1
|
Omasa T, Sawamoto A, Nakajima M, Okuyama S. Anti-Inflammatory and Neurotrophic Factor Production Effects of 3,5,6,7,8,3',4'-Heptamethoxyflavone in the Hippocampus of Lipopolysaccharide-Induced Inflammation Model Mice. Molecules 2024; 29:5559. [PMID: 39683718 DOI: 10.3390/molecules29235559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has been identified as a defense response in the body; however, a chronic inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads to the brain and is suggested to be closely associated with diseases of the central nervous system. HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia; however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the present study, we examined the effects of HMF in a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial activation in the brains of acute inflammation model mice two days after LPS administration. In addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phosphorylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in the brains of model mice with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Toshiki Omasa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| |
Collapse
|
2
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
4
|
Wu JJ, Zhang L, Liu D, Xia J, Yang Y, Tang F, Chen L, Ao H, Peng C. Ginsenoside Rg1, lights up the way for the potential prevention of Alzheimer's disease due to its therapeutic effects on the drug-controllable risk factors of Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116955. [PMID: 37536646 DOI: 10.1016/j.jep.2023.116955] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Shen Nong, BenCao Jing, and Compendium of Materia Medica (Bencao Gangmu), Panax ginseng, and its prescriptions have been used for the treatment of dementia, depression, weight loss, Xiaoke disease (similar to diabetes), and vertigo. All these diseases are associated with the drug-controllable risk factors for Alzheimer's disease (AD), including depression, obesity, diabetes, and hypertension. Ginsenoside Rg1, one of the main active ingredients of P. ginseng and its congener Panax notoginseng, possesses therapeutic potentials against AD and associated diseases. This suggests that ginsenoside Rg1 might have the potential for AD prevention and treatment. Although the anti-AD effects of ginsenoside Rg1 have received more attention, a systematic review of its effects on depression, obesity, diabetes, and hypertension is not available. AIM OF THE REVIEW This systematic literature review comprehensively summarized existing literature on the therapeutic potentials of ginsenoside Rg1 in AD prevention for the propose of providing a foundation of future research aimed at enabling the use of such drugs in clinical practice. METHODS Information on ginsenoside Rg1 was collected from relevant published articles identified through a literature search in electronic scientific databases (PubMed, Science Direct, and Google Scholar). The keywords used were "Ginsenoside Rg1," "Panax ginseng," "Source," "Alzheimer's disease," "Brain disorders," "Depression," "Obesity," "Diabetes," and "Hypertension." RESULTS The monomer ginsenoside Rg1 can be relatively easily obtained and has therapeutic potentials against AD. In vitro and in vivo experiments have demonstrated the therapeutic potentials of ginsenoside Rg1 against the drug-controllable risk factors of AD including depression, obesity, diabetes, and hypertension. Thus, ginsenoside Rg1 alleviates diseases resulting from AD risk factors by regulating multiple targets and pathways. CONCLUSIONS Ginsenoside Rg1 has the potentials to prevent AD by alleviating depression, obesity, diabetes, and hypertension.
Collapse
Affiliation(s)
- Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Qiu D, Liu T, Qianping W. Upregulation of Pin1 contributes to alleviation of cognitive dysfunction in diabetic mice. Brain Behav 2023; 13:e3336. [PMID: 37990376 PMCID: PMC10726915 DOI: 10.1002/brb3.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aimed to explore the molecular mechanism underlying the role of Pin1 in cognitive dysfunction in diabetic mice. METHODS Using a streptozotocin-induced diabetic mouse model, an adeno-associated virus carrying the Pin1 gene was used to upregulate Pin1 expression in the hippocampus of diabetic mice. Animal behavior tests and molecular biology techniques were further used to explore the role of Pin1 in cognitive dysfunction in diabetic mice. RESULTS Our study demonstrated that upregulation of Pin1 expression increased the phosphorylation of AKT and insulin receptor substrate 1 downstream signaling molecules of the IR-IGF1R pathway, increased the phosphorylation of GSK-3β, and concomitantly decreased the phosphorylation of Tau in the hippocampus of diabetic mice, thereby improving the ultrastructural pathology of the hippocampus and further alleviating diabetes-related cognitive impairment. CONCLUSION Pin1 can improve cognitive dysfunction in diabetic mice.
Collapse
Affiliation(s)
- Dan Qiu
- Department of GerontologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tong Liu
- Bishan District Traditional Chinese Medical HospitalChongqingChina
| | - Wei Qianping
- Department of GerontologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Yang J, Yang N, Zhao H, Qiao Y, Li Y, Wang C, Lim KL, Zhang C, Yang W, Lu L. Adipose transplantation improves olfactory function and neurogenesis via PKCα-involved lipid metabolism in Seipin Knockout mice. Stem Cell Res Ther 2023; 14:239. [PMID: 37674230 PMCID: PMC10483743 DOI: 10.1186/s13287-023-03463-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Lipodystrophy-associated metabolic disorders caused by Seipin deficiency lead to not only severe lipodystrophy but also neurological disorders. However, the underlying mechanism of Seipin deficiency-induced neuropathy is not well elucidated, and the possible restorative strategy needs to be explored. METHODS In the present study, we used Seipin knockout (KO) mice, combined with transcriptome analysis, mass spectrometry imaging, neurobehavior test, and cellular and molecular assay to investigate the systemic lipid metabolic abnormalities in lipodystrophic mice model and their effects on adult neurogenesis in the subventricular zone (SVZ) and olfactory function. After subcutaneous adipose tissue (AT) transplantation, metabolic and neurological function was measured in Seipin KO mice to clarify whether restoring lipid metabolic homeostasis would improve neurobehavior. RESULTS It was found that Seipin KO mice presented the ectopic accumulation of lipids in the lateral ventricle, accompanied by decreased neurogenesis in adult SVZ, diminished new neuron formation in the olfactory bulb, and impaired olfactory-related memory. Transcriptome analysis showed that the differentially expressed genes (DEGs) in SVZ of adult Seipin KO mice were significantly enriched in lipid metabolism. Mass spectrometry imaging showed that the levels of glycerophospholipid and diglyceride (DG) were significantly increased. Furthermore, we found that AT transplantation rescued the abnormality of peripheral metabolism in Seipin KO mice and ameliorated the ectopic lipid accumulation, concomitant with restoration of the SVZ neurogenesis and olfactory function. Mechanistically, PKCα expression was up-regulated in SVZ tissues of Seipin KO mice, which may be a potential mediator between lipid dysregulation and neurological disorder. DG analogue (Dic8) can up-regulate PKCα and inhibit the proliferation and differentiation of neural stem cells (NSCs) in vitro, while PKCα inhibitor can block this effect. CONCLUSION This study demonstrates that Seipin deficiency can lead to systemic lipid disorder with concomitant SVZ neurogenesis and impaired olfactory memory. However, AT restores lipid homeostasis and neurogenesis. PKCα is a key mediator mediating Seipin KO-induced abnormal lipid metabolism and impaired neurogenesis in the SVZ, and inhibition of PKCα can restore the impaired neurogenesis. This work reveals the underlying mechanism of Seipin deficiency-induced neurological dysfunction and provides new ideas for the treatment of neurological dysfunction caused by metabolic disorders.
