1
|
Kimura S, Iwata M, Takase H, Lo EH, Arai K. Oxidative stress and chronic cerebral hypoperfusion: An overview from preclinical rodent models. J Cereb Blood Flow Metab 2025; 45:381-395. [PMID: 39663901 PMCID: PMC11635795 DOI: 10.1177/0271678x241305899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an important clinical condition characterized by a prolonged reduction in cerebral blood flow that contributes to several neurodegenerative diseases, including vascular dementia and Alzheimer's disease. A number of rodent models of CCH have been developed that mimic the human pathological conditions of reduced cerebral perfusion. These models have been instrumental in elucidating the molecular and cellular mechanisms involved in CCH-induced brain damage. Oxidative stress is induced by perturbations in cellular pathways caused by CCH, including mitochondrial dysfunction, ion pump dysfunction, and adenosine triphosphate (ATP) depletion. The deleterious stress leads to the accumulation of reactive oxygen species (ROS) and exacerbates damage to neuronal structures, significantly impairing cognitive function. Among the various therapeutic strategies being evaluated, edaravone, a potent antioxidant, is emerging as a promising drug due to its neuroprotective properties against oxidative stress. Initially approved for use in ischemic stroke, research using rodent CCH models has shown that edaravone has significant efficacy in scavenging free radicals and ameliorating oxidative stress-induced neuronal damage under CCH conditions. This mini-review summarizes the current literature on the rodent models of CCH and then discusses the therapeutic potential of edaravone to reduce neuronal and vascular damage caused by CCH-induced oxidative stress.
Collapse
Affiliation(s)
- Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Maho Iwata
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Developmental Neuroscience, Tohoku University School of Medicine, Sendai, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Amirshahrokhi K, Imani M. Edaravone reduces brain injury in hepatic encephalopathy by upregulation of Nrf2/HO-1 and inhibition of NF-κB, iNOS/NO and inflammatory cytokines. Mol Biol Rep 2025; 52:222. [PMID: 39937373 DOI: 10.1007/s11033-025-10343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Brain damage is the most important complication in patients with hepatic encephalopathy (HE). Oxidative stress and inflammation are essential factors in the progression of brain injury caused by HE. The aim of this study was to investigate the potential therapeutic effect of edaravone and its underlying mechanisms against brain injury associated with HE in mice. METHODS AND RESULTS HE was induced by the injection of thioacetamide (200 mg/kg) for 2 days and then mice treated with edaravone (10 or 20 mg/kg/day, ip) for four consecutive days. The brain tissues were dissected for histopathological, biochemical, ELISA, RT-qPCR and immunofluorescence analysis. The results showed that edaravone improved the locomotor function and ameliorated brain histopathological changes in mice with HE. Edaravone inhibited oxidative stress markers by increasing the levels of glutathione, catalase, superoxide dismutase, glutathione reductase and the upregulation of nuclear erythroid 2-related factor (Nrf2)/HO-1 pathway in the brain tissue. Administration of edaravone significantly decreased the expression of p-NF-κB and iNOS. Edaravone treatment reduced the levels of NO, MPO and MMP-9 in the brain of mice. Additionally, the brain levels and expressions of inflammatory cytokines IL-1β, IL-6, TNF-α and IFN-γ were downregulated in mice treated with edaravone. CONCLUSIONS These results suggest that edaravone exerts significant neuroprotection by modulating of inflammatory and oxidative responses in HE and may serve as a promising agent for the treatment of brain injury associated with HE.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, P. O. Box 5618953141, Ardabil, Iran.
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahsa Imani
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Yawoot N, Tocharus J, Tocharus C. Toll-Like Receptor 4-Mediated Neuroinflammation: Updates on Pathological Roles and Therapeutic Strategies in Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04718-7. [PMID: 39875782 DOI: 10.1007/s12035-025-04718-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Neuroinflammation has been acknowledged as being one of the main pathologies that occur following chronic cerebral hypoperfusion (CCH). Since it significantly contributes to neuronal cell damage and thereby leads to cognitive impairment, the signals related to inflammation in hypoperfusion injury have been extensively investigated over the past few years. Toll-like receptor 4 (TLR4) is the key receptor responsible for immune and inflammatory reactions. It has been reported that TLR4 is involved in the pathology of several diseases and has emerged as a therapeutic target for developing a variety of anti-inflammatory compounds. This study explored the pathological roles of TLR4 that potentially cause the promotion of neuroinflammation in CCH damage. The evidence pertinent to the activation of TLR4 and its downstream inflammatory cascades following CCH are also summarized. This study also demonstrated the therapeutic potential of TLR4 inhibition, whether through drugs, substances, or other treatment strategies, in models of CCH-induced neurological dysfunction. The limitations of the accumulated evidence are addressed and discussed in this study. A deeper understanding of the roles of TLR4 in neuroinflammation following CCH damage may help inform the machinery behind pathological processes for advancing further neuroscientific research and developing therapeutic strategies for vascular dementia.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand.
