1
|
Bonzanni M, Braga A, Saito T, Saido TC, Tesco G, Haydon PG. Adenosine deficiency facilitates CA1 synaptic hyperexcitability in the presymptomatic phase of a knockin mouse model of Alzheimer disease. iScience 2025; 28:111616. [PMID: 39850358 PMCID: PMC11754081 DOI: 10.1016/j.isci.2024.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer disease.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice Braga
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Giuseppina Tesco
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
2
|
Vetere LM, Galas AM, Vaughan N, Feng Y, Wick ZC, Philipsberg PA, Liobimova O, Fernandez-Ruiz A, Cai DJ, Shuman T. Medial entorhinal-hippocampal desynchronization parallels the emergence of memory impairment in a mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633171. [PMID: 39868201 PMCID: PMC11761809 DOI: 10.1101/2025.01.15.633171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology. We found that reduced hippocampal theta power, reduced MEC-CA1 theta coherence, and altered phase locking of MEC and hippocampal neurons all coincided with the emergence of spatial memory impairment in 3xTg mice. Together, these findings indicate that disrupted temporal coordination of neural activity in the MEC-hippocampal system parallels the emergence of memory impairment in a model of AD pathology.
Collapse
Affiliation(s)
| | | | - Nick Vaughan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
3
|
Tong J, Gao J, Qi Y, Gao Z, Wang Q, Liu Y, Yuan T, Ren M, Yang G, Li Z, Li J, Sun H, Zhao X, Leung YY, Mu Y, Xu J, Lu C, Peng S, Ge L. GABA AR-PPT1 palmitoylation homeostasis controls synaptic transmission and circuitry oscillation. Transl Psychiatry 2024; 14:488. [PMID: 39695089 DOI: 10.1038/s41398-024-03206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
The infantile neuronal ceroid lipofuscinosis, also called CLN1 disease, is a fatal neurodegenerative disease caused by mutations in the CLN1 gene encoding palmitoyl protein thioesterase 1 (PPT1). Identifying the depalmitoylation substrates of PPT1 is crucial for understanding CLN1 disease. In this study, we found that GABAAR, the critical synaptic protein essential for inhibitory neurotransmission, is a substrate of PPT1. PPT1 depalmitoylates GABAAR α1 subunit at Cystein-260, while binding to Cystein-165 and -179. Mutations of PPT1 or its GABAAR α1 subunit binding site enhanced inhibitory synaptic transmission and strengthened oscillations powers but disrupted phase coupling in CA1 region and impaired learning and memory in 1- to 2-months-old PPT1-deficient and Gabra1em1 mice. Our study highlights the critical role of PPT1 in maintaining GABAAR palmitoylation homeostasis and reveals a previously unknown molecular pathway in CLN1 diseases induced by PPT1 mutations.
Collapse
Affiliation(s)
- Jia Tong
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, He'nan, China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jingjing Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yawei Qi
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Ziyan Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Qianqian Wang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Yang Liu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Tiangang Yuan
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Minglong Ren
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Guixia Yang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Zhaoyue Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jin Li
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Hongyuan Sun
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Xing Zhao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Yeung-Yeung Leung
- Division of Brain Sciences, Imperial College Faculty of Medicine, Du Cane Road, London, UK
| | - Yonghui Mu
- Basic Medical College, Xinxiang Medical University, Xinxiang, He'nan, China
| | - Jiamin Xu
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Chengbiao Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
- He'nan International Joint Laboratory for Non-invasive Neural Modulation, Department of Physiology and Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, He'nan, China.
| | - Shiyong Peng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
| | - Lihao Ge
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, He'nan, China.
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, He'nan, China.
| |
Collapse
|
4
|
Hernández-Frausto M, Vivar C. Entorhinal cortex-hippocampal circuit connectivity in health and disease. Front Hum Neurosci 2024; 18:1448791. [PMID: 39372192 PMCID: PMC11449717 DOI: 10.3389/fnhum.2024.1448791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
The entorhinal cortex (EC) and hippocampal (HC) connectivity is the main source of episodic memory formation and consolidation. The entorhinal-hippocampal (EC-HC) connection is classified as canonically glutamatergic and, more recently, has been characterized as a non-canonical GABAergic connection. Recent evidence shows that both EC and HC receive inputs from dopaminergic, cholinergic, and noradrenergic projections that modulate the mnemonic processes linked to the encoding and consolidation of memories. In the present review, we address the latest findings on the EC-HC connectivity and the role of neuromodulations during the mnemonic mechanisms of encoding and consolidation of memories and highlight the value of the cross-species approach to unravel the underlying cellular mechanisms known. Furthermore, we discuss how EC-HC connectivity early neurodegeneration may contribute to the dysfunction of episodic memories observed in aging and Alzheimer's disease (AD). Finally, we described how exercise may be a fundamental tool to prevent or decrease neurodegeneration.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Carmen Vivar
- Laboratory of Neurogenesis and Neuroplasticity, Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Wang L, Yang Z, Satoshi F, Prasanna X, Yan Z, Vihinen H, Chen Y, Zhao Y, He X, Bu Q, Li H, Zhao Y, Jiang L, Qin F, Dai Y, Zhang N, Qin M, Kuang W, Zhao Y, Jokitalo E, Vattulainen I, Kajander T, Zhao H, Cen X. Membrane remodeling by FAM92A1 during brain development regulates neuronal morphology, synaptic function, and cognition. Nat Commun 2024; 15:6209. [PMID: 39043703 PMCID: PMC11266426 DOI: 10.1038/s41467-024-50565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The Bin/Amphiphysin/Rvs (BAR) domain protein FAM92A1 is a multifunctional protein engaged in regulating mitochondrial ultrastructure and ciliogenesis, but its physiological role in the brain remains unclear. Here, we show that FAM92A1 is expressed in neurons starting from embryonic development. FAM92A1 knockout in mice results in altered brain morphology and age-associated cognitive deficits, potentially due to neuronal degeneration and disrupted synaptic plasticity. Specifically, FAM92A1 deficiency impairs diverse neuronal membrane morphology, including the mitochondrial inner membrane, myelin sheath, and synapses, indicating its roles in membrane remodeling and maintenance. By determining the crystal structure of the FAM92A1 BAR domain, combined with atomistic molecular dynamics simulations, we uncover that FAM92A1 interacts with phosphoinositide- and cardiolipin-containing membranes to induce lipid-clustering and membrane curvature. Altogether, these findings reveal the physiological role of FAM92A1 in the brain, highlighting its impact on synaptic plasticity and neural function through the regulation of membrane remodeling and endocytic processes.
