1
|
Mahmud A, Avramescu RG, Niu Z, Flores C. Awakening the dormant: Role of axonal guidance cues in stress-induced reorganization of the adult prefrontal cortex leading to depression-like behavior. Front Neural Circuits 2023; 17:1113023. [PMID: 37035502 PMCID: PMC10079902 DOI: 10.3389/fncir.2023.1113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic and disabling disorder affecting roughly 280 million people worldwide. While multiple brain areas have been implicated, dysfunction of prefrontal cortex (PFC) circuitry has been consistently documented in MDD, as well as in animal models for stress-induced depression-like behavioral states. During brain development, axonal guidance cues organize neuronal wiring by directing axonal pathfinding and arborization, dendritic growth, and synapse formation. Guidance cue systems continue to be expressed in the adult brain and are emerging as important mediators of synaptic plasticity and fine-tuning of mature neural networks. Dysregulation or interference of guidance cues has been linked to depression-like behavioral abnormalities in rodents and MDD in humans. In this review, we focus on the emerging role of guidance cues in stress-induced changes in adult prefrontal cortex circuitry and in precipitating depression-like behaviors. We discuss how modulating axonal guidance cue systems could be a novel approach for precision medicine and the treatment of depression.
Collapse
Affiliation(s)
- Ashraf Mahmud
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Psychiatry, Neurology, and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
2
|
Li Y, Su P, Chen Y, Nie J, Yuan TF, Wong AH, Liu F. The Eph receptor A4 plays a role in demyelination and depression-related behavior. J Clin Invest 2022; 132:e152187. [PMID: 35271507 PMCID: PMC9012277 DOI: 10.1172/jci152187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
Proper myelination of axons is crucial for normal sensory, motor, and cognitive function. Abnormal myelination is seen in brain disorders such as major depressive disorder (MDD), but the molecular mechanisms connecting demyelination with the pathobiology remain largely unknown. We observed demyelination and synaptic deficits in mice exposed to either chronic, unpredictable mild stress (CUMS) or LPS, 2 paradigms for inducing depression-like states. Pharmacological restoration of myelination normalized both synaptic deficits and depression-related behaviors. Furthermore, we found increased ephrin A4 receptor (EphA4) expression in the excitatory neurons of mice subjected to CUMS, and shRNA knockdown of EphA4 prevented demyelination and depression-like behaviors. These animal data are consistent with the decrease in myelin basic protein and the increase in EphA4 levels we observed in postmortem brain samples from patients with MDD. Our results provide insights into the etiology of depressive symptoms in some patients and suggest that inhibition of EphA4 or the promotion of myelination could be a promising strategy for treating depression.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
| | - Yuxiang Chen
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jing Nie
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Albert H.C. Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Pharmacology and Toxicology, and
| | - Fang Liu
- Shanghai Mental Health Center, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health
- Departments of Psychiatry
- Institutes of Medical Science
- Physiology at the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
4
|
Baud A, Casale FP, Barkley-Levenson AM, Farhadi N, Montillot C, Yalcin B, Nicod J, Palmer AA, Stegle O. Dissecting indirect genetic effects from peers in laboratory mice. Genome Biol 2021; 22:216. [PMID: 34311762 PMCID: PMC8311926 DOI: 10.1186/s13059-021-02415-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The phenotype of an individual can be affected not only by the individual's own genotypes, known as direct genetic effects (DGE), but also by genotypes of interacting partners, indirect genetic effects (IGE). IGE have been detected using polygenic models in multiple species, including laboratory mice and humans. However, the underlying mechanisms remain largely unknown. Genome-wide association studies of IGE (igeGWAS) can point to IGE genes, but have not yet been applied to non-familial IGE arising from "peers" and affecting biomedical phenotypes. In addition, the extent to which igeGWAS will identify loci not identified by dgeGWAS remains an open question. Finally, findings from igeGWAS have not been confirmed by experimental manipulation. RESULTS We leverage a dataset of 170 behavioral, physiological, and morphological phenotypes measured in 1812 genetically heterogeneous laboratory mice to study IGE arising between same-sex, adult, unrelated mice housed in the same cage. We develop and apply methods for igeGWAS in this context and identify 24 significant IGE loci for 17 phenotypes (FDR < 10%). We observe no overlap between IGE loci and DGE loci for the same phenotype, which is consistent with the moderate genetic correlations between DGE and IGE for the same phenotype estimated using polygenic models. Finally, we fine-map seven significant IGE loci to individual genes and find supportive evidence in an experiment with a knockout model that Epha4 gives rise to IGE on stress-coping strategy and wound healing. CONCLUSIONS Our results demonstrate the potential for igeGWAS to identify IGE genes and shed light into the mechanisms of peer influence.