Collapse
Affiliation(s)
- Jing Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Na Yang
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Huifang Zhao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yan Qiao
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Yanqiu Li
- Analytical Instrumentation Center and State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Research Center of Shanxi Medical University, Shanxi Key Laboratory of Animal and Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Cancer Hospital, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| | - Li Lu
- Department of Anatomy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
7
|
Hodges TE, Puri TA, Blankers SA, Qiu W, Galea LAM. Steroid hormones and hippocampal neurogenesis in the adult mammalian brain. VITAMINS AND HORMONES 2021; 118:129-170. [PMID: 35180925 DOI: 10.1016/bs.vh.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hippocampal neurogenesis persists across the lifespan in many species, including rodents and humans, and is associated with cognitive performance and the pathogenesis of neurodegenerative disease and psychiatric disorders. Neurogenesis is modulated by steroid hormones that change across development and differ between the sexes in rodents and humans. Here, we discuss the effects of stress and glucocorticoid exposure from gestation to adulthood as well as the effects of androgens and estrogens in adulthood on neurogenesis in the hippocampus. Throughout the review we highlight sex differences in the effects of steroid hormones on neurogenesis and how they may relate to hippocampal function and disease. These data highlight the importance of examining age and sex when evaluating the effects of steroid hormones on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Travis E Hodges
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tanvi A Puri
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Jing GC, Liu D, Liu YQ, Zhang MR. Nao-Fu-Cong ameliorates diabetic cognitive dysfunction by inhibition of JNK/CHOP/Bcl2-mediated apoptosis in vivo and in vitro. Chin J Nat Med 2021; 18:704-713. [PMID: 32928514 DOI: 10.1016/s1875-5364(20)60009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/18/2022]
Abstract
Chinese herbal compound Nao-Fu-Cong (NFC) has been mainly used to treat cognitive disorders in Traditional Chinese Medicine (TCM). The present study aimed to investigate whether its neuroprotective effects might be related to the inhibition of JNK/CHOP/Bcl2-mediated apoptosis pathway or not. We randomly assigned STZ (60 mg·kg-1)-induced diabetic rats into control group, diabetic model group and NFC groups (low-dose, medium-dose and high-dose). The primary culture of hippocampal neurons were transferred into different culture media on the third day. The cells were then divided into control group, high-glucose group, NFC (low-dose, medium-dose and high-dose) groups, CHOP si-RNA intervention group, JNK pathway inhibitor SP600125 group and oxidative stress inhibitor N-acetylcysteine (NAC) group. NFC significantly improved the cognitive function of diabetic rats, and had neuroprotective effect on hippocampal neurons cultured in high glucose. Further research results showed that NFC could reduce the apoptosis of hippocampal neurons in rats with diabetic cognitive dysfunction. NFC had inhibitory effects on CHOP/JNK apoptosis pathway induced by high glucose, and also decreased the levels of ROS and increased the mitochondrial membrane potential. These suggested that the neuroprotective effect of NFC might be related to the inhibition of CHOP and JNK apoptotic signaling pathways, and the cross pathway between oxidative stress and mitochondrial damage pathway.
Collapse
Affiliation(s)
- Guang-Chan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yu-Qin Liu
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meng-Ren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
9
|
Pan Y, Tian D, Wang H, Zhao Y, Zhang C, Wang S, Xie D, Zhang D, Zhu Y, Zhang Y. Inhibition of Perforin-Mediated Neurotoxicity Attenuates Neurological Deficits After Ischemic Stroke. Front Cell Neurosci 2021; 15:664312. [PMID: 34262436 PMCID: PMC8274971 DOI: 10.3389/fncel.2021.664312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Perforin-mediated cytotoxicity plays a crucial role in microbial defense, tumor surveillance, and primary autoimmune disorders. However, the contribution of the cytolytic protein perforin to ischemia-induced secondary tissue damage in the brain has not been fully investigated. Here, we examined the kinetics and subpopulations of perforin-positive cells and then evaluated the direct effects of perforin-mediated cytotoxicity on outcomes after ischemic stroke. Using flow cytometry, we showed that perforin+CD45+ immune cells could be detected at 12 h and that the percentage of these cells increased largely until on day 3 and then significantly declined on day 7. Surprisingly, the percentage of Perforin+CD45+ cells also unexpectedly increased from day 7 to day 14 after ischemic stroke in Perforin1-EGFP transgenic mice. Our results suggested that Perforin+CD45+ cells play vital roles in the ischemic brain at early and late stages and further suggested that Perforin+CD45+ cells are a heterogeneous population. Surprisingly, in addition to CD8+ T cells, NK cells, and NKT cells, central nervous system (CNS)-resident immune microglia, which are first triggered and activated within minutes after ischemic stroke in mice, also secreted perforin during ischemic brain injury. In our study, the percentage of perforin+ microglia increased from 12 h after ischemic stroke, increased largely until on day 3 after ischemic stroke, and then moderately declined from days 3 to 7. Intriguingly, the percentage of perforin+ microglia also dramatically increased from days 7 to 14 after ischemic stroke. Furthermore, compared with wild-type littermates, Perforin 1-/- mice exhibited significant increases in the cerebral infarct volume, neurological deficits, and neurogenesis and inhibition of neurotoxic astrogliosis. Interestingly, the number of CD45+CD3+ T cells was significantly decreased in Perforin 1-/- mice compared with their wild-type littermates, especially the number of γδ T cells. In addition, Perforin 1-/- mice had lower levels of IL-17 than their wild-type littermates. Our results identified a critical function of perforin-mediated neurotoxicity in the ischemic brain, suggesting that targeting perforin-mediated neurotoxicity in brain-resident microglia and invading perforin+CD45+ immune cells may be a potential strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yuhualei Pan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Clinical Research Institute, Beijing, China
| | - Dan Tian
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Wang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yushang Zhao
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Song Wang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Beijing Clinical Research Institute, Beijing, China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
11
|
Ebrahimpour S, Esmaeili A, Dehghanian F, Beheshti S. Effects of quercetin-conjugated with superparamagnetic iron oxide nanoparticles on learning and memory improvement through targeting microRNAs/NF-κB pathway. Sci Rep 2020; 10:15070. [PMID: 32934245 PMCID: PMC7493930 DOI: 10.1038/s41598-020-71678-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) have an ameliorative effect on diabetes-induced memory impairment. The current study aimed to compare the effect of quercetin (QC) and QCSPIONs on inflammation-related microRNAs and NF-κB signaling pathways in the hippocampus of diabetic rats. The expression levels of miR-146a, miR-9, NF-κB, and NF-κB-related downstream genes, including TNF-α, BACE1, AβPP, Bax, and Bcl-2 were measured using quantitative real-time PCR. To determine the NF-κB activity, immunohistochemical expression of NF-κB/p65 phosphorylation was employed. Computer simulated docking analysis also performed to find the QC target proteins involved in the NF-κB pathway. Results indicate that diabetes significantly upregulated the expression levels of miR-146a, miR-9, TNF-α, NF-κB, and subsequently AβPP, BACE1, and Bax. Expression analysis shows that QCSPIONs are more effective than pure QC in reducing the expression of miR-9. Interestingly, QCSPIONs reduce the pathological activity of NF-κB and subsequently normalize BACE1, AβPP, and the ratio of Bax/Bcl-2 expression better than pure QC. Comparative docking analyses also show the stronger binding affinity of QC to IKK and BACE1 proteins compared to specific inhibitors of each protein. In conclusion, our study suggests the potent efficacy of QCSPIONs as a promising drug delivery system in memory improvement through targeting the NF-κB pathway.
Collapse
Affiliation(s)
- Shiva Ebrahimpour
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran.
| | - Fariba Dehghanian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, HezarJarib Street, 81746-73441, Isfahan, Iran
| |
Collapse
|
12
|
Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev 2020; 62:101095. [PMID: 32535272 DOI: 10.1016/j.arr.2020.101095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most common metabolic disorders, which are strongly related to Alzheimer's disease (AD) in aging. Diabetes and obesity can lead to the accumulation of amyloid plaques, neurofibrillary tangles (NFTs), and other symptoms of AD through several pathways, including insulin resistance, hyperglycemia, hyperinsulinemia, chronic inflammation, oxidative stress, adipokines dysregulation, and vascular impairment. Currently, the use of polyphenols has been expanded in animal models and in-vitro studies because of their comparatively negligible adverse effects. Among them, quercetin (QT) is one of the most abundant polyphenolic flavonoids, which is present in fruits and vegetables and displays many biological, health-promoting effects in a wide range of diseases. The low bioavailability and poor solubility of QT have also led researchers to make various QT-involved nanoparticles (NPs) to overcome these limitations. In this paper, we review significant molecular mechanisms induced by diabetes and obesity that increase AD pathogenesis. Then, we summarize in vitro, in vivo, and clinical evidence regarding the anti-Alzheimer, anti-diabetic and anti-obesity effects of QT. Finally, QT in pure and combination form using NPs has been suggested as a promising therapeutic agent for future studies.
