1
|
Skalny AV, Korobeinikova TV, Kirichuk AA, Aschner M, Paoliello MMB, Barbosa F, Farina M, Tinkov AA. Trends of hair Hg accumulation in reproductive-age women living in Central Russia and the calculated costs of Hg-induced IQ loss in the period between 2005 and 2021. J Trace Elem Med Biol 2024; 85:127493. [PMID: 38986393 DOI: 10.1016/j.jtemb.2024.127493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
The objective of the present study was to retrospectively evaluate hair mercury (Hg) content in reproductive-age women living in Central Russia (Moscow and Moscow region), and to calculate the potential costs of the potential Hg-induced IQ loss in a hypothetical national birth cohort. MATERIALS AND METHODS A total of 36,263 occupationally non-exposed women aged between 20 and 40 years living in Moscow (n = 30,626) or Moscow region (n = 5637) in the period between 2005 and 2021 participated in this study. Hair Hg content was evaluated with inductively coupled plasma-mass spectrometry (ICP-MS). Hair Hg levels in reproductive-age women were used for assessment of the potential IQ loss and its costs. RESULTS The results demonstrate that hair Hg content in the periods between 2010 and 2015, and 2016-2021 was significantly lower than that in 2005-2009 by 26 % and 51 %, respectively. The highest hair Hg level was observed in women in 2005 (0.855 µg/g), being more than 2.5-fold higher than the lowest value observed in 2020 (0.328 µg/g). Multiple regression analysis revealed a significant inverse association between the year of analysis and hair Hg content (β = -0.288; p < 0.001). The calculations demonstrate that in 2005 the costs of IQ loss in children exceeded 1.0 (1.6) billion USD, whereas in 2020 the costs of IQ loss accounted to approximately 0.15 (0.28) billion USD. CONCLUSION Taken together, our data demonstrate that Hg accumulation in reproductive-age women reduced significantly in Russia from 2005 to 2021 resulting in predicted economic benefits by decreasing the costs of Hg-induced IQ loss.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia; Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia; Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Tatiana V Korobeinikova
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia
| | - Anatoly A Kirichuk
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fernando Barbosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Marcelo Farina
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo-USP, Ribeirão Preto, Brazil
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia; Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow 119146, Russia.
| |
Collapse
|
2
|
Shah S, Kim HS, Hong YC, Park H, Ha M, Kim Y, Lee JH, Ha EH. Infantile allergic diseases: a cohort study prenatal fish intake and mercury exposure context. BMC Public Health 2024; 24:568. [PMID: 38388869 PMCID: PMC10885545 DOI: 10.1186/s12889-024-18008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Allergic diseases (ADs) have been increasingly reported in infants and children over the last decade. Diet, especially the inclusion of fish intake, may help to lower the risk of ADs. However, fish also, can bioaccumulate environmental contaminants such as mercury. Hence, our study aims to determine what effects the type and frequency of fish intake have on ADs in six-month-old infants, independently and jointly with mercury exposure. METHODS This study is part of the prospective birth cohort: Mothers and Children's Environmental Health (MOCEH) study in South Korea. Data was collected on prenatal fish intake, prenatal mercury concentration and ADs for infants aged six months for 590 eligible mother-infant pairs. Logistic regression analysis was conducted to evaluate the risk of prenatal fish intake and mercury concentration on ADs in infants. Finally, interaction between fish intake and mercury concentration affecting ADs in infants was evaluated. Hazard ratios of prenatal fish intake on ADs in 6 month old infants were calculated by prenatal mercury exposure. RESULTS Logistic regression analysis showed that white fish (OR: 0.53; 95% CI 0.30-0.94; P < 0.05) intake frequency, once a week significantly decreased the risk of ADs in infants. Stratification analysis showed that consuming white fish once a week significantly reduced the hazard of ADs (HR: 0.44; 95% CI 0.21-0.92; P < 0.05) in infants in the high-mercury (≥ 50th percentile) exposure group. CONCLUSION The result indicates that prenatal white fish intake at least once a week reduces the risk of ADs in infants, especially in the group with high prenatal mercury exposure.
Collapse
Affiliation(s)
- Surabhi Shah
- Department of Environmental Medicine, Ewha Womans University College of Medicine, 808-1, Magok-dong, Gangseo-gu, 07804, Seoul, Republic of Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Womans University College of Medicine, 808-1, Magok-dong, Gangseo-gu, 07804, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyesook Park
- Department of Preventive Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University College of Medicine, 808-1, Magok-dong, Gangseo-gu, 07804, Seoul, Republic of Korea.
| | - Eun-Hee Ha
- Department of Environmental Medicine, Ewha Womans University College of Medicine, 808-1, Magok-dong, Gangseo-gu, 07804, Seoul, Republic of Korea.