Collapse
Affiliation(s)
- Amelie Baud
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
- Current Address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Francesco Paolo Casale
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
- Microsoft Research New England, Cambridge, MA USA
| | | | - Nilgoun Farhadi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
| | - Charlotte Montillot
- INSERM U1231 GAD Laboratory, University Bourgogne Franche-Comté, 21070 Dijon, France
| | - Binnaz Yalcin
- INSERM U1231 GAD Laboratory, University Bourgogne Franche-Comté, 21070 Dijon, France
| | - Jerome Nicod
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Current Address: The Francis Crick Institute, London, UK
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093 USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, 69120 Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK
| |
Collapse
|
5
|
Qi Z, Yang X, Sang Y, Liu Y, Li J, Xu B, Liu W, He M, Xu Z, Deng Y, Zhu J. Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice. Neurotox Res 2020; 38:508-523. [PMID: 32472497 DOI: 10.1007/s12640-020-00209-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/05/2023]
Abstract
Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 μM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 μM or 15 mg/kg) and riluzole (100 μM or 32 μmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 μM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanqi Sang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| | - Jinghai Zhu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
6
|
Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, Zhang W, Lu L, Han Y, Shi J. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci 2020; 13:4. [PMID: 32116542 PMCID: PMC7025547 DOI: 10.3389/fnmol.2020.00004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Perineuronal nets (PNNs) are condensed extracellular matrix (ECM) structures regulating developmental plasticity and protecting neurons against oxidative stress. PNN abnormalities have been observed in various psychiatric disorders such as schizophrenia and bipolar disorder, but the relationship between PNN density and depression still remains unclear. In the present study, we examined the density and components of PNNs including aggrecan, neurocan and Tenascin-R in the prelimbic cortex (PrL) after chronic unpredictable mild stress (CUMS). We found that depressive-like behaviors were induced after 30 days of CUMS accompanied by decreases in PNN+ cell density and aggrecan expression in the PrL. In addition, rats subjected to 20 days of CUMS were separated into vulnerable and resilient subpopulations that differ along several behavioral domains. Consistently, the density of PNNs and the expression level of neurocan in the vulnerable group were decreased compared to control and resilient groups. Finally, we examined individual differences based on locomotion in a novel context and classified rats as high responding (HR) and low responding (LR) phenotypes. The density of PNNs and the expression level of neurocan in the LR group were lower than the HR group. Moreover, the LR rats were more susceptible to depressive-like behaviors compared with HR rats. Altogether, these results suggest that the density of PNNs in the PrL is associated with depressive-like behaviors in young-aged rats, and it may serve as a potential endophenotype or therapeutic target for depression.