Collapse
|
13
|
Diabetic encephalopathy causes the imbalance of neural activities between hippocampal glutamatergic neurons and GABAergic neurons in mice. Brain Res 2020; 1742:146863. [PMID: 32360099 DOI: 10.1016/j.brainres.2020.146863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Diabetic encephalopathy is a severe diabetes-related complication in the central nervous system (CNS) that is characterized by the impairment of neurochemical and structural changes leading to cognitive dysfunction. Its cellular and molecular mechanisms are still unclear and clinical approaches are still lacking of promising therapies. In this study, we have investigated the changes of different hippocampal neurons during diabetic encephalopathy in mouse models of diabetes by simultaneously analyzing the activities and synaptic transmission of glutamatergic neurons and GABAergic neurons in brain slices. Compared with the data from a group of control, diabetic encephalopathy permanently impairs the excitability of GABAergic neurons and synaptic transmission mediated by γ-aminobutyric acid (GABA). However, glutamatergic neurons appear to be more excited. Our findings highlight the critical role of the dysfunction of GABAergic neurons and glutamatergic neurons during diabetic encephalopathy in hippocampus to neural impairment as well as a strategy to prevent the function of progress of diabetic encephalopathy by protecting central neurons.
Collapse
|
14
|
Myrtus communis subsp. communis improved cognitive functions in ovariectomized diabetic rats. Gene 2020; 744:144616. [PMID: 32222531 DOI: 10.1016/j.gene.2020.144616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
AIM The purpose of this study was to investigate the possible effects of Myrtus communis subsp. communis (MC) on cognitive impairment in ovariectomized diabetic rats. MATERIAL AND METHOD Female Sprague-Dawley rats were divided into 5 groups consisting of 15 rats each; Control (C), Diabetes (D), Ovariectomy and diabetes (OVX + D), Ovariectomy, diabetes and donepezil (OVX + D + Don), Ovariectomy, diabetes and Myrtus communis subsp. communis (OVX + D + MC). Blood glucose measurements were made at the beginning and end of the experiments. The animals underwent the novel object recognition test (NORT) and their performance was evaluated. In hippocampal tissues; amyloid beta (Aβ) and neprilysin levels, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT) activities, polysialylated neural cell adhesion molecule (PSA-NCAM), α7 subunit of neuronal nicotinic acetylcholine receptor (α7-nAChR) and brain derived neurotrophic factor (BDNF) gene expressions were examined. RESULTS Animals with ovariectomy and diabetes showed increased levels of blood glucose, AChE activity and Aβ levels, and decreased neprilysin levels, ChAT activity, α7-nAChR, PSA-NCAM and BDNF gene expressions in parallel with a decrease in NORT performance score. On the other hand, in the MC-treated OVX + D group, there was a significant decrease observed in blood glucose levels and AChE activities while there was improvement in NORT performances and an increase in hippocampal ChAT activity, neprilysin levels, α7-nAChR, PSA-NCAM and BDNF expressions. CONCLUSION These results suggest that MC extract could improve cognitive and neuronal functions with its anticholinesterase and antihyperglycemic properties.
Collapse
|
15
|
Hierro-Bujalance C, Del Marco A, José Ramos-Rodríguez J, Infante-Garcia C, Bella Gomez-Santos S, Herrera M, Garcia-Alloza M. Cell proliferation and neurogenesis alterations in Alzheimer's disease and diabetes mellitus mixed murine models. J Neurochem 2020; 154:673-692. [PMID: 32068886 DOI: 10.1111/jnc.14987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
The classic neuropathological features of Alzheimer's disease (AD) are accompanied by other complications, including alterations in adult cell proliferation and neurogenesis. Moreover recent studies have shown that traditional markers of the neurogenic process, such as doublecortin (DCX), may also be expressed in CD8+ T cells and ionized calcium-binding adaptor molecule 1 (Iba1+ ) microglia, in the close proximity to senile plaques, increasing the complexity of the condition. Altered glucose tolerance, observed in metabolic alteratioins, may accelerate the neurodegenerative process and interfere with normal adult cell proliferation and neurogenesis. To further explore the role of metabolic disease in AD, we analyzed cell proliferation and neurogenesis using 5'-bromo-2'-deoxyuridine and DCX immunohistochemistry in three different mouse models of AD and metabolic alterations: APP/PS1xdb/db mice, APP/PS1 mice on a long-term high-fat diet, and APP/PS1 mice treated with streptozotozin. As reported previously, an overall reduction in cell proliferation and neurogenesis was observed after streptozotocin administration. In contrast, an increase in cell proliferation and neurogenesis was detected in neurogenic niches in 14- and 26-week-old APP/PS1xdb/db mice, accompanied by a slight increase in cortical cell proliferation. While a similar trend was observed in animals on a high-fat diet, differences were not statistically significant. We observed very few DCX+ /CD8+ cells and no DCX+ /Iba1+ cells were observed in the close proximity to senile plaques in any of the groups. Interestingly, metabolic parameters such as body weight and glucose and insulin levels were identified as reliable predictors of cell proliferation and neurogenesis in APP/PS1xdb/db mice. Furthermore, metabolic parameters were also associated with altered Aβ levels in the cortex and hippocampus of APP/PS1xdb/db mice. Altogether, our data suggest that metabolic disease may also interfere with central complications in AD.
Collapse
Affiliation(s)
- Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Juan José Ramos-Rodríguez
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Sara Bella Gomez-Santos
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain
| | - Marta Herrera
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, Edificio Andrés Segovia. C/Dr. Marañón 3, 3er piso, (11002) Cadiz. Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigación Biomédica e Innovación en Ciencias Biomédicas de la Provincia de Cadiz (INiBICA), Cadiz, Spain
| |
Collapse
|
16
|
Gómez-de Frutos MC, Laso-García F, Diekhorst L, Otero-Ortega L, Fuentes B, Jolkkonen J, Detante O, Moisan A, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M. Intravenous delivery of adipose tissue-derived mesenchymal stem cells improves brain repair in hyperglycemic stroke rats. Stem Cell Res Ther 2019; 10:212. [PMID: 31315686 PMCID: PMC6637493 DOI: 10.1186/s13287-019-1322-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background Over 50% of acute stroke patients have hyperglycemia, which is associated with a poorer prognosis and outcome. Our aim was to investigate the impact of hyperglycemia on behavioral recovery and brain repair of delivered human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) in a rat model of permanent middle cerebral artery occlusion (pMCAO). Methods Hyperglycemia was induced in rats by the administration of nicotinamide and streptozotocin. The rats were then subjected to stroke by a pMCAO model. At 48 h post-stroke, 1 × 106 hAD-MSCs or saline were intravenously administered. We evaluated behavioral outcome, infarct size by MRI, and brain plasticity markers by immunohistochemistry (glial fibrillary acidic protein [GFAP], Iba-1, synaptophysin, doublecortin, CD-31, collagen-IV, and α-smooth muscle actin [α-SMA]). Results The hyperglycemic group exhibited more severe neurological deficits; lesion size and diffusion coefficient were larger compared with the non-hyperglycemic rats. GFAP, Iba-1, and α-SMA were increased in the hyperglycemic group. The hyperglycemic rats administered hAD-MSCs at 48 h after pMCAO had improved neurological impairment. Although T2-MRI did not show differences in lesion size between groups, the rADC values were lower in the treated group. Finally, the levels of GFAP, Iba-1, and arterial wall thickness were lower in the treated hyperglycemic group than in the nontreated hyperglycemic group at 6 weeks post-stroke. Conclusions Our data suggest that rats with hyperglycemic ischemic stroke exhibit increased lesion size and impaired brain repair processes, which lead to impairments in behavioral recovery after pMCAO. More importantly, hAD-MSC administration induced better anatomical tissue preservation, associated with a good behavioral outcome. Electronic supplementary material The online version of this article (10.1186/s13287-019-1322-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mari Carmen Gómez-de Frutos
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Fernando Laso-García
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Luke Diekhorst
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Otero-Ortega
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Blanca Fuentes
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Olivier Detante
- Neurology Department, Stroke Unit, Grenoble Hospital, Grenoble, France.,Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, Grenoble, France
| | - Anaick Moisan
- Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, Grenoble, France.,Cell Therapy and Engineering Unit, EFS Auvergne Rhône Alpes, Saint-Ismier, France
| | - Arturo Martínez-Arroyo
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Department of Neurology and Stroke Center, Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonoma University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | | |
Collapse
|
17
|
Ebrahimpour S, Esmaeili A, Beheshti S. Effect of quercetin-conjugated superparamagnetic iron oxide nanoparticles on diabetes-induced learning and memory impairment in rats. Int J Nanomedicine 2018; 13:6311-6324. [PMID: 30349252 PMCID: PMC6188001 DOI: 10.2147/ijn.s177871] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus plays a causative role in cognitive decline. Newly, neuroprotective effects of flavonoids have been widely investigated in neurodegenerative diseases. Quercetin (QC) is a phyto-derived bioactive flavone with numerous beneficial activities. However, its limited permeability to cross the blood–brain barrier, low oral bioavailability, poor aqueous solubility, and rapid gastrointestinal digestion lead to the administration of high dose of QC in clinical application. Materials and methods In order to overcome these limitations, we conjugated QC with superparamagnetic iron oxide nanoparticles (QCSPIONs) and supplemented streptozotocin-induced diabetic rats with it to improve diabetes-related memory impairment. In this regard, 40 rats were distributed into five groups with eight animals: control, diabetes, and diabetes treated with SPIONs, QC, and QCSPIONs. All treatments (at the dose of 25 mg/kg) were dissolved in deionized water and gavaged for 35 consecutive days. Results At the end of the study, QCSPIONs possessed significantly better efficacy than free QC on the improvement of memory performance. In the Morris water maze test, QCSPIONs compared to free QC reduced much better the escape latency over training trials (P<0.01) and increased the time spent in the target quadrant in probe trial (P<0.001). In the passive avoidance test, it increased step-through latency (P<0.05) and reduced the time spent in the dark compartment (P<0.01). In addition, both free QC and QCSPIONs were able to prevent the changes in body weight and decrease blood glucose levels in diabetic rats (P<0.05). Conclusion Overall, according to these results, we conclude that QC in the conjugated state with lower dose offers significantly higher potency in ameliorating diabetes-related memory impairment. Thus, this study offers an effective combined therapy for improving learning and memory.