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
4
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Manukjan N, Majcher D, Leenders P, Caiment F, van Herwijnen M, Smeets HJ, Suidgeest E, van der Weerd L, Vanmierlo T, Jansen JFA, Backes WH, van Oostenbrugge RJ, Staals J, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Hypoxic oligodendrocyte precursor cell-derived VEGFA is associated with blood-brain barrier impairment. Acta Neuropathol Commun 2023; 11:128. [PMID: 37550790 PMCID: PMC10405482 DOI: 10.1186/s40478-023-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
Cerebral small vessel disease is characterised by decreased cerebral blood flow and blood-brain barrier impairments which play a key role in the development of white matter lesions. We hypothesised that cerebral hypoperfusion causes local hypoxia, affecting oligodendrocyte precursor cell-endothelial cell signalling leading to blood-brain barrier dysfunction as an early mechanism for the development of white matter lesions. Bilateral carotid artery stenosis was used as a mouse model for cerebral hypoperfusion. Pimonidazole, a hypoxic cell marker, was injected prior to humane sacrifice at day 7. Myelin content, vascular density, blood-brain barrier leakages, and hypoxic cell density were quantified. Primary mouse oligodendrocyte precursor cells were exposed to hypoxia and RNA sequencing was performed. Vegfa gene expression and protein secretion was examined in an oligodendrocyte precursor cell line exposed to hypoxia. Additionally, human blood plasma VEGFA levels were measured and correlated to blood-brain barrier permeability in normal-appearing white matter and white matter lesions of cerebral small vessel disease patients and controls. Cerebral blood flow was reduced in the stenosis mice, with an increase in hypoxic cell number and blood-brain barrier leakages in the cortical areas but no changes in myelin content or vascular density. Vegfa upregulation was identified in hypoxic oligodendrocyte precursor cells, which was mediated via Hif1α and Epas1. In humans, VEGFA plasma levels were increased in patients versus controls. VEGFA plasma levels were associated with increased blood-brain barrier permeability in normal appearing white matter of patients. Cerebral hypoperfusion mediates hypoxia induced VEGFA expression in oligodendrocyte precursor cells through Hif1α/Epas1 signalling. VEGFA could in turn increase BBB permeability. In humans, increased VEGFA plasma levels in cerebral small vessel disease patients were associated with increased blood-brain barrier permeability in the normal appearing white matter. Our results support a role of VEGFA expression in cerebral hypoperfusion as seen in cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Daria Majcher
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Peter Leenders
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hubert J. Smeets
- Department of Toxicogenomics, GROW–School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Ernst Suidgeest
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
| | - Louise van der Weerd
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9500, 2300 RA Leiden, The Netherlands
| | - Tim Vanmierlo
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neuroscience, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
- Department of Psychiatry and Neuropsychology, European Graduate School of Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jacobus F. A. Jansen
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Walter H. Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Robert J. van Oostenbrugge
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Julie Staals
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - W. Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- CARIM - School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- MHeNs—School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
7
|
Hu X, Geng P, Zhao X, Wang Q, Liu C, Guo C, Dong W, Jin X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol Dis 2023; 180:106076. [PMID: 36921779 DOI: 10.1016/j.nbd.2023.106076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
The neurovascular unit (NVU) plays a critical role in health and disease. In the current review, we discuss the critical role of a class of neural/glial antigen 2 (NG2)-expressing glial cells (NG2-glia) in regulating NVU after acute ischemic stroke (AIS). We first introduce the role of NG2-glia in the formation of NVU during development as well as aging-induced damage to NVU and accompanying NG2-glia change. We then discuss the reciprocal interactions between NG2-glia and the other component cells of NVU, emphasizing the factors that could influence NG2-glia. Damage to the NVU integrity is the pathological basis of edema and hemorrhagic transformation, the most dreaded complication after AIS. The role of NG2-glia in AIS-induced NVU damage and the effect of NG2-glia transplantation on AIS-induced NVU damage are summarized. We next discuss the role of NG2-glia and the effect of NG2-glia transplantation in oligodendrogenesis and white matter repair as well as angiogenesis which is associated with the outcome of the patients after AIS. Finally, we review the current strategies to promote NG2-glia proliferation and differentiation and propose to use the dental pulp stem cells (DPSC)-derived exosome as a promising strategy to reduce AIS-induced injury and promote repair through maintaining the integrity of NVU by regulating endogenous NG2-glia proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Xiaoyun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Changqing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Wen Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China; Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