Collapse
Affiliation(s)
- Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Ziyun Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Fudo Satoshi
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Xavier Prasanna
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ziyi Yan
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Helena Vihinen
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Yaxing Chen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yue Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiumei He
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Guangxi Normal University, Guilin, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Hongchun Li
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Eija Jokitalo
- Helsinki Institute of Life Science (HiLIFE) - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Tommi Kajander
- Helsinki Institute of Life Science - Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
- School of Life Sciences, Guangxi Normal University, Guilin, China.
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, 541004, China.
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Konishi M, Igarashi KM, Miura K. Biologically plausible local synaptic learning rules robustly implement deep supervised learning. Front Neurosci 2023; 17:1160899. [PMID: 37886676 PMCID: PMC10598703 DOI: 10.3389/fnins.2023.1160899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/31/2023] [Indexed: 10/28/2023] Open
Abstract
In deep neural networks, representational learning in the middle layer is essential for achieving efficient learning. However, the currently prevailing backpropagation learning rules (BP) are not necessarily biologically plausible and cannot be implemented in the brain in their current form. Therefore, to elucidate the learning rules used by the brain, it is critical to establish biologically plausible learning rules for practical memory tasks. For example, learning rules that result in a learning performance worse than that of animals observed in experimental studies may not be computations used in real brains and should be ruled out. Using numerical simulations, we developed biologically plausible learning rules to solve a task that replicates a laboratory experiment where mice learned to predict the correct reward amount. Although the extreme learning machine (ELM) and weight perturbation (WP) learning rules performed worse than the mice, the feedback alignment (FA) rule achieved a performance equal to that of BP. To obtain a more biologically plausible model, we developed a variant of FA, FA_Ex-100%, which implements direct dopamine inputs that provide error signals locally in the layer of focus, as found in the mouse entorhinal cortex. The performance of FA_Ex-100% was comparable to that of conventional BP. Finally, we tested whether FA_Ex-100% was robust against rule perturbations and biologically inevitable noise. FA_Ex-100% worked even when subjected to perturbations, presumably because it could calibrate the correct prediction error (e.g., dopaminergic signals) in the next step as a teaching signal if the perturbation created a deviation. These results suggest that simplified and biologically plausible learning rules, such as FA_Ex-100%, can robustly facilitate deep supervised learning when the error signal, possibly conveyed by dopaminergic neurons, is accurate.
Collapse
Affiliation(s)
- Masataka Konishi
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Keiji Miura
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
8
|
Montero-Atalaya M, Expósito S, Muñoz-Arnaiz R, Makarova J, Bartolomé B, Martín E, Moreno-Arribas MV, Herreras O. A dietary polyphenol metabolite alters CA1 excitability ex vivo and mildly affects cortico-hippocampal field potential generators in anesthetized animals. Cereb Cortex 2023; 33:10411-10425. [PMID: 37550066 PMCID: PMC10545443 DOI: 10.1093/cercor/bhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.
Collapse
Affiliation(s)
- Marta Montero-Atalaya
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Sara Expósito
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Ricardo Muñoz-Arnaiz
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Julia Makarova
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Begoña Bartolomé
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Eduardo Martín
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - María Victoria Moreno-Arribas
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Oscar Herreras
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| |
Collapse
|
9
|
Li C, Li Z, Xu S, Jiang S, Ye Z, Yu B, Gong S, Li J, Hu Q, Feng B, Wang M, Lu C. Exogenous AMPA downregulates gamma-frequency network oscillation in CA3 of rat hippocampal slices. Sci Rep 2023; 13:10548. [PMID: 37386056 PMCID: PMC10310770 DOI: 10.1038/s41598-023-36876-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Pharmacologically-induced persistent hippocampal γ oscillation in area CA3 requires activation of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs). However, we demonstrated that exogenous AMPA dose-dependently inhibited carbachol (CCH)-induced γ oscillation in the CA3 area of rat hippocampal slices, but the underlying mechanism is not clear. Application of AMPARs antagonist NBQX (1 μM) did not affect γ oscillation power (γ power), nor AMPA-mediated γ power reduction. At 3 μM, NBQX had no effect on γ power but largely blocked AMPA-mediated γ power reduction. Ca2+-permeable AMPA receptor (CP-AMPAR) antagonist IEM1460 or CaMKK inhibitor STO-609 but not CaMKIIα inhibitor KN93 enhanced γ power, indicating that activation of CP-AMPAR or CaMKK negatively modulated CCH-induced γ oscillation. Either CP-AMPAR antagonist or CaMKK inhibitor alone did not affected AMPA-mediated γ power reduction, but co-administration of IEM1460 and NBQX (1 μM) largely prevented AMPA-mediated downregulation of γ suggesting that CP-AMPARs and CI-AMPARs are involved in AMPA downregulation of γ oscillation. The recurrent excitation recorded at CA3 stratum pyramidale was significantly reduced by AMPA application. Our results indicate that AMPA downregulation of γ oscillation may be related to the reduced recurrent excitation within CA3 local neuronal network due to rapid CI-AMPAR and CP-AMPAR activation.