Collapse
Affiliation(s)
- Shiva Ebrahimpour
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Abolghasem Esmaeili
- Cell, Molecular Biology and Biochemistry Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran,
| | - Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
18
|
Okuyama S, Nakashima T, Nakamura K, Shinoka W, Kotani M, Sawamoto A, Nakajima M, Furukawa Y. Inhibitory Effects of Auraptene and Naringin on Astroglial Activation, Tau Hyperphosphorylation, and Suppression of Neurogenesis in the Hippocampus of Streptozotocin-Induced Hyperglycemic Mice. Antioxidants (Basel) 2018; 7:antiox7080109. [PMID: 30126250 PMCID: PMC6115810 DOI: 10.3390/antiox7080109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Auraptene, a citrus-related compound, exerts anti-inflammatory effects in peripheral tissues, and we demonstrated these effects in the brains of a lipopolysaccharide-injected systemic inflammation animal model and a brain ischemic mouse model. Naringin, another citrus-related compound, has been shown to exert antioxidant effects in several animal models. Hyperglycemia induces oxidative stress and inflammation and causes extensive damage in the brain; therefore, we herein evaluated the anti-inflammatory and other effects of auraptene and naringin in streptozotocin-induced hyperglycemic mice. Both compounds inhibited astroglial activation and the hyperphosphorylation of tau at 231 of threonine in neurons, and also recovered the suppression of neurogenesis in the dentate gyrus of the hippocampus in hyperglycemic mice. These results suggested that auraptene and naringin have potential effects as neuroprotective agents in the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Tatsumi Nakashima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Kumi Nakamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Wakana Shinoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Maho Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
19
|
Okuyama S, Shinoka W, Nakamura K, Kotani M, Sawamoto A, Sugawara K, Sudo M, Nakajima M, Furukawa Y. Suppressive effects of the peel of Citrus kawachiensis (Kawachi Bankan) on astroglial activation, tau phosphorylation, and inhibition of neurogenesis in the hippocampus of type 2 diabetic db/db mice. Biosci Biotechnol Biochem 2018; 82:1384-1395. [DOI: 10.1080/09168451.2018.1469396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
ABSTRACT
We previously reported that the dried peel powder of Citrus kawachiensis exerted anti-inflammatory effects in the brain in several animal models. Hyperglycemia induces inflammation and oxidative stress and causes massive damage in the brain; therefore, we herein examined the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the streptozotocin-induced hyperglycemia mice model and in the type 2 diabetic db/db mice model. The C. kawachiensis administration inhibited microglial activation in the hippocampus in the streptozotocin-injected mice. Moreover, The C. kawachiensis treatment inhibited astroglial activation in the hippocampus and the hyperphosphorylation of tau at 231 of threonine and 396 of serine in hippocampal neurons, and also relieved the suppression of neurogenesis in the dentate gyrus of the hippocampus in the db/db mice. It was suggested that the dried peel powder of C. kawachiensis exerts anti-inflammatory and neuroprotective effects in the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Wakana Shinoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kumi Nakamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Maho Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Kuniaki Sugawara
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Masahiko Sudo
- Department of Planning and Development, Ehime Beverage Inc. , Matsuyama, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University , Matsuyama, Japan
| |
Collapse
|
20
|
Gault VA, Hölscher C. GLP-1 receptor agonists show neuroprotective effects in animal models of diabetes. Peptides 2018; 100:101-107. [PMID: 29412810 DOI: 10.1016/j.peptides.2017.11.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
Enzyme-resistant receptor agonists of the incretin hormone glucagon-like peptide-1 (GLP-1) have shown positive therapeutic effects in people with type 2 diabetes mellitus (T2DM). T2DM has detrimental effects on brain function and impairment of cognition and memory formation has been described. One of the underlying mechanisms is most likely insulin de-sensitization in the brain, as insulin improves cognitive impairments and enhances learning. Treatment with GLP-1 receptor agonists improves memory formation and impairment of synaptic plasticity observed in animal models of diabetes-obesity. Furthermore, it has been shown that diabetes impairs growth factor signalling in the brain and reduces energy utilization in the cortex. Inflammation and apoptotic signalling was also increased. Treatment with GLP-1 receptor agonists improved neuronal growth and repair and reduced inflammation and apoptosis as well as oxidative stress. In comparison with the diabetes drug metformin, GLP-1 receptor agonists were able to improve glycemic control and reverse brain impairments, whereas metformin only normalized blood glucose levels. Clinical studies in non-diabetic patients with neurodegenerative disorders showed neuroprotective effects following administration with GLP-1 receptor agonists, demonstrating that neuroprotective effects are independent of blood glucose levels.
Collapse
Affiliation(s)
- Victor A Gault
- School of Biomedical Sciences, University of University, Coleraine, BT52 1SA, UK
| | - Christian Hölscher
- Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YQ, UK.
| |
Collapse
|
21
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
22
|
Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1037-1045. [PMID: 27156888 DOI: 10.1016/j.bbadis.2016.04.017] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
Abstract
Cognitive decline in chronic diabetic patients is a less investigated topic. Diabetes and obesity are among the modifiable risk factors for Alzheimer's disease (AD), the most common form of dementia. Studies have identified several overlapping neurodegenerative mechanisms, including oxidative stress, mitochondrial dysfunction, and inflammation that are observed in these disorders. Advanced glycation end products generated by chronic hyperglycemia and their receptor RAGE provide critical links between diabetes and AD. Peripheral inflammation observed in obesity leads to insulin resistance and type 2 diabetes. Although the brain is an immune-privileged organ, cross-talks between peripheral and central inflammation have been reported. Damage to the blood brain barrier (BBB) as seen with aging can lead to infiltration of immune cells into the brain, leading to the exacerbation of central inflammation. Neuroinflammation, which has emerged as an important cause of cognitive dysfunction, could provide a central mechanism for aging-associated ailments. To further add to these injuries, adult neurogenesis that provides neuronal plasticity is also impaired in the diabetic brain. This review discusses these molecular mechanisms that link obesity, diabetes and AD. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Subbiah Pugazhenthi
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO, USA; Department of Medicine, University of Colorado - Denver, Aurora, CO, USA.
| | - Limei Qin
- Section of Endocrinology, Veterans Affairs Medical Center, Denver, CO, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
23
|
Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol Brain 2016; 9:43. [PMID: 27098178 PMCID: PMC4839132 DOI: 10.1186/s13041-016-0224-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023] Open
Abstract
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Collapse
|
24
|
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem Neurosci 2016; 7:131-42. [PMID: 26667832 DOI: 10.1021/acschemneuro.5b00240] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.