8
|
Luo W, Xu H, Xu L, Jiang W, Chen C, Chang Y, Liu C, Tian Z, Qiu X, Xie C, Li X, Chen H, Lai S, Wu L, Cui Y, Tang C, Qiu W. Remyelination in neuromyelitis optica spectrum disorder is promoted by edaravone through mTORC1 signaling activation. Glia 2023; 71:284-304. [PMID: 36089914 DOI: 10.1002/glia.24271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs. We identified drug edaravone, which is approved by the Food and Drug Administration (FDA), as a promoter of OPC differentiation into mature OLs. Edaravone enhanced remyelination in organotypic slice cultures and in mice, even when edaravone was administered following NMO-IgG-induced demyelination, and ameliorated motor impairment in a systemic mouse model of NMOSD. The results of mechanistic studies in NMO-IgG-treated mice and the biopsy samples of the brain tissues of NMOSD patients indicated that the mTORC1 signaling pathway was significantly inhibited, and edaravone promoted OPC maturation and remyelination by activating mTORC1 signaling. Furthermore, pharmacological activation of mTORC1 signaling significantly enhanced myelin regeneration in NMOSD. Thus, edaravone is a potential therapeutic agent that promotes lesion repair in NMOSD patients by enhancing OPC maturation.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Longjun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Lievykh A, Zhyliuk V, Tkachenko V, Kharchenko Y, Ushakova G, Shevtsova A. Effects of edaravone on oxidative protein modification and activity of gelatinases after intracerebral hemorrhage in rats with nicotinamide-streptozotocin induced diabetes. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stroke, especially hemorrhagic form, is one of the most serious comorbidity disease of diabetes mellitus, often associated with high mortality, particularly in type 2 DM (T2DM). Therefore, it is relevant the search for drugs with a metabolically justified protective effect. Edaravone (Eda) is widely used for treating ischemic stroke but its biochemical effects in intracerebral hemorrhage (ICH) associated with T2DM is not still confirmed. The aim of the study was to assess the impact of Eda on the markers of oxidative modification of proteins (OMP), such as advanced oxidation protein products (AOPP), neutral and basic carbonyls (PC370 and PC430), advanced glycation end products (AGE) and ischemia modified albumin (IMA) as well as on the activity of matrix metalloproteinases MMP2/MMP9 (gelatinases) in rats with experimental T2DM after collagenase-induced ICH. Metformin was used as a comparative drug. The data obtained indicate that ICH in diabetic rats is accompanied by an increase in AOPP, PC370, AGE, and mature forms of both gelatinases. On the contrary, IMA and proMMP9 were below normal level after ICH. Both studied drugs decreased the OMP markers to the levels of intact rats or lower, and Eda show a more potent effect. Besides, Eda significantly decreased the activity of MMP9 and changed progelatinases activity. We conclude that Eda has a perspective to be useful in the treatment of comorbid brain hemorrhage in T2DM due to inhibiting of oxidative stress and modulation of gelatinases activity.
Collapse
|
10
|
Edaravone Dexborneol Alleviates Cerebral Ischemic Injury via MKP-1-Mediated Inhibition of MAPKs and Activation of Nrf2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4013707. [PMID: 36110124 PMCID: PMC9470337 DOI: 10.1155/2022/4013707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
The edaravone and dexborneol concentrated solution for injection (edaravone-dexborneol) is a medication used clinically to treat neurological impairment induced by ischemic stroke. This study was aimed at investigating the preventive effects and the underlying mechanisms of edaravone-dexborneol on cerebral ischemic injury. A rat four-vessel occlusion (4-VO) model was established, and the neuronal injury and consequent neurological impairment of rats was investigated. Brain tissue malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels were determined. The levels of proteins in mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-κB (NF-κB) signaling pathways were determined by western immunoblotting. The function of mitogen-activated protein kinase phosphatase 1 (MKP-1) was investigated using both western blot and immunofluorescence methods, and the effect of the MKP-1 inhibitor, (2E)-2-benzylidene-3-(cyclohexylamino)-3H-inden-1-one (BCI), was investigated. The results indicated that edaravone-dexborneol alleviated neurological deficiency symptoms and decreased apoptosis and neuron damage in the hippocampal CA1 area of the ischemic rats. Edaravone-dexborneol increased the MKP-1 level; decreased the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK); inhibited NF-κB p65 activation; and boosted Nrf2 activation, all of which were partially reversed by the MKP-1 inhibitor, BCI. The above results indicated that the upregulation of MKP-1 contributed to the protective effects of edaravone-dexborneol against ischemic brain injury. Our findings support the hypothesis that edaravone-dexborneol can alleviate cerebral ischemic injury via the upregulation of MKP-1, which inhibits MAPKs and activates Nrf2.