Collapse
Affiliation(s)
- Zhoulong Yu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Na Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Die Hu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenxi Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Yuan
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.,The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, China
| |
Collapse
|
7
|
Sell SL, Boone DR, Weisz HA, Cardenas C, Willey HE, Bolding IJ, Micci MA, Falduto MT, Torres KEO, DeWitt DS, Prough DS, Hellmich HL. MicroRNA profiling identifies a novel compound with antidepressant properties. PLoS One 2019; 14:e0221163. [PMID: 31442236 PMCID: PMC6707633 DOI: 10.1371/journal.pone.0221163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Patients with traumatic brain injury (TBI) are frequently diagnosed with depression. Together, these two leading causes of death and disability significantly contribute to the global burden of healthcare costs. However, there are no drug treatments for TBI and antidepressants are considered off-label for depression in patients with TBI. In molecular profiling studies of rat hippocampus after experimental TBI, we found that TBI altered the expression of a subset of small, non-coding, microRNAs (miRNAs). One known neuroprotective compound (17β-estradiol, E2), and two experimental neuroprotective compounds (JM6 and PMI-006), reversed the effects of TBI on miRNAs. Subsequent in silico analyses revealed that the injury-altered miRNAs were predicted to regulate genes involved in depression. Thus, we hypothesized that drug-induced miRNA profiles can be used to identify compounds with antidepressant properties. To confirm this hypothesis, we examined miRNA expression in hippocampi of injured rats treated with one of three known antidepressants (imipramine, fluoxetine and sertraline). Bioinformatic analyses revealed that TBI, potentially via its effects on multiple regulatory miRNAs, dysregulated transcriptional networks involved in neuroplasticity, neurogenesis, and circadian rhythms- networks known to adversely affect mood, cognition and memory. As did E2, JM6, and PMI-006, all three antidepressants reversed the effects of TBI on multiple injury-altered miRNAs. Furthermore, JM6 reduced TBI-induced inflammation in the hippocampus and depression-like behavior in the forced swim test; these are both properties of classic antidepressant drugs. Our results support the hypothesis that miRNA expression signatures can identify neuroprotective and antidepressant properties of novel compounds and that there is substantial overlap between neuroprotection and antidepressant properties.
Collapse
Affiliation(s)
- Stacy L. Sell
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Deborah R. Boone
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harris A. Weisz
- Graduate School of Biomedical Science, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cesar Cardenas
- University of Mississippi Medical Center: Psychiatry & Human Behavior, Jackson, Mississippi, United States of America
| | - Hannah E. Willey
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ian J. Bolding
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael T. Falduto
- GenUs BioSystems, Northbrook, Illinois, United States of America
- Paradise Genomics, Inc., Northbrook, Illinois, United States of America
| | | | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Liu X, Yuan J, Guang Y, Wang X, Feng Z. Longitudinal in vivo Diffusion Tensor Imaging Detects Differential Microstructural Alterations in the Hippocampus of Chronic Social Defeat Stress-Susceptible and Resilient Mice. Front Neurosci 2018; 12:613. [PMID: 30210285 PMCID: PMC6123364 DOI: 10.3389/fnins.2018.00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Microstructural alterations in the hippocampus may underlie stress-related disorders and stress susceptibility. However, whether these alterations are pre-existing stress vulnerability biomarkers or accumulative results of chronic stress remain unclear. Moreover, examining the whole hippocampus as one unit and ignoring the possibility of a lateralized effect of stress may mask some stress effects and contribute to the heterogeneity of previous findings. Methods: After C57BL/6 mice were exposed to a 10-day chronic social defeat stress (CSDS) paradigm, different stress phenotypes, i.e., susceptible (n = 10) and resilient (n = 7) mice, were discriminated by the behavior of the mice in a social interaction test. With in vivo diffusion tensor imaging (DTI) scans that were conducted both before and after the stress paradigm, we evaluated diffusion properties in the left and right, dorsal (dHi) and ventral hippocampus (vHi) of experimental mice. Results: A significantly lower fractional anisotropy (FA) was found in the right vHi of the susceptible mice prior to the CSDS paradigm than that found in the resilient mice, suggesting that pre-existing microstructural abnormalities may result in stress susceptibility. However, no significant group differences were found in the post-stress FA values of any of the hippocampal regions of interest (ROIs). In addition, mean diffusivity (MD) and radial diffusivity (RD) values were found to be significantly greater only in the right dHi of the resilient group compared to those of the susceptible mice. Furthermore, a significant longitudinal decrease was only observed in the right dHi RD value of the susceptible mice. Moreover, the social interaction (SI) ratio was positively related to post-stress left MD, right dHi MD, and right dHi RD values and the longitudinal right dHi MD percent change. Meanwhile, a negative relationship was detected between the SI ratio and bilateral mean of the post-stress left relative to right vHi FA value, highlighting the important role of right hippocampus in stress-resilience phenotype. Conclusion: Our findings demonstrated different longitudinal microstructural alterations in the bilateral dHi and vHi between stress-susceptible and resilient subgroups and indicated a right-sided lateralized stress effect, which may be useful in the diagnosis and prevention of stress-related disorders as well as their intervention.