Collapse
Affiliation(s)
- Joana M. Gaspar
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - Filipa I. Baptista
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M. Paula Macedo
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - António F. Ambrósio
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
| |
Collapse
|
25
|
Tan S, Zhi P, Luo Z, Shi J. Severe instead of mild hyperglycemia inhibits neurogenesis in the subventricular zone of adult rats after transient focal cerebral ischemia. Neuroscience 2015; 303:138-48. [DOI: 10.1016/j.neuroscience.2015.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
|
26
|
Bachor TP, Marquioni-Ramella MD, Suburo AM. Sitagliptin protects proliferation of neural progenitor cells in diabetic mice. Metab Brain Dis 2015; 30:885-93. [PMID: 25694236 DOI: 10.1007/s11011-015-9656-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Sitagliptin (SIT) is a dipeptidyl peptidase-4 (DPP-4) inhibitor that enhances the effects of incretin hormones, such as Glucose-dependent Insulinotropic Peptide (also known as Gastric Inhibitory Polypeptide, GIP) and Glucagon-Like Peptide 1 (GLP-1). We have now evaluated the effect of SIT on proliferation of neural progenitors in diabetic mice. A condition resembling the non-obese type 2 diabetes mellitus (D2) was achieved by a combination of streptozotocin and nicotinamide (NA-STZ), whereas a type 1-like disease (D1) was provoked by STZ without NA. Non-diabetic mice received vehicle injections. Cell proliferation was estimated by bromodeoxyuridine (BrdU) incorporation in two different regions of the subventricular zone (SVZ), the largest reserve of neural stem cells in the adult brain. SIT treatment did not modify the high fasting blood glucose (BG) levels and intraperitoneal glucose tolerance test (IPGTT) of D1 mice. By contrast, in D2 mice, SIT treatment significantly reduced BG and IPGTT. Both D1 and D2 mice showed a substantial reduction of BrdU labeling in the SVZ. Remarkably, SIT treatment improved BrdU labeling in both conditions. Our findings suggest that SIT would protect proliferation of neural progenitor cells even in the presence of non-controlled diabetic alterations.
Collapse
Affiliation(s)
- Tomás P Bachor
- Medicina Celular y Molecular, Facultad de Ciencias Biomédicas, Universidad Austral, Pilar, B1629AHJ, Argentina
| | | | | |
Collapse
|
27
|
Diabetes and stem cell function. BIOMED RESEARCH INTERNATIONAL 2015; 2015:592915. [PMID: 26075247 PMCID: PMC4449886 DOI: 10.1155/2015/592915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.
Collapse
|
28
|
Tirassa P, Maccarone M, Carito V, De Nicolò S, Fiore M. Ocular nerve growth factor administration counteracts the impairment of neural precursor cell viability and differentiation in the brain subventricular area of rats with streptozotocin-induced diabetes. Eur J Neurosci 2015; 41:1207-18. [PMID: 25728260 DOI: 10.1111/ejn.12854] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 01/07/2015] [Accepted: 01/19/2015] [Indexed: 01/12/2023]
Abstract
The ocular administration of nerve growth factor (NGF) as eye drops (oNGF) has been shown to exert protective effects in forebrain-injured animal models, including adult diabetes induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). This type 1 diabetes model was used in this study to investigate whether oNGF might extend its actions on neuronal precursors localised in the subventricular zone (SVZ). NGF or saline was administrated as eye drops twice daily for 2 weeks in rats with STZ-induced diabetes and healthy control rats. The expression of mature and precursor NGF and the NGF receptors, tropomyosin-related kinase A and neurotrophin receptor p75, and the levels of DNA fragmentation were analysed by ELISA and western blotting. Incorporation of bromodeoxyuridine was used to trace newly formed cells. Nestin, polysialylated neuronal cell adhesion molecule (PSA-NCAM), doublecortin (DCX) and glial fibrillary acidic protein antibodies were used to identify the SVZ cells by confocal microscopy. It was found that oNGF counteracts the STZ-induced cell death and the alteration of mature/pro-NGF expression in the SVZ. It also affects the survival and differentiation of SVZ progenitors. In particular, oNGF counteracts the reduction in the number of cells expressing PSA-NCAM/DCX (neuroblast type A cells) and the related reductions in the number and distribution of nestin/DCX-positive cells (C-type cells), or glia-committed cells (type B cells), observed in the SVZ of diabetic rats. These findings show that oNGF treatment counteracts the effect of type 1 diabetes on neuronal precursors in the SVZ, and further support the neuroprotective and reparative role of oNGF in the brain.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Cell Biology and Neurobiology, National Research Council (CNR), Via del Fosso di Fiorano, 64 (00143), Rome, Italy
| | | | | | | | | |
Collapse
|
29
|
Modulation of the Nitrergic Pathway via Activation of PPAR-γ Contributes to the Neuroprotective Effect of Pioglitazone Against Streptozotocin-Induced Memory Dysfunction. J Mol Neurosci 2015; 56:739-50. [DOI: 10.1007/s12031-015-0508-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
|
30
|
Yatomi Y, Tanaka R, Shimada Y, Yamashiro K, Liu M, Mitome-Mishima Y, Miyamoto N, Ueno Y, Urabe T, Hattori N. Type 2 diabetes reduces the proliferation and survival of oligodendrocyte progenitor cells in ishchemic white matter lesions. Neuroscience 2015; 289:214-23. [PMID: 25592431 DOI: 10.1016/j.neuroscience.2014.12.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus (DM) is a major risk factor for stroke and it exacerbates tissue damage after ischemic insult. Diabetes is one of the important causes of the progression of white matter lesion, however, the pathological mechanisms remain unclear. The present study evaluated the influences of type 2 DM on ischemic subcortical white matter injury and the recruitment of oligodendrocyte progenitor cells (OPCs) under chronic cerebral hypoperfusion using type 2 diabetic (db/db) mice. After bilateral common carotid artery stenosis (BCAS), the rarefaction in the white matter was more severe in db/db mice than in db/+ mice, and the number of glutathione S-transferase-pi (GST-pi)-positive mature oligodendrocytes (OLG) was lower in db/db mice than in db/+ mice at 4 and 8 weeks after ischemia. There were no significant differences in the number of single-stranded DNA (ssDNA)-positive apoptotic cells in the deep white matter between the db/db and db/+ mice. We found a transient increase in the platelet-derived growth factor receptor-α (PDGFRα)-positive OPCs in white matter lesions after ischemia. However, significantly fewer PDGFRα-positive OPCs were detected in db/db than db/+ mice from 4weeks after BCAS. The number of Ki67-positive proliferating cells in the deep white matter was significantly lower in db/db mice than in db/+ mice from 4 to 8weeks after BCAS. Most of the Ki67-positive cells were PDGFRα-positive OPCs. Finally, we assessed the survival of 5-bromo-2'-deoxyuridine (BrdU)-positive proliferating cells in ischemic white matter, and found significantly poorer survival of BrdU/PDGFRα-positive OPCs or BrdU/GST-pi-positive OLGs in the db/db mice compared to the db/+ mice in the white matter after BCAS. Our findings suggest that the type 2 DM mice exhibited more severe white matter injury 8 weeks after chronic ischemia. Decreased proliferation and survival of OPCs may play an important role in the progression of white matter lesions after ischemia in diabetics.
