells was remarkably attenuated to 25.5±2.8 and 41.5±4.1/750μm(2) (p<0.001) in non-diabetic and diabetic rats, respectively. The results demonstrate that glucagon-like peptide 1 (GLP-1) agonist, liraglutide, is a neuroprotective agent and attenuates the neuronal damage following cerebral ischemia in rats by preventing apoptosis and decreasing oxidative stress.
Collapse
|
18
|
Seino Y, Yabe D. Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. J Diabetes Investig 2014; 4:108-30. [PMID: 24843641 PMCID: PMC4019264 DOI: 10.1111/jdi.12065] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 12/14/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic β-cells glucose-dependently. GIP and GLP-1 undergo degradation by dipeptidyl peptidase-4 (DPP-4), and rapidly lose their biological activities. The actions of GIP and GLP-1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which are expressed in pancreatic β-cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or GLP-1R, as well as mice lacking DPP-4, showed involvement of GIP and GLP-1 in divergent biological activities, some of which could have implications for preventing diabetes-related microvascular complications (e.g., retinopathy, nephropathy and neuropathy) and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as diabetes-related comorbidity (e.g., obesity, non-alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore, recent studies using incretin-based drugs, such as GLP-1 receptor agonists, which stably activate GLP-1R signaling, and DPP-4 inhibitors, which enhance both GLP-1R and GIPR signaling, showed that GLP-1 and GIP exert effects possibly linked to prevention or treatment of diabetes-related complications and comorbidities independently of hyperglycemia. We review recent findings on the extrapancreatic effects of GIP and GLP-1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs from the perspective of diabetes-related complications and comorbidities.
Collapse
Affiliation(s)
| | - Daisuke Yabe
- Division of Diabetes Clinical Nutrition and Endocrinology Kansai Electric Power Hospital Osaka Japan
| |
Collapse
|
19
|
Darsalia V, Olverling A, Larsson M, Mansouri S, Nathanson D, Nyström T, Klein T, Sjöholm Å, Patrone C. Linagliptin enhances neural stem cell proliferation after stroke in type 2 diabetic mice. ACTA ACUST UNITED AC 2014; 190-191:25-31. [PMID: 24821550 DOI: 10.1016/j.regpep.2014.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are current drugs for the treatment of type 2 diabetes (T2D) based on their main property to enhance endogenous glucagon-like peptide-1 (GLP-1) levels, thus increasing insulin secretion. However, the mechanism of action of DPP-4 inhibition in extra pancreatic tissues has been poorly investigated and it might occur differently from that induced by GLP-1R agonists. Increased adult neurogenesis by GLP-1R agonists has been suggested to play a role in functional recovery in animal models of brain disorders. We recently showed that the DPP-4 inhibitor linagliptin reduces brain damage after stroke in normal and type 2 diabetic (T2D) mice. The aim of this study was to determine whether linagliptin impacts stroke-induced neurogenesis. T2D was induced by 25 weeks of high-fat diet. Linagliptin treatment was carried out for 7 weeks. Standard diet fed-mice were used as controls. Stroke was induced by middle cerebral artery occlusion 4 weeks into the linagliptin treatment. Neural stem cell (NSC) proliferation/neuroblast formation and striatal neurogenesis/gliogenesis were assessed 3 weeks after stroke. The effect of linagliptin on NSC viability was also determined in vitro. The results show that linagliptin enhances NSC proliferation in T2D mice but not in normal mice. Linagliptin did not increase NSC number in vitro indicating that the effect of linagliptin on NSC proliferation in T2D is indirect. Neurogenesis and gliogenesis were not affected. In conclusion, we found no correlation between acute neuroprotection (occurring in both T2D and normal mice) and increased NSC proliferation (occurring only in T2D mice). However, our results show that linagliptin evokes a differential response on NSC proliferation after stroke in normal and T2D mice suggesting that DPP-4 inhibition effect in the CNS might go beyond the well known increase of GLP-1.
