1
|
Mutoh T, Niimi Y, Ueda A. Activation of α7 Nicotinic Acetylcholine Receptor Augments Nerve Growth Factor Action on PCtrk Cells. Toxicology 2024; 509:153986. [PMID: 39505136 DOI: 10.1016/j.tox.2024.153986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Although cigarette smoking is known to be a critical risk factor for various organ systems and cancers, accumulating evidence indicates that nicotine - a main constituent of cigarette smoking - can exert neuroprotective effects on neuronal cells through nicotinic acetylcholine receptors (nAChRs). However, the precise molecular mechanisms for nicotinic neuroprotective actions remain to be fully elucidated. In this study, we examine the effects of agonists, such as nicotine and PNU282987, on tropomyosin-related kinase (Trk)-dependent neuroprotective pathways in PC12 cells overexpressing a Trk neurotrophin receptor (PCtrk cells). We found that even considerably higher concentrations (mM range for nicotine and µM range for PN282987) of nAChR agonists exert favorable effects, such as the augmentation of nerve growth factor (NGF)-induced Trk neurotrophin receptor autophosphorylation of tyrosine residues and NGF-induced neurite extension. Moreover, nicotine upregulated reactive oxygen species (ROS) levels in the cells. ROS production was completely cancelled by pretreatment with Mito-Tempo, a mitochondria-targeted antioxidant, indicating that the main source of ROS production by nicotine was mitochondria. Furthermore, treatment with nAChR agonists appeared to induce autophagic flux, as evidenced by the upregulation of LC3-II expression in cells. Furthermore, sucrose density ultracentrifugation of nicotine-treated cells clearly disclosed the augmented recruitment of α7nAChR protein into the lipid rafts fraction of the membrane. Intriguingly, a pull-down assay of anti-Trk antibody immunoprecipitates clearly included α7nAChR protein, indicating that Trk and α7nAChR proteins form a complex. These results reveal a new molecular interaction between activated α7nAChR and Trk protein that may serve as a new molecular basis of nicotine-induced neuroprotective action.
Collapse
Affiliation(s)
- T Mutoh
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Toyoake, Aichi 470-1192, Japan
| | - Y Niimi
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Toyoake, Aichi 470-1192, Japan.
| | - Akihiro Ueda
- Department of Neurology and Neuroscience, Fujita Health University Hospital, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
2
|
Mosalam EM, Elberri AI, Abdallah MS, Abdel-Bar HM, Zidan AAA, Batakoushy HA, Abo Mansour HE. Mechanistic Insights of Neuroprotective Efficacy of Verapamil-Loaded Carbon Quantum Dots against LPS-Induced Neurotoxicity in Rats. Int J Mol Sci 2024; 25:7790. [PMID: 39063042 PMCID: PMC11277230 DOI: 10.3390/ijms25147790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that badly impacts patients and their caregivers. AD is characterized by deposition of amyloid beta (Aβ) and phosphorylated tau protein (pTau) in the brain with underlying neuroinflammation. We aimed to develop a neuroprotective paradigm by loading verapamil (VRH) into hyaluronic acid-modified carbon quantum dots (CQDs) and comparing its effectiveness with the free form in an AD-like model in rats induced by lipopolysaccharide (LPS). The experimental rats were divided into seven groups: control, LPS, CQDs, early free VRH (FVRH), late FVRH, early verapamil carbon quantum dots (VCQDs), and late VCQDs. Characterizations of VCQDs, the behavioral performance of the rats, histopathological and immunohistochemical changes, some AD hallmarks, oxidative stress biomarkers, neuro-affecting genes, and DNA fragmentation were determined. VRH was successfully loaded into CQDs, which was confirmed by the measured parameters. VRH showed enhancement in cognitive functions, disruption to the architecture of the brain, decreased Aβ and pTau, increased antioxidant capacity, modifiable expression of genes, and a decline in DNA fragmentation. The loaded therapy was superior to the free drug. Moreover, the early intervention was better than the late, confirming the implication of the detected molecular targets in the development of AD. VRH showed multifaceted mechanisms in combating LPS-induced neurotoxicity through its anti-inflammatory and antioxidant properties, thereby mitigating the hallmarks of AD. Additionally, the synthesized nanosystem approach exhibited superior neuroprotection owing to the advantages offered by CQDs. However, finding new actionable biomarkers and molecular targets is of decisive importance to improve the outcomes for patients with AD.
Collapse
Affiliation(s)
- Esraa M. Mosalam
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Aya Ibrahim Elberri
- Genetic Engineering and Molecular Biology Division, Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Mahmoud S. Abdallah
- Clinical Pharmacy Department, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia, Egypt
- Department of Pharm D, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City (USC), Sadat City 32897, Monufia, Egypt;
| | - Abdel-Aziz A. Zidan
- Zoology Department, Faculty of Science, Damanhur University, Damanhur 22511, Beheira, Egypt;
| | - Hany A. Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| | - Hend E. Abo Mansour
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt;
| |
Collapse
|
3
|
Li Y, Fan F, Liu Q. Cytisine-N-methylene-(5,7,4 '-trihydroxy)- isoflavone ameliorates ischemic stroke-induced brain injury in mouse by regulating the oxidative stress and BDNF-Trkb/Akt pathway. Eur J Pharmacol 2024; 974:176512. [PMID: 38493912 DOI: 10.1016/j.ejphar.2024.176512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel compound Cytisine-N-methylene-(5,7,4'-trihydroxy)- isoflavone (LY01) found in the Sophora alopecuroides L is a neuroprotective agent. However, the effect and potential mechanism of LY01 treatment for ischemic stroke (IS) have not been fully elucidated. AIM OF THE STUDY The aim of this study is to demonstrate whether LY01 can rescue ischemic stroke-induced brain injury and oxygen-glucose deprivation/reperfusion (OGD/R). RESULTS Our results show that intragastric administration of LY01 improves ischemic stroke behaviors in mice, as demonstrated by neurological score, infarct volume, cerebral water content, rotarod test for activity. Compared with the model group, the ginkgo biloba extract (EGb) and LY01 reversed the neurological score, infarct volume, cerebral water content, rotarod test in model mice. Further analysis showed that the LY01 rescued oxidative stress in the model mice, which was reflected in the increased levels of catalase, superoxide dismutase, total antioxidant capacity and decreased levels of malondialdehyde in the serum of the model mice. Moreover, the expression of the brain-derived neurotrophic factor brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2, (p)-tropomysin related kinase B (p-Trkb) was restored and the expression of Bax, glial fibrillary acidic protein (GFAP) in the brains of the model mice was inhibited through LY01 treatment. In the polymerase chain reaction (PCR) data, after giving LY01, the expression in the brains of model mice was that, IL-10 increased and IL-1β, Bax, Bcl-2 decreased. Furthermore, the results indicated that LY01 improved cell viability, reactive oxygen species content, and mitochondrial membrane potential dissipation induced by OGD/R in primary culture of rat cortical neurons. Bax and caspase-3 activity was upregulated compared to the before after treatment with LY01. CONCLUSIONS Our study suggests that LY01 reversed ischemic stroke by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway and exerted a neuroprotective action against OGD/R injury via attenuation, a novel approach was suggested to treat ischemic stroke. Our observations justify the traditional use of LY01 for a treatment of IS in nervous system.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China.
| |
Collapse
|
4
|
Rezaei Moghadam M, Khoshrou A, Kakhki S, Hosseini SH, Shirinzadeh Feizabadi A, Beheshti F. Folic Acid Ameliorates Anxiety- and Depressive-Like Behavior Induced by Nicotine Withdrawal Through Restoration of Behavioral and Biochemical Alterations in Adolescent Male Rats. Nicotine Tob Res 2024; 26:733-741. [PMID: 37975546 DOI: 10.1093/ntr/ntad227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The present study aimed to assess the efficacy of folic acid (FA) on withdrawal following nicotine (Nic) administration in adolescent male rats. AIMS AND METHODS Adolescent male rats were divided into two groups: (1) vehicle and (2) Nic (Nic-2 mg/kg), and were under treatment from 21 to 42 days of age. After that, they continued the experiment without treatment and returned to a regular diet, except for one of those who received Nic. The rats were divided into four groups where they were treated with different doses of FA (5, 10, and 15 mg/kg) and bupropion (Bup) by oral gavage, and the final group included normal rats that received only FA (15 mg/kg) from 42 days of age for three weeks during which withdrawal occurred. RESULTS Results showed that adolescent Nic exposure exacerbated the behavioral indices of anxiety- and depression-like behaviors, while FA attenuated the effects of Nic withdrawal on anxiety and depression as well as Bup. In support, the biochemical results demonstrated a balance between oxidant and antioxidant mediators in addition to the increase and decrease of serotonin and monoamine oxidase (MAO) activity in cortical tissue. TNF-α as an inflammatory agent was decreased, whereas IL-10 as an anti-inflammatory parameter was increased. CONCLUSIONS The present findings suggest anxiety and depression caused by Nic withdrawal were attenuated by FA more likely through the reduction activity of MAO, the important enzyme responsible for serotonin metabolism along with balance between oxidant/antioxidant and pro-inflammatory/anti-inflammatory mediators. However, various mechanisms might be involved, which requires further investigation. IMPLICATIONS Nic withdrawal-induced depression and anxiety like behavior in rats followed by neuro-oxidative damage and neuro-inflammation. FA supplementation as well as Bup improved cognitive disorders induced by Nic withdrawal by increasing neuro-inflammation and neuro-oxidative damage.