Collapse
Affiliation(s)
- Y Yatomi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - R Tanaka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Y Shimada
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - K Yamashiro
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - M Liu
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Y Mitome-Mishima
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - N Miyamoto
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Y Ueno
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - T Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - N Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
El-Marasy SA, Abdallah HM, El-Shenawy SM, El-Khatib AS, El-Shabrawy OA, Kenawy SA. Anti-depressant effect of hesperidin in diabetic rats. Can J Physiol Pharmacol 2014; 92:945-52. [DOI: 10.1139/cjpp-2014-0281] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate the anti-depressant effect of hesperidin (Hsp) in streptozotocin (STZ)-induced diabetic rats. Additionally, the effect of Hsp on hyperglycaemia, oxidative stress, inflammation, brain-derived neurotrophic factor (BDNF), and brain monoamines in diabetic rats was also assessed. The Wistar rats in the experimental groups were rendered hyperglycaemic with a single dose of STZ (52.5 mg·(kg body mass)−1, by intraperitoneal injection). The normal group received the vehicle only. Hyperglycaemic rats were treated with Hsp (25.0, 50.0, or 100.0 mg·(kg body mass)−1·day−1, per oral) and fluoxetine (Flu) (5.0 mg·(kg body mass)−1·day−1, per oral) 48 h after the STZ injection, for 21 consecutive days. The normal and STZ control groups received the vehicle (distilled water). Behavioral and biochemical parameters were then assessed. When Hsp was administered to the STZ-treated rats, this reversed the STZ-induced increase in immobility duration in the forced swimming test (FST) and attenuated hyperglycaemia, decreased malondialdehyde (MDA), increased reduced glutathione (GSH) decreased interleukin-6 (IL-6), and increased BDNF levels in the brain. Treatment with Hsp attenuated STZ-induced neurochemical alterations, as indicated by increased levels of monoamines in the brain, namely, norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine; 5-HT). All of these effects of Hsp were similar to those observed with the established anti-depressant Flu. This study shows that Hsp exerted anti-depressant effect in diabetic rats, which may have been partly mediated by its amelioration of hyperglycaemia as well as its anti-oxidant and anti-inflammatory activities, the enhancement of neurogenesis, and changes in the levels of monoamines in the brain.
Collapse
Affiliation(s)
- Salma A. El-Marasy
- Department of Pharmacology, National Research Centre, 12622 Cairo, Egypt
| | - Heba M.I. Abdallah
- Department of Pharmacology, National Research Centre, 12622 Cairo, Egypt
| | | | - Aiman S. El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Sanaa A. Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H. Negative regulation of Grb10 Interacting GYF Protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 2014; 9:e108559. [PMID: 25268761 PMCID: PMC4182477 DOI: 10.1371/journal.pone.0108559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/25/2014] [Indexed: 12/28/2022] Open
Abstract
Heterozygous Gigyf2⁺/⁻ mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway.
Collapse
MESH Headings
- Animals
- Carrier Proteins/agonists
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cognition
- Cognition Disorders/complications
- Cognition Disorders/genetics
- Cognition Disorders/physiopathology
- Cognition Disorders/therapy
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- GRB10 Adaptor Protein/genetics
- GRB10 Adaptor Protein/metabolism
- Gene Expression Regulation
- Genetic Therapy
- Hippocampus/metabolism
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Somatomedin/genetics
- Receptors, Somatomedin/metabolism
- Signal Transduction
- Streptozocin
Collapse
Affiliation(s)
- Jing Xie
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianping Wei
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Li
- Department of Mental Health, The Mental Health Center of Jiulongpo District, Chongqing, China
| | - Lingli Ma
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zeng
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Liu D, Zhang H, Gu W, Liu Y, Zhang M. Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3β-mediated CHOP induction. Mol Med Rep 2014; 9:1434-8. [PMID: 24535619 DOI: 10.3892/mmr.2014.1958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
Ginsenoside Rb1 is generally recognized as one of the principal bioactive ingredients in ginseng and shows neuroprotective effects in various neurons. Endoplasmic reticulum (ER) stress is considered to play an important role in numerous neurodegenerative disorders. Recently, glucogen synthase kinase 3β (GSK3β) was reported to regulate ER stress-induced C/EBP homologous protein (CHOP) in neuronal cells. Therefore, in this study, we investigated the effects of ginsenoside Rb1 on GSK3β-mediated ER stress in high glucose-treated hippocampal neurons. Results from the MTT assay showed that treatment with 1 µM Rb1 for 72 h protected neurons from high glucose-induced cell injury. Using western blot analysis, we found that treatment with Rb1 effectively inhibited the phosphorylation of the high glucose-induced protein kinase RNA-like ER kinase (PERK) and of GSK3β, and reduced the level of the CHOP protein. The levels of these proteins were also decreased by treatment with the GSK3β inhibitor Licl. Rb1 also significantly decreased the mRNA expression of the gene CHOP, as shown by quantitative RT-PCR analysis. Taken together, the present results suggested that Rb1 may protect neurons from high glucose-induced cell damage by inhibiting GSK3β‑mediated CHOP induction, providing a potentially new strategy for preventing and treating cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hong Zhang
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Wenjuan Gu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yuqin Liu
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
34
|
Thomas J, Garg ML, Smith DW. Altered expression of histone and synaptic plasticity associated genes in the hippocampus of streptozotocin-induced diabetic mice. Metab Brain Dis 2013; 28:613-8. [PMID: 23832395 DOI: 10.1007/s11011-013-9418-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that hyper-glycaemia is deleterious to brain function, in particular to the hippocampus. It is thought this hippocampal dysfunction may contribute to hyperglycaemia related cognitive impairment, such as that which manifests with diabetes. In the present study, we investigated the effects of diabetes-related hyperglycaemia on hippocampal gene expression, in order to identify potential mechanisms that might be associated with the cognitive dysfunction that develops with diabetes mellitus. Genome-wide gene expression profiling was carried out on the hippocampi from streptozotocin (STZ)-induced diabetic mice, and from vehicle treated control mice. Genes of interest that satisfied expression fold-change and statistical criteria, and that were considered to be potentially associated with cognitive function, were further tested by real time, quantitative polymerase chain reaction (qPCR) analysis. We found that STZ-induced diabetes resulted in decreased hippocampal expression of genes involved in epigenetic regulation and synaptic plasticity, for example, histone deacetylases and glycogen synthase kinase 3 beta (HDACs and GSK3β). We also found increased expression of genes involved in signalling cascades related to cell growth, cell survival and energy metabolism, such as neurotropic tyrosine kinase receptor type 2, apolipoprotein E, and protein tyrosine phosphatase receptor type (Ntrk2, APOE, PTPRT). To our knowledge this is the first study to demonstrate a gene expression profile implicating epigenetic modifications and alterations of synaptic plasticity associated genes in diabetes mellitus. The present study will improve our understanding of the neural mechanisms that might underpin diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jency Thomas
- University of Newcastle, Callaghan, NSW, Australia
| | | | | |
Collapse
|
35
|
Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 2013; 8:e79399. [PMID: 24223941 PMCID: PMC3815219 DOI: 10.1371/journal.pone.0079399] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022] Open
Abstract
Ginsenoside Rb1 is one of the main active principles in traditional herb ginseng and has been reported to have a wide variety of neuroprotective effects. Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, so the present study aimed to observe the effects of ginsenoside Rb1 on ER stress signaling pathways in high glucose-treated hippocampal neurons. The results from MTT, TUNEL labeling and Annexin V-FITC/PI/Hoechst assays showed that incubating neurons with 50 mM high glucose for 72h decreased cell viability and increased the number of apoptotic cells whereas treating neurons with 1 μM Rb1 for 72h protected the neurons against high glucose-induced cell damage. Further molecular mechanism study demonstrated that Rb1 suppressed the activation of ER stress-associated proteins including protein kinase RNA (PKR)-like ER kinase (PERK) and C/EBP homology protein (CHOP) and downregulation of Bcl-2 induced by high glucose. Moreover, Rb1 inhibited both the elevation of intracellular reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential induced by high glucose. In addition, the high glucose-induced cell apoptosis, activation of ER stress, ROS accumulation and mitochondrial dysfunction can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA) and anti-oxidant N-acetylcysteine(NAC). In conclusion, these results suggest that Rb1 may protect neurons against high glucose-induced cell injury through inhibiting CHOP signaling pathway as well as oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjuan Gu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuqin Liu
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Mansouri S, Barde S, Ortsäter H, Eweida M, Darsalia V, Langel U, Sjöholm A, Hökfelt T, Patrone C. GalR3 activation promotes adult neural stem cell survival in response to a diabetic milieu. J Neurochem 2013; 127:209-20. [PMID: 23927369 DOI: 10.1111/jnc.12396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 12/20/2022]
Abstract
Type 2 diabetes impairs adult neurogenesis which could play a role in the CNS complications of this serious disease. The goal of this study was to determine the potential role of galanin in protecting adult neural stem cells (NSCs) from glucolipotoxicity and to analyze whether apoptosis and the unfolded protein response were involved in the galanin-mediated effect. We also studied the regulation of galanin and its receptor subtypes under diabetes in NSCs in vitro and in the subventricular zone (SVZ) in vivo. The viability of mouse SVZ-derived NSCs and the involvement of apoptosis (Bcl-2, cleaved caspase-3) and unfolded protein response [C/EBP homologous protein (CHOP) Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP), spliced X-box binding protein 1 (XBP1), c-Jun N-terminal kinases (JNK) phosphorylation] were assessed in the presence of glucolipotoxic conditions after 24 h. The effect of diabetes on the regulation of galanin and its receptor subtypes was assessed on NSCs in vitro and in SVZ tissues isolated from normal and type 2 diabetes ob/ob mice. We show increased NSC viability following galanin receptor (GalR)3 activation. This protective effect correlated with decreased apoptosis and CHOP levels. We also report how galanin and its receptors are regulated by diabetes in vitro and in vivo. This study shows GalR3-mediated neuroprotection, supporting a potential future therapeutic development, based on GalR3 activation, for the treatment of brain disorders.