Collapse
Affiliation(s)
- Chengzhang Li
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Zhenrong Li
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Sihan Xu
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Sanwei Jiang
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Zhenli Ye
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Bin Yu
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Shixiang Gong
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Junmei Li
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Qilin Hu
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Bingyan Feng
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Wang
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- Henan International Key Laboratory for Noninvasive Neuromodulation/Key Laboratory of Brain Research of Henan Province, Department of Physiology & Pathophysiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
10
|
Naeser MA, Martin PI, Ho MD, Krengel MH, Bogdanova Y, Knight JA, Hamblin MR, Fedoruk AE, Poole LG, Cheng C, Koo B. Transcranial Photobiomodulation Treatment: Significant Improvements in Four Ex-Football Players with Possible Chronic Traumatic Encephalopathy. J Alzheimers Dis Rep 2023; 7:77-105. [PMID: 36777329 PMCID: PMC9912826 DOI: 10.3233/adr-220022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background Chronic traumatic encephalopathy, diagnosed postmortem (hyperphosphorylated tau), is preceded by traumatic encephalopathy syndrome with worsening cognition and behavior/mood disturbances, over years. Transcranial photobiomodulation (tPBM) may promote improvements by increasing ATP in compromised/stressed cells and increasing local blood, lymphatic vessel vasodilation. Objective Aim 1: Examine cognition, behavior/mood changes Post-tPBM. Aim 2: MRI changes - resting-state functional-connectivity MRI: salience, central executive, default mode networks (SN, CEN, DMN); magnetic resonance spectroscopy, cingulate cortex. Methods Four ex-players with traumatic encephalopathy syndrome/possible chronic traumatic encephalopathy, playing 11- 16 years, received In-office, red/near-infrared tPBM to scalp, 3x/week for 6 weeks. Two had cavum septum pellucidum. Results The three younger cases (ages 55, 57, 65) improved 2 SD (p < 0.05) on three to six neuropsychological tests/subtests at 1 week or 1 month Post-tPBM, compared to Pre-Treatment, while the older case (age 74) improved by 1.5 SD on three tests. There was significant improvement at 1 month on post-traumatic stress disorder (PTSD), depression, pain, and sleep. One case discontinued narcotic pain medications and had reduced tinnitus. The possible placebo effect is unknown. At 2 months Post-tPBM, two cases regressed. Then, home tPBM was applied to only cortical nodes, DMN (12 weeks); again, significant improvements were seen. Significant correlations for increased SN functional connectivity (FC) over time, with executive function, attention, PTSD, pain, and sleep; and CEN FC, with verbal learning/memory, depression. Increased n-acetyl-aspartate (NAA) (oxygen consumption, mitochondria) was present in anterior cingulate cortex (ACC), parallel to less pain and PTSD. Conclusion After tPBM, these ex-football players improved. Significant correlations of increased SN FC and CEN FC with specific cognitive tests and behavior/mood ratings, plus increased NAA in ACC support beneficial effects from tPBM.
Collapse
Affiliation(s)
- Margaret A. Naeser
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA,Correspondence to: Margaret A. Naeser, PhD, VA Boston Healthcare System (12A), Jamaica Plain Campus, 150 So. Huntington Ave., Boston, MA 02130 USA. E-mail:
| | - Paula I. Martin
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael D. Ho
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - Maxine H. Krengel
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Yelena Bogdanova
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Jeffrey A. Knight
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,National Center for PTSD - Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Luke G. Poole
- VA Boston Healthcare System, Jamaica Plain Campus, Boston, MA, USA
| | - ChiaHsin Cheng
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| | - BangBon Koo
- Department of Anatomy & Neurobiology, Bio-imaging Informatics Lab, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Jia Y, Tang L, Yao Y, Zhuo L, Qu D, Chen X, Ji Y, Tao J, Zhu Y. Low-intensity exercise combined with sodium valproate attenuates kainic acid-induced seizures and associated co-morbidities by inhibiting NF-κB signaling in mice. Front Neurol 2022; 13:993405. [PMID: 36212646 PMCID: PMC9534325 DOI: 10.3389/fneur.2022.993405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Sodium valproate (VPA) is a broad-spectrum anticonvulsant that is effective both in adults and children suffering from epilepsy, but it causes psychiatric and behavioral side effects in patients with epilepsy. In addition, 30% of patients with epilepsy develop resistance to VPA. At present, regular physical exercise has shown many benefits and has become an effective complementary therapy for various brain diseases, including epilepsy. Therefore, we wondered whether VPA combined with exercise would be more effective in the treatment of seizures and associated co-morbidities. Here, we used a mouse model with kainic acid (KA)-induced epilepsy to compare the seizure status and the levels of related co-morbidities, such as cognition, depression, anxiety, and movement disorders, in each group using animal behavioral experiment and local field potential recordings. Subsequently, we investigated the mechanism behind this phenomenon by immunological means. Our results showed that low-intensity exercise combined with VPA reduced seizures and associated co-morbidities. This phenomenon seems to be related to the Toll-like receptor 4, activation of the nuclear factor kappa B (NF-κB), and release of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and IL-6. In brief, low-intensity exercise combined with VPA enhanced the downregulation of NF-κB-related inflammatory response, thereby alleviating the seizures, and associated co-morbidities.