Collapse
Affiliation(s)
- Xiao Liu
- School of Psychology, Army Medical University, Chongqing, China
| | - Jizhen Yuan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Guang
- School of Psychology, Army Medical University, Chongqing, China
| | - Xiaoxia Wang
- School of Psychology, Army Medical University, Chongqing, China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Martis LS, Krog S, Tran TP, Bouzinova E, Christiansen SL, Møller A, Holmes MC, Wiborg O. The effect of rat strain and stress exposure on performance in touchscreen tasks. Physiol Behav 2017; 184:83-90. [PMID: 29129610 DOI: 10.1016/j.physbeh.2017.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
Patients suffering from depression-associated cognitive impairments often recover incompletely after remission from the core symptoms of depression (lack of energy, depressed mood and anhedonia). This study aimed to set the basis for clinically relevant testing of cognitive impairments in a preclinical model of depression. Hence, we used the chronic mild stress (CMS) model of depression, which provokes the core symptom of anhedonia in a fraction of the stress exposed animals, while others remain resilient, and assessed the entire CMS groups' cognitive performance on the touchscreen operant platform. Specifically, we applied the pairwise discrimination (PD) and reversal task including a retention phase on Wistar and Long Evans controls and CMS exposed Long Evans rats. We observed differences between the albino Wistar and the pigmented Long Evans strain regarding performance in the PD and reversal task as well as in memory consolidation. CMS exposure did not alter learning and memory in the PD and reversal task, even though it altered affective behaviours in the elevated plus-maze and open field test. This is likely due to the heterogeneity of the CMS group, in which stress exposure elicited the expected range of phenotypes from anhedonic-like to resilient shown with the sucrose consumption test. Thus, our study suggests that pigmented rat strains, such as Long Evans, are superior to albino rats in the vision-based touchscreen studies. Furthermore, we propose investigation of the CMS subgroups in more complex, hippocampus-dependent tasks to refine a translational preclinical model of depression-induced cognitive impairments. Hence, this study increased awareness of strain-specific differences in touchscreen performance and added to the literature regarding the sensitivity of the PD and reversal task to stress-induced cognitive alterations.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK.
| | - Simone Krog
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Thao Phuong Tran
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Elena Bouzinova
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Sofie L Christiansen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Arne Møller
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, UK
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
10
|
Guo H, Huang ZL, Wang W, Zhang SX, Li J, Cheng K, Xu K, He Y, Gui SW, Li PF, Wang HY, Dong ZF, Xie P. iTRAQ-Based Proteomics Suggests Ephb6 as a Potential Regulator of the ERK Pathway in the Prefrontal Cortex of Chronic Social Defeat Stress Model Mice. Proteomics Clin Appl 2017; 11. [PMID: 28967185 DOI: 10.1002/prca.201700115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/03/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Major depressive disorder (MDD) is a worldwide concern and devastating psychiatric disease. The World Health Organization claims that MDD leads to at least 11.9% of the global burden of disease. However, the underlying pathophysiology mechanisms of MDD remain largely unknown. EXPERIMENTAL DESIGN Herein, we proteomic-based strategy is used to compare the prefrontal cortex (PFC) in chronic social defeat stress (CSDS) model mice with a control group. Based on pooled samples, differential proteins are identified in the PFC proteome using iTRAQ coupled with LC-MS/MS. RESULTS Ingenuity Pathway Analysis (IPA) is then followed to predict relevant pathways, with the ephrin receptor signaling pathway selected for further research. Additionally, as the selected key proteins of the ephrin receptor signaling pathway, ephrin type-B receptor 6 (EphB6) and the ERK pathway are validated by Western blotting. CONCLUSION AND CLINICAL RELEVANT Altogether, increased understanding of the ephrin receptor signaling pathway in MDD is provided, which implicates further investigation of PFC dysfunction induced by CSDS treatment.