Collapse
Affiliation(s)
- Shiva Mansouri
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hidaka R, Machida M, Fujimaki S, Terashima K, Asashima M, Kuwabara T. Monitoring neurodegeneration in diabetes using adult neural stem cells derived from the olfactory bulb. Stem Cell Res Ther 2013; 4:51. [PMID: 23673084 PMCID: PMC3707061 DOI: 10.1186/scrt201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 05/09/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Neurons have the intrinsic capacity to produce insulin, similar to pancreatic cells. Adult neural stem cells (NSCs), which give rise to functional neurons, can be established and cultured not only by intracerebral collection, which requires difficult surgery, but also by collection from the olfactory bulb (OB), which is relatively easy. Adult neurogenesis in the hippocampus (HPC) is significantly decreased in diabetes patients. As a result, learning and memory functions, for which the HPC is responsible, decrease. Methods In the present study, we compared the effect of diabetes on neurogenesis and insulin expression in adult NSCs. Adult NSCs were derived from the HPC or OB of streptozotocin-induced diabetic rats. Comparative gene-expression analyses were carried out by using extracted tissues and established adult NSC cultures from the HPC or OB in diabetic rats. Results Diabetes progression influenced important genes that were required for insulin expression in both OB- and HPC-derived cells. Additionally, we found that the expression levels of several genes, such as voltage-gated sodium channels, glutamate transporters, and glutamate receptors, were significantly different in OB and HPC cells collected from diabetic rats. Conclusions By using identified diabetes-response genes, OB NSCs from diabetes patients can be used during diabetes progression to monitor processes that cause neurodegeneration in the central nervous system (CNS). Because hippocampal NSCs and OB NSCs exhibited similar gene-expression profiles during diabetes progression, OB NSCs, which are more easily collected and established than HPC NSCs, may potentially be used for screening of effective drugs for neurodegenerative disorders that cause malignant damage to CNS functions.
Collapse
|
38
|
Chen J, Guo Y, Cheng W, Chen R, Liu T, Chen Z, Tan S. High glucose induces apoptosis and suppresses proliferation of adult rat neural stem cells following in vitro ischemia. BMC Neurosci 2013; 14:24. [PMID: 23452440 PMCID: PMC3599336 DOI: 10.1186/1471-2202-14-24] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/27/2013] [Indexed: 01/13/2023] Open
Abstract
Background Post-stroke hyperglycemia appears to be associated with poor outcome from stroke, greater mortality, and reduced functional recovery. Focal cerebral ischemia data support that neural stem cells (NSCs) play an important role in post-ischemic repair. Here we sought to evaluate the negative effects of hyperglycemia on the cellular biology of NSCs following anoxia, and to test whether high glucose affects NSC recovery from ischemic injury. Results In this study, we used immortalized adult neural stem cells lines and we induced in vitro ischemia by 6 h oxygen and glucose deprivation (OGD) in an anaerobic incubator. Reperfusion was performed by returning cells to normoxic conditions and the cells were then incubated in experimental medium with various concentrations of glucose (17.5, 27.75, 41.75, and 83.75 mM) for 24 h. We found that high glucose (≥27.75 mM) exposure induced apoptosis of NSCs in a dose-dependent manner after exposure to OGD, using an Annexin V/PI apoptosis detection kit. The cell viability and proliferative activity of NSCs following OGD in vitro, evaluated with both a Cell Counting kit-8 (CCK-8) assay and a 5-ethynyl-2’-deoxyuridine (EdU) incorporation assay, were inhibited by high glucose exposure. Cell cycle analysis showed that high glucose exposure increased the percentage of cells in G0/G1-phase, and reduced the percentage of cells in S-phase. Furthermore, high glucose exposure was found to significantly induce the activation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) and suppress extracellular signal-regulated kinase 1/2 (ERK1/2) activity. Conclusions Our results demonstrate that high glucose induces apoptosis and inhibits proliferation of NSCs following OGD in vitro, which may be associated with the activation of JNK/p38 MAPK pathways and the delay of G1-S transition in the cells.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Brain Function Repair and Regeneration of Guangdong, Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br J Nutr 2013; 109:1573-89. [PMID: 23433235 DOI: 10.1017/s000711451200579x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Of the environmental factors which have an impact on body weight, nutrients are most influential. Within normal limits, hypothalamic and related neuronal populations correct perturbations in energy metabolism, to return the body to its nutritional set-point, either through direct response to nutrients or indirectly via peripheral appetite signals. Excessive intake of certain macronutrients, such as simple carbohydrates and SFA, can lead to obesity and attendant metabolic dysfunction, also reflected in alterations in structural plasticity, and, intriguingly,neurogenesis, in some of these brain regions. Neurogenesis, previously thought to occur only in the embryo, is now known to take place in the adult brain, dependent on numerous stimulating and inhibiting factors, including dietary components. Because of classic associations between neurogenesis and the hippocampus, in learning and cognition, this brain region has also been the focus of attention in the study of links between diet and neurogenesis. Recently, however, a more complete picture of this relationship has been building: not only has the hypothalamus been shown to satisfy the criteria for a neurogenic niche, but appetite-related mediators, including circulating hormones, such as leptin and ghrelin, pro-inflammatory cytokines and the endocannabinoid intracellular messengers, are also being examined for their potential role in mediating neurogenic responses to macronutrients. The present review draws together these observations and investigates whether n-3 PUFA may exert their attenuating effects on body weight through the stimulation of adult neurogenesis. Exploration of the effects of nutraceuticals on neurogenic brain regions may encourage the development of new rational therapies in the fight against obesity.
Collapse
|
40
|
Schoenfeld TJ, Gould E. Differential effects of stress and glucocorticoids on adult neurogenesis. Curr Top Behav Neurosci 2013; 15:139-164. [PMID: 23670817 DOI: 10.1007/7854_2012_233] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Stress is known to inhibit neuronal growth in the hippocampus. In addition to reducing the size and complexity of the dendritic tree, stress and elevated glucocorticoid levels are known to inhibit adult neurogenesis. Despite the negative effects of stress hormones on progenitor cell proliferation in the hippocampus, some experiences which produce robust increases in glucocorticoid levels actually promote neuronal growth. These experiences, including running, mating, enriched environment living, and intracranial self-stimulation, all share in common a strong hedonic component. Taken together, the findings suggest that rewarding experiences buffer progenitor cells in the dentate gyrus from the negative effects of elevated stress hormones. This chapter considers the evidence that stress and glucocorticoids inhibit neuronal growth along with the paradoxical findings of enhanced neuronal growth under rewarding conditions with a view toward understanding the underlying biological mechanisms.