Collapse
|
11
|
Mirian A, Moszczynski A, Soleimani S, Aubert I, Zinman L, Abrahao A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2022; 16:851563. [PMID: 35431812 PMCID: PMC9009245 DOI: 10.3389/fncel.2022.851563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Recent studies have implicated changes in the blood-central nervous system barriers (BCNSB) in amyotrophic lateral sclerosis (ALS). The objective of this scoping review is to synthesize the current evidence for BCNSB structure and functional abnormalities in ALS studies and propose how BCNSB pathology may impact therapeutic development. Methods A literature search was conducted using Ovid Medline, EMBASE, and Web of Science, from inception to November 2021 and limited to entries in English language. Simplified search strategy included the terms ALS/motor neuron disease and [BCNSB or blood-brain barrier (BBB) or blood-spinal cord barrier (BSCB)]. Henceforth, BCNSB is used as a term that is inclusive of the BBB and BSCB. Four independent reviewers conducted a title and abstract screening, hand-searched the reference lists of review papers, and performed a full text review of eligible studies. Included studies were original peer-reviewed full text publications, evaluating the structure and function of the BCNSB in preclinical models of ALS, clinical ALS, or postmortem human ALS tissue. There was no restriction on study design. The four reviewers independently extracted the data. Results The search retrieved 2,221 non-duplicated articles and 48 original studies were included in the synthesis. There was evidence that the integrity of the BCNSB is disrupted throughout the course of the disease in rodent models, beginning prior to symptom onset and detectable neurodegeneration. Increased permeability, pharmacoresistance with upregulated efflux transporters, and morphological changes in the supporting cells of the BCNSB, including pericytes, astrocytes, and endothelial cells were observed in animal models. BCNSB abnormalities were also demonstrated in postmortem studies of ALS patients. Therapeutic interventions targeting BCNSB dysfunction were associated with improved motor neuron survival in animal models of ALS. Conclusion BCNSB structural and functional abnormalities are likely implicated in ALS pathophysiology and may occur upstream to neurodegeneration. Promising therapeutic strategies targeting BCNSB dysfunction have been tested in animals and can be translated into ALS clinical trials.
Collapse
Affiliation(s)
- Ario Mirian
- Clinical Neurological Sciences, Western University, London Health Sciences, London, ON, Canada
| | | | - Serena Soleimani
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Science Centre, Toronto, ON, Canada
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
12
|
Gliovascular Mechanisms and White Matter Injury in Vascular Cognitive Impairment and Dementia. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Bakhtiari M, Ghasemi N, Salehi H, Amirpour N, Kazemi M, Mardani M. Evaluation of Edaravone effects on the differentiation of human adipose derived stem cells into oligodendrocyte cells in multiple sclerosis disease in rats. Life Sci 2021; 282:119812. [PMID: 34265362 DOI: 10.1016/j.lfs.2021.119812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/28/2023]
Abstract
AIMS Among all the treatments for Multiple Sclerosis, stem cell transplantation, such as ADSCs, has attracted a great deal of scientific attention. On the other hand, Edaravone, as an antioxidant component, in combination with stem cells, could increase the survival and differentiation potential of stem cells. MAIN METHODS 42 rats were divided into: Control, Cuprizone (CPZ), Sham, Edaravone (Ed), hADSCs, and Ed/hADSCs groups. Following induction of cuprizone, induced MS model, behavioral tests were designed to evaluate motor function during. Luxal fast blue staining was done to measure the level of demyelination and remyelination. Immunofluorescent staining was used to evaluate the amount of MBP, OLIG2, and MOG proteins. The mRNA levels of human MBP, MOG, and OLIG2 and rat Mbp, Mog, and Olig2 were determined via RT-PCR. KEY FINDINGS Flow cytometry analysis exhibited that the extracted cells were positive for CD73 (93.8 ± 3%) and CD105 (91.6 ± 3%), yet negative for CD45 (2.06 ± 0.5%). Behavioral tests, unveiled a significant improvement in the Ed (P < 0.001), hADSCs (P < 0.001), and Ed/hADSCs (P < 0.001) groups compared to the others. In the Ed/hADSCs group, the myelin density was significantly higher than that in the Ed treated and hADSCs treated groups (P < 0.01). Edaravone and hADSCs increased the expression of Mbp, Mog, and Olig2 genes in the cuprizone rat models. Moreover, significant differences were seen between the Ed treated and hADSCs treated groups and the Ed/hADSCs group (P < 0.05 for Mbp and Olig2 and P < 0.01 for Mog). SIGNIFICANCE Edaravone in combination with hADSCs reduced demyelination and increased oligodendrogenesis in the cuprizone rat models.