Collapse
Affiliation(s)
- Hua Guo
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Lin Huang
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Shu-Xiao Zhang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Juan Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Cheng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Ke Xu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yong He
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Wen Gui
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Peng-Fei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Hai-Yang Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Zhi-Fang Dong
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| |
Collapse
|
11
|
Increased EphA4-ephexin1 signaling in the medial prefrontal cortex plays a role in depression-like phenotype. Sci Rep 2017; 7:7133. [PMID: 28769056 PMCID: PMC5541046 DOI: 10.1038/s41598-017-07325-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 02/02/2023] Open
Abstract
Accumulating evidence suggests a role of the ephrin receptor EphA4 and the downstream protein ephexin1 in synaptic plasticity, which is implicated in depression. We examined whether EphA4–ephexin1 signaling plays a role in the pathophysiology of depression, and the antidepressant-like effect of EphA4 inhibitor rhynchophylline. We found increased ratios of p-EphA4/EphA4 and p-ephexin1/ephexin1 in the prefrontal cortex (PFC) and hippocampus but not in the nucleus accumbens (NAc), of susceptible mice after social defeat stress. Furthermore, the p-EphA4/EphA4 ratio was higher in the parietal cortex of depressed patients compared with controls. Systemic administration of rhynchophylline, produced a rapid antidepressant-like effect in a social defeat stress model by inhibiting EphA4–ephexin1 signaling and activating brain-derived neurotrophic factor-TrkB signaling in the PFC and hippocampus. Pretreatment with rhynchophylline before each social defeat stress could prevent the onset of the depression-like phenotype after repeated social defeat stress. Overexpression of EphA4 in the medial PFC owing to infection with an EphA4 adeno-associated virus caused the depression-like phenotype 3 weeks later and rhynchophylline had a rapid antidepressant-like effect in these mice. These findings suggest that increased EphA4–ephexin1 signaling in the PFC plays a role in the pathophysiology of depression.
Collapse
|
12
|
Malki K, Tosto MG, Mouriño‐Talín H, Rodríguez‐Lorenzo S, Pain O, Jumhaboy I, Liu T, Parpas P, Newman S, Malykh A, Carboni L, Uher R, McGuffin P, Schalkwyk LC, Bryson K, Herbster M. Highly polygenic architecture of antidepressant treatment response: Comparative analysis of SSRI and NRI treatment in an animal model of depression. Am J Med Genet B Neuropsychiatr Genet 2017; 174:235-250. [PMID: 27696737 PMCID: PMC5434854 DOI: 10.1002/ajmg.b.32494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/15/2016] [Indexed: 11/12/2022]
Abstract
Response to antidepressant (AD) treatment may be a more polygenic trait than previously hypothesized, with many genetic variants interacting in yet unclear ways. In this study we used methods that can automatically learn to detect patterns of statistical regularity from a sparsely distributed signal across hippocampal transcriptome measurements in a large-scale animal pharmacogenomic study to uncover genomic variations associated with AD. The study used four inbred mouse strains of both sexes, two drug treatments, and a control group (escitalopram, nortriptyline, and saline). Multi-class and binary classification using Machine Learning (ML) and regularization algorithms using iterative and univariate feature selection methods, including InfoGain, mRMR, ANOVA, and Chi Square, were used to uncover genomic markers associated with AD response. Relevant