Collapse
Affiliation(s)
- Yuxiang Jia
- School of Medicine, Shanghai University, Shanghai, China
| | - Lele Tang
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Yao
- School of Medicine, Shanghai University, Shanghai, China
| | - Limin Zhuo
- School of Medicine, Shanghai University, Shanghai, China
| | - Dongxiao Qu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingxing Chen
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghua Ji
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Yonghua Ji
| | - Jie Tao
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jie Tao
| | - Yudan Zhu
- Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Yudan Zhu
| |
Collapse
|
12
|
Messina A, Corvaia A, Marino C. Definition of Tinnitus. Audiol Res 2022; 12:281-289. [PMID: 35645199 PMCID: PMC9149955 DOI: 10.3390/audiolres12030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Tinnitus is generally defined as the perception of sound in the absence of vibration of an external elastic body. If this definition appears useful to differentiate tinnitus from somatosounds, it is not suitable for distinguishing it from psychiatric hallucinations. Nor does this solution define a temporal limit of duration of the perception, which is important for distinguishing pathological tinnitus from those occasional noises that we all perceive from time to time. A complete definition appears necessary not only to achieve homogeneity in epidemiological studies but also to set up correct and personalized therapeutic schemes. An analogy with neuropsychiatric studies and, in particular, the concept of auditory hallucinosis are proposed by the authors to define tinnitus. According to the authors, tinnitus is auditory hallucinosis, and similarly, vertigo is spatial hallucinosis.
Collapse
Affiliation(s)
- Aldo Messina
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy
- Regina Margherita Otoneurological Center, 90145 Palermo, Italy
| | | | - Chiara Marino
- Regina Margherita Otoneurological Center, 90145 Palermo, Italy
| |
Collapse
|
13
|
Behavior of olfactory-related frontal lobe oscillations in Alzheimer's disease and MCI: A pilot study. Int J Psychophysiol 2022; 175:43-53. [PMID: 35217110 DOI: 10.1016/j.ijpsycho.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Slow-gamma (35-45 Hz) phase synchronization and the coupling between slow-gamma and low-frequency theta oscillations (4-8 Hz) are closely related to memory retrieval and cognitive functions. In this pilot study, we assess the Phase Amplitude Coupling (PAC) between theta and slow-gamma oscillatory bands and the quality of synchronization in slow-gamma oscillations using Phase Locking Value (PLV) on EEG data from healthy individuals and patients diagnosed with amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD) during an oddball olfactory task. Our study indicates noticeable differences between the PLV and PAC values corresponding to olfactory stimulation in the three groups of participants. These differences can help explain the underlying processes involved in these cognitive disorders and the differences between aMCI and AD patients in performing cognitive tasks. Our study also proposes a diagnosis method for aMCI through comparing the brain's response characteristics during olfactory stimulation and rest. Early diagnosis of aMCI can potentially lead to its timely treatment and prevention from progression to AD.
Collapse
|
14
|
Yu S, Park M, Kang J, Lee E, Jung J, Kim T. Aberrant Gamma-Band Oscillations in Mice with Vitamin D Deficiency: Implications on Schizophrenia and Its Cognitive Symptoms. J Pers Med 2022; 12:jpm12020318. [PMID: 35207806 PMCID: PMC8879176 DOI: 10.3390/jpm12020318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D plays an essential role in cognitive functions as well as regulating calcium homeostasis and the immune system. Many epidemiological studies have also shown the close relationship between vitamin D deficiency (VDD) and the risk of schizophrenia. Cortical gamma-band oscillations (GBO) are associated with cognitive functions, such as attention and memory. Patients with schizophrenia show abnormal GBO with increased spontaneous GBO and decreased evoked GBO. However, the direct effect of VDD on GBO remains unknown. Parvalbumin interneurons, which predominantly contribute to the generation of GBO, are surrounded by perineuronal nets (PNN). We sought to investigate the associations among VDD, PNN, and GBO. Here, we injected a viral vector (AAV5-DIO-ChR2-eYFP) into the basal forebrain stereotaxically and implanted electrodes for electroencephalogram (EEG). At baseline, the evoked and spontaneous EEG power at the gamma frequency band was measured in 4-month-old male PV-Cre mice. After six and twenty weeks of vitamin D deficient food administration, the power of GBO was measured in the VDD condition. Next, we injected the chondroitinase ABC (ChABC) enzyme into the frontal cortex to eliminate PNN. We found that the VDD group showed decreased power of both optogenetically- and auditory-evoked GBO, whereas the spontaneous GBO increased. Enzymatic digestion of PNN showed similar changes in GBO. Taken together, we suggest that VDD could result in decreased PNN and, consequently, increase the spontaneous GBO and decrease the evoked GBO, reminiscent of the aberrant GBO in schizophrenia. These results show that VDD might increase the risk of schizophrenia and aggravate the cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Kim
- Correspondence: ; Tel.: +82-62-715-5363
| |
Collapse
|
15
|
Roehri N, Bréchet L, Seeber M, Pascual-Leone A, Michel CM. Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall. Brain Topogr 2022; 35:191-206. [PMID: 35080692 PMCID: PMC8860804 DOI: 10.1007/s10548-022-00890-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Episodic autobiographical memory (EAM) is a complex cognitive function that emerges from the coordination of specific and distant brain regions. Specific brain rhythms, namely theta and gamma oscillations and their synchronization, are thought of as putative mechanisms enabling EAM. Yet, the mechanisms of inter-regional interaction in the EAM network remain unclear in humans at the whole brain level. To investigate this, we analyzed EEG recordings of participants instructed to retrieve autobiographical episodes. EEG recordings were projected in the source space, and time-courses of atlas-based brain regions-of-interest (ROIs) were derived. Directed phase synchrony in high theta (7–10 Hz) and gamma (30–80 Hz) bands and high theta-gamma phase-amplitude coupling were computed between each pair of ROIs. Using network-based statistics, a graph-theory method, we found statistically significant networks for each investigated mechanism. In the gamma band, two sub-networks were found, one between the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) and another within the medial frontal areas. In the high theta band, we found a PCC to ventromedial prefrontal cortex (vmPFC) network. In phase-amplitude coupling, we found the high theta phase of the left MTL biasing the gamma amplitude of posterior regions and the vmPFC. Other regions of the temporal lobe and the insula were also phase biasing the vmPFC. These findings suggest that EAM, rather than emerging from a single mechanism at a single frequency, involves precise spatio-temporal signatures mapping on distinct memory processes. We propose that the MTL orchestrates activity in vmPFC and PCC via precise phase-amplitude coupling, with vmPFC and PCC interaction via high theta phase synchrony and gamma synchronization contributing to bind information within the PCC-MTL sub-network or valuate the candidate memory within the medial frontal sub-network.