Collapse
Affiliation(s)
- Mohammad Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
14
|
Youssef MI, Ma J, Chen Z, Hu WW. Potential therapeutic agents for ischemic white matter damage. Neurochem Int 2021; 149:105116. [PMID: 34229025 DOI: 10.1016/j.neuint.2021.105116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Ischemic white matter damage (WMD) is increasingly being considered as one of the major causes of neurological disorders in older adults and preterm infants. The functional consequences of WMD triggers a progressive cognitive decline and dementia particularly in patients with ischemic cerebrovascular diseases. Despite the major stride made in the pathogenesis mechanisms of ischemic WMD in the last century, effective medications are still not available. So, there is an urgent need to explore a promising approach to slow the progression or modify its pathological course. In this review, we discussed the animal models, the pathological mechanisms and the potential therapeutic agents for ischemic WMD. The development in the studies of anti-oxidants, free radical scavengers, anti-inflammatory or anti-apoptotic agents and neurotrophic factors in ischemic WMD were summarized. The agents which either alleviate oligodendrocyte damage or promote its proliferation or differentiation may have potential value for the treatment of ischemic WMD. Moreover, drugs with multifaceted protective activities or a wide therapeutic window may be optimal for clinical translation.
Collapse
Affiliation(s)
- Mahmoud I Youssef
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Zhong Chen
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China.
| | - Wei-Wei Hu
- Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
15
|
Takase H, Hamanaka G, Ohtomo R, Ishikawa H, Chung KK, Mandeville ET, Lok J, Fornage M, Herrup K, Tse KH, Lo EH, Arai K. Transcriptome Profiling of Mouse Corpus Callosum After Cerebral Hypoperfusion. Front Cell Dev Biol 2021; 9:685261. [PMID: 34222254 PMCID: PMC8248229 DOI: 10.3389/fcell.2021.685261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023] Open
Abstract
White matter damage caused by cerebral hypoperfusion is a major hallmark of subcortical ischemic vascular dementia (SIVD), which is the most common subtype of vascular cognitive impairment and dementia (VCID) syndrome. In an aging society, the number of SIVD patients is expected to increase; however, effective therapies have yet to be developed. To understand the pathological mechanisms, we analyzed the profiles of the cells of the corpus callosum after cerebral hypoperfusion in a preclinical SIVD model. We prepared cerebral hypoperfused mice by subjecting 2-month old male C57BL/6J mice to bilateral carotid artery stenosis (BCAS) operation. BCAS-hypoperfusion mice exhibited cognitive deficits at 4 weeks after cerebral hypoperfusion, assessed by novel object recognition test. RNA samples from the corpus callosum region of sham- or BCAS-operated mice were then processed using RNA sequencing. A gene set enrichment analysis using differentially expressed genes between sham and BCAS-operated mice showed activation of oligodendrogenesis pathways along with angiogenic responses. This database of transcriptomic profiles of BCAS-hypoperfusion mice will be useful for future studies to find a therapeutic target for SIVD.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Karl Herrup
- Department of Neurobiology and ADRC, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
16
|
Tras B, Eser Faki H, Ozdemir Kutahya Z, Bahcivan E, Dik B, Bozkurt B, Uney K. Treatment and protective effects of metalloproteinase inhibitors alone and in combination with N-Acetyl cysteine plus vitamin E in rats exposed to aflatoxin B 1. Toxicon 2021; 194:79-85. [PMID: 33617885 DOI: 10.1016/j.toxicon.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
This study was conducted to investigate the effects of matrix metalloproteinase (MMP) inhibitors dexamethasone and minocycline administrations -both single and in combination with N-acetylcysteine (NAC) and vitamin E-on the tissue distribution and lethal dose (LD)50 of aflatoxin (AF)B1 in rats. We performed this study on male Wistar rats (8-10 weeks) in two phases. In the first phase, rats were administered dexamethasone (5 and 20 mg/kg) and minocycline (45 and 90 mg/kg), both as single treatments and in combination with NAC (200 mg/kg) and vitamin E (600 mg/kg); these treatments followed AFB1 administration (2 mg/kg). In the second phase, the therapeutic effect value (TEV) was calculated to determine the treatment effect on the LD50 level of AFB1. The tissue affinity of AFB1 from high to low was liver, kidney, intestine, brain, heart, spleen, lung, testis, and vitreous humor, respectively. Dexamethasone at the 20 mg/kg dose significantly reduced AFB1 concentrations in the plasma and the other tissues, except for the vitreous humor. The effects of minocycline on the plasma and tissue concentrations of AFB1 varied by dose and tissue. The combinations of dexamethasone or minocycline with NAC and vitamin E increased the AFB1 concentrations in the plasma and all tissues, except for vitreous humor and liver. In male rats, the LD50 value of AFB1 was 11.86 mg/kg. The TEV of dexamethasone (20 mg/kg) was calculated to be 1.5. Dexamethasone can be administered in repeated doses at ≥20 mg/kg to increase survival in AFB1 poisoning.