Collapse
Affiliation(s)
- Mikael Rezaei Moghadam
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Alireza Khoshrou
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Hossein Hosseini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Atefeh Shirinzadeh Feizabadi
- Department of Medical Anesthesiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
5
|
Shafiee A, Beiky M, Mohammadi I, Rajai S, Jafarabady K, Moradi S, Beikmohamadi M, Teixeira AL. Effect of smoking on Brain-Derived Neurotrophic Factor (BDNF) blood levels: A systematic review and meta-analysis. J Affect Disord 2024; 349:525-533. [PMID: 38199418 DOI: 10.1016/j.jad.2024.01.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin that plays a crucial role in neuronal survival and plasticity. Previous studies have suggested that smoking may influence BDNF levels, but the findings have been inconsistent. METHODS A comprehensive search of electronic databases was conducted to identify relevant studies. Inclusion criteria were applied to select studies that investigated the relationship between smoking and blood levels of BDNF. A random-effects model was used to estimate the overall effect size. RESULTS A total of 23 studies were included. The meta-analysis revealed a significant association between smoking and increased blood levels of BDNF (standardized mean difference [SMD] = -0.38, 95 % confidence interval [CI] 0.15 to 0.62, p = 0.002). Subgroup analyses based on BDNF source showed a significant increase in plasma-derived BDNF levels (SMD = 1.02, 95 % CI 0.50 to 1.53, p = 0.0001), while no significant difference was observed in serum-derived BDNF levels (SMD = 0.02, 95 % CI -0.19 to 0.22, p = 0.87). The pooled analysis revealed a non-significant difference in blood levels of BDNF between former smokers and non-smokers (random-effects model, SMD = 0.21, 95 % CI -0.04 to 0.46, p = 0.1). CONCLUSION Smokers exhibited significantly higher plasma levels of BDNF compared to non-smokers. Further research is needed to elucidate the underlying mechanisms and explore the potential therapeutic implications of targeting BDNF in smoking.
Collapse
Affiliation(s)
- Arman Shafiee
- Department of Psychiatry and Mental Health, Alborz University of Medical Sciences, Karaj, Iran; Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Maryam Beiky
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahryar Rajai
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Moradi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahya Beikmohamadi
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
6
|
Abdelaziz M, Mohamed AF, Zaki HF, Gad SS. Agomelatine improves memory and learning impairments in a rat model of LPS-induced neurotoxicity by modulating the ERK/SorLA/BDNF/TrkB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1701-1714. [PMID: 37712973 PMCID: PMC10858839 DOI: 10.1007/s00210-023-02717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The mutual interplay between neuroinflammation, synaptic plasticity, and autophagy has piqued researchers' interest, particularly when it comes to linking their impact and relationship to cognitive deficits. Being able to reduce inflammation and apoptosis, melatonin has shown to have positive neuroprotective effects; that is why we thought to check the possible role of agomelatine (AGO) as a promising candidate that could have a positive impact on cognitive deficits. In the current study, AGO (40 mg/kg/day, p.o., 7 days) successfully ameliorated the cognitive and learning disabilities caused by lipopolysaccharide (LPS) in rats (250 μg/kg/day, i.p., 7 days). This positive impact was supported by improved histopathological findings and improved spatial memory as assessed using Morris water maze. AGO showed a strong ability to control BACE1 activity and to rein in the hippocampal amyloid beta (Aβ) deposition. Also, it improved neuronal survival, neuroplasticity, and neurogenesis by boosting BDNF levels and promoting its advantageous effects and by reinforcing the pTrkB expression. In addition, it upregulated the pre- and postsynaptic neuroplasticity biomarkers resembled in synapsin I, synaptophysin, and PSD-95. Furthermore, AGO showed a modulatory action on Sortilin-related receptor with A-type repeats (SorLA) pathway and adjusted autophagy. It is noteworthy that all of these actions were abolished by administering PD98059 a MEK/ERK pathway inhibitor (0.3 mg/kg/day, i.p., 7 days). In conclusion, AGO administration significantly improves memory and learning disabilities associated with LPS administration by modulating the ERK/SorLA/BDNF/TrkB signaling pathway parallel to its capacity to adjust the autophagic process.
Collapse
Affiliation(s)
- Mahmoud Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt.
- Faculty of Pharmacy, King Salman International University (KSIU), 46612, Ras Sedr, South Sinai, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St, Cairo, 11562, Egypt
| | - Sameh S Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt
| |
Collapse
|
7
|
Lu Y, Li M, Zhuang Y, Lin Z, Nie B, Lei J, Zhao Y, Zhao H. Combination of fMRI and PET reveals the beneficial effect of three-phase enriched environment on post-stroke memory deficits by enhancing plasticity of brain connectivity between hippocampus and peri-hippocampal cortex. CNS Neurosci Ther 2024; 30:e14466. [PMID: 37752881 PMCID: PMC10916434 DOI: 10.1111/cns.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
AIM The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Mingcong Li
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Yuming Zhuang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Ziyue Lin
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Jianfeng Lei
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Yuanyuan Zhao
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Hui Zhao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| |
Collapse
|
8
|
Wang X, Wang Q, Song M, Wang Y, Shen X, Sun Y, Guo C, Geng P, Ma C, Jin X. Chronic but not acute nicotine treatment ameliorates acute inflammation-induced working memory impairment by increasing CRTC1 and HCN2 in adult male mice. CNS Neurosci Ther 2024; 30:e14627. [PMID: 38353058 PMCID: PMC10865150 DOI: 10.1111/cns.14627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1β. RESULTS Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1β and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.
Collapse
Affiliation(s)
- Xiaona Wang
- School of Life ScienceNanchang UniversityNanchangChina
- Institute of Biomedical Innovation, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchCapital Medical UniversityBeijingChina
| | - Min Song
- Institute of NeuroscienceThe Second The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yihui Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchCapital Medical UniversityBeijingChina
| | - Xianzhi Shen
- Institute of NeuroscienceThe Second The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yanyun Sun
- Institute of NeuroscienceThe Second The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chun Guo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Panpan Geng
- Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchCapital Medical UniversityBeijingChina
| | - Chaolin Ma
- School of Life ScienceNanchang UniversityNanchangChina
- Institute of Biomedical Innovation, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xinchun Jin
- Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchCapital Medical UniversityBeijingChina
- Institute of NeuroscienceThe Second The Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
9
|
Boiangiu RS, Brinza I, Honceriu I, Mihasan M, Hritcu L. Insights into Pharmacological Activities of Nicotine and 6-Hydroxy-L-nicotine, a Bacterial Nicotine Derivative: A Systematic Review. Biomolecules 2023; 14:23. [PMID: 38254623 PMCID: PMC10813004 DOI: 10.3390/biom14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purported cognitive benefits associated with nicotine and its metabolites in the brain are a matter of debate. In this review, the impact of the pharmacologically active metabolite of a nicotine derivative produced by bacteria named 6-hydroxy-L-nicotine (6HLN) on memory, oxidative stress, and the activity of the cholinergic system in the brain was examined. A search in the PubMed, Science Direct, Web of Science, and Google Scholar databases, limiting entries to those published between 1992 and 2023, was conducted. The search focused specifically on articles about nicotine metabolites, memory, oxidative stress, and cholinergic system activity, as well as enzymes or pathways related to nicotine degradation in bacteria. The preliminary search resulted in 696 articles, and following the application of exclusion criteria, 212 articles were deemed eligible for inclusion. This review focuses on experimental studies supporting nicotine catabolism in bacteria, and the chemical and pharmacological activities of nicotine and its metabolite 6HLN.
Collapse
Affiliation(s)
| | | | | | - Marius Mihasan
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| | - Lucian Hritcu
- BioActive Research Group, Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (I.B.); (I.H.)
| |
Collapse
|
10
|
Sharma P, Kishore A, De I, Negi S, Kumar G, Bhardwaj S, Singh M. Mitigating neuroinflammation in Parkinson's disease: Exploring the role of proinflammatory cytokines and the potential of phytochemicals as natural therapeutics. Neurochem Int 2023; 170:105604. [PMID: 37683836 DOI: 10.1016/j.neuint.2023.105604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Parkinson's disease (PD) is one of the most prevalent neuroinflammatory illnesses, characterized by the progressive loss of neurons in the brain. Proinflammatory cytokines play a key role in initiating and perpetuating neuroinflammation, which can lead to the activation of glial cells and the deregulation of inflammatory pathways, ultimately leading to permanent brain damage. Currently, available drugs for PD mostly alleviate symptoms but do not target underlying inflammatory processes. There is a growing interest in exploring the potential of phytochemicals to mitigate neuroinflammation. Phytochemicals such as resveratrol, apigenin, catechin, anthocyanins, amentoflavone, quercetin, berberine, and genistein have been studied for their ability to scavenge free radicals and reduce proinflammatory cytokine levels in the brain. These plant-derived compounds offer a natural and potentially safe alternative to conventional drugs for managing neuroinflammation in PD and other neurodegenerative diseases. However, further research is necessary to elucidate their underlying mechanisms of action and clinical effectiveness. So, this review delves into the pathophysiology of PD and its intricate relationship with proinflammatory cytokines, and explores how their insidious contributions fuel the disease's initiation and progression via cytokine-dependent signaling pathways. Additionally, we tried to give an account of PD management using existing drugs along with their limitations. Furthermore, our aim is to provide a thorough overview of the diverse groups of phytochemicals, their plentiful sources, and the current understanding of their anti-neuroinflammatory properties. Through this exploration, we posit the innovative idea that consuming nutrient-rich phytochemicals could be an effective approach to preventing and treating PD.
Collapse
Affiliation(s)
- Prashant Sharma
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Abhinoy Kishore
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Indranil De
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Swarnima Negi
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Gulshan Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Sahil Bhardwaj
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India
| | - Manish Singh
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, India.
| |
Collapse
|
11
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol 2023; 30:3540-3550. [PMID: 35429204 DOI: 10.1111/ene.15359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Research on the relationship between the gut microbiome and epilepsy is accumulating. The present study was conducted to evaluate the effect of probiotic supplementation on pentylenetetrazole (PTZ)-induced seizures in rats. METHODS Twenty-one adult male Wistar albino rats were included. The animals were divided into three groups of seven rats. Group 1 was a control group, whereas Group 2 rats received PTZ treatment and Group 3 rats had PTZ+PB (probiotic) treatment. For 6 weeks, Groups 1 and 2 were given saline (1 ml), whereas Group 3 had probiotic supplement. In the 5th week, tripolar electrodes were attached to the rats. Electrophysiological, behavioral, biochemical, and immunohistochemical evaluations were performed in the 6 weeks after the treatment. RESULTS PB treatment significantly reduced seizures. In the PTZ group, expression levels of brain-derived neurotrophic factor, nerve growth factor (NGF), and Sox2 (SRY sex-determining region Y-box 2) in rat brains decreased significantly compared to the control group, whereas the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), and nitric oxide (NO) levels increased. In the PTZ+PB group, NGF expression increased significantly compared to the PTZ group, whereas TNF-α, IL-6, TOS, and NO levels decreased. In histopathological examination, an abundance of necrotic neurons was notable in the PTZ group, which was less in the PTZ+PB group. In addition, body weight of the group supplemented with probiotics decreased after the treatment. CONCLUSIONS Our results suggest that probiotic supplementation may alleviate seizure severity and exert neuroprotective effects by reducing neuroinflammation and oxidative stress and altering the expression of neurotrophins in epileptogenic brains.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
12
|
Chronotherapeutic neuroprotective effect of verapamil against lipopolysaccharide-induced neuroinflammation in mice through modulation of calcium-dependent genes. Mol Med 2022; 28:139. [DOI: 10.1186/s10020-022-00564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Neuroinflammation is a major mechanism in neurodegenerative diseases such as Alzheimer’s disease (AD), which is a major healthcare problem. Notwithstanding of ample researches figured out possible molecular mechanisms underlying the pathophysiology of AD, there is no definitive therapeutics that aid in neuroprotection. Therefore, searching for new agents and potential targets is a critical demand. We aimed to investigate the neuroprotective effect of verapamil (VRP) against lipopolysaccharide (LPS)-induced neuroinflammation in mice and whether the time of VRP administration could affect its efficacy.