Collapse
Affiliation(s)
- Nicolas Roehri
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Lucie Bréchet
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland. .,Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Sprugnoli G, Munsch F, Cappon D, Paciorek R, Macone J, Connor A, El Fakhri G, Salvador R, Ruffini G, Donohoe K, Shafi MM, Press D, Alsop DC, Pascual Leone A, Santarnecchi E. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer's disease. Alzheimers Res Ther 2021; 13:203. [PMID: 34930421 PMCID: PMC8690894 DOI: 10.1186/s13195-021-00922-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with alterations in cortical perfusion that correlate with cognitive impairment. Recently, neural activity in the gamma band has been identified as a driver of arteriolar vasomotion while, on the other hand, gamma activity induction on preclinical models of AD has been shown to promote protein clearance and cognitive protection. METHODS In two open-label studies, we assessed the possibility to modulate cerebral perfusion in 15 mild to moderate AD participants via 40Hz (gamma) transcranial alternating current stimulation (tACS) administered 1 h daily for 2 or 4 weeks, primarily targeting the temporal lobe. Perfusion-sensitive MRI scans were acquired at baseline and right after the intervention, along with electrophysiological recording and cognitive assessments. RESULTS No serious adverse effects were reported by any of the participants. Arterial spin labeling MRI revealed a significant increase in blood perfusion in the bilateral temporal lobes after the tACS treatment. Moreover, perfusion changes displayed a positive correlation with changes in episodic memory and spectral power changes in the gamma band. CONCLUSIONS Results suggest 40Hz tACS should be further investigated in larger placebo-controlled trials as a safe, non-invasive countermeasure to increase fast brain oscillatory activity and increase perfusion in critical brain areas in AD patients. TRIAL REGISTRATION Studies were registered separately on ClinicalTrials.gov ( NCT03290326 , registered on September 21, 2017; NCT03412604 , registered on January 26, 2018).
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Radiology, University Hospital of Parma, Parma, Italy
| | - Fanny Munsch
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joanna Macone
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ann Connor
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Kevin Donohoe
- Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Daniel Press
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alvaro Pascual Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Guttmann Brain Health Institute, Barcelona, Spain
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Arroyo-García LE, Isla AG, Andrade-Talavera Y, Balleza-Tapia H, Loera-Valencia R, Alvarez-Jimenez L, Pizzirusso G, Tambaro S, Nilsson P, Fisahn A. Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the App NL-G-F mouse model of Alzheimer's disease. Mol Psychiatry 2021; 26:5557-5567. [PMID: 34385602 PMCID: PMC8758494 DOI: 10.1038/s41380-021-01257-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
In Alzheimer's disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in AppNL-G-F knock-in mice (AppNL-G-F). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel AppNL-G-F mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the AppNL-G-F mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ1-42 concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the AppNL-G-F mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.
Collapse
Affiliation(s)
- Luis Enrique Arroyo-García
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| | - Arturo G Isla
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Yuniesky Andrade-Talavera
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Hugo Balleza-Tapia
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Raúl Loera-Valencia
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Laura Alvarez-Jimenez
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Giusy Pizzirusso
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Simone Tambaro
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - André Fisahn
- Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
18
|
Bréchet L, Michel CM, Schacter DL, Pascual-Leone A. Improving autobiographical memory in Alzheimer's disease by transcranial alternating current stimulation. Curr Opin Behav Sci 2021; 40:64-71. [PMID: 34485630 PMCID: PMC8415489 DOI: 10.1016/j.cobeha.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We review the latest evidence from animal models, studies in humans using electrophysiology, experimental memory paradigms, and non-invasive brain stimulation (NIBS), in the form of transcranial alternating current stimulation (tACS), suggesting that the altered activity in networks that contribute to the autobiographical memory (ABM) deficits may be modifiable. ABM involves a specific brain network of interacting regions that store and retrieve life experiences. Deficits in ABM are early symptoms in patients with Alzheimer's disease (AD), and serve as relevant predictors of disease progression. The possibility to modify the neural substrates of ABM opens exciting avenues for the development of therapeutic approaches. Beyond a summary of the causal role of brain oscillations in ABM, we propose a new approach of modulating brain oscillations using personalized tACS with the possibility of reducing ABM deficits. We suggest that human experimental studies using cognitive tasks, EEG, and tACS can have future translational clinical implications.