genes were selected based on Jaccard distance and carried forward for gene-network analysis. Linear association methods uncovered only one gene associated with drug treatment response. The implementation of ML algorithms, together with feature reduction methods, revealed a set of 204 genes associated with SSRI and 241 genes associated with NRI response. Although only 10% of genes overlapped across the two drugs, network analysis shows that both drugs modulated the CREB pathway, through different molecular mechanisms. Through careful implementation and optimisations, the algorithms detected a weak signal used to predict whether an animal was treated with nortriptyline (77%) or escitalopram (67%) on an independent testing set. The results from this study indicate that the molecular signature of AD treatment may include a much broader range of genomic markers than previously hypothesized, suggesting that response to medication may be as complex as the pathology. The search for biomarkers of antidepressant treatment response could therefore consider a higher number of genetic markers and their interactions. Through predominately different molecular targets and mechanisms of action, the two drugs modulate the same Creb1 pathway which plays a key role in neurotrophic responses and in inflammatory processes. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karim Malki
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom
| | - Maria Grazia Tosto
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom,LCIBGTomsk State UniversityTomskRussia
| | | | | | - Oliver Pain
- BirkbeckUniversity of LondonUnited Kingdom,London School of Hygiene & Tropical MedicineUnited Kingdom
| | - Irfan Jumhaboy
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom
| | - Tina Liu
- Department of Computer Science Imperial College LondonUnited Kingdom
| | - Panos Parpas
- Department of Computer Science Imperial College LondonUnited Kingdom
| | - Stuart Newman
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom
| | | | - Lucia Carboni
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaBolognaItaly
| | - Rudolf Uher
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom,Department of PsychiatryDalhousie UniversityHalifaxNova ScotiaCanada
| | - Peter McGuffin
- King's College LondonMRC SocialGenetic and Developmental Psychiatry Centre at the Institute of PsychiatryPsychology and Neuroscience (IOPPN)LondonUnited Kingdom
| | | | - Kevin Bryson
- Department of Computer ScienceUCLLondonUnited Kingdom
| | - Mark Herbster
- Department of Computer ScienceUCLLondonUnited Kingdom
| |
Collapse
|
13
|
Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2017; 6:78-93. [PMID: 28229111 PMCID: PMC5314424 DOI: 10.1016/j.ynstr.2016.08.002] [Citation(s) in RCA: 605] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
Now 30 years old, the chronic mild stress (CMS) model of depression has been used in >1300 published studies, with a year-on-year increase rising to >200 papers in 2015. Data from a survey of users show that while a variety of names are in use (chronic mild/unpredictable/varied stress), these describe essentially the same procedure. This paper provides an update on the validity and reliability of the CMS model, and reviews recent data on the neurobiological basis of CMS effects and the mechanisms of antidepressant action: the volume of this research may be unique in providing a comprehensive account of antidepressant action within a single model. Also discussed is the use of CMS in drug discovery, with particular reference to hippocampal and extra-hippocampal targets. The high translational potential of the CMS model means that the neurobiological mechanisms described may be of particular relevance to human depression and mechanisms of clinical antidepressant action.