Collapse
Affiliation(s)
- Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Zeynep Ozdemir Kutahya
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, 01930, Adana, Turkey
| | - Emre Bahcivan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kafkas, 36000, Kars, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey.
| | - Banu Bozkurt
- Department of Ophthalmology, Faculty of Medicine, University of Selcuk, 42031, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031, Konya, Turkey
| |
Collapse
|
17
|
Kale S, Sarode LP, Kharat A, Ambulkar S, Prakash A, Sakharkar AJ, Ugale RR. Protocatechuic Acid Prevents Early Hour Ischemic Reperfusion Brain Damage by Restoring Imbalance of Neuronal Cell Death and Survival Proteins. J Stroke Cerebrovasc Dis 2021; 30:105507. [PMID: 33285352 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the neuroprotective effect of protocatechuic acid (PCA) on cell death/survival protein imbalance in a rat model of middle cerebral artery occlusion and reperfusion. METHODS Focal ischemia was induced by middle cerebral artery occlusion in adult male Wistar rats and confirmed by measuring infarction of brain by 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Rats were treated with vehicle or PCA at 10, 30 or 50 mg/kg dose intraperitoneally and subjected to neurological deficits or beam walk assessment at 24 h of reperfusion. Effective dose of PCA (50 mg/kg) was administered at 1, 2 and 3 h time point of post-ictus ischemia. Cellular damage and nuclear condensation was observed by haematoxylin and eosin (H and E) staining and Hoechst 33342 staining respectively. Additionally, immunohistochemical expression of caspase 3 and cAMP-response element binding protein (CREB) and their mRNA's were observed. RESULTS PCA at 30 and 50 mg/kg significantly improved behavioural performance and reduced infarction. Maximum neuroprotective effect of PCA (50 mg/kg) was found at 1 h (early hours) post-ictus ischemia along with reduction in cellular damage and nuclear condensation. PCA increased CREB protein and it's mRNA, while suppressed caspase-3 protein and mRNA at 1 h of reperfusion injury. CONCLUSION PCA exhibit the potential to prevent early hour (1h) reperfusion injury restoring balance of survival and death protein may offer a cost effective adjuvant therapy in stroke.
Collapse
Affiliation(s)
- Swapnil Kale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Amol Kharat
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Saurabh Ambulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India.
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur, Maharashtra 440 033, India.
| |
Collapse
|
18
|
Matsuyama H, Shindo A, Shimada T, Yata K, Wakita H, Takahashi R, Tomimoto H. Chronic cerebral hypoperfusion activates AIM2 and NLRP3 inflammasome. Brain Res 2020; 1736:146779. [DOI: 10.1016/j.brainres.2020.146779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
19
|
Shindo A, Ishikawa H, Ii Y, Niwa A, Tomimoto H. Clinical Features and Experimental Models of Cerebral Small Vessel Disease. Front Aging Neurosci 2020; 12:109. [PMID: 32431603 PMCID: PMC7214616 DOI: 10.3389/fnagi.2020.00109] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (SVD) refers to a group of disease conditions affecting the cerebral small vessels, which include the small arteries, arterioles, capillaries, and postcapillary venules in the brain. SVD is the primary cause of vascular cognitive impairment and gait disturbances in aged people. There are several types of SVD, though arteriolosclerosis, which is mainly associated with hypertension, aging, and diabetes mellitus, and cerebral amyloid angiopathy (CAA) comprise most SVD cases. The pathology of arteriolosclerosis-induced SVD is characterized by fibrinoid necrosis and lipohyalinosis, while CAA-associated SVD is characterized by progressive deposition of amyloid beta (Aβ) protein in the cerebral vessels. Brain magnetic resonance imaging (MRI) has been used for examination of SVD lesions; typical lesions are characterized by white matter hyperintensity, lacunar infarcts, enlargement of perivascular spaces (EPVS), microbleeds, cortical superficial siderosis (cSS), and cortical microinfarcts. The microvascular changes that occur in the small vessels are difficult to identify clearly; however, these consequent image findings can represent the SVD. There are two main strategies for prevention and treatment of SVD, i.e., pharmacotherapy and lifestyle modification. In this review, we discuss clinical features of SVD, experimental models replicating SVD, and treatments to further understand the pathological and clinical features of SVD.