- System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Xie M, Bao Y, Xie X, Ying Z, Ye G, Li C, Guo Q, Zhang W, Luo Z. Integrated transcriptomics and metabolomics reveal the toxic mechanisms of mercury exposure to an endangered species Tachypleus tridentatus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104345. [PMID: 38103811 DOI: 10.1016/j.etap.2023.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg) pollution is threatening the health of endangered Tachypleus tridentatus whereas the toxic mechanism is still unclear. This study combined transcriptomic and metabolomics technology to reveal the toxic mechanisms of mercury (Hg 2+, 0.025 mg/L) exposing to T. tridentatus larvae for 15 days. Mercury induced cellular toxicity and cardiovascular dysfunction by dysregulating the genes related to endocrine system, such as polyubiquitin-A, cathepsin B, atrial natriuretic peptide, etc. Mercury induced lipid metabolic disorder with the abnormal increase of lysoPC, leukotriene D4, and prostaglandin E2. Cytochrome P450 pathway was activated to produce anti-inflammatory substances to reconstruct the homeostasis. Mercury also inhibited arginine generation, which may affect the development of T. tridentatus by disrupting the crucial signaling pathway. The mercury methylation caused enhancement of S-adenosylmethionine to meet the need of methyl donor. The mechanisms described in present study provide new insight into the risk assessment of mercury exposure to T. tridentatus.
Collapse
Affiliation(s)
- Mujiao Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yuyuan Bao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangdong Center for Marine Development Research, Guangzhou 510322, China
| | - Xiaoyong Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Ziwei Ying
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Guoling Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qingyang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Wanling Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Zimeng Luo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| |
Collapse
|
4
|
Zhang H, Wang S, Wang Y, Lu A, Hu C, Yan C. DHA ameliorates MeHg‑induced PC12 cell apoptosis by inhibiting the ROS/JNK signaling pathway. Mol Med Rep 2021; 24:558. [PMID: 34109428 PMCID: PMC8188641 DOI: 10.3892/mmr.2021.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies have reported that methylmercury (MeHg) induces neuronal apoptosis, which is accompanied by abnormal neurological development. Despite the important role of docosahexaenoic acid (DHA) in maintaining the structure and function of the brain, as well as improving neuronal apoptosis induced by MeHg, the exact mechanism remains unknown. The present study hypothesized that the reactive oxygen species (ROS)-mediated JNK signaling pathway may be associated with the protective effect of DHA against MeHg-induced PC12 cell apoptosis. Cell Counting Kit-8, TUNEL staining, flow cytometry, ROS detection, PCR and western blot analysis were performed. The results demonstrated that MeHg inhibited the activity of PC12 cells, causing oxidative damage and promoting apoptosis; however, DHA significantly attenuated this effect. Mechanistic studies revealed that MeHg increased intracellular ROS levels and JNK protein phosphorylation, and decreased the expression levels of the anti-apoptotic protein Bcl-2, whereas DHA reduced ROS levels and JNK phosphorylation, and increased Bcl-2 expression. In addition, the ROS inhibitor N-acetyl-l-cysteine (NAC) was used to verify the experimental results. After pretreatment with NAC, expression levels of Bcl-2, Bax, phosphorylated-JNK and JNK were assessed. Bcl-2 protein expression was increased and the Bcl-2/Bax ratio was increased. Moreover, the high expression levels of phosphorylated-JNK induced by MeHg were significantly decreased. Based on the aforementioned results, the present study indicated that the effects of DHA against MeHg-induced PC12 cell apoptosis may be mediated via the ROS/JNK signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Susu Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Anxin Lu
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chunping Hu
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chonghuai Yan
- Ministry of Education‑Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
5
|
DHA and Its Metabolites Have a Protective Role against Methylmercury-Induced Neurotoxicity in Mouse Primary Neuron and SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22063213. [PMID: 33809931 PMCID: PMC8004243 DOI: 10.3390/ijms22063213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The consumption of fish now involves a risk of methylmercury (MeHg) exposure but also provides the benefit of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) such as docosahexaenoic acid (DHA). Some epidemiological studies have suggested that the intake of DHA can alleviate the neurotoxicity of MeHg, but the underlying mechanism is not known. Herein, we observed that pretreatment with 0.1–1 µM DHA suppressed MeHg-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells and mouse primary neuronal cells. These effects of DHA were canceled in the presence of the retinoid X receptor (RXR) antagonist UVI3003. An RXR agonist, bexarotene, suppressed the cytotoxicity of MeHg. DHA also suppressed the MeHg-induced production of reactive oxygen species (ROS) via an induction of antioxidant genes (catalase and SOD1). Pretreatment with DHA did not change the incorporation of MeHg. We showed previously that in the brain, the intake of DHA increased the level of 19,20-DHDP, which is the metabolite produced by cytochrome P450 and soluble epoxide hydrolase from DHA. In the present study, we observed that 19,20-DHDP also suppressed neurotoxicity from MeHg. These results indicate that DHA and its metabolites have a protective role in MeHg-induced neurotoxicity.
Collapse
|
6
|
Abstract
Walnuts have high levels of the omega-3 fatty acid alpha-linolenic acid (C18:3n-3, ALA) and the omega-6 fatty acid linoleic acid (C18:2n-6, LA). Previous research has demonstrated that pre-treatment of BV-2 microglia with walnut extract inhibited lipopolysaccharide (LPS)-induced activation of microglia. As an extension of that study, the effects of walnut-associated fatty acids on BV-2 microglia were assessed. BV-2 murine microglia cells were treated with LA, ALA, or a combination of LA+ALA prior to or after exposure to LPS. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) were measured in cell-conditioned media. Cyclooxeganse-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression were assessed in BV-2 microglia. Both LA and ALA protected against LPS-induced increases in NO, iNOS, COX-2, and TNF-alpha when used before LPS exposure. When BV-2 microglia were treated with fatty acids after LPS, only COX-2 and TNF-alpha were significantly attenuated by the fatty acids. There was no synergism of LA+ALA, as the LA+ALA combination was no more effective than LA or ALA alone. Fatty acids, like those found in walnuts, may protect against production of cytotoxic intermediates and cell-signaling molecules from microglia and may prove beneficial for preventing age- or disease-related neurodegeneration.
Collapse
|
7
|
Glial Factors Regulating White Matter Development and Pathologies of the Cerebellum. Neurochem Res 2020; 45:643-655. [PMID: 31974933 PMCID: PMC7058568 DOI: 10.1007/s11064-020-02961-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022]
Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be targeted to molecular pathways also playing a role in development and disease of the cerebellum.
Collapse
|
8
|
Wei B, He M, Cai X, Hou X, Wang Y, Chen J, Lan M, Chen Y, Lou K, Gao F. Vitamin E succinate-grafted-chitosan/chitosan oligosaccharide mixed micelles loaded with C-DMSA for Hg 2+ detection and detoxification in rat liver. Int J Nanomedicine 2019; 14:6917-6932. [PMID: 31695366 PMCID: PMC6717732 DOI: 10.2147/ijn.s213084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
AIM To determine whether the use of a mixed polymeric micelle delivery system based on vitamin E succinate (VES)-grafted-chitosan oligosaccharide (CSO)/VES-grafted-chitosan (CS) mixed micelles (VES-g-CSO/VES-g-CS MM) enhances the delivery of C-DMSA, a theranostic fluorescent probe, for Hg2+ detection and detoxification in vitro and in vivo. METHODS Mixed micelles self-assembled from two polymers, VES-g-CSO and VES-g-CS, were used to load C-DMSA and afforded C-DMSA@VES-g-CSO/VES-g-CS MM for cell and in vivo applications. Fluorescence microscopy was used to assess C-DMSA cellular uptake and Hg2+ detection in L929 cells. C-DMSA@VES-g-CSO/VES-g-CS MM was then administered intravenously. Hg2+ detection was assessed by fluorescence microscopy in terms of bio-distribution while detoxification efficacy in Hg2+-poisoned rat models was evaluated in terms of mercury contents in blood and in liver. RESULTS The C-DMSA loaded mixed micelles, C-DMSA@VES-g-CSO/VES-g-CS MM, significantly enhanced cellular uptake and detoxification efficacy of C-DMSA in Hg2+ pretreated human L929 cells. Evidence from the reduction of liver coefficient, mercury contents in liver and blood, alanine transaminase and aspartate transaminase activities in Hg2+ poisoned SD rats treated with the mixed micelles strongly supported that the micelles were effective for Hg2+ detoxification in vivo. Furthermore, ex vivo fluorescence imaging experiments also supported enhanced Hg2+ detection in rat liver. CONCLUSION The mixed polymeric micelle delivery system could significantly enhance cell uptake and efficacy of a theranostic probe for Hg2+ detection and detoxification treatment in vitro