Collapse
Affiliation(s)
- Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Anna Olverling
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Martin Larsson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - David Nathanson
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Åke Sjöholm
- University of South Alabama, College of Medicine, Department of Biochemistry and Molecular Biology, Mobile, AL, USA; Department of Internal Medicine, Diabetes Research Unit, Södertälje Hospital, Södertälje, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.
| |
Collapse
|
20
|
Zheng JX, Xiao YC, Hu YR, Hao M, Kuang HY. Exendin-4 shows no effects on the prostatic index in high-fat-diet-fed rat with benign prostatic hyperplasia by improving insulin resistance. Andrologia 2014; 47:236-42. [PMID: 24605934 DOI: 10.1111/and.12252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 12/22/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent disease globally, and accumulating evidence has indicated an association between BPH, insulin resistance (IR) and diabetes. Exendin-4 is widely used in clinics, which could enhance the proliferation of pancreatic β cells. The ability of exendin-4 to promote tumorigenesis has been of concern, and whether exendin-4 would enhance the propagation of BPH is not fully understood. We aimed to determine whether glucagon-like peptide-1 receptors (GLP-1Rs) were expressed in rat prostate and to determine the effect of exendin-4 on prostate of BPH. Male Wistar rats were used and assigned to six groups: normal diet (ND), high-fat diet (HFD), HFD + exendin-4, HFD + BPH, HFD + BPH + exendin-4 and HFD + BPH + rosiglitazone group. After castration, steroids were injected subcutaneously for 4 weeks to induce BPH. Rats were kept on high-fat diet to induce IR. Treatment groups were treated with exendin-4 and rosiglitazone. Prostatic index and HOMA-IR index were used to evaluate the prostatic hyperplasia status and the degree of IR respectively. The expression of GLP-1R was indicated not only by immunohistochemistry, but also by Western blot analysis. The expression of GLP-1R was significantly higher, and HOMA-IR index and body weight significantly decreased after administration of exendin-4. However, no significant differences in the prostatic index were observed between exendin-4 treatment groups and non-exendin-4 treatment groups. Prostatic index was not influenced by exendin-4 maybe by improving IR and weight loss.
Collapse
Affiliation(s)
- J-X Zheng
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
21
|
Iwai T, Sawabe T, Tanimitsu K, Suzuki M, Sasaki-Hamada S, Oka JI. Glucagon-like peptide-1 protects synaptic and learning functions from neuroinflammation in rodents. J Neurosci Res 2014; 92:446-54. [PMID: 24464856 DOI: 10.1002/jnr.23335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is derived from the processing of proglucagon in intestinal L-cells and releases insulin from pancreatic β-cells as an incretin. The GLP-1 receptor has been proposed as a possible therapeutic target for the treatment of Alzheimer's disease, in which neuroinflammation is critical in the pathogenesis. The present study investigates whether GLP-1 (7-36) amide, an active fragment of GLP-1, protected against synaptic impairments induced by inflammation-related injurious agents (lipopolysaccharide [LPS], interleukin-1β [IL-1β], and H2 O2). In the Y-maze test, LPS (10 μg/mouse, i.c.v) significantly decreased the percentage alternation. Pretreatment with GLP-1 (7-36) amide (0.09-0.9 nmol/mouse, i.c.v.) prevented an impairment in spontaneous alternation performance. Pretreatment with LPS (10 μg/ml, 2 hr) impaired LTP induction but not paired-pulse facilitation in the CA1 region of rat hippocampal slices. This impairment was prevented by cotreatment with GLP-1 (7-36) amide (50 nM). IL-1β (0.57 nM) or H2 O2 (50 μM) also impaired LTP induction. This impairment was prevented by GLP-1 (7-36) amide (50 nM). These results suggest that GLP-1 (7-36) amide improves the synaptic impairments induced by inflammation-related injurious agents in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Takashi Iwai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Eakin K, Li Y, Chiang YH, Hoffer BJ, Rosenheim H, Greig NH, Miller JP. Exendin-4 ameliorates traumatic brain injury-induced cognitive impairment in rats. PLoS One 2013; 8:e82016. [PMID: 24312624 PMCID: PMC3847068 DOI: 10.1371/journal.pone.0082016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/29/2013] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury represents a major public health issue that affects 1.7 million Americans each year and is a primary contributing factor (30.5%) of all injury-related deaths in the United States. The occurrence of traumatic brain injury is likely underestimated and thus has been termed "a silent epidemic". Exendin-4 is a long-acting glucagon-like peptide-1 receptor agonist approved for the treatment of type 2 diabetes mellitus that not only effectively induces glucose-dependent insulin secretion to regulate blood glucose levels but also reduces apoptotic cell death of pancreatic β-cells. Accumulating evidence also supports a neurotrophic and neuroprotective role of glucagon-like peptide-1 in an array of cellular and animal neurodegeneration models. In this study, we evaluated the neuroprotective effects of Exendin-4 using a glutamate toxicity model in vitro and fluid percussion injury in vivo. We found neuroprotective effects of Exendin-4 both in vitro, using markers of cell death, and in vivo, using markers of cognitive function, as assessed by Morris Water Maze. In combination with the reported benefits of ex-4 in other TBI models, these data support repositioning of Exendin-4 as a potential treatment for traumatic brain injury.