Collapse
Affiliation(s)
- Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Atsushi Niwa
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
20
|
Takase H, Lok J, Arai K. A radical scavenger edaravone and oligodendrocyte protection/regeneration. Neural Regen Res 2018; 13:1550-1551. [PMID: 30127114 PMCID: PMC6126124 DOI: 10.4103/1673-5374.237116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Molecular Mechanisms of Oligodendrocyte Regeneration in White Matter-Related Diseases. Int J Mol Sci 2018; 19:ijms19061743. [PMID: 29895784 PMCID: PMC6032201 DOI: 10.3390/ijms19061743] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Even in adult brains, restorative mechanisms are still retained to maintain the microenvironment. Under the pathological conditions of central nervous system (CNS) diseases, several immature cells in the brain would be activated as a compensative response. As the concept of the neurovascular unit emphasizes, cell-cell interactions play important roles in this restorative process. White matter damage and oligodendrocyte loss are representative characteristics for many neurodegenerative diseases. In response to oligodendrocyte damage, residual oligodendrocyte precursor cells (OPCs) initiate their proliferation and differentiation for the purpose of remyelination. Although mechanisms of oligodendrogenesis and remyelination in CNS diseases are still mostly unknown and understudied, accumulated evidence now suggests that support from neighboring cells is necessary for OPC proliferation and differentiation. In this review, we first overview basic mechanisms of interaction between oligodendrocyte lineage cells and neighboring cells, and then introduce how oligodendrogenesis occurs under the conditions of neurodegenerative diseases, focusing on vascular cognitive impairment syndrome, Alzheimer’s disease, and multiple sclerosis.
Collapse
|
22
|
Effects of Protocatechuic Acid (PCA) on Global Cerebral Ischemia-Induced Hippocampal Neuronal Death. Int J Mol Sci 2018; 19:ijms19051420. [PMID: 29747437 PMCID: PMC5983751 DOI: 10.3390/ijms19051420] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022] Open
Abstract
Global cerebral ischemia (GCI) is one of the main causes of hippocampal neuronal death. Ischemic damage can be rescued by early blood reperfusion. However, under some circumstances reperfusion itself can trigger a cell death process that is initiated by the reintroduction of blood, followed by the production of superoxide, a blood⁻brain barrier (BBB) disruption and microglial activation. Protocatechuic acid (PCA) is a major metabolite of the antioxidant polyphenols, which have been discovered in green tea. PCA has been shown to have antioxidant effects on healthy cells and anti-proliferative effects on tumor cells. To test whether PCA can prevent ischemia-induced hippocampal neuronal death, rats were injected with PCA (30 mg/kg/day) per oral (p.o) for one week after global ischemia. To evaluate degenerating neurons, oxidative stress, microglial activation and BBB disruption, we performed Fluoro-Jade B (FJB), 4-hydroxynonenal (4HNE), CD11b, GFAP and IgG staining. In the present study, we found that PCA significantly decreased degenerating neuronal cell death, oxidative stress, microglial activation, astrocyte activation and BBB disruption compared with the vehicle-treated group after ischemia. In addition, an ischemia-induced reduction in glutathione (GSH) concentration in hippocampal neurons was recovered by PCA administration. Therefore, the administration of PCA may be further investigated as a promising tool for decreasing hippocampal neuronal death after global cerebral ischemia.
Collapse
|
23
|
Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS One 2018; 13:e0195765. [PMID: 29649307 PMCID: PMC5897017 DOI: 10.1371/journal.pone.0195765] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/28/2018] [Indexed: 12/21/2022] Open
Abstract
Bilateral carotid artery stenosis (BCAS) is one experimental model of vascular dementia thought to preferentially impact brain white matter. Indeed, few studies report hippocampal and cortical pathology prior to 30 days post-stenosis; though it is unclear whether those studies examined regions outside the white matter. Since changes in the blood-brain barrier (BBB) permeability precede more overt brain pathology in various diseases, we hypothesized that changes within the BBB and/or BBB-associated extracellular matrix (ECM) could occur earlier after BCAS in the hippocampus, cortex and striatum and be a precursor of longer term pathology. Here, C57Bl/6 mice underwent BCAS or sham surgeries and changes in the BBB and ECM were analyzed by collagen IV (vascular basement membrane component), α5 integrin (marker of endothelial activation), claudin-5 and occludin (tight junction proteins), Evans blue (permeability marker), Ki-67 (cell proliferation marker), and GFAP and CD11b (glial cell markers) immunohistochemistry after 14 days. Significant changes in markers of cerebrovascular integrity and glial activation were detected, not only in the striatum, but also in the hippocampus and cortex. In conclusion, this study demonstrates for the first time that changes in the BBB/ECM occur shortly after BCAS and within multiple brain regions and suggests such changes might underlie the gradual development of BCAS non-white matter pathology.