Collapse
Affiliation(s)
- Lucie Bréchet
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland
| | - Christoph M. Michel
- Functional Brain Mapping Laboratory, Fundamental Neuroscience Dept., University Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Geneva, Switzerland
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| |
Collapse
|
19
|
Jiménez-Balado J, Eich TS. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease. Semin Cell Dev Biol 2021; 116:146-159. [PMID: 33573856 PMCID: PMC8292162 DOI: 10.1016/j.semcdb.2021.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
In this review, we focus on the potential role of the γ-aminobutyric acidergic (GABAergic) system in age-related episodic memory impairments in humans, with a particular focus on Alzheimer's disease (AD). Well-established animal models have shown that GABA plays a central role in regulating and synchronizing neuronal signaling in the hippocampus, a brain area critical for episodic memory that undergoes early and significant morphologic and functional changes in the course of AD. Neuroimaging research in humans has documented hyperactivity in the hippocampus and losses of resting state functional connectivity in the Default Mode Network, a network that itself prominently includes the hippocampus-presaging episodic memory decline in individuals at-risk for AD. Apolipoprotein ε4, the highest genetic risk factor for AD, is associated with GABAergic dysfunction in animal models, and episodic memory impairments in humans. In combination, these findings suggest that GABA may be the linchpin in a complex system of factors that eventually leads to the principal clinical hallmark of AD: episodic memory loss. Here, we will review the current state of literature supporting this hypothesis. First, we will focus on the molecular and cellular basis of the GABAergic system and its role in memory and cognition. Next, we report the evidence of GABA dysregulations in AD and normal aging, both in animal models and human studies. Finally, we outline a model of GABAergic dysfunction based on the results of functional neuroimaging studies in humans, which have shown hippocampal hyperactivity to episodic memory tasks concurrent with and even preceding AD diagnosis, along with factors that may modulate this association.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Teal S Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
20
|
Spera V, Sitnikova T, Ward MJ, Farzam P, Hughes J, Gazecki S, Bui E, Maiello M, De Taboada L, Hamblin MR, Franceschini MA, Cassano P. Pilot Study on Dose-Dependent Effects of Transcranial Photobiomodulation on Brain Electrical Oscillations: A Potential Therapeutic Target in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1481-1498. [PMID: 34092636 DOI: 10.3233/jad-210058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.
Collapse
Affiliation(s)
- Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Tatiana Sitnikova
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Parya Farzam
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Hughes
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Angela Franceschini
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Olajide OJ, Suvanto ME, Chapman CA. Molecular mechanisms of neurodegeneration in the entorhinal cortex that underlie its selective vulnerability during the pathogenesis of Alzheimer's disease. Biol Open 2021; 10:bio056796. [PMID: 33495355 PMCID: PMC7860115 DOI: 10.1242/bio.056796] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The entorhinal cortex (EC) is a vital component of the medial temporal lobe, and its contributions to cognitive processes and memory formation are supported through its extensive interconnections with the hippocampal formation. During the pathogenesis of Alzheimer's disease (AD), many of the earliest degenerative changes are seen within the EC. Neurodegeneration in the EC and hippocampus during AD has been clearly linked to impairments in memory and cognitive function, and a growing body of evidence indicates that molecular and functional neurodegeneration within the EC may play a primary role in cognitive decline in the early phases of AD. Defining the mechanisms underlying molecular neurodegeneration in the EC is crucial to determining its contributions to the pathogenesis of AD. Surprisingly few studies have focused on understanding the mechanisms of molecular neurodegeneration and selective vulnerability within the EC. However, there have been advancements indicating that early dysregulation of cellular and molecular signaling pathways in the EC involve neurodegenerative cascades including oxidative stress, neuroinflammation, glia activation, stress kinases activation, and neuronal loss. Dysfunction within the EC can impact the function of the hippocampus, which relies on entorhinal inputs, and further degeneration within the hippocampus can compound this effect, leading to severe cognitive disruption. This review assesses the molecular and cellular mechanisms underlying early degeneration in the EC during AD. These mechanisms may underlie the selective vulnerability of neuronal subpopulations in this brain region to the disease development and contribute both directly and indirectly to cognitive loss.This paper has an associated Future Leader to Watch interview with the first author of the article.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Division of Neurobiology, Department of Anatomy, University of Ilorin, Ilorin, Nigeria, PMB 1515
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Marcus E Suvanto
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Clifton Andrew Chapman
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
22
|
Boehler C, Carli S, Fadiga L, Stieglitz T, Asplund M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat Protoc 2020; 15:3557-3578. [DOI: 10.1038/s41596-020-0389-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023]
|
23
|
Rochart R, Liu Q, Fonteh AN, Harrington MG, Arakaki X. Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals With Abnormal CSF Amyloid/Tau. Front Aging Neurosci 2020; 12:574214. [PMID: 33192465 PMCID: PMC7591805 DOI: 10.3389/fnagi.2020.574214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
Research shows that gamma activity changes in Alzheimer’s disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30–50 Hz) and high gamma (50–80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen’s d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen’s d = −0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen’s d = −1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen’s d = −0.51∼−1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = −0.70∼−0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.
Collapse
Affiliation(s)
- Roger Rochart
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Alfred N Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael G Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
24
|
Disrupted Place Cell Remapping and Impaired Grid Cells in a Knockin Model of Alzheimer's Disease. Neuron 2020; 107:1095-1112.e6. [PMID: 32697942 DOI: 10.1016/j.neuron.2020.06.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/13/2020] [Accepted: 06/22/2020] [Indexed: 11/24/2022]
Abstract
Patients with Alzheimer's disease (AD) suffer from spatial memory impairment and wandering behavior, but the brain circuit mechanisms causing such symptoms remain largely unclear. In healthy brains, spatially tuned hippocampal place cells and entorhinal grid cells exhibit distinct spike patterns in different environments, a circuit function called "remapping." We tested remapping in amyloid precursor protein knockin (APP-KI) mice with impaired spatial memory. CA1 neurons, including place cells, showed disrupted remapping, although their spatial tuning was only mildly diminished. Medial entorhinal cortex (MEC) neurons severely lost their spatial tuning and grid cells were almost absent. Fast gamma oscillatory coupling between the MEC and CA1 was also impaired. Mild disruption of MEC grid cells emerged in younger APP-KI mice, although the spatial memory and CA1 remapping of the animals remained intact. These results point to remapping impairment in the hippocampus, possibly linked to grid cell disruption, as circuit mechanisms underlying spatial memory impairment in AD.
Collapse
|
25
|
Jafari Z, Kolb BE, Mohajerani MH. Neural oscillations and brain stimulation in Alzheimer's disease. Prog Neurobiol 2020; 194:101878. [PMID: 32615147 DOI: 10.1016/j.pneurobio.2020.101878] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/20/2019] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
Aging is associated with alterations in cognitive processing and brain neurophysiology. Whereas the primary symptom of amnestic mild cognitive impairment (aMCI) is memory problems greater than normal for age and education, patients with Alzheimer's disease (AD) show impairments in other cognitive domains in addition to memory dysfunction. Resting-state electroencephalography (rsEEG) studies in physiological aging indicate a global increase in low-frequency oscillations' power and the reduction and slowing of alpha activity. The enhancement of slow and the reduction of fast oscillations, and the disruption of brain functional connectivity, however, are characterized as major rsEEG changes in AD. Recent rodent studies also support human evidence of age- and AD-related changes in resting-state brain oscillations, and the neuroprotective effect of brain stimulation techniques through gamma-band stimulations. Cumulatively, current evidence moves toward optimizing rsEEG features as reliable predictors of people with aMCI at risk for conversion to AD and mapping neural alterations subsequent to brain stimulation therapies. The present paper reviews the latest evidence of changes in rsEEG oscillations in physiological aging, aMCI, and AD, as well as findings of various brain stimulation therapies from both human and non-human studies.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
26
|
Li S, Hayden EY, Garcia VJ, Fuchs DT, Sheyn J, Daley DA, Rentsendorj A, Torbati T, Black KL, Rutishauser U, Teplow DB, Koronyo Y, Koronyo-Hamaoui M. Activated Bone Marrow-Derived Macrophages Eradicate Alzheimer's-Related Aβ 42 Oligomers and Protect Synapses. Front Immunol 2020; 11:49. [PMID: 32082319 PMCID: PMC7005081 DOI: 10.3389/fimmu.2020.00049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Impaired synaptic integrity and function due to accumulation of amyloid β-protein (Aβ42) oligomers is thought to be a major contributor to cognitive decline in Alzheimer's disease (AD). However, the exact role of Aβ42 oligomers in synaptotoxicity and the ability of peripheral innate immune cells to rescue synapses remain poorly understood due to the metastable nature of oligomers. Here, we utilized photo-induced cross-linking to stabilize pure oligomers and study their effects vs. fibrils on synapses and protection by Aβ-phagocytic macrophages. We found that cortical neurons were more susceptible to Aβ42 oligomers than fibrils, triggering additional neuritic arborization retraction, functional alterations (hyperactivity and spike waveform), and loss of VGluT1- and PSD95-excitatory synapses. Co-culturing neurons with bone marrow-derived macrophages protected synapses against Aβ42 fibrils; moreover, immune activation with glatiramer acetate (GA) conferred further protection against oligomers. Mechanisms involved increased Aβ42 removal by macrophages, amplified by GA stimulation: fibrils were largely cleared through intracellular CD36/EEA1+-early endosomal proteolysis, while oligomers were primarily removed via extracellular/MMP-9 enzymatic degradation. In vivo studies in GA-immunized or CD115+-monocyte-grafted APPSWE/PS1ΔE9-transgenic mice followed by pre- and postsynaptic analyses of entorhinal cortex and hippocampal substructures corroborated our in vitro findings of macrophage-mediated synaptic preservation. Together, our data demonstrate that activated macrophages effectively clear Aβ42 oligomers and rescue VGluT1/PSD95 synapses, providing rationale for harnessing macrophages to treat AD.
Collapse
Affiliation(s)
- Songlin Li
- Institute of Neuroscience and Chemistry, Wenzhou University, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Veronica J. Garcia
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - David A. Daley
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Tania Torbati
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer's Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Maxine-Dunitz Neurosurgical Institute, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
27
|
Jacob S, Davies G, De Bock M, Hermans B, Wintmolders C, Bottelbergs A, Borgers M, Theunis C, Van Broeck B, Manyakov NV, Balschun D, Drinkenburg WHIM. Neural oscillations during cognitive processes in an App knock-in mouse model of Alzheimer's disease pathology. Sci Rep 2019; 9:16363. [PMID: 31705038 PMCID: PMC6841667 DOI: 10.1038/s41598-019-51928-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid β plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the AppNL-G-Fmodel, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in Aβ1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in AppNL-G-F mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the AppNL-G-F mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the AppNL-G-F mice.
Collapse
Affiliation(s)
- Sofia Jacob
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
- Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Gethin Davies
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marijke De Bock
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Hermans
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Clara Theunis
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bianca Van Broeck
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Digital Phenotyping, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Capsaicin-Induced Impairment of Functional Network Dynamics in Mouse Hippocampus via a TrpV1 Receptor-Independent Pathway: Putative Involvement of Na +/K +-ATPase. Mol Neurobiol 2019; 57:1170-1185. [PMID: 31701438 PMCID: PMC7031213 DOI: 10.1007/s12035-019-01779-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
The vanilloid compound capsaicin (Cp) is best known to bind to and activate the transient receptor potential vanilloid receptor-1 (TrpV1). A growing number of studies use capsaicin as a tool to study the role of TrpV1 in the central nervous system (CNS). Although most of capsaicin’s CNS effects have been reported to be mediated by TrpV1 activation, evidence exists that capsaicin can also trigger functional changes in hippocampal activity independently of TrpV1. Recently, we have reported that capsaicin induces impairment in hippocampal gamma oscillations via a TrpV1-independent pathway. Here, we dissect the underlying mechanisms of capsaicin-induced alterations to functional network dynamics. We found that capsaicin induces a reduction in action potential (AP) firing rate and a subsequent loss of synchronicity in pyramidal cell (PC) spiking activity in hippocampus. Moreover, capsaicin induces alterations in PC spike-timing since increased first-spike latency was observed after capsaicin treatment. First-spike latency can be regulated by the voltage-dependent potassium current D (ID) or Na+/K+-ATPase. Selective inhibition of ID via low 4-AP concentration and Na+/K+-ATPase using its blocker ouabain, we found that capsaicin effects on AP spike timing were completely inhibited by ouabain but not with 4-AP. In conclusion, our study shows that capsaicin in a TrpV1-independent manner and possibly involving Na+/K+-ATPase activity can impair cognition-relevant functional network dynamics such as gamma oscillations and provides important data regarding the use of capsaicin as a tool to study TrpV1 function in the CNS.
Collapse
|
29
|
Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH. The critical role of persistent sodium current in hippocampal gamma oscillations. Neuropharmacology 2019; 162:107787. [PMID: 31550457 DOI: 10.1016/j.neuropharm.2019.107787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 μM and 100 μM) and riluzole (10 μM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 μM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stefan L Sumsky
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabato Santaniello
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
30
|
Effects of Inducing Gamma Oscillations in Hippocampal Subregions DG, CA3, and CA1 on the Potential Alleviation of Alzheimer's Disease-Related Pathology: Computer Modeling and Simulations. ENTROPY 2019; 21:e21060587. [PMID: 33267301 PMCID: PMC7515076 DOI: 10.3390/e21060587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022]
Abstract
The aim of this study was to evaluate the possibility of the gamma oscillation function (40–130 Hz) to reduce Alzheimer’s disease related pathology in a computer model of the hippocampal network dentate gyrus, CA3, and CA1 (DG-CA3-CA1) regions. Methods: Computer simulations were made for a pathological model in which Alzheimer’s disease was simulated by synaptic degradation in the hippocampus. Pathology modeling was based on sequentially turning off the connections with entorhinal cortex layer 2 (EC2) and the dentate gyrus on CA3 pyramidal neurons. Gamma induction modeling consisted of simulating the oscillation provided by the septo-hippocampal pathway with band frequencies from 40–130 Hz. Pathological models with and without gamma induction were compared with a control. Results: In the hippocampal regions of DG, CA3, and CA1, and jointly DG-CA3-CA1 and CA3-CA1, gamma induction resulted in a statistically significant improvement in terms of increased numbers of spikes, spikes per burst, and burst duration as compared with the model simulating Alzheimer’s disease (AD). The positive maximal Lyapunov exponent was negative in both the control model and the one with gamma induction as opposed to the pathological model where it was positive within the DG-CA3-CA1 region. Gamma induction resulted in decreased transfer entropy in accordance with the information flow in DG → CA3 and CA3 → CA1. Conclusions: The results of simulation studies show that inducing gamma oscillations in the hippocampus may reduce Alzheimer’s disease related pathology. Pathologically higher transfer entropy values after gamma induction returned to values comparable to the control model.
Collapse
|
31
|
Arakaki X, Lee R, King KS, Fonteh AN, Harrington MG. Alpha desynchronization during simple working memory unmasks pathological aging in cognitively healthy individuals. PLoS One 2019; 14:e0208517. [PMID: 30601822 PMCID: PMC6314588 DOI: 10.1371/journal.pone.0208517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Our aim is to explore if cognitive challenge combined with objective physiology can reveal abnormal frontal alpha event-related desynchronization (ERD), in early Alzheimer's disease (AD). We used quantitative electroencephalography (qEEG) to investigate brain activities during N-back working memory (WM) processing at two different load conditions (N = 0 or 2) in an aging cohort. We studied 60-100 year old participants, with normal cognition, and who fits one of two subgroups from cerebrospinal fluid (CSF) proteins: cognitively healthy (CH) with normal amyloid/tau ratio (CH-NAT, n = 10) or pathological amyloid/tau ratio (CH-PAT, n = 14). We recorded behavioral performances, and analyzed alpha power and alpha spectral entropy (SE) at three occasions: during the resting state, and at event-related desynchronization (ERD) [250 ~ 750 ms] during 0-back and 2-back. During 0-back WM testing, the behavioral performance was similar between the two groups, however, qEEG notably differentiated CH-PATs from CH-NATs on the simple, 0-back testing: Alpha ERD decreased from baseline only in the parietal region in CH-NATs, while it decreased in all brain regions in CH-PATs. Alpha SE did not change in CH-NATs, but was increased from baseline in the CH-PATs in frontal and left lateral regions (p<0.01), and was higher in the frontal region (p<0.01) of CH-PATs compared to CH-NATs. The alpha ERD and SE analyses suggest there is frontal lobe dysfunction during WM processing in the CH-PAT stage. Additional power and correlations with behavioral performance were also explored. This study provide pilot information to further evaluate whether this biomarker has clinical significance.
Collapse
Affiliation(s)
- Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Ryan Lee
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Kevin S. King
- Imaging Research, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Alfred N. Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Michael G. Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, California, United States of America
| |
Collapse
|