Collapse
Affiliation(s)
- Katharine Eakin
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Yazhou Li
- Drug Design and Development Section, Laboratory of Translational Gerontology, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - Yung-Hsiao Chiang
- Ph.D. Program for Neural Regenerative Medicine, Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan (R.O.C.)
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei City, Taiwan (R.O.C.)
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Hilary Rosenheim
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Nigel H. Greig
- Drug Design and Development Section, Laboratory of Translational Gerontology, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, United States of America
| | - Jonathan P. Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Yabe D, Seino Y. Incretin actions beyond the pancreas: lessons from knockout mice. Curr Opin Pharmacol 2013; 13:946-53. [DOI: 10.1016/j.coph.2013.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023]
|
24
|
Exendin (5-39), an antagonist of GLP-1 receptor, modulates synaptic transmission via glutamate uptake in the dentate gyrus. Brain Res 2013; 1505:1-10. [DOI: 10.1016/j.brainres.2013.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
|
25
|
Parthsarathy V, Hölscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLoS One 2013; 8:e58784. [PMID: 23536825 PMCID: PMC3594148 DOI: 10.1371/journal.pone.0058784] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/08/2013] [Indexed: 12/16/2022] Open
Abstract
Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (VictozaTM), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.
Collapse
Affiliation(s)
| | - Christian Hölscher
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Bachor TP, Suburo AM. Neural stem cells in the diabetic brain. Stem Cells Int 2012; 2012:820790. [PMID: 23213341 PMCID: PMC3505664 DOI: 10.1155/2012/820790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/15/2012] [Indexed: 01/28/2023] Open
Abstract
Experimental diabetes in rodents rapidly affects the neurogenic niches of the adult brain. Moreover, behavioral disorders suggest that a similar dysfunction of the neurogenic niches most likely affects diabetic and prediabetic patients. Here, we review our present knowledge about adult neural stem cells, the methods used for their study in diabetic models, and the effects of experimental diabetes. Variations in diet and even a short hyperglycemia profoundly change the structure and the proliferative dynamics of the neurogenic niches. Moreover, alterations of diabetic neurogenic niches appear to be associated with diabetic cognitive disorders. Available evidence supports the hypothesis that, in the adult, early changes of the neurogenic niches might enhance development of the diabetic disease.
Collapse
Affiliation(s)
| | - Angela M. Suburo
- Medicina Celular y Molecular, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, B1629AHJ Pilar, Argentina
| |
Collapse
|
27
|
Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 2012; 166:1586-99. [PMID: 22519295 DOI: 10.1111/j.1476-5381.2012.01971.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Isidro Salcedo
- Drug Design & Development Section, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | |
Collapse
|
28
|
Tweedie D, Rachmany L, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Miller J, Hoffer BJ, Greig NH, Pick CG. Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice. Exp Neurol 2012; 239:170-82. [PMID: 23059457 DOI: 10.1016/j.expneurol.2012.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/06/2012] [Accepted: 10/02/2012] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is a global problem reaching near epidemic numbers that manifests clinically with cognitive problems that decades later may result in dementias like Alzheimer's disease (AD). Presently, little can be done to prevent ensuing neurological dysfunctions by pharmacological means. Recently, it has become apparent that several CNS diseases share common terminal features of neuronal cell death. The effects of exendin-4 (Ex-4), a neuroprotective agent delivered via a subcutaneous micro-osmotic pump, were examined in the setting of mild TBI (mTBI). Utilizing a model of mTBI, where cognitive disturbances occur over time, animals were subjected to four treatments: sham; Ex-4; mTBI and Ex-4/mTBI. mTBI mice displayed deficits in novel object recognition, while Ex-4/mTBI mice performed similar to sham. Hippocampal gene expression, assessed by gene array methods, showed significant differences with little overlap in co-regulated genes between groups. Importantly, changes in gene expression induced by mTBI, including genes associated with AD were largely prevented by Ex-4. These data suggest a strong beneficial action of Ex-4 in managing secondary events induced by a traumatic brain injury.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|