Collapse
|
14
|
Wang CH, Zhang XL, Li Y, Wang GD, Wang XK, Dong J, Ning QF. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress. Cell Mol Neurobiol 2015; 35:473-82. [PMID: 25410305 DOI: 10.1007/s10571-014-0141-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023]
Abstract
Stressful life events especially the chronic unpredictable stress are the obvious precipitating factors of depression. The biological information transduction in cells plays an important role in the molecular biology mechanism of depression. Mitogen-activated protein kinase phosphatase-1 (MKP-1) regulates the cell physiological activity and involves in the adjustment of neural plasticity, function, and survival. This experiment tried to explore the possible effects of MKP-1 in hippocampus on depression of rats by determining the expression of MKP-1 mRNA and DNA methylation in MKP-1 gene promoter. The animal model was established by chronic unpredictable stress, and evaluated by open-field test and weight changes. All the rats were divided into the sham stimulation, the physiological saline, and the fluoxetine (1.25, 2.50, and 5.00 mg/kg) groups randomly. The expression of MKP-1 mRNA in the hippocampus was measured by RT-PCR and the methylation of MKP-1 promoter DNA was detected by COBRA. The chronic unpredicted stress (1) increased the animal movement scores in open-field test, and fluoxetine could prevent this increasement; (2) increased the body weight, and fluoxetine could not prevent this increasement; and (3) increased MKP-1 mRNA expression in the hippocampus, and fluoxetine could prevent it. However, fluoxetine did not influence the DNA methylation of MKP-1 gene promoter in the hippocampus during the chronic unpredicted stress. MKP-1 in the hippocampus might be involved in the etiology of depression, and DNA methylation of MKP-1 gene promoter in the hippocampus did not related with the depression.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Remus JL, Stewart LT, Camp RM, Novak CM, Johnson JD. Interaction of metabolic stress with chronic mild stress in altering brain cytokines and sucrose preference. Behav Neurosci 2015; 129:321-30. [PMID: 25914924 DOI: 10.1037/bne0000056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing evidence that metabolic stressors increase an organism's risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight 2-bottle sucrose test (food ad libitum) on Day 5 and 10, then food and water deprive animals overnight and tested their sucrose consumption and preference in a 1-hr sucrose test the following morning. Approximately 65% of stressed animals consumed sucrose and showed a sucrose preference similar to nonstressed controls in an overnight sucrose test, and 35% showed a decrease in sucrose intake and preference. Following overnight food and water deprivation the previously "resilient" animals showed a significant decrease in sucrose preference and greatly reduced sucrose intake. In addition, we evaluated whether the onset of anhedonia following food and water deprivation corresponds to alterations in corticosterone, epinephrine, circulating glucose, or interleukin-1 beta (IL-1β) expression in limbic brain areas. Although all stressed animals showed adrenal hypertrophy and elevated circulating epinephrine, only stressed animals that were food deprived were hypoglycemic compared with food-deprived controls. Additionally, food and water deprivation significantly increased hippocampus IL-1β while food and water deprivation only increased hypothalamus IL-1β in stress-susceptible animals. These data demonstrate that metabolic stress of food and water deprivation interacts with chronic stressor exposure to induce physiological and anhedonic responses.
Collapse
|
16
|
Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. ACTA ACUST UNITED AC 2014; 34:838-844. [PMID: 25480579 DOI: 10.1007/s11596-014-1362-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/12/2014] [Indexed: 12/12/2022]
Abstract
In recent years, more attention has been paid to the role of the glutamate transporter 1 (GLT-1, EAAT2) in major depressive disorder (MDD). However, experimental data on brain GLT-1 levels are, to some extent, inconsistent in human postmortem and animal studies. These discrepancies imply that the role of GLT-1 in the pathophysiology of MDD and the action of antidepressants remain obscure. This work was designed to study the impact of chronic unpredictable stress (CUS) for 2 sessions per day for 35 days and four weeks of fluoxetine (FLX) on depressive-like behaviors in rats, as well as the concomitant expression of the GLT-1 protein in the hippocampus. Behavioral changes were assessed by the sucrose preference and open field tests. GLT-1 levels were detected by immunohistchemistry and Western blot analysis. Our study demonstrated that the animals exposed to CUS showed depressive-like behaviors and exhibited a significant decrease in GLT-1 expression in the hippocampus. Chronic FLX treatment reversed the behavioral deficits and the CUS-induced decrease in GLT-1 levels. Taken together, our results support the reduction of GLT-1 in human postmortem studies in MDD and suggest that GLT-1 may be involved in the antidepressant activity of FLX. Our studies further support the notion that GLT-1 is an attractive candidate molecule associated with the fundamental processes of MDD and may be a potential, and novel pharmacological target for the treatment of MDD.
Collapse
|