Collapse
Affiliation(s)
- Timothy J Schoenfeld
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, NJ, 08545, USA
| | | |
Collapse
|
41
|
Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012; 2012:959737. [PMID: 22988465 PMCID: PMC3440949 DOI: 10.1155/2012/959737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|
42
|
Kuwabara T, Asashima M. Regenerative medicine using adult neural stem cells: the potential for diabetes therapy and other pharmaceutical applications. J Mol Cell Biol 2012; 4:133-9. [PMID: 22577214 DOI: 10.1093/jmcb/mjs016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural stem cells (NSCs), which are responsible for continuous neurogenesis during the adult stage, are present in human adults. The typical neurogenic regions are the hippocampus and the subventricular zone; recent studies have revealed that NSCs also exist in the olfactory bulb. Olfactory bulb-derived neural stem cells (OB NSCs) have the potential to be used in therapeutic applications and can be easily harvested without harm to the patient. Through the combined influence of extrinsic cues and innate programming, adult neurogenesis is a finely regulated process occurring in a specialized cellular environment, a niche. Understanding the regulatory mechanisms of adult NSCs and their cellular niche is not only important to understand the physiological roles of neurogenesis in adulthood, but also to provide the knowledge necessary for developing new therapeutic applications using adult NSCs in other organs with similar regulatory environments. Diabetes is a devastating disease affecting more than 200 million people worldwide. Numerous diabetic patients suffer increased symptom severity after the onset, involving complications such as retinopathy and nephropathy. Therefore, the development of treatments for fundamental diabetes is important. The utilization of autologous cells from patients with diabetes may address challenges regarding the compatibility of donor tissues as well as provide the means to naturally and safely restore function, reducing future risks while also providing a long-term cure. Here, we review recent findings regarding the use of adult OB NSCs as a potential diabetes cure, and discuss the potential of OB NSC-based pharmaceutical applications for neuronal diseases and mental disorders.
Collapse
Affiliation(s)
- Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| | | |
Collapse
|
43
|
Ladd AABL, Ladd FVL, da Silva AAP, Oliveira MF, de Souza RR, Coppi AA. SCG postnatal remodelling--hypertrophy and neuron number stability--in Spix's yellow-toothed cavies (Galea spixii). Int J Dev Neurosci 2011; 30:129-37. [PMID: 22212604 DOI: 10.1016/j.ijdevneu.2011.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/04/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development.
Collapse
Affiliation(s)
- Aliny A B Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA)(1), Department of Surgery, College of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Mansouri S, Ortsäter H, Pintor Gallego O, Darsalia V, Sjöholm A, Patrone C. Pituitary adenylate cyclase-activating polypeptide counteracts the impaired adult neural stem cell viability induced by palmitate. J Neurosci Res 2011; 90:759-68. [PMID: 22183970 DOI: 10.1002/jnr.22803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022]
Abstract
Diabetes and obesity are characterized by hyperlipidemia and represent risk factors for premature neurological disorders. Diabetic/obese animals have impaired adult neurogenesis. We hypothesize that lipotoxicity leading to neurogenesis impairment plays a role in the development of neurological complications. If so, normalizing neurogenesis in diabetes/obesity could be therapeutically useful in counteracting neurological dysfunction. The goal of this study was to determine the potential of pituitary adenylate cyclase-activating polypeptide (PACAP) to protect adult neural stem cells (NSCs) from lipotoxicity and to study the expression of PACAP receptors in NSCs under lipotoxic conditions in vitro and in the subventricular zone in vivo. The viability of NSCs isolated from the adult mouse brain subventricular zone was assessed in the presence of a high-fat milieu, as mimicked by palmitate, which characterizes diabetic lipotoxicity. Regulation studies of PACAP receptors were performed by quantitative PCR on NSCs in vitro or on subventricular tissues isolated from obese ob/ob mice and their lean littermates. We show that palmitate impairs NSC viability by promoting lipoapoptosis. We also show that PACAP counteracts lipotoxicity via PAC-1 receptor activation. Studies on PACAP receptor expression revealed that PAC-1 and VPAC-2 are expressed by NSC in vitro and are upregulated by palmitate treatment and that PAC-1, VPAC-1, and VPAC-2 are expressed in the subventricular zone/striatum in vivo and are upregulated in ob/ob mice. The present study reveals a previously uncharacterized role of PACAP to protect NSC from lipotoxicity and suggests a potential therapeutic role for PACAP receptor agonists in the treatment of neurological complications in obesity and diabetes.
Collapse
Affiliation(s)
- Shiva Mansouri
- Diabetes Research Unit, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Ho N, Balu DT, Hilario MRF, Blendy JA, Lucki I. Depressive phenotypes evoked by experimental diabetes are reversed by insulin. Physiol Behav 2011; 105:702-8. [PMID: 21945451 DOI: 10.1016/j.physbeh.2011.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/01/2011] [Accepted: 09/03/2011] [Indexed: 01/16/2023]
Abstract
Clinical studies suggest a bidirectional relationship between diabetes and depression, where diabetes may increase risk for depressive symptoms and depression may increase risk for diabetes. Preclinical models examining the effects of diabetes on brain and behavior can provide insights to the pathophysiology underlying this relationship. The current study comprehensively examined, in C57BL/6 mice, the development of depressive phenotypes evoked by diabetes induced by streptozotocin (STZ) and determined if insulin treatment was able to reverse the diabetes-related changes on brain and affective behavior. Since anxiety is often comorbid with mood disturbances, behavioral tests for both anxiety and depression were administered. Possible physiological correlates of behavioral changes, including hippocampal cell proliferation, brain derived neurotrophic factor, and plasma corticosterone, were also measured. STZ-induced diabetes resulted in increased immobility in the tail suspension test, increased intracranial self-stimulation thresholds, decreased hippocampal cell proliferation, and increased corticosterone levels. Insulin treatment, on the other hand, reduced hyperglycemia, reversed the behavioral effects, and returned hippocampal cell proliferation and corticosterone to levels comparable to the control group. Anxiety-related behaviors were unaffected. This study showed that experimental diabetes in the mouse produced depressive phenotypes that were reversed by insulin therapy. Changes in reward-related behaviors and hippocampal cell proliferation may be useful markers to identify therapeutic interventions for comorbid diabetes and depression.
Collapse
Affiliation(s)
- Nancy Ho
- School of Nursing, University of Pennsylvania, 418 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Kokaia Z, Darsalia V. Neural stem cell-based therapy for ischemic stroke. Transl Stroke Res 2011; 2:272-8. [PMID: 24323649 DOI: 10.1007/s12975-011-0100-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 12/11/2022]
Abstract
Stem cell-based approaches for the treatment of stroke have been the subject of intensive research over the past decade. Based on accumulated experimental evidence, stem cell-based therapy is a very promising prospect for the development of a novel treatment to restore stroke-damaged brain and impaired neurological function. Studies performed on experimental animal models of stroke employed a variety of stem cell types from diverse sources and have demonstrated their ability to replace lost neurons and functionally integrate into the brain, modulate inflammation, and stimulate angiogenesis and neurogenesis from an endogenous stem cell pool, most likely through trophic actions. A few clinical trials in stroke patients using stem cell transplantation have been completed or are on-going but the results have not yet proven the effectiveness of the stem cell-based approaches. A joint effort of stroke researchers and clinicians is needed to further optimize treatment protocols using safe and reproducible stem cell sources tested in relevant animal models of stroke and showing substantial neurological recovery of stroke-impaired function.
Collapse
Affiliation(s)
- Zaal Kokaia
- Laboratory of Neural Stem Cell Biology and Therapy, Lund Stem Cell Center, Lund University Hospital, SE-221 84, Lund, Sweden,
| | | |
Collapse
|