Methods
Forty male albino mice were used and were divided into normal control, LPS only, morning VRP, and evening VRP. Y-maze and pole climbing test were performed as behavioral tests. Hematoxylin and eosin together with Bielschowsky silver staining were done to visualize neuroinflammation and phosphorylated tau protein (pTAU); respectively. Additionally, the state of mitochondria, the levels of microglia-activation markers, inflammatory cytokines, intracellular Ca2+, pTAU, and Ca2+-dependent genes involving Ca2+/ calmodulin dependent kinase II (CAMKII) isoforms, protein kinase A (PKA), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF), with the level of VRP in the brain tissue were measured.
Results
LPS successfully induced neuroinflammation and hyperphosphorylation of tau protein, which was indicated by elevated levels of microglia markers, inflammatory cytokines, and intracellular Ca2+ with compromised mitochondria and downregulated CAMKII isoforms, PKA, CREB and BDNF. Pretreatment with VRP showed significant enhancement in the architecture of the brain and in the behavioral tests as indicated by the measured parameters. Moreover, morning VRP exhibited better neuroprotective profile compared to the evening therapy.
Conclusions
VRP highlighted a multilevel of neuroprotection through anti-inflammatory activity, Ca2+ blockage, and regulation of Ca2+-dependent genes. Furthermore, chronotherapy of VRP administration should be consider to achieve best therapeutic efficacy.
Graphical Abstract
Collapse
|
13
|
Effects of Different Lipopolysaccharide Doses on Short- and Long-Term Spatial Memory and Hippocampus Morphology in an Experimental Alzheimer’s Disease Model. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Various animal models are widely used to investigate its underlying mechanisms, including lipopolysaccharide (LPS)-induced neuroinflammation models. Aim: In this study, we aimed to investigate the effect of different doses (0.25, 0.5, and 0.75 mg/kg) of LPS on short- and long-term spatial memory and hippocampal morphology in an experimental AD mouse model. Materials and methods: Twenty-four adult male Swiss mice (SWR/J) weighing 18–25 g were divided into four groups: control, 0.25 mg/kg LPS, 0.50 mg/kg LPS, and 0.75 mg/kg LPS. All groups were treated with LPS or vehicle for 7 days. Behavioral tests were started (Morris water maze for 6 days and Y maze for 1 day) on the last 2 days of injections. After the behavioral procedures, tissues were collected for further histological investigations. Result: All LPS doses induced significant short- and long-term spatial memory impairment in both the Y maze and Morris water maze compared with the control group. Furthermore, histological examination of the hippocampus indicated degenerating neurons in both the 0.50 mg/kg and 0.75 mg/kg LPS groups, while the 0.25 mg/kg LPS group showed less degeneration. Conclusion: our results showed that 0.75 mg/kg LPS had a greater impact on early-stage spatial learning memory and short-term memory than other doses. Our behavioral and histological findings suggest 0.75 mg/kg LPS as a promising dose for LPS-induced AD models.
Collapse
|
14
|
Wang T, Weng H, Zhou H, Yang Z, Tian Z, Xi B, Li Y. Esketamine alleviates postoperative depression-like behavior through anti-inflammatory actions in mouse prefrontal cortex. J Affect Disord 2022; 307:97-107. [PMID: 35378150 DOI: 10.1016/j.jad.2022.03.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
The rising incidence of postoperative depression (POD) in recent years has placed a heavy burden on patients' physical and mental health. At this point in time, however, POD pathogenesis remains poorly understood and novel therapeutic strategies are being sought. The present study aimed to clarify esketamine's protective effects and possible mechanisms of action in POD. To this avail, we used an animal model of postoperative depression to analyze behavioral, parameters, plus the inflammatory response in serum and in the medial prefrontal cortex (mPFC). Using immunofluorescence staining, we detected the number of microglia and parvalbumin (PV) in mPFC, and determined changes in neuronal dendritic spine density via Golgi staining. Expression of Iba1, PSD95 and NF-κB was examined by Western blot analysis. Our results show that esketamine can significantly improve depression-like symptoms caused by anesthesia and surgery. In addition, esketamine administration reversed the decrease in the density of PV neurons and restored synaptogenesis in mPFC which had been perturbed by inflammation. The evidence obtained suggests esketamine's anti-inflammatory effects may be mediated by the BDNF/TrkB signaling pathway and possibly by attenuation of the nuclear factor κB (NF-κB) pathway. These data warrant further investigations into the interplay of esketamine, and microglia in the modulation of POD symptomatology.
Collapse
Affiliation(s)
- Tianyuan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Huandi Weng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongji Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Zecheng Yang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhongyou Tian
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Biao Xi
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233003, Anhui, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
15
|
Wei P, Lyu W, Xu L, Feng H, Zhou H, Li J. α7 Nicotinic Acetylcholine Receptor May Be a Pharmacological Target for Perioperative Neurocognitive Disorders. Front Pharmacol 2022; 13:907713. [PMID: 35721159 PMCID: PMC9204176 DOI: 10.3389/fphar.2022.907713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
Background: The α7 nicotinic acetylcholine receptor (α7nAChR) is a promising therapeutic target in neurodegenerative diseases. This study examined the effects of surgery and anesthesia on α7nAChR expression in the central nervous system and determined the mechanisms by which α7nAChR mediates neuroprotection in perioperative neurocognitive disorders (PNDs) in aged mice. Methods: Eighteen-month-old male C57BL/6J mice underwent aseptic laparotomy under isoflurane anesthesia, maintaining spontaneous ventilation to establish the PNDs model. Agonists and antagonists of the α7nAChR and tropomyosin receptor kinase B (TrkB) receptors were administered before anesthesia. The α7nAChR expression, peripheral as well as hippocampal interleukin-1β (IL-1β), and the brain-derived neurotrophic factor (BDNF) levels were assessed. Separate cohorts of aged mice were tested for cognitive decline using the Morris water maze (MWM). Results: Surgery and anesthesia significantly suppressed α7nAChR expression in the hippocampus and cortex. Surgery-induced IL-1β upregulation in the serum as well as hippocampus and hippocampal microglial activation were reversed by the α7nAChR agonist. A significant reduction in the hippocampal BDNF levels were also observed. The α7nAChR stimulation reversed, and α7nAChR suppression promoted BDNF reduction in the hippocampus. Blocking the BDNF/TrkB signaling pathway abolished α7nAChR-induced neuroprotection in PNDs, as evidenced by poor cognitive performance in the MWM test. Conclusions: These data reveal that α7nAChR plays a key role in PNDs. The mechanisms of the anti-inflammatory pathway and BDNF/TrkB signaling pathways are involved in α7nAChR-meidiated neuroprotection in PNDs.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Wang Q, Gou J, Guo S, Wei F, Han T, Lai R, Zhang D, Diao Y, Yin Y. Nicotine Activating α 4β 2 Nicotinic Acetylcholine Receptors to Suppress Neuroinflammation via JAK2-STAT3 Signaling Pathway in Ischemic Rats and Inflammatory Cells. Mol Neurobiol 2022; 59:3280-3293. [PMID: 35297011 DOI: 10.1007/s12035-022-02797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Nicotine plays a role in inhibiting inflammatory factors, which contributes to improving cognitive impairment by activating α4β2 nAChRs in ischemic rats, but the underlying mechanism has not been fully elucidated. Janus tyrosine kinase 2-signal transducer and activator of transcription 3 (JAK2-STAT3) signaling pathway is involved in cognitive improvement, and there seems to be a relationship between nAChRs and JAK2-STAT3 as well. The aim of this study is to explore the role of JAK2-STAT3 signaling pathway in nicotine-mediated anti-inflammatory effect. Nicotine, DHβE (the strongest competitive antagonist of α4β2 nAChRs), and AG490 (a specific JAK2-STAT3 blocker) were used to intervene and treat ischemic rats and HEK-293 T-hα4β2 cells. The Morris water maze (MWM) test and 2-[18F]-A-85380 PET imaging were performed to detect the cognitive function and α4β2 nAChRs density in ischemic rats. The results demonstrated that nicotine intervention increased the density of α4β2 nAChRs and improved cognitive impairment, but this effect was blocked by AG490, and the receptors were still upregulated. Essentially, when the JAK2-STAT3 signaling pathway was blocked, nicotine could only upregulate the expression of α4β2 nAChRs, but not improve the cognitive function. PCR and Western blot analysis further confirmed these results. The cell experiments also showed that nicotine could reduce inflammatory factors stimulated by LPS and upregulate the expression of pJAK2 and pSTAT3 in HEK-293 T-hα4β2 cells, while AG490 and DHβE reversed the effect of nicotine. To sum up, our work indicated that JAK2-STAT3 signaling pathway played an important role in nicotine-induced cognitive improvement by upregulating α4β2 nAChRs in ischemic rats.
Collapse
Affiliation(s)
- Qi Wang
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.,Department of Nuclear Medicine, The Fourth Hospital of China Medical University, Shenyang, 110032, China
| | - Jinyu Gou
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai City, 200092, China
| | - Shenrui Guo
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai City, 200092, China
| | - Feng Wei
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai City, 200092, China
| | - Tingting Han
- Department of Nuclear Medicine, Chifeng Municipal Hospital, Inner Mongolia Medical University Chifeng Clinical College Of Medicine, Chifeng City, 024000, China
| | - Ruihe Lai
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Nanjing, 210008, China
| | - Dalong Zhang
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yao Diao
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai City, 200092, China.
| |
Collapse
|
17
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Parrott JM, Porter GA, Redus L, O'Connor JC. Brain derived neurotrophic factor deficiency exacerbates inflammation-induced anhedonia in mice. Psychoneuroendocrinology 2021; 134:105404. [PMID: 34601342 PMCID: PMC8934305 DOI: 10.1016/j.psyneuen.2021.105404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in the pathology of major depression and influences the inflammatory response. Prolonged immune system activation can cause depression symptoms, and individuals with low BDNF expression may be vulnerable to inflammation-induced depression. We tested the hypothesis that BDNF deficient mice are vulnerable to the induction of depressive-like behavior following peripheral immune challenge. BDNF heterozygous (BDNF+/-) or wild-type (BDNF+/+) littermate mice were injected intraperitoneally (i.p.) with endotoxin (lipopolysaccharide, LPS) to trigger an acute pro-inflammatory response. After resolution of the acute sickness response, central expression of inflammatory genes, kynurenine metabolites, and depressive-like behaviors across multiple dimensions (symptoms) were measured. BDNF+/- mice displayed an exaggerated neuroinflammatory response following peripheral immune challenge. Pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were overexpressed in BDNF+/- mice relative to BDNF+/+ littermate control mice. While behavioral despair and anxiety-like behavior was not different between genotypes, LPS-induced anhedonia-like behavior was significantly more pronounced in BDNF+/- mice relative to BDNF+/+ mice. The kynurenine pathway mediates the many depressive-like behavioral effects of peripheral LPS, and similar to pro-inflammatory cytokine gene expression, indoleamine 2,3-dioxygenase (IDO) expression and kynurenine metabolism was exaggerated in BDNF+/- mice. Genetic BDNF deficiency results in a dysregulated neuroinflammatory and metabolic response to peripheral immune challenge and in a specific vulnerability to the development of inflammation-induced anhedonia.
Collapse
Affiliation(s)
- Jennifer M Parrott
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Grace A Porter
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Laney Redus
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States
| | - Jason C O'Connor
- Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229-4404, United States; Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Center for Biomedical Neuroscience and School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States; Mood Disorders Translational Research Core, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, United States.
| |
Collapse
|
19
|
Sung M, Sung SE, Kang KK, Choi JH, Lee S, Kim K, Lim JH, Lee GW, Rim HD, Kim BS, Won S, Kim K, Jang S, Seo MS, Woo J. Serum-Derived Neuronal Exosomal miRNAs as Biomarkers of Acute Severe Stress. Int J Mol Sci 2021; 22:9960. [PMID: 34576126 PMCID: PMC8470330 DOI: 10.3390/ijms22189960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Stress is the physical and psychological tension felt by an individual while adapting to difficult situations. Stress is known to alter the expression of stress hormones and cause neuroinflammation in the brain. In this study, miRNAs in serum-derived neuronal exosomes (nEVs) were analyzed to determine whether differentially expressed miRNAs could be used as biomarkers of acute stress. Specifically, acute severe stress was induced in Sprague-Dawley rats via electric foot-shock treatment. In this acute severe-stress model, time-dependent changes in the expression levels of stress hormones and neuroinflammation-related markers were analyzed. In addition, nEVs were isolated from the serum of control mice and stressed mice at various time points to determine when brain damage was most prominent; this was found to be 7 days after foot shock. Next-generation sequencing was performed to compare neuronal exosomal miRNA at day 7 with the neuronal exosomal miRNA of the control group. From this analysis, 13 upregulated and 11 downregulated miRNAs were detected. These results show that specific miRNAs are differentially expressed in nEVs from an acute severe-stress animal model. Thus, this study provides novel insights into potential stress-related biomarkers.
Collapse
Affiliation(s)
- Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
| | - KilSoo Kim
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
- Department of Veterinary Toxicology, College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea; (J.-H.L.); (G.W.L.)
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Hyo-Deog Rim
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Byung-Soo Kim
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Seunghee Won
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Kyungmin Kim
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Seoyoung Jang
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (M.S.); (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (K.K.)
| | - Jungmin Woo
- Department of Psychiatry, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (H.-D.R.); (B.-S.K.); (S.W.); (K.K.); (S.J.)
| |
Collapse
|
20
|
Gomaa AA, El-Abhar HS, Abdallah DM, Awad AS, Soubh AA. Prasugrel anti-ischemic effect in rats: Modulation of hippocampal SUMO2/3-IкBα/Ubc9 and SIRT-1/miR-22 trajectories. Toxicol Appl Pharmacol 2021; 426:115635. [PMID: 34174262 DOI: 10.1016/j.taap.2021.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022]
Abstract
The beneficial role of prasugrel, a P2Y12 receptor blocker, in several neurointerventional procedures has been reviewed clinically. Beyond its antiplatelet capacity, the potential neuroprotective mechanisms of prasugrel are poorly addressed experimentally. Relevant to the imbalance between neuro-inflammation and neuroprotective pathways in cerebral ischemia/reperfusion (I/R), our study evaluated the anti-ischemic potential of prasugrel treatment through tackling novel targets. Male Wistar rats were allocated into 2 sets; set 1 (I/R 60 min/3 days) to assess the neurological deficits/biochemical impact of prasugrel and set 2 (I/R 60 min/5 days) for evaluating short memory/morphological/immunoreactive changes. Each set comprised 4 groups designated as sham, sham + prasugrel, I/R, and I/R + prasugrel. Post-administration of prasugrel for 3 and 5 days reduced neurological deficit scores and improved the spontaneous activity/short term spatial memory using the Y-maze paradigm. On the molecular level, prasugrel turned off SUMO2/3-inhibitory kappa (Iκ)Bα, Ubc9 and nuclear factor kappa (NF-κ)B. Besides, it inhibited malondialdehyde (MDA) and inactivated astrocytes by downregulating the glial fibrillary acidic protein (GFAP) hippocampal immune-expression. Conversely, it activated its target molecule cAMP, protein kinase (PK)A, and cAMP response element-binding protein (CREB) to enhance the brain-derived nuclear factor (BDNF) hippocampal content. Additionally, cAMP/PKA axis increased the hippocampal content of deacetylator silent information regulator 1 (SIRT1) and the micro RNA (miR)-22 gene expression. The crosstalk between these paths partakes in preserving hippocampal cellularity. Accordingly, prasugrel, regardless inhibiting platelets activity, modulated other cellular components; viz., SUMO2/3-IκBα/Ubc9/NF-κB, cAMP/PKA related trajectories, CREB/BDNF and SIRT1/miR-22 signaling, besides inhibiting GFAP and MDA to signify its anti-ischemic potential.
Collapse
Affiliation(s)
- Asmaa A Gomaa
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Azza S Awad
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman A Soubh
- Department of Pharmacology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
21
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
22
|
Guden DS, Temiz-Resitoglu M, Senol SP, Kibar D, Yilmaz SN, Tunctan B, Malik KU, Sahan-Firat S. mTOR inhibition as a possible pharmacological target in the management of systemic inflammatory response and associated neuroinflammation by lipopolysaccharide challenge in rats. Can J Physiol Pharmacol 2021; 99:921-934. [PMID: 33641344 DOI: 10.1139/cjpp-2020-0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10 mg/kg), and (or) rapamycin (1 mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1β, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sakir Necat Yilmaz
- Department of Histology and Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Department of Pharmacology, College of Medicine, Memphis, TN, USA
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| |
Collapse
|
23
|
Brooks AC, Henderson BJ. Systematic Review of Nicotine Exposure's Effects on Neural Stem and Progenitor Cells. Brain Sci 2021; 11:172. [PMID: 33573081 PMCID: PMC7912116 DOI: 10.3390/brainsci11020172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
While various modalities of chronic nicotine use have been associated with numerous negative consequences to human health, one possible benefit of nicotine exposure has been uncovered. The discovery of an inverse correlation between smoking and Parkinson's disease, and later Alzheimer's disease as well, motivated investigation of nicotine as a neuroprotective agent. Some studies have demonstrated that nicotine elicits improvements in cognitive function. The hippocampus, along with the subventricular zone (SVZ), is a distinct brain region that allow for ongoing postnatal neurogenesis throughout adulthood and plays a major role in certain cognitive behaviors like learning and memory. Therefore, one hypothesis underlying nicotine-induced neuroprotection is possible effects on neural stem cells and neural precursor cells. On the other hand, nicotine withdrawal frequently leads to cognitive impairments, particularly in hippocampal-dependent behaviors, possibly suggesting an impairment of hippocampal neurogenesis with nicotine exposure. This review discusses the current body of evidence on nicotine's effects on neural stem cells and neural progenitors. Changes in neural stem cell proliferation, survival, intracellular dynamics, and differentiation following acute and chronic nicotine exposure are examined.
Collapse
Affiliation(s)
- Arrin C. Brooks
- Department of Biomedical Science, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25545, USA;
| | | |
Collapse
|
24
|
He Y, Chen S, Tsoi B, Qi S, Gu B, Wang Z, Peng C, Shen J. Alpinia oxyphylla Miq. and Its Active Compound P-Coumaric Acid Promote Brain-Derived Neurotrophic Factor Signaling for Inducing Hippocampal Neurogenesis and Improving Post-cerebral Ischemic Spatial Cognitive Functions. Front Cell Dev Biol 2021; 8:577790. [PMID: 33537297 PMCID: PMC7849625 DOI: 10.3389/fcell.2020.577790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
Alpinia oxyphylla Miq. (AOM) is a medicinal herb for improving cognitive functions in traditional Chinese medicine for poststroke treatment, but its efficacies and underlying mechanisms remain unknown. In the present study, we tested the hypothesis that AOM could induce adult hippocampal neurogenesis and improve poststroke cognitive impairment via inducing brain-derived neurotrophic factor (BDNF) signaling pathway. In order to test the hypothesis, we performed both in vivo rat experiments using transient middle cerebral artery occlusion (MCAO) model and in vitro neural stem cell (NSC) experiments using oxygen–glucose deprivation plus reoxygenation. First, AOM treatment significantly up-regulated the expression of BDNF, tropomycin receptor kinase B (TrkB), and phosphorylated AKT (p-AKT) in the hippocampus, enhanced adult hippocampal neurogenesis, and improved the spatial learning/memory and cognitive functions in the post-MCAO ischemic rats in vivo. Next, in vitro studies confirmed p-coumaric acid (P-CA) to be the most effective compound identified from AOM extract with the properties of activating BDNF/TrkB/AKT signaling pathway and promoting NSC proliferation. Cotreatment of BDNF/TrkB-specific inhibitor ANA12 abolished the effects of P-CA on inducing BDNF/TrkB/AKT activation and the NSC proliferation. Finally, animal experiments showed that P-CA treatment enhanced the neuronal proliferation and differentiation in the hippocampus, improved spatial learning and memory functions, and reduced anxiety in the transient MCAO ischemic rats. In conclusion, P-CA is a representative compound from AOM for its bioactivities of activating BDNF/TrkB/AKT signaling pathway, promoting hippocampal neurogenesis, improving cognitive functions, and reducing anxiety in post–ischemic stroke rats.
Collapse
Affiliation(s)
- Yacong He
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuhua Qi
- Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Medical Technology School, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Savi FF, de Oliveira A, de Medeiros GF, Bozza FA, Michels M, Sharshar T, Dal-Pizzol F, Ritter C. What animal models can tell us about long-term cognitive dysfunction following sepsis: A systematic review. Neurosci Biobehav Rev 2020; 124:386-404. [PMID: 33309906 DOI: 10.1016/j.neubiorev.2020.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023]
Abstract
Survivors of sepsis often develop long-term cognitive impairments. This review aimed at exploring the results of the behavioral tools and tests which have been used to evaluate cognitive dysfunction in different animal models of sepsis. Two independent investigators searched for sepsis- and cognition-related keywords. 6323 publications were found, of which 355 were selected based on their title, and 226 of these were chosen based on manuscript review. LPS was used to induce sepsis in 171 studies, while CLP was used in 55 studies. Inhibitory avoidance was the most widely used method for assessing aversive memory, followed by fear conditioning and continuous multi-trial inhibitory avoidance. With regard to non-aversive memory, most studies used the water maze, open-field, object recognition, Y-maze, plus maze, and radial maze tests. Both CLP and LPS models of sepsis were effective in inducing short- and long-term behavioral impairment. Our findings help elucidate the mechanisms involved in the pathophysiology of sepsis-induced cognitive changes, as well as the available methods and tests used to study this in animal models.
Collapse
Affiliation(s)
- Felipe Figueredo Savi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Alexandre de Oliveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | | | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
| | - Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Brazil.
| |
Collapse
|
26
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
27
|
Huang Z, Wu D, Qu X, Li M, Zou J, Tan S. BDNF and nicotine dependence: associations and potential mechanisms. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0044/revneuro-2020-0044.xml. [PMID: 32887210 DOI: 10.1515/revneuro-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
Smoking is the leading preventable cause of death worldwide and tobacco addiction has become a serious public health problem. Nicotine is the main addictive component of tobacco, and the majority of people that smoke regularly develop nicotine dependence. Nicotine addiction is deemed to be a chronic mental disorder. Although it is well known that nicotine binds to the nicotinic acetylcholine receptors (nAChRs) and activates the mesolimbic dopaminergic system (MDS) to generate the pleasant and rewarding effects, the molecular mechanisms of nicotine addiction are not fully understood. Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain, which regulates neuron survival, differentiation, and synaptic plasticity, mainly through binding to the high affinity receptor tyrosine kinase receptor B (TrkB). BDNF gene polymorphisms are associated with nicotine dependence and blood BDNF levels are altered in smokers. In this review, we discussed the effects of nicotine on BDNF expression in the brain and summarized the underlying signaling pathways, which further indicated BDNF as a key regulator in nicotine dependence. Further studies that aim to understand the neurobiological mechanism of BDNF in nicotine addcition would provide a valuable reference for quitting smoking and developing the treatment of other addictive substances.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Xilin Qu
- Grade 2017 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| |
Collapse
|
28
|
Shu H, Wang M, Song M, Sun Y, Shen X, Zhang J, Jin X. Acute Nicotine Treatment Alleviates LPS-Induced Impairment of Fear Memory Reconsolidation Through AMPK Activation and CRTC1 Upregulation in Hippocampus. Int J Neuropsychopharmacol 2020; 23:687-699. [PMID: 32516360 PMCID: PMC7727489 DOI: 10.1093/ijnp/pyaa043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Fear memory is a fundamental capability for animals and humans to survive. Its impairment results in the disability to avoid danger. When memory is reactivated, a reconsolidation process, which can be disrupted by various stimuli, including inflammation, is required to become permanent. Nicotine has been shown to improve cognitive deficits induced by inflammation and other stimuli. Therefore, in the present study, we investigated the effect of nicotine on lipopolysaccharide (LPS)-induced impairment of fear memory reconsolidation and the underlying mechanism. METHODS Step-through inhibitory avoidance task was recruited to study fear memory of rat, i.p. LPS (0.5 mg/kg) treatment was used to induce inflammation, and western blot and immunostaining were applied to detect protein expression and distribution in medial prefrontal cortex and hippocampus. RESULTS Our data showed that LPS induced fear memory reconsolidation impairment without affecting retrieval. In addition, LPS significantly increased inflammation factors tumor necrosis factor-α and interleukin-1 beta and decreased CREB-regulated transcription coactivator 1 (CRTC1) expression and adenosine monophosphate-activated protein kinase (AMPK) activation in hippocampus. More importantly, LPS significantly decreased CRTC1 expression and AMPK activation in neurons by activating microglia cells. Of note, either nicotine treatment or activation of AMPK by intracerebroventricular infusion of metformin reduced LPS-induced impairment of fear memory reconsolidation and ameliorated inflammation factor tumor necrosis factor-α and interleukin-1 beta as well as the expression of CRTC1. CONCLUSIONS In conclusion, our results showed that acute nicotine treatment alleviates LPS-induced impairment of fear memory reconsolidation through activation of AMPK and upregulation of CRTC1 in hippocampus.
Collapse
Affiliation(s)
- Hui Shu
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China,Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, China
| | - Mengwei Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Song
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xianzhi Shen
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- School of Medicine, Ningbo University, Ningbo, China,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo, China,Correspondence: Xinchun Jin, PhD, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China () or Junfang Zhang, PhD, Ningbo University, Ningbo, 315211, China ()
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Correspondence: Xinchun Jin, PhD, School of Basic Medical Sciences, Capital Medical University, Beijing, 100054, China () or Junfang Zhang, PhD, Ningbo University, Ningbo, 315211, China ()
| |
Collapse
|
29
|
Ruszkiewicz JA, Zhang Z, Gonçalves FM, Tizabi Y, Zelikoff JT, Aschner M. Neurotoxicity of e-cigarettes. Food Chem Toxicol 2020; 138:111245. [PMID: 32145355 PMCID: PMC7089837 DOI: 10.1016/j.fct.2020.111245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
It appears that electronic cigarettes (EC) are a less harmful alternative to conventional cigarette (CC) smoking, as they generate substantially lower levels of harmful carcinogens and other toxic compounds. Thus, switching from CC to EC may be beneficial for smokers. However, recent accounts of EC- or vaping-associated lung injury (EVALI) has raised concerns regarding their adverse health effects. Additionally, the increasing popularity of EC among vulnerable populations, such as adolescents and pregnant women, calls for further EC safety evaluation. In this state-of-the-art review, we provide an update on recent findings regarding the neurological effects induced by EC exposure. Moreover, we discuss possible neurotoxic effects of nicotine and numerous other chemicals which are inherent both to e-liquids and EC aerosols. We conclude that in recognizing pertinent issues associated with EC usage, both government and scientific researchers must address this public health issue with utmost urgency.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Filipe Marques Gonçalves
- Biochemistry Graduate Program, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, United States
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Manhattan, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
30
|
Nicotine induces resilience to chronic social defeat stress in a mouse model of water pipe tobacco exposure by activating BDNF signaling. Behav Brain Res 2020; 382:112499. [DOI: 10.1016/j.bbr.2020.112499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
31
|
Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, Ashare RL. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol 2019; 15:694-714. [PMID: 31834620 DOI: 10.1007/s11481-019-09897-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
People living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV. This review will summarize the differential effects of nicotine vs tobacco smoking on inflammation in addition to the effects of tobacco smoke components on HIV disease progression. We will also discuss biomarkers of inflammation via neuroimaging as well as biomarkers of nicotine dependence (e.g., nicotine metabolite ratio). Tobacco smoking and nicotine may impact ART drug metabolism and conversely, certain ARTs may impact nicotine metabolism. Thus, we will review these bidirectional relationships and how they may contribute to neuroHIV and other adverse outcomes. We will also discuss the effects of tobacco use on the interaction between peripheral organs (lungs, heart, kidney) and subsequent CNS function in the context of HIV. Lastly, given the dramatic rise in the use of electronic nicotine delivery systems, we will discuss the implications of vaping on these processes. Despite the growing recognition of the importance of addressing tobacco use among PLWH, more research is necessary at both the preclinical and clinical level to disentangle the potentially synergistic effects of tobacco use, nicotine, HIV, cognition and immune dysregulation, as well as identify optimal approaches to reduce tobacco use. Graphical Abstract Proposed model of the relationships among HIV, ART, smoking, inflammation, and neurocognition. Solid lines represent relationships supported by evidence. Dashed lines represent relationships for which there is not enough evidence to make a conclusion. (a) HIV infection produces elevated levels of inflammation even among virally suppressed individuals. (b) HIV is associated with deficits in cognition function. (c) Smoking rates are higher among PLWH, compared to the general population. (d) The nicotine metabolite ratio (NMR) is associated with smoking behavior. (e) HIV and tobacco use are both associated with higher rates of psychiatric comorbidities, such as depression, and elevated levels of chronic stress. These factors may represent other mechanisms linking HIV and tobacco use. (f) The relationship between nicotine, tobacco smoking, and inflammation is complex, but it is well-established that smoking induces inflammation; the evidence for nicotine as anti-inflammatory is supported in some studies, but not others. (g) The relationship between tobacco use and neurocognition may differ for the effects of nicotine (acute nicotine use may have beneficial effects) vs. tobacco smoking (chronic use may impair cognition). (h) Elevated levels of inflammation may be associated with deficits in cognition. (i) PLWH may metabolize nicotine faster than those without HIV; the mechanism is not yet known and the finding needs validation in larger samples. We also hypothesize that if HIV-infection increases nicotine metabolism, then we should observe an attenuation effect once ART is initiated. (j) It is possible that the increase in NMR is due to ART effects on CYP2A6. (k) We hypothesize that faster nicotine metabolism may result in higher levels of inflammation since nicotine has anti-inflammatory properties.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Gross
- Division of Infectious Diseases, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Dubroff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Schnoll
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA
| | - Ronald G Collman
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania, 3535 Market Street, Suite, Philadelphia, PA, 4100, USA.
| |
Collapse
|
32
|
Wei P, Zheng Q, Liu H, Wan T, Zhou J, Li D, Zhou H, Li J, Ji F, Tang W, Li J. Nicotine-Induced Neuroprotection against Cognitive Dysfunction after Partial Hepatectomy Involves Activation of BDNF/TrkB Signaling Pathway and Inhibition of NF-κB Signaling Pathway in Aged Rats. Nicotine Tob Res 2019; 20:515-522. [PMID: 29065194 DOI: 10.1093/ntr/ntx157] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 01/23/2023]
Abstract
Introduction The main purpose of this study was to investigate the effects and possible mechanisms of nicotine pre-treatment on postoperative cognitive dysfunction (POCD) in aged rats. Methods Nicotine (0.5 mg/kg) was given i.p. immediately after anesthesia induction. After the Morris water maze test was used to evaluate the rats' spatial learning and memory, serum and hippocampal tissues were harvested 1 and 3 days after intervention. Inflammatory cytokines in the serum were evaluated by Enzyme-linked Immunosorbent Assay (ELISA). Brain-derived neurotrophic factor (BDNF), p-TrkB, neuroinflammation cytokines, NF-κB p65, and cleaved caspase-3 were measured by western blotting; neuronal apoptosis in the hippocampal CA1 region was also evaluated by TUNEL staining. Results We found that nicotine markedly attenuated the POCD and reduced the elevated levels of inflammatory cytokines in the serum, including IL-1β and high mobility group box-1 (HMGB1), on postoperative day 1. Additionally, nicotine suppressed the surgery-induced release of IL-1β, TNF-ɑ, HMGB1, and NF-κB p65 in the hippocampus on postoperative day 1 and day 3. In addition, operated rats displayed lower BDNF and p-TrkB in the hippocampus on postoperative day 1, returning to baseline by postoperative day 3. However, nicotine pre-treatment clearly reversed the surgical stress-induced decrease in both BDNF and p-TrkB expression in the hippocampus. Furthermore, nicotine pre-treatment significantly alleviated the surgery-induced increase in the neuronal apoptosis in the hippocampus on postoperative day 1 and day 3. Conclusions Our results showed that nicotine-induced neuroprotection against POCD may involve activation of the BDNF/TrkB signaling pathway and inhibition of the NF-κB signaling pathway. Implications Nicotine has long been considered a potent therapeutic agent for neuroprotection. This study reported the positive effect of nicotine treatment on cognitive dysfunction after partial hepatectomy in aged rats. Furthermore, the underlying mechanism may involve activation of the BDNF/TrkB signaling pathway and inhibition of the NF-κB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Hui Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China.,Department of Anesthesiology, Shandong Univeristy School of Medicine, Jinan, Shandong, P.R. China
| | - Tiantian Wan
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China.,Department of Anesthesiology, Shandong Univeristy School of Medicine, Jinan, Shandong, P.R. China
| | - Jinfeng Zhou
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Dong Li
- Department of Cryomedicine, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Haipeng Zhou
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Jing Li
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Fucheng Ji
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Wenxi Tang
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital of Shandong University (Qingdao), Qingdao, P.R. China
| |
Collapse
|
33
|
Wu X, Liu C, Chen L, Du YF, Hu M, Reed MN, Long Y, Suppiramaniam V, Hong H, Tang SS. Protective effects of tauroursodeoxycholic acid on lipopolysaccharide-induced cognitive impairment and neurotoxicity in mice. Int Immunopharmacol 2019; 72:166-175. [PMID: 30986644 DOI: 10.1016/j.intimp.2019.03.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 01/04/2023]
Abstract
Accumulating evidence has shown that tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of neurological diseases. However, whether TGR5 agonist TUDCA can improve lipopolysaccharide (LPS)-induced cognitive impairment in mice is less clear. Using a model of cognitive impairment with LPS (2.0 μg) we investigated the effects of TUDCA (200 or 400 μg) on cognitive dysfunction and neurotoxicity in mice. Both Morris water maze and Y-maze avoidance tests showed that TUDCA treatment significantly alleviated LPS-induced behavioral impairments. More importantly, we found that TUDCA treatment reversed TGR5 down-regulation, prevented neuroinflammation via inhibiting NF-κB signaling in the hippocampus of LPS-treated mice. Additionally, TUDCA treatment decreased LPS-induced apoptosis through decreasing TUNEL-positive cells and the overexpression of caspase-3, increasing the ratio of Bcl-2/Bax. TUDCA treatment also ameliorated synaptic plasticity impairments by increasing the ratio of mBDNF/proBDNF, the number of dendritic spines and the expression of synapse-associated proteins in the hippocampus. Our results indicated that TUDCA can improve cognitive impairment and neurotoxicity induced by LPS in mice, which is involved in TGR5-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Caihong Liu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Chen
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Feng Du
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mei Hu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Miranda N Reed
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| | - Su-Su Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
34
|
Tangestani Fard M, Stough C. A Review and Hypothesized Model of the Mechanisms That Underpin the Relationship Between Inflammation and Cognition in the Elderly. Front Aging Neurosci 2019; 11:56. [PMID: 30930767 PMCID: PMC6425084 DOI: 10.3389/fnagi.2019.00056] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Age is associated with increased risk for several disorders including dementias, cardiovascular disease, atherosclerosis, obesity, and diabetes. Age is also associated with cognitive decline particularly in cognitive domains associated with memory and processing speed. With increasing life expectancies in many countries, the number of people experiencing age-associated cognitive impairment is increasing and therefore from both economic and social terms the amelioration or slowing of cognitive aging is an important target for future research. However, the biological causes of age associated cognitive decline are not yet, well understood. In the current review, we outline the role of inflammation in cognitive aging and describe the role of several inflammatory processes, including inflamm-aging, vascular inflammation, and neuroinflammation which have both direct effect on brain function and indirect effects on brain function via changes in cardiovascular function.
Collapse
Affiliation(s)
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
35
|
NDRG4 prevents cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis. Genes Dis 2019; 6:448-454. [PMID: 31832525 PMCID: PMC6888726 DOI: 10.1016/j.gendis.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/10/2019] [Indexed: 02/03/2023] Open
Abstract
Cerebral ischemia is a major cause of mortality and long-term morbidity worldwide. NDRG4 has been shown to protect against cerebral ischemia, although the underlying mechanisms remain largely unclear. Here we found that NDRG4 expression was decreased in the brain tissues of ischemia/reperfusion (IR) rats, indicating increased apoptosis rates among cerebral cells. NDRG4 restoration via an adenovirus significantly attenuated cerebral infarct sizes and impairments in IR rats. Furthermore, adenovirus-mediated NDRG4 inhibited cell apoptosis in the brains of IR rats and regulated the expression of Bcl-2, Bax, caspase-3, and c-Fos. Moreover, we found that NDRG4 increased expression of BDNF, which is strongly related to cerebral ischemia and cellular apoptosis. Altogether, our findings demonstrate that NDRG4 protects cerebral IR injury by inhibiting cell apoptosis and regulates cerebral cell apoptosis by increasing BDNF expression. These results suggest that NDRG4 may be a therapeutic target for IR treatment.
Collapse
|
36
|
Garner KM, Amin R, Johnson RW, Scarlett EJ, Burton MD. Microglia priming by interleukin-6 signaling is enhanced in aged mice. J Neuroimmunol 2018; 324:90-99. [PMID: 30261355 PMCID: PMC6699492 DOI: 10.1016/j.jneuroim.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 01/20/2023]
Abstract
During peripheral infection, excessive production of pro-inflammatory cytokines in the aged brain from primed microglia induces exaggerated behavioral pathologies. While the pro-inflammatory cytokine IL-6 increases in the brain with age, its role in microglia priming is not known. This study examined the functional role of IL-6 signaling on microglia priming. Our hypothesis is that IL-6 signaling mediates primed states of microglia in the aged. An initial study assessed age-related alteration in IL-6 signaling molecules; sIL-6R and sgp130 were measured in cerebrospinal fluid of young and aged wild-type animals. Subsequent studies of isolated microglia from C57BL6/J (IL-6+/+) and IL-6 knock-out (IL-6-/-) mice showed significantly less MHC-II expression in aged IL-6-/- compared to IL-6+/+ counterparts. Additionally, adult and aged IL-6+/+ and IL-6-/- animals were administered lipopolysaccharide (LPS) to simulate a peripheral infection; sickness behaviors and hippocampal cytokine gene expression were measured over a 24 h period. Aged IL-6-/- animals were resilient to LPS-induced sickness behaviors and recovered more quickly than IL-6+/+ animals. The age-associated baseline increase of IL-1β gene expression was ablated in aged IL-6-/- mice, suggesting IL-6 is a key driver of cytokine activity from primed microglia in the aged brain. We employed in vitro studies to understand molecular mechanisms in priming factors. MHC-II and pro-inflammatory gene expression (IL-1β, IL-10, IL-6) were measured after treating BV.2 microglia with sIL-6R and IL-6 or IL-6 alone. sIL-6R enhanced expression of both pro-inflammatory genes and MHC-II. Taken together, these data suggest IL-6 expression throughout life is involved in microglia priming and increased amounts of IL-6 following peripheral LPS challenge are involved in exaggerated sickness behaviors in the aged.
Collapse
Affiliation(s)
- Katherine M Garner
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Ravi Amin
- Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Rodney W Johnson
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States; Laboratory of Integrative Immunology and Behavior, Animal Science Department, University of Illinois at Urbana-Champaign, 7 Animal Sciences Lab 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | - Emily J Scarlett
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| | - Michael D Burton
- Laboratory of Neuroimmunolgy and Behavior, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|
37
|
Imperatorin ameliorates lipopolysaccharide induced memory deficit by mitigating proinflammatory cytokines, oxidative stress and modulating brain-derived neurotropic factor. Cytokine 2018; 110:78-86. [DOI: 10.1016/j.cyto.2018.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023]
|
38
|
Abd El Motteleb DM, Hussein S, Hasan MM, Mosaad H. Comparison between the effect of human Wharton's jelly-derived mesenchymal stem cells and levetiracetam on brain infarcts in rats. J Cell Biochem 2018; 119:9790-9800. [PMID: 30171723 DOI: 10.1002/jcb.27297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Stroke represents one of the major causes of death worldwide. Neuroprotection remains an important goal of stroke therapy. Stem cell therapeutic effect is attributed to the neuroprotective effect and the regulation of the oxidant stress. Levetiracetam (LEV), a second-generation antiepileptic drug, was reported to confer neuronal protection after cerebral ischemia reperfusion. AIM To investigate the effect of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) and LEV on the size of brain infarcts, the histological structure, the neurotrophic, and the antioxidant gene expression in middle cerebral artery occlusion in rats. METHOD The rats were divided into five equal groups of 12 rats each as follows. Sham control group: received phosphate-buffered saline (PBS); ischemia/reperfusion (I/R) group: received PBS before ligation; stem cell-treated group: the animal received MSCs before ligation; LEV-treated group: the animal received LEV before occlusion; combined group: the animals received both MSCs and LEV before occlusion. Hematoxylin and eosin staining was performed to study the histological structure of the brain. Real-time polymerase chain reaction (RT-PCR) was performed to assess gene expression. RESULTS Both MSCs and LEV improved memory and learning in the treated groups compared with I/R group. Significant reduction of the infarct size in WJ-MSC- or LEV-treated groups when compared with untreated ones was found. By RT-PCR, a significant decrease of the expression values of glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), phosphatidylethanolamine binding protein 1 (PEBP1), and copper-zinc SOD (Cu/ZnSOD) genes and a significant increase of pro-oxidant iNOS gene in the I/R rats compared with the sham group was detected. There was a significant increase in the expression values of GDNF, BDNF, PEBP1, and Cu/ZnSOD genes in both treated groups when compared with the I/R group. Rats treated with WJ-MSCs showed better results than rats treated with LEV. Finally, the combined use of LEV and WJ-MSCs was the most effective regimen as regard infarction volume and functional learning and memory tests. CONCLUSION In the brain ischemia model, combined WJ-MSCs and LEV have demonstrated striking protective effects in brain infarction by the modulation of the oxidant status and neuroprotective effect.
Collapse
Affiliation(s)
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mai M Hasan
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hala Mosaad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
39
|
Ashare RL, Wetherill RR. The Intersection of Sex Differences, Tobacco Use, and Inflammation: Implications for Psychiatric Disorders. Curr Psychiatry Rep 2018; 20:75. [PMID: 30094593 PMCID: PMC7018440 DOI: 10.1007/s11920-018-0946-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Tobacco use, sex differences, and psychiatric disorders are associated with altered immune function. There are also sex differences in tobacco use and psychiatric disorders. This review summarizes findings from the small, but growing literature examining sex differences in the effects of tobacco use on inflammation and the implications for psychiatric disorders. RECENT FINDINGS We identified four studies that tested the interaction between sex and tobacco/nicotine on inflammation. Although males and females generally exhibited differential tobacco-induced immune responses, the pattern varied depending on the sample (rodents vs. humans) and the method to evaluate inflammation. Evidence suggests that sex modulates the effects of tobacco smoke on inflammation. Many inflammation markers associated with sex differences and tobacco use are related to psychiatric disorders. We propose a model in which sex, tobacco use, and inflammation interact to increase risk for psychiatric disorders. Future studies are needed to examine the mechanisms that explain this relationship.
Collapse
Affiliation(s)
- Rebecca L. Ashare
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| | - Reagan R. Wetherill
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Chowdhury AA, Gawali NB, Munshi R, Juvekar AR. Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab Brain Dis 2018; 33:681-691. [PMID: 29277879 DOI: 10.1007/s11011-017-0147-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is said to play a pivotal role in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). Trigonelline (TRG) is a naturally occurring alkaloid, commonly isolated from fenugreek and coffee beans. In the present study, we investigated whether TRG exerts neuroprotective action against LPS mediated cognitive impairment. Mice pretreated with TRG (50 and 100 mg/kg po) were administered with LPS (250 μg/kg ip) for 7 days. Memory was assessed in the Morris water maze (MWM) and Y maze. LPS administration caused poor memory retention in MWM and Y maze paradigms, and resulted in marked oxidative stress as evidenced by decrease in superoxide dismutase (SOD), reduced glutathione (GSH) levels and increased lipid peroxidation in the hippocampus and cortex. Cholinergic involvement during neuroinflammation was evaluated by measuring levels of acetylcholinesterase (AChE) enzyme. TRG treatment at both the doses reversed LPS induced behavioral and memory disturbances, significantly decreased the oxidative stress and AChE levels in both the hippocampus and cortex. LPS administration also elevated the tumour necrosis factor (TNF-α) and interleukin -6 (IL-6) levels, whereas brain derived neurotrophic factor (BDNF) levels were significantly depleted. TRG pretreatment led to decreased TNF-α and IL-6 levels and caused a significant upregulation of BDNF levels. In conclusion, present study highlights the promising neuroprotective role of TRG against LPS mediated cognitive impairment which could be attributed to reduced oxidative stress, inhibition of proinflammatory cytokines and restoration of BDNF levels.
Collapse
Affiliation(s)
- Amrita A Chowdhury
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, -400019, India
| | - Nitin B Gawali
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, -400019, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, B. Y. L. Nair Charitable Hospital and Topiwala National Medical College, Dr. A. L. Nair Road, Mumbai, 400008, India
| | - Archana R Juvekar
- Department of Pharmaceutical Sciences and Technology (DPST), Institute of Chemical Technology (ICT), N. P. Marg, Matunga (E), Mumbai, -400019, India.
| |
Collapse
|
41
|
Zhang Y, Fang X, Fan W, Tang W, Cai J, Song L, Zhang C. Interaction between BDNF and TNF-α genes in schizophrenia. Psychoneuroendocrinology 2018; 89:1-6. [PMID: 29306772 DOI: 10.1016/j.psyneuen.2017.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Our recent work reported that tumor necrosis factor-α (TNF-α) is negatively correlated with brain-derived neurotrophic factor (BDNF) in patients with schizophrenia. A previous study has shown that TNF-α could regulate the extracellular secretion of BDNF. Therefore, we hypothesized that the TNF-α gene (TNF-α) may interact with the BDNF gene (BDNF) to influence schizophrenia risk. METHODS We recruited 694 patients with schizophrenia from three mental hospitals in Eastern China and 725 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was employed to evaluate symptom severity. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was performed to assess cognitive function. The SNPs rs6265 in BDNF and rs1799964 in TNF-α were genotyped. RESULTS There were no significant differences in allele and genotype frequencies in either rs6265 or rs1799964 between the case and control groups. A significant association of rs6265 AA + AG × rs1799964 CC + CT with schizophrenia was observed (OR = 1.14, 95%CI: 1.02-1.27; P = .02). There were significant differences in the RBANS attention and total scores between the patients with rs6265A and rs1799964C alleles and those without these two alleles (P = .03 and P = .03 after Bonferroni correction, respectively). CONCLUSION Our findings provided preliminary evidence that the interaction of BDNF and TNF-α may confer susceptibility to schizophrenia and cognitive dysfunction.
Collapse
Affiliation(s)
- Yi Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Department of Psychiatry, Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang, China
| | - Jun Cai
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisheng Song
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
42
|
Preliminary Characterization of a Homogeneous Polysaccharide with Anticomplement Activity from Sijunzi Decoction. J CHEM-NY 2018. [DOI: 10.1155/2018/8642653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sijunzi decoction (SJZD) is a classical herbal prescription in traditional Chinese medicine (TCM) used for enhancing the function of immune system. In previous studies, a polysaccharide fraction S-3 was screened from SJZD by assessment of immune system regulation, intestinal microbiota, and SCFA in order to explore the immune active ingredients in SJZD. In the present study, S-3 was further purified, and a homogeneous polysaccharide S-3-1 with a molecular mass of 13.5 × 104 Da was obtained after further fractionation by Sephadex G-150 size-exclusion chromatography. The immunological activities of S-3-1 were assayed in vitro for the first time. The determination of the anticomplement activity showed that S-3-1 displayed inhibitory effects on classical pathway of the complement system, with CH50 values of 530 μg/mL. The FT-IR analysis showed that S-3-1 had absorptive peaks characteristic of polysaccharides. The methylation and GC-MS analysis showed that it is comprised of Rha, Ara, Xyl, Man, Gal, and Glc in a relative molar ratio of 0.35 : 0.37 : 1.4 : 0.31 : 3 : 0.8 and that it mainly contained 1,4-linked-Glc and 1,6-linked-Gal glycosidic bonds. The morphology of S-3-1 was observed by atomic force microscope (AFM). These results provided evidences for tracking the material basis of SJZD immune activity.
Collapse
|
43
|
Revisiting nicotine’s role in the ageing brain and cognitive impairment. Rev Neurosci 2017; 28:767-781. [DOI: 10.1515/revneuro-2017-0008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/12/2017] [Indexed: 12/14/2022]
Abstract
AbstractBrain ageing is a complex process which in its pathologic form is associated with learning and memory dysfunction or cognitive impairment. During ageing, changes in cholinergic innervations and reduced acetylcholinergic tonus may trigger a series of molecular pathways participating in oxidative stress, excitotoxicity, amyloid-β toxicity, apoptosis, neuroinflammation, and perturb neurotrophic factors in the brain. Nicotine is an exogenous agonist of nicotinic acetylcholine receptors (nAChRs) and acts as a pharmacological chaperone in the regulation of nAChR expression, potentially intervening in age-related changes in diverse molecular pathways leading to pathology. Although nicotine has therapeutic potential, paradoxical effects have been reported, possibly due to its inverted U-shape dose-response effects or pharmacokinetic factors. Additionally, nicotine administration should result in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment.
Collapse
|
44
|
TREK-1 pathway mediates isoflurane-induced memory impairment in middle-aged mice. Neurobiol Learn Mem 2017; 145:199-204. [PMID: 29042297 DOI: 10.1016/j.nlm.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/14/2017] [Accepted: 10/13/2017] [Indexed: 01/08/2023]
Abstract
Post-operative cognitive dysfunction (POCD) has been widely reported, especially in elderly patients. An association between POCD and inhalational anesthetics, such as isoflurane, has been suggested. The TWIK-related K+ channel-1 (TREK-1) controls several major cellular responses involved in memory formation and is believed to participate in the development of depression, cerebral ischemia and blood-brain barrier dysfunction. However, the specific role of TREK-1 in mediating anesthesia-induced POCD remains unknown. In the current study, we determined that exposure to isoflurane affected memory in middle-aged mice and altered TREK-1 expression. In addition, TREK-1 over-expression exacerbated isoflurane-induced memory impairment, while TREK-1 silence attenuated the impairment. Taken together, our data demonstrate that inhibition of TREK-1 protects mice from cognitive impairment induced by anesthesia and TREK-1 is a potential therapeutic target against memory impairment induced by volatile anesthetics.
Collapse
|
45
|
Kazak F, Yarim GF. Neuroprotective effects of acetyl- l -carnitine on lipopolysaccharide-induced neuroinflammation in mice: Involvement of brain-derived neurotrophic factor. Neurosci Lett 2017; 658:32-36. [DOI: 10.1016/j.neulet.2017.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
|
46
|
Guo F, Lou J, Han X, Deng Y, Huang X. Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Impairment by Enhancing Neurogenesis and Suppressing Apoptosis in the Hippocampus in Rats with Ischemic Stroke. Front Physiol 2017; 8:559. [PMID: 28824455 PMCID: PMC5539749 DOI: 10.3389/fphys.2017.00559] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cognitive impairment is a serious mental deficit caused by stroke that can severely affect the quality of a survivor's life. Repetitive transcranial magnetic stimulation (rTMS) is a well-known rehabilitation modality that has been reported to exert neuroprotective effects after cerebral ischemic injury. In the present study, we evaluated the therapeutic efficacy of rTMS against post-stroke cognitive impairment (PSCI) and investigated the mechanisms underlying its effects in a middle cerebral artery occlusion (MCAO) rat model. The results showed that rTMS ameliorated cognitive deficits and tended to reduce the sizes of cerebral lesions. In addition, rTMS significantly improved cognitive function via a mechanism involving increased neurogenesis and decreased apoptosis in the ipsilateral hippocampus. Moreover, brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), were clearly upregulated in ischemic hippocampi after treatment with rTMS. Additionally, further studies demonstrated that rTMS markedly enhanced the expression of the apoptosis-related B cell lymphoma/leukemia gene 2 (Bcl-2) and decreased the expression of the Bcl-2-associated protein X (Bax) and the number of TUNEL-positive cells in the ischemic hippocampus. Both protein levels and mRNA levels were investigated. Our findings suggest that after ischemic stroke, treatment with rTMS promoted the functional recovery of cognitive impairments by inhibiting apoptosis and enhancing neurogenesis in the hippocampus and that this mechanism might be mediated by the BDNF signaling pathway.
Collapse
Affiliation(s)
- Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jicheng Lou
- Department of Obstetrics and Gynecology, The Central Hospital of WuhanWuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Yuguo Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
47
|
Osborne BF, Caulfield JI, Solomotis SA, Schwarz JM. Neonatal infection produces significant changes in immune function with no associated learning deficits in juvenile rats. Dev Neurobiol 2017; 77:1221-1236. [PMID: 28719141 DOI: 10.1002/dneu.22512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/09/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
The current experiments examined the impact of early-life immune activation and a subsequent mild immune challenge with lipopolysaccharide (LPS; 25µg/kg) on hippocampal-dependent learning, proinflammatory cytokine expression in the brain, and peripheral immune function in juvenile male and female rats at P24, an age when hippocampal-dependent learning and memory first emerges. Our results indicate that neonatal infection did not produce learning deficits in the hippocampal-dependent context pre-exposure facilitation effect paradigm in juvenile males and females, contrary to what has been observed in adults. Neonatal infection produced an increase in baseline IL-1β expression in the hippocampus (HP) and medial prefrontal cortex (mPFC) of juvenile rats. Furthermore, neonatally infected rats showed exaggerated IL-1β expression in the HP following LPS treatment as juveniles; and juvenile females, but not males, showed exaggerated IL-1β expression in the mPFC following LPS treatment. Neonatal infection attenuated the production of IL-6 expression following LPS treatment in both the brain and the spleen, and neonatal infection decreased the numbers of circulating white blood cells in juvenile males and females, an effect that was further exacerbated by subsequent LPS treatment. Together, our data indicate that the consequences of neonatal infection are detectable even early in juvenile development, though we found no concomitant hippocampal-dependent learning deficits at this young age. These findings underscore the need to consider age and associated on-going neurodevelopmental processes as important factors contributing to the emergence of cognitive and behavioral disorders linked to early-life immune activation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1221-1236, 2017.
Collapse
Affiliation(s)
- Brittany F Osborne
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, 19716
| | - Jasmine I Caulfield
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, 19716
| | - Samantha A Solomotis
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, 19716
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, 19716
| |
Collapse
|
48
|
Zhang Z, Yuan H, Zhao H, Qi B, Li F, An L. PPARγ activation ameliorates postoperative cognitive decline probably through suppressing hippocampal neuroinflammation in aged mice. Int Immunopharmacol 2016; 43:53-61. [PMID: 27940378 DOI: 10.1016/j.intimp.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
Neuroinflammation plays a key role in many neurodegenerative disorders, including postoperative cognitive decline (POCD). Growing evidence has demonstrated that activation of the peroxisome proliferator-activated receptor-γ (PPARγ) attenuates the inflammatory response and improves cognitive dysfunction associated with many neuropsychiatric disorders. We hypothesize that down-regulation of PPARγ is linked to neuroinflammation and the subsequent cognitive deficits observed in an animal model of POCD. In the present study, the POCD animal model was established by performing an exploratory laparotomy under isoflurane anesthesia in 20-month-old male C57BL/6 mice. Behavioral tests, inflammatory biomarkers, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β, ionized calcium-binding adaptor molecule-1 (IBA1)-positive cells, as well as glial fibrillary acidic protein (GFAP)-positive cells and brain-derived neurotrophic factor (BDNF), were measured. Herein, we showed that surgery induced profound impairment in cognition that was associated with significant decreases in PPARγ and BDNF expression, and significant increases in IL-1β, IBA1-positive cells, and GFAP-positive cells in the hippocampus. As expected, the PPARγ agonist pioglitazone attenuated the surgery-induced inflammatory changes and rescued the associated cognitive impairment. However, these beneficial effects were abolished by the PPARγ specific antagonist GW9662, suggesting a pivotal role of the PPARγ pathway in the pathogenesis of POCD. Taken together, our results provide evidence that down-regulation of PPARγ may be involved in neuroinflammation and subsequent POCD, and suggest that activation of PPARγ by pioglitazone may represent a new way to prevent or treat POCD.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Hongmei Yuan
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Huatang Zhao
- Department of Anesthesiology, Liaocheng Second People's Hospital, Liaocheng, Shandong 252601, China
| | - Bin Qi
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Fayin Li
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Lijun An
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
49
|
Noorbakhshnia M, Karimi-Zandi L. Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-α impairments in hippocampus of rat. Physiol Behav 2016; 169:69-73. [PMID: 27889331 DOI: 10.1016/j.physbeh.2016.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
There is a growing body of evidence that neuroinflammation can impair memory. It has been indicated that Portulaca oleracea Linn. (POL), possess anti-inflammatory activity and might improve memory disruption caused by inflammation. In this study the effect of pre-treatment with the hydro-alcoholic extract of POL on memory retrieval investigated in lipopolysaccharide (LPS) treated rats. Male Wistar rats (200-220g) received either a control diet or a diet containing of POL (400mg/kg, p.o.) for 14days. Then, they received injections of either saline or LPS (1mg/kg, i.p.). In all the experimental groups, 4h following the last injection, passive avoidance learning (PAL) and memory test was performed. The retention test was done 24h after the training and then the animals were sacrificed. Hippocampal TNF-α levels measured using ELISA as one criteria of LPS-induced neuroinflammation. The results indicated that LPS significantly impaired PAL and memory and increased TNF-α levels in hippocampus tissue. Pre-treatment with POL improved memory in control rats and prevented memory and TNF-α deterioration in LPS treated rats. Taken together, the results of this study suggest that the hydro-alcoholic extract of POL may improve memory deficits in LPS treated rats, possibly via inhibition of TNF-α and anti-inflammatory activity.
Collapse
Affiliation(s)
- Maryam Noorbakhshnia
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Leila Karimi-Zandi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
50
|
Café-Mendes CC, Garay-Malpartida HM, Malta MB, de Sá Lima L, Scavone C, Ferreira ZS, Markus RP, Marcourakis T. Chronic nicotine treatment decreases LPS signaling through NF-κB and TLR-4 modulation in the hippocampus. Neurosci Lett 2016; 636:218-224. [PMID: 27984197 DOI: 10.1016/j.neulet.2016.10.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/09/2016] [Accepted: 10/20/2016] [Indexed: 01/30/2023]
Abstract
The hippocampus is a brain region that is rich in nicotinic acetylcholine receptors (nAChRs), especially the α7 subtype. The hippocampus is severely affected in disorders that have a neuroinflammatory component, such as Alzheimer's disease, Parkinson's disease, and schizophrenia. Previous studies demonstrated both in vivo and in vitro that nicotine inhibits immunological responses, including those that are triggered by the inflammatory agent lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria. The present study investigated whether chronically administered nicotine interferes with the nuclear binding of nuclear factor-κB (NF-κB) and the expression of LPS-induced inflammatory response genes. The results indicated that chronic nicotine administration (0.1mg/kg, s.c., 14days) inhibited the LPS-induced nuclear binding of NF-κB and mRNA expression levels of Tnf, Il1b, Nos2, and Tlr4. The presence of both the selective α7 nAChR antagonist methyllycaconitine (MLA; 5.0mg/kg i.p., 14days) and the nonselective nAChR antagonist mecamylamine (Meca; 1.0mg/kg, s.c., 14days) reversed the inhibitory effects of nicotine. These results suggest that the chronic activation of α7- and αxβy-containing nAChRs reduces acute inflammatory responses in the brain.
Collapse
Affiliation(s)
- Cecília Cerqueira Café-Mendes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Marília Brinati Malta
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larrissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristóforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Tania Marcourakis
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|