Collapse
|
24
|
Takase H, Liang AC, Miyamoto N, Hamanaka G, Ohtomo R, Maki T, Pham LDD, Lok J, Lo EH, Arai K. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci Lett 2018; 668:120-125. [PMID: 29337010 PMCID: PMC5829007 DOI: 10.1016/j.neulet.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) play critical roles in maintaining the number of oligodendrocytes in white matter. Previously, we have shown that oxidative stress dampens oligodendrocyte regeneration after white matter damage, while a clinically proven radical scavenger, edaravone, supports oligodendrocyte repopulation. However, it is not known how edaravone exerts this beneficial effect against oxidative stress. Using in vivo and in vitro experiments, we have examined whether edaravone exhibits direct OPC-protective effects. For in vivo experiments, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. OPC damage was observed on day 14 after the onset of cerebral hypoperfusion, and edaravone was demonstrated to decrease OPC death in cerebral white matter. In vitro experiments also confirmed that edaravone reduced oxidative-stress-induced OPC death. Because white matter damage is a major hallmark of many neurological diseases, and OPCs are instrumental in white matter repair after injury, our current study supports the idea that radical scavengers may provide a potential therapeutic approach for white matter related diseases.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
25
|
Hase Y, Horsburgh K, Ihara M, Kalaria RN. White matter degeneration in vascular and other ageing-related dementias. J Neurochem 2018; 144:617-633. [DOI: 10.1111/jnc.14271] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| | - Karen Horsburgh
- Centre for Neuroregeneration; University of Edinburgh; Edinburgh UK
| | - Masafumi Ihara
- Department of Neurology; National Cerebral and Cardiovascular Center; Suita Osaka Japan
| | - Raj N. Kalaria
- Neurovascular Research Group; Institute of Neuroscience; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
26
|
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS JOURNAL 2017; 19:957-972. [PMID: 28484963 DOI: 10.1208/s12248-017-0091-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA.
| |
Collapse
|
27
|
Shindo A, Liang AC, Maki T, Miyamoto N, Tomimoto H, Lo EH, Arai K. Subcortical ischemic vascular disease: Roles of oligodendrocyte function in experimental models of subcortical white-matter injury. J Cereb Blood Flow Metab 2016; 36:187-98. [PMID: 25920960 PMCID: PMC4758561 DOI: 10.1038/jcbfm.2015.80] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/25/2022]
Abstract
Oligodendrocytes are one of the major cell types in cerebral white matter. Under normal conditions, they form myelin sheaths that encircle axons to support fast nerve conduction. Under conditions of cerebral ischemia, oligodendrocytes tend to die, resulting in white-matter dysfunction. Repair of white matter involves the ability of oligodendrocyte precursors to proliferate and mature. However, replacement of lost oligodendrocytes may not be the only mechanism for white-matter recovery. Emerging data now suggest that coordinated signaling between neural, glial, and vascular cells in the entire neurovascular unit may be required. In this mini-review, we discuss how oligodendrocyte lineage cells participate in signaling and crosstalk with other cell types to underlie function and recovery in various experimental models of subcortical white-matter injury.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Mie, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
28
|
Egashira Y, Zhao H, Hua Y, Keep RF, Xi G. White Matter Injury After Subarachnoid Hemorrhage: Role of Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9. Stroke 2015; 46:2909-15. [PMID: 26374478 DOI: 10.1161/strokeaha.115.010351] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE We recently observed early white matter injury after experimental subarachnoid hemorrhage (SAH), but the underlying mechanisms are uncertain. This study investigated the potential role of matrix metalloproteinase (MMP)-9 in blood-brain barrier (BBB) disruption and consequent white matter injury. METHODS SAH was induced by endovascular perforation in adult male mice. The following 3 experiments were devised: (1) mice underwent magnetic resonance imaging at 24 h after SAH and were euthanized to determine BBB disruption and MMP-9 activation in white matter; (2) to investigate the role of MMP-9 in BBB disruption, lesion volumes on magnetic resonance imaging were compared between wild-type (WT) and MMP-9 knockout (MMP-9-/-) mice at 24 h after SAH; (3) WT and MMP-9-/- mice underwent magnetic resonance imaging at 1 and 8 days after SAH to detect time-dependent changes in brain injury. Brains were used to investigate myelin integrity in white matter. RESULTS In WT mice with SAH, white matter showed BBB disruption (albumin leakage) and T2 hyperintensity on magnetic resonance imaging. MMP-9 activity was elevated at 24 h after SAH. MMP-9-/- mice had less white matter T2 hyperintensity after SAH than WT mice. At 8 days after SAH, WT mice had decreased myelin integrity and MMP-9-/- mice developed less white matter injury. CONCLUSIONS SAH causes BBB disruption and consequent injury in white matter. MMP-9 plays an important role in those pathologies and could be a therapeutic target for SAH-induced white matter injury.
Collapse
Affiliation(s)
- Yusuke Egashira
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Hao Zhao
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor.
| |
Collapse
|