1
|
Rumajogee P, Altamentova S, Li J, Puvanenthirarajah N, Wang J, Asgarihafshejani A, Van Der Kooy D, Fehlings MG. Constraint-Induced Movement Therapy (CIMT) and Neural Precursor Cell (NPC) Transplantation Synergistically Promote Anatomical and Functional Recovery in a Hypoxic-Ischemic Mouse Model. Int J Mol Sci 2024; 25:9403. [PMID: 39273353 PMCID: PMC11395467 DOI: 10.3390/ijms25179403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by pronounced motor dysfunction and resulting in physical disability. Neural precursor cells (NPCs) have shown therapeutic promise in mouse models of hypoxic-ischemic (HI) perinatal brain injury, which mirror hemiplegic CP. Constraint-induced movement therapy (CIMT) enhances the functional use of the impaired limb and has emerged as a beneficial intervention for hemiplegic CP. However, the precise mechanisms and optimal application of CIMT remain poorly understood. The potential synergy between a regenerative approach using NPCs and a rehabilitation strategy using CIMT has not been explored. We employed the Rice-Vannucci HI model on C57Bl/6 mice at postnatal day (PND) 7, effectively replicating the clinical and neuroanatomical characteristics of hemiplegic CP. NPCs were transplanted in the corpus callosum (CC) at PND21, which is the age corresponding to a 2-year-old child from a developmental perspective and until which CP is often not formally diagnosed, followed or not by Botulinum toxin injections in the unaffected forelimb muscles at PND23, 26, 29 and 32 to apply CIMT. Both interventions led to enhanced CC myelination and significant functional recovery (as shown by rearing and gait analysis testing), through the recruitment of endogenous oligodendrocytes. The combinatorial treatment indicated a synergistic effect, as shown by newly recruited oligodendrocytes and functional recovery. This work demonstrates the mechanistic effects of CIMT and NPC transplantation and advocates for their combined therapeutic potential in addressing hemiplegic CP.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Junyi Li
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Nirushan Puvanenthirarajah
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Derek Van Der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
2
|
Schwingel GB, Fontes-Dutra M, Ramos B, Riesgo R, Bambini-Junior V, Gottfried C. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid. IBRO Neurosci Rep 2023; 15:242-251. [PMID: 37841088 PMCID: PMC10570715 DOI: 10.1016/j.ibneur.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive/stereotyped behaviors. Its prevalence is increasing, affecting one in 36 children in the United States. The valproic acid (VPA) induced animal model of ASD is a reliable method for investigating cellular, molecular, and behavioral aspects related to the disorder. Trans-Resveratrol (RSV), a polyphenol with anti-inflammatory and antioxidant effects studied in various diseases, has recently demonstrated the ability to prevent cellular, molecular, sensory, and social deficits in the VPA model. In this study, we examined the effects of prenatal exposure to VPA and the potential preventive effects of RSV on the offspring. Method We monitored gestational weight from embryonic day 6.5 until 18.5 and assessed the onset of developmental milestones and morphometric parameters in litters. The generalized estimating equations (GEE) were used to analyze longitudinal data. Results Exposure to VPA during rat pregnancy resulted in abnormal weight gain fold-changes on embryonic days 13.5 and 18.5, followed by fewer animals per litter. Additionally, we discovered a positive correlation between weight variation during E15.5-E18.5 and the number of rat pups in the VPA group. Conclusion VPA exposure led to slight length deficiencies and delays in the onset of developmental milestones. Interestingly, the prenatal RSV treatment not only prevented most of these delays but also led to the early onset of certain milestones and improved morphometric characteristics in the offspring. In summary, our findings suggest that RSV may have potential as a therapeutic intervention to protect against the negative effects of prenatal VPA exposure, highlighting its importance in future studies of prenatal neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| | - Bárbara Ramos
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Victorio Bambini-Junior
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| |
Collapse
|
3
|
de Almeida W, Deniz BF, Souza Dos Santos A, Faustino AM, Ramires Junior OV, Schmitz F, Varela APM, Teixeira TF, Sesterheim P, Marques da Silva F, Roehe PM, Wyse AT, Pereira LO. Zika Virus affects neurobehavioral development, and causes oxidative stress associated to blood-brain barrier disruption in a rat model of congenital infection. Brain Behav Immun 2023; 112:29-41. [PMID: 37146656 DOI: 10.1016/j.bbi.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/16/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus associated with several neurodevelopmental outcomes after in utero infection. Here, we studied a congenital ZIKV infection model with immunocompetent Wistar rats, able to predict disabilities and that could pave the way for proposing new effective therapies. We identified neurodevelopmental milestones disabilities in congenital ZIKV animals. Also, on 22nd postnatal day (PND), blood-brain barrier (BBB) proteins disturbances were detected in the hippocampus with immunocontent reduction of β_Catenin, Occludin and Conexin-43. Besides, oxidative stress imbalance on hippocampus and cortex were identified, without neuronal reduction in these structures. In conclusion, even without pups' microcephaly-like phenotype, congenital ZIKV infection resulted in neurobehavioral dysfunction associated with BBB and oxidative stress disturbances in young rats. Therefore, our findings highlighted the multiple impact of the congenital ZIKV infection on the neurodevelopment, which reinforces the continuity of studies to understand the spectrum of this impairment and to provide support to future treatment development for patients affected by congenital ZIKV.
Collapse
Affiliation(s)
- Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Fisiologia e Farmacologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| | - Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Osmar Vieira Ramires Junior
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Sesterheim
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil; Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Marques da Silva
- Programa de Pós-Graduação em Ciências da Saúde: Cardiologia, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, RS, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Dill LK, Teymornejad S, Sharma R, Bozkurt S, Christensen J, Chu E, Rewell SS, Shad A, Mychasiuk R, Semple BD. Modulating chronic outcomes after pediatric traumatic brain injury: Distinct effects of social and environmental enrichment. Exp Neurol 2023; 364:114407. [PMID: 37059414 DOI: 10.1016/j.expneurol.2023.114407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.
Collapse
Affiliation(s)
- Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sadaf Teymornejad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sarah S Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
5
|
Landolfo E, Cutuli D, Decandia D, Balsamo F, Petrosini L, Gelfo F. Environmental Enrichment Protects against Neurotoxic Effects of Lipopolysaccharide: A Comprehensive Overview. Int J Mol Sci 2023; 24:ijms24065404. [PMID: 36982478 PMCID: PMC10049264 DOI: 10.3390/ijms24065404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE’s beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.
Collapse
Affiliation(s)
- Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Dandi E, Spandou E, Tata DA. Investigating the role of environmental enrichment initiated in adolescence against the detrimental effects of chronic unpredictable stress in adulthood: Sex-specific differences in behavioral and neuroendocrinological findings. Behav Processes 2022; 200:104707. [PMID: 35842198 DOI: 10.1016/j.beproc.2022.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Environmental Enrichment (EE) improves cognitive function and enhances brain plasticity, while chronic stress increases emotionality, impairs learning and memory, and has adverse effects on brain anatomy and biochemistry. We explored the beneficial role of environmental enrichment initiated in adolescence against the negative outcomes of Chronic Unpredictable Stress (CUS) during adulthood on emotional behavior, cognitive function, as well as somatic and neuroendocrine markers in both sexes. Adolescent Wistar rats housed either in enriched or standard housing conditions for 10 weeks. On postnatal day 66, a subgroup from each housing condition was daily exposed to a 4-week stress protocol. Following stress, adult rats underwent behavioral testing to evaluate anxiety, exploration/locomotor activity, depressive-like behavior and spatial learning/memory. Upon completion of behavioral testing, animals were exposed to a 10-m stressful event to test the neuroendocrine response to acute stress. CUS decreased body weight gain and increased adrenal weight. Some stress-induced behavioral adverse effects were sex-specific since learning impairments were limited to males while depressive-like behavior to females. EE housing protected against CUS-related behavioral deficits and body weight loss. Exposure to CUS affected the neuroendocrine response of males to acute stress as revealed by the increased corticosterone levels. Our findings highlight the significant role of EE in adolescence as a protective factor against the negative effects of stress and underline the importance of inclusion of both sexes in animal studies.
Collapse
Affiliation(s)
- Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
7
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|
9
|
Balıkcı A. Exploring Effects of the HEP (Homeostasis-Enrichment-Plasticity) Approach as a Comprehensive Therapy Intervention for an Infant with Cerebral Palsy: A Case Report. JOURNAL OF CHILD SCIENCE 2022. [DOI: 10.1055/s-0042-1757913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AbstractCerebral palsy (CP) is a common non-progressive neurodevelopmental disorder which causes developmental disabilities in children. Varied interventions for CP exist to address medical and physical needs but with limited effectiveness evidence. Environmental enrichment (EE) is an animal model intervention for many neurodevelopmental disorders, including CP, with considerable positive effects. This case report defines the Homeostasis-Enrichment-Plasticity (HEP) approach, which is based upon principles of EE and ecological theories of development and describes its use to promote the developmental and functional skills of an infant with CP. Parent interviews and assessment data were completed before and after intervention. For the interested parameters data was gathered by developmental history, systematic observation of behaviors in the clinical setting and at home, Beck Anxiety Inventory (BAI), Infant-Toddler Symptom Checklist, the Sensory Profile Infant/Toddler, Peabody Developmental Motor Scales-2, Gross Motor Function Measurement-88 (GMFM-88), the Gross Motor Function Classification System (GMFCS), and Pediatric Evaluation of Disability Inventory (PEDI). The HEP approach intervention was implemented one time per week for 12 months. Following the HEP approach intervention, self-regulation and sensory processing scores improved. GMFM-88 total score improved from 45/264 to 123/264. The Peabody found all gross motor (54–110), fine motor (65–117), and total motor quotient (119–227) scores improved after intervention. Post-intervention observations showed obvious gross motor progress with movement from GMFCS Level IV to Level I. Performance on the Functional Skills Scales and Caregiver Assistance Scales of PEDI also demonstrated notable improvements. BAI scores revealed low anxiety scores for both the mother (13/63 points) and father (14/63) before intervention. These scores did not change after intervention. A definition and detailed description of the HEP approach intervention is presented here for the first time. The case report demonstrated preliminary evidence for the effectiveness of the HEP approach on self-regulation, sensory processing, motor development, functional skills, and caregiver assistance with an infant with CP. Additional studies are needed to validate the findings.
Collapse
Affiliation(s)
- Aymen Balıkcı
- Department of Occupational Therapy, Faculty of Health Sciences, Fenerbahçe University, Istanbul, Turkey
| |
Collapse
|
10
|
Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav Brain Res 2021; 407:113237. [PMID: 33798820 DOI: 10.1016/j.bbr.2021.113237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Hypoxia-ischemia (HI) is a consequence of a lack of oxygen and glucose support to the developing brain, which causes several neurodevelopmental impairments. Environmental enrichment (EE) is considered an option to recover the alterations observed in rodents exposed to HI. The aim of this study was to investigate the impact of early EE on memory, hippocampal volume and brain-derived neurotrophic factor (Bbnf) and glucocorticoid receptor (Nr3c1) gene expression of mice exposed to HI. At P10, pups underwent right carotid artery permanent occlusion followed by 35 min of 8% O2 hypoxic environment. Starting at P11, animals were reared in EE or in standard cage (HI-SC or SHAM-SC) conditions until behavioral testing (P45). SHAM pups did not undergo carotid ligation and hypoxic exposure. Memory performance was assessed in the Y-maze, Novel object recognition, and Barnes maze. Animals were then sacrificed for analysis of hippocampal volume and Bdnf and Nr3c1 gene expression. We observed that animals exposed to HI performed worse in all three tests compared to SHAM animals. Furthermore, HI animals exposed to EE did not differ from SHAM animals in all tasks. Moreover, HI decreased hippocampal volume, while animals reared in early EE were not different compared to SHAM animals. Animals exposed to HI also showed upregulated hippocampal Bdnf expression compared to SHAM animals. We conclude that early EE from P11 to P45 proved to be effective in recovering memory impairments and hippocampal volume loss elicited by HI. Nevertheless, Bdnf expression was not associated with the improvements in memory performance observed in animals exposed to EE after a hypoxic-ischemic event.
Collapse
|
11
|
Bonthrone AF, Chew A, Kelly CJ, Almedom L, Simpson J, Victor S, Edwards AD, Rutherford MA, Nosarti C, Counsell SJ. Cognitive function in toddlers with congenital heart disease: The impact of a stimulating home environment. INFANCY 2021; 26:184-199. [PMID: 33210418 PMCID: PMC7894304 DOI: 10.1111/infa.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022]
Abstract
Infants born with congenital heart disease (CHD) are at increased risk of neurodevelopmental difficulties in childhood. The extent to which perioperative factors, cardiac physiology, brain injury severity, socioeconomic status, and home environment influence early neurodevelopment is not clear. Sixty-nine newborns with CHD were recruited from St Thomas' Hospital. Infants underwent presurgical magnetic resonance imaging on a 3-Tesla scanner situated on the neonatal unit. At 22 months, children completed the Bayley Scales of Infant and Toddler Development-3rd edition and parents completed the cognitively stimulating parenting scale to assess cognitive stimulation at home. Level of maternal education and total annual household income were also collected. Hospital records were reviewed to calculate days on the intensive care unit post-surgery, time on bypass during surgery, and days to corrective or definitive palliative surgical intervention. In the final analysis of 56 infants, higher scores on the cognitively stimulating parenting scale were associated with higher cognitive scores at age 22 months, correcting for gestational age at birth, sex, and maternal education. There were no relationships between outcome scores and clinical factors; socioeconomic status; or brain injury severity. Supporting parents to provide a stimulating home environment for children may promote cognitive development in this high-risk population.
Collapse
Affiliation(s)
- Alexandra F. Bonthrone
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Andrew Chew
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Christopher J. Kelly
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Leeza Almedom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - John Simpson
- Paediatric Cardiology DepartmentEvelina London Children’s HealthcareLondonUK
| | - Suresh Victor
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Mary A. Rutherford
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Chiara Nosarti
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| |
Collapse
|
12
|
Shaw A, Arnold LD, Privitera L, Whitfield PD, Doherty MK, Morè L. A proteomic signature for CNS adaptations to the valence of environmental stimulation. Behav Brain Res 2020; 383:112515. [PMID: 32006564 DOI: 10.1016/j.bbr.2020.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Environmental Enrichment leads to a significant improvement in long-term performance across a range of cognitive functions in mammals and it has been shown to produce an increased synaptic density and neurogenesis. Nevertheless it is still an open question as to whether some key aspects of spatial learning & memory and procedural learning might be embodied by different molecular pathways to those of social cognition. Associated with synaptic changes and potentially underlying conditions, the Ras-ERK pathway has been proposed to be the primary mediator of in vivo adaptations to environmental enrichment, acting via the downstream Ras-ERK signalling kinase MSK1 and the transcription factor CREB. Herein, we show that valence of environmental stimulation increased social competition and that this is associated with a specific proteomic signature in the frontal lobe but notably not in the hippocampus. Specifically, we show that altering the valence of environmental stimuli affected the level of social competition, with mice from negatively enriched environments winning significantly more encounters-even though mice from positive were bigger and should display dominance. This behavioural phenotype was accompanied by changes in the proteome of the fronto-ventral pole of the brain, with a differential increase in the relative abundance of proteins involved in the mitochondrial metabolic processes of the TCA cycle and respiratory processes. Investigation of this proteomic signature may pave the way for the elucidation of novel pathways underpinning the behavioural changes caused by negative enrichment and further out understanding of conditions whose core feature is increased social competition.
Collapse
Affiliation(s)
- Andrew Shaw
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Luke D Arnold
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Lucia Privitera
- Centre for Discovery Brain Sciences, Edinburgh, EH8 9JZ, UK & School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, IV2 3JH, UK
| | - Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
13
|
Morè L, Lauterborn JC, Papaleo F, Brambilla R. Enhancing cognition through pharmacological and environmental interventions: Examples from preclinical models of neurodevelopmental disorders. Neurosci Biobehav Rev 2020; 110:28-45. [PMID: 30981451 DOI: 10.1016/j.neubiorev.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
In this review we discuss the role of environmental and pharmacological treatments to enhance cognition with special regards to neurodevelopmental related disorders and aging. How the environment influences brain structure and function, and the interactions between rearing conditions and gene expression, are fundamental questions that are still poorly understood. We propose a model that can explain some of the discrepancies in findings for effects of environmental enrichment on outcome measures. Evidence of a direct causal correlation of nootropics and treatments that enhanced cognition also will be presented, and possible molecular mechanisms that include neurotrophin signaling and downstream pathways underlying these processes are discussed. Finally we review recent findings achieved with a wide set of behavioral and cognitive tasks that have translational validity to humans, and should be useful for future work on devising appropriate therapies. As will be discussed, the collective findings suggest that a combinational therapeutic approach of environmental enrichment and nootropics could be particularly successful for improving learning and memory in both developmental disorders and normal aging.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, PR1 2XT, Preston, UK.
| | - Julie C Lauterborn
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92617, USA.
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy.
| | - Riccardo Brambilla
- Neuroscience and Mental Health Research Institute (NMHRI), Division of Neuroscience, School of Biosciences, Cardiff University, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
14
|
Durán-Carabali LE, Sanches EF, Odorcyk FK, Nicola F, Mestriner RG, Reichert L, Aristimunha D, Pagnussat AS, Netto CA. Tissue Injury and Astrocytic Reaction, But Not Cognitive Deficits, Are Dependent on Hypoxia Duration in Very Immature Rats Undergoing Neonatal Hypoxia-Ischemia. Neurochem Res 2019; 44:2631-2642. [PMID: 31564017 DOI: 10.1007/s11064-019-02884-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Preterm birth and hypoxia-ischemia (HI) are major causes of neonatal death and neurological disabilities in newborns. The widely used preclinical HI model combines carotid occlusion with hypoxia exposure; however, the relationship between different hypoxia exposure periods with brain tissue loss, astrocyte reactivity and behavioral impairments following HI is lacking. Present study evaluated HI-induced behavioral and morphological consequences in rats exposed to different periods of hypoxia at postnatal day 3. Wistar rats of both sexes were assigned into four groups: control group, HI-120 min, HI-180 min and HI-210 min. Neurodevelopmental reflexes, exploratory abilities and cognitive function were assessed. At adulthood, tissue damage and reactive astrogliosis were measured. Animals exposed to HI-180 and HI-210 min had delayed neurodevelopmental reflexes compared to control group. Histological assessment showed tissue loss that was restricted to the ipsilateral hemisphere in lower periods of hypoxia exposure (120 and 180 min) but affected both hemispheres when 210 min was used. Reactive astrogliosis was increased only after 210 min of hypoxia. Interestingly, cognitive deficits were induced regardless the duration of hypoxia and there were correlations between behavioral parameters and cortex, hippocampus and corpus callosum volumes. These results show the duration of hypoxia has a close relationship with astrocytic response and tissue damage progression. Furthermore, the long-lasting cognitive memory deficit and its association with brain structures beyond the hippocampus suggests that complex anatomical changes should be involved in functional alterations taking place as hypoxia duration is increased, even when the cognitive impairment limit is achieved.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - F K Odorcyk
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Nicola
- Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - R G Mestriner
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L Reichert
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D Aristimunha
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - A S Pagnussat
- Rehabilitation Sciences Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - C A Netto
- Post-graduation Program of Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil.,Post-graduation Program of Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Adult Pgf -/- mice behaviour and neuroanatomy are altered by neonatal treatment with recombinant placental growth factor. Sci Rep 2019; 9:9285. [PMID: 31243296 PMCID: PMC6594955 DOI: 10.1038/s41598-019-45824-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Offspring of preeclamptic pregnancies have cognitive alterations. Placental growth factor (PGF), is low in preeclampsia; reduced levels may affect brain development. PGF-null mice differ from normal congenic controls in cerebrovasculature, neuroanatomy and behavior. Using brain imaging and behavioral testing, we asked whether developmentally asynchronous (i.e. neonatal) PGF supplementation alters the vascular, neuroanatomic and/or behavioral status of Pgf−/− mice at adulthood. C57BL/6-Pgf−/− pups were treated intraperitoneally on postnatal days 1–10 with vehicle or PGF at 10 pg/g, 70 pg/g or 700 pg/g. These mice underwent behavioral testing and perfusion for MRI and analysis of retinal vasculature. A second cohort of vehicle- or PGF-treated mice was perfused for micro-CT imaging. 10 pg/g PGF-treated mice exhibited less locomotor activity and greater anxiety-like behavior relative to vehicle-treated mice. Depressive-like behavior showed a sex-specific, dose-dependent decrease and was lowest in 700 pg/g PGF-treated females relative to vehicle-treated females. Spatial learning did not differ. MRI revealed smaller volume of three structures in the 10 pg/g group, larger volume of seven structures in the 70 pg/g group and smaller volume of one structure in the 700 pg/g group. No cerebral or retinal vascular differences were detected. Overall, neonatal PGF replacement altered behavior and neuroanatomy of adult Pgf−/− mice.
Collapse
|
16
|
Strzelewicz AR, Ordoñes Sanchez E, Rondón-Ortiz AN, Raneri A, Famularo ST, Bangasser DA, Kentner AC. Access to a high resource environment protects against accelerated maturation following early life stress: A translational animal model of high, medium and low security settings. Horm Behav 2019; 111:46-59. [PMID: 30708031 PMCID: PMC6527488 DOI: 10.1016/j.yhbeh.2019.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/18/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
Abstract
Early life exposure to a low security setting, characterized by a scarcity of resources and limited food access, increases the risk for psychiatric illness and metabolic dysfunction. We utilized a translational rat model to mimic a low security environment and determined how this manipulation affected offspring behavior, metabolism, and puberty. Because food insecurity in humans is associated with reduced access to healthy food options the "low security" rat manipulation combined a Western diet with exposure to a limited bedding and nesting manipulation (WD-LB). In this setting, dams were provided with limited nesting materials during the pups' early life (P2-P10). This manipulation was contrasted with standard rodent caging (SD) and environmental enrichment (EE), to model "medium security" and "high security" environments, respectively. To determine if transitioning from a low to high security environment improved outcomes, some juvenile WD-LB offspring were exposed to EE. Maternal care was impacted by these environments such that EE dams engaged in high quality care when on the nest, but spent less time on the nest than SD dams. Although WD-LB dams excessively chased their tails, they were very attentive to their pups, perhaps to compensate for limited resources. Offspring exposed to WD-LB only displayed subtle changes in behavior. However, WD-LB exposure resulted in significant metabolic dysfunction characterized by increased body weight, precocious puberty and alterations in the hypothalamic kisspeptin system. These negative effects of WD-LB on puberty and weight regulation were mitigated by EE exposure. Collectively, these studies suggest that both compensatory maternal care and juvenile enrichment can reduce the impact of a low security environment. Moreover, they highlight how utilizing diverse models of resource (in)stability can reveal mechanisms that confer vulnerability and resilience to early life stress.
Collapse
Affiliation(s)
- Arielle R Strzelewicz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston,MA 02115, United States
| | | | - Alejandro N Rondón-Ortiz
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston,MA 02115, United States
| | - Anthony Raneri
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States
| | - Sydney T Famularo
- Department of Psychology, Temple University, Philadelphia, PA 19122, United States
| | - Debra A Bangasser
- Department of Psychology, Temple University, Philadelphia, PA 19122, United States
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, United States.
| |
Collapse
|
17
|
Miguel PM, Deniz BF, Confortim HD, Bronauth LP, de Oliveira BC, Alves MB, Silveira PP, Pereira LO. Methylphenidate administration reverts attentional inflexibility in adolescent rats submitted to a model of neonatal hypoxia-ischemia: Predictive validity for ADHD study. Exp Neurol 2019; 315:88-99. [DOI: 10.1016/j.expneurol.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/04/2019] [Accepted: 02/08/2019] [Indexed: 12/29/2022]
|
18
|
Kentner AC, Cryan JF, Brummelte S. Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Dev Psychobiol 2019; 61:350-375. [PMID: 30311210 PMCID: PMC6447439 DOI: 10.1002/dev.21775] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/22/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Despite the increasing attention to early life adversity and its long-term consequences on health, behavior, and the etiology of neurodevelopmental disorders, our understanding of the adaptations and interventions that promote resiliency and rescue against such insults are underexplored. Specifically, investigations of the perinatal period often focus on negative events/outcomes. In contrast, positive experiences (i.e. enrichment/parental care//healthy nutrition) favorably influence development of the nervous and endocrine systems. Moreover, some stressors result in adaptations and demonstrations of later-life resiliency. This review explores the underlying mechanisms of neuroplasticity that follow some of these early life experiences and translates them into ideas for interventions in pediatric settings. The emerging role of the gut microbiome in mediating stress susceptibility is also discussed. Since many negative outcomes of early experiences are known, it is time to identify mechanisms and mediators that promote resiliency against them. These range from enrichment, quality parental care, dietary interventions and those that target the gut microbiota.
Collapse
Affiliation(s)
- Amanda C. Kentner
- School of Arts & Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA 02115,
| | - John F. Cryan
- Dept. Anatomy & Neuroscience & APC Microbiome Institute, University College Cork, College Rd., Cork, Ireland,
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, 5057 Woodward Ave, Detroit, MI 48202,
| |
Collapse
|
19
|
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Front Behav Neurosci 2019; 13:7. [PMID: 30814939 PMCID: PMC6381068 DOI: 10.3389/fnbeh.2019.00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has limited therapeutic outcomes. Besides, the immature brain of premature children is at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible to it and less responsive to protective/therapeutical interventions. Here, we model in male and female C57BL/6 mice, the impact of neonatal HI and the protective effects of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation. From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received either NH or left undisturbed. HI brain damage occurred by permanent left carotid occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The behavioral and functional screening of the pups at weaning (PND23) and their long-term outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows: somatic development (weight), sensorimotor functions (reflexes, rods and hanger tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both sexes but affected motor development, sensorimotor functions, induced hyperactivity at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex- and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of HI males was normalized at adulthood. HI increased neophobia and other anxiety-like behaviors in males but emotionality in females. Both sexes showed worse short/long-term learning, but memory was more affected in males. Striking neuroprotective effects of NH were found, with significantly lower injury scores, mostly in HI males. At the functional level, NH reversed the impaired reflex responses and improved memory performances in hippocampal-dependent spatial-learning tasks, especially in males. Finally, neuropathological correlates referred to atrophy, neuronal densities and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus, neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying the sex- and age- functional impacts of these risk/protection interventions on sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Durán-Carabali L, Arcego D, Sanches E, Odorcyk F, Marques M, Tosta A, Reichert L, Carvalho A, Dalmaz C, Netto C. Preventive and therapeutic effects of environmental enrichment in Wistar rats submitted to neonatal hypoxia-ischemia. Behav Brain Res 2019; 359:485-497. [DOI: 10.1016/j.bbr.2018.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
|
21
|
Confortim HD, Deniz BF, de Almeida W, Miguel PM, Bronauth L, Vieira MC, de Oliveira BC, Pereira LO. Neonatal hypoxia-ischemia caused mild motor dysfunction, recovered by acrobatic training, without affecting morphological structures involved in motor control in rats. Brain Res 2018; 1707:27-44. [PMID: 30448443 DOI: 10.1016/j.brainres.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.
Collapse
Affiliation(s)
- Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050-170 Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
23
|
Deniz BF, Confortim HD, Deckmann I, Miguel PM, Bronauth L, de Oliveira BC, Vieira MC, Dos Santos TM, Bertó CG, Hartwig J, Wyse ÂTDS, Pereira LO. Gestational folic acid supplementation does not affects the maternal behavior and the early development of rats submitted to neonatal hypoxia-ischemia but the high supplementation impairs the dam's memory and the Na +, K + - ATPase activity in the pup's hippocampus. Int J Dev Neurosci 2018; 71:181-192. [PMID: 30315904 DOI: 10.1016/j.ijdevneu.2018.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Folic acid (FA) is a B-complex vitamin important to the development of the fetus, being supplemented during pregnancy. Our recent findings showed that gestation supplementation (normal and excess doses) prevented the cognitive deficits and BDNF imbalance in adult rats that were submitted to neonatal hypoxia-ischemia (HI). To better understand this protective effect, the present study aimed to evaluate whether FA supplementation could be related to (1) maternal behavior, memory and Na+, K+ - ATPase activity in the hippocampus of the dams; (2) on somatic growth, early neurobehavioral development and Na+, K+ - ATPase activity in the hippocampus of the offspring; and (3) the effects of this supplementation in pups submitted to neonatal HI. Pregnant Wistar rats were divided into three groups, according to the diet they received during gestation: standard diet (SD), supplemented with 2 mg/kg of FA (FA2 - normal dose) and supplemented with 20 mg/kg of FA (FA20 -excessive dose). At the 7th PND pups were submitted to the Levine-Vannucci model of HI. During weaning the maternal behavior, the somatic growth and the neurobehavior development of pups were assessed. After weaning, the memory of the dams (by the Ox-maze task) and the Na+, K+ - ATPase activity in the hippocampus of both dams and offspring were evaluated. Considering the dams (1), both doses of FA did not alter the maternal behavior or the Na+, K+ - ATPase activity in the hippocampus, but a memory deficit was observed in the high FA-supplemented mothers. Considering the offspring (2), both FA doses did not affect the somatic growth or the neurobehavior development, but the FA20 pups had a decreased Na+, K+ - ATPase activity in the hippocampus. The FA supplementation did not change the parameters evaluated in the HI rats (3) and did not prevent the decreased Na+, K+ - ATPase activity in the hippocampus of the HI pups. These results indicate that normal FA supplementation dose does not influence the maternal behavior and memory and does not impact on the offspring early development in rats. Further studies are needed to confirm the effects of the high FA supplementation dose in the dams' memory and in the Na+, K+ - ATPase activity in the hippocampus of the offspring.
Collapse
Affiliation(s)
- Bruna Ferrary Deniz
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Heloísa Deola Confortim
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Iohanna Deckmann
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Loise Bronauth
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Bruna Chaves de Oliveira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Milene Cardoso Vieira
- Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Carolina Gessinger Bertó
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Josiane Hartwig
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ângela Terezinha de Souza Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Prédio Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, sala 107, 90050- 170, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050- 170, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Miguel PM, Deniz BF, Deckmann I, Confortim HD, Diaz R, Laureano DP, Silveira PP, Pereira LO. Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: Potential contribution for attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:547-560. [PMID: 28105895 DOI: 10.1080/15622975.2016.1273551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruna Ferrary Deniz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iohanna Deckmann
- b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Heloísa Deola Confortim
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ramiro Diaz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Daniela Pereira Laureano
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Pelufo Silveira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,d Ludmer Centre for Neuroinformatics and Mental Health , Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Lenir Orlandi Pereira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
25
|
Cafeteria diet during the gestation period programs developmental and behavioral courses in the offspring. Int J Dev Neurosci 2018; 68:45-52. [DOI: 10.1016/j.ijdevneu.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/21/2022] Open
|
26
|
Abstract
Hypoxic-ischemic (HI) encephalopathy is a leading cause of dire mortality and morbidity in neonates. Unfortunately, no effective therapies have been developed as of yet. Oxidative stress plays a critical role in pathogenesis and progression of neonatal HI. Previously, as a Nrf2 activator, tert-butylhydroquinone (TBHQ) has been demonstrated to exert neuroprotection on brain trauma and ischemic stroke models, as well as oxidative stress-induced cytotoxicity in neurons. It is, however, still unknown whether TBHQ administration can protect against oxidative stress in neonatal HI brain injury. This study was undertaken to determine the neuroprotective effects and mechanisms of TBHQ post-treatment on neonatal HI brain damage. Using a neonatal HI rat model, we demonstrated that TBHQ markedly abated oxidative stress compared to the HI group, as evidenced by decreased oxidative stress indexes, enhanced Nrf2 nuclear accumulation and DNA binding activity, and up-regulated expression of Nrf2 downstream antioxidative genes. Administration of TBHQ likewise significantly suppressed reactive gliosis and release of inflammatory cytokines, and inhibited apoptosis and neuronal degeneration in the neonatal rat cerebral cortex. In addition, infarct size and neuronal damage were attenuated distinctly. These beneficial effects were accompanied by improved neurological reflex and motor coordination as well as amelioration of spatial learning and memory deficits. Overall, our results provide the first documentation of the beneficial effects of TBHQ in neonatal HI model, in part conferred by activation of Nrf2 mediated antioxidative signaling pathways.
Collapse
|
27
|
Oliveira C, Scarabelot VL, Vercelino R, Silveira NP, Adachi LN, Regner GG, Silva LS, Macedo IC, Souza A, Caumo W, Torres IL. Morphine exposure and maternal deprivation during the early postnatal period alter neuromotor development and nerve growth factor levels. Int J Dev Neurosci 2017; 63:8-15. [DOI: 10.1016/j.ijdevneu.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Carla Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Vanessa L. Scarabelot
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Rafael Vercelino
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Centro Universitário FADERGSPorto AlegreRSBrazil
- Health and Wellness School Laureate International Universities
| | - Natalia P. Silveira
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Lauren N.S. Adachi
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Gabriela G. Regner
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Lisiane S. Silva
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Isabel Cristina Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Universidade Federal do PampaAvenida Antônio Trilha, 184797300‐000São GabrielRSBrazil
| | - Andressa Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Wolnei Caumo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Iraci L.S. Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré‐ClínicasDepartamento de FarmacologiaInstituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
- Programa de Pós‐Graduaçăo em Medicina: Ciências MédicasFaculdade de MedicinaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Unidade de Experimentação Animal e Grupo de Pesquisa e Pós‐Graduação, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| |
Collapse
|
28
|
Sex differences in somatic and sensory motor development after neonatal anoxia in Wistar rats. Behav Brain Res 2017; 333:242-250. [DOI: 10.1016/j.bbr.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022]
|
29
|
Yang R, Hu K, Chen J, Zhu S, Li L, Lu H, Li P, Dong R. Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci Lett 2017; 651:207-215. [PMID: 28501693 DOI: 10.1016/j.neulet.2017.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/16/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Global cerebral ischemia/reperfusion (I/R) induces selective neuronal injury in CA1 region of hippocampus, leading to severe impairment in behavior, learning and memory functions. However, the molecular mechanism underlying the processes was not elucidated clearly. RIP3 is a key molecular switch connecting apoptosis, necrosis and necroptosis. DAXX, as a novel substrate of RIP3, plays a vital role in ischemia-induced neuronal death. The aim of this study is to investigate the role and mechanism of RIP3/DAXX signaling pathway on neurons in CA1 region of the rat hippocampus after cerebral I/R. Global cerebral ischemia was induced by the method of four-vessel occlusion. RIP1 specific inhibitor Necrostatin-1 was administered by intracerebroventricular injection 1h before ischemia. Open-field, closed-field, and Morris water maze tests were performed respectively to examine the anxiety and cognitive behavior in each group. Hematoxylin and eosinstaining was used to examine the survival of hippocampal CA1 pyramidal neurons. Western blot or immunoprecipitation were carried to detect protein expression, phosphorylation, and interaction. We found that pre-treatment with Nec-1 protected locomotive ability, relieved anxiety behavior, and improved cognitive ability in the rats subjected to cerebral I/R. In addition Moreover, Nec-1 decreased significantly the dead rate of neurons in hippocampal CA1 region after cerebral I/R through suppressing RIP1-RIP3 interaction and RIP3 activation along with RIP3-DAXX interaction, and then blocked DAXX translocation from nucleaus to cytoplasm, which resulted in the inactiviation of DAXX. We concluded that pre-treatment with Nec-1 can protect neurons in the hippocampal CA1 region against ischemic damage through the RIP3-DAXX signaling pathway.
Collapse
Affiliation(s)
- Rongli Yang
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Kun Hu
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Jieyun Chen
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Shiguang Zhu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Lei Li
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Hailong Lu
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Pingjing Li
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China
| | - Ruiguo Dong
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
30
|
Environmental enrichment reduces brain damage in hydrocephalic immature rats. Childs Nerv Syst 2017; 33:921-931. [PMID: 28382436 DOI: 10.1007/s00381-017-3403-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 03/27/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE We investigate the effects of environmental enrichment (EE) on morphological alterations in different brain structures of pup rats submitted to hydrocephalus condition. METHODS Hydrocephalus was induced in 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. Ventricular dilatation and magnetization transfer to analyze myelin were assessed by magnetic resonance. Hydrocephalic and control rats exposed to EE (n = 10 per group) were housed in cages with a tunnel, ramp, and colored plastic balls that would emit sound when touched. The walls of the housing were decorated with colored adhesive tape. Moreover, tactile and auditory stimulation was performed daily throughout the experiment. Hydrocephalic and control rats not exposed to EE (n = 10 per group) were allocated singly in standard cages. All animals were weighed daily and exposed to open-field conditions every 2 days until the end of the experiment when they were sacrificed and the brains removed for histology and immunohistochemistry. Solochrome cyanine staining was performed to assess the thickness of the corpus callosum. The glial fibrillary acidic protein method was used to evaluate reactive astrocytes, and the Ki67 method to assess cellular proliferation in the subventricular zone. RESULTS The hydrocephalic animals exposed to EE showed better performance in Open Field tests (p < 0.05), while presenting lower weight gain. In addition, these animals showed better myelination as revealed by magnetization transfer (p < 0.05). Finally, the EE group showed a reduction in reactive astrocytes by means of glial fibrillary acidic protein immunostaining and preservation of the proliferation potential of progenitor cells. CONCLUSION The results suggest that EE can protect the developing brain against damaging effects caused by hydrocephalus.
Collapse
|
31
|
Durán-Carabali LE, Arcego DM, Odorcyk FK, Reichert L, Cordeiro JL, Sanches EF, Freitas LD, Dalmaz C, Pagnussat A, Netto CA. Prenatal and Early Postnatal Environmental Enrichment Reduce Acute Cell Death and Prevent Neurodevelopment and Memory Impairments in Rats Submitted to Neonatal Hypoxia Ischemia. Mol Neurobiol 2017; 55:3627-3641. [DOI: 10.1007/s12035-017-0604-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/11/2022]
|
32
|
Idrus NM, Breit KR, Thomas JD. Dietary choline levels modify the effects of prenatal alcohol exposure in rats. Neurotoxicol Teratol 2017; 59:43-52. [PMID: 27888055 PMCID: PMC5770193 DOI: 10.1016/j.ntt.2016.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD.
Collapse
Affiliation(s)
- Nirelia M Idrus
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Kristen R Breit
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA.
| |
Collapse
|
33
|
Zhang X, Chen XP, Lin JB, Xiong Y, Liao WJ, Wan Q. Effect of enriched environment on angiogenesis and neurological functions in rats with focal cerebral ischemia. Brain Res 2016; 1655:176-185. [PMID: 27818208 DOI: 10.1016/j.brainres.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the effect of enriched environment (EE) on cerebral angiogenesis after ischemia-reperfusion injury. Middle cerebral artery occlusion (MCAO) followed by reperfusion was performed in rats to set up an animal model of ischemia-reperfusion injury. In a set of behavioral tests, we demonstrated that the animals in the IEE (ischemia + enriched environment) group exhibited significantly improved neurological functions compared to those in the standard housing condition group. In consistent with the functional tests, smaller infarction volumes were observed in the animals of IEE group. Laser scanning confocal microscopy and 3D quantitative analysis of cerebral microvessels revealed that EE treatment increased the total vessel surface area and number of branch point in the ischemic boundary zone. IgG extraction assay showed that the blood brain barrier (BBB) leakage in the ischemic brain was attenuated after EE treatment. EE treatment also enhanced endothelial cells (ECs) proliferation and increased the expression levels of VEGF and its receptor Flk-1 after ischemia-reperfusion injury. Analyses of Spearman's correlation coefficients indicated a correlation of mNSS scores with enhanced cerebral angiogenesis. Together, the results suggest that EE treatment-induced cerebral angiogenesis may contribute to the improved neurological outcome of stroke animals after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiu-Ping Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun-Bin Lin
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Xiong
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei-Jing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Qi Wan
- Department of Physiology, Center for Brain Clinic, Zhongnan Hospital, Collaborative Innovation Center for Brain Science, School of Medicine, Wuhan University, Wuhan 430071, China.
| |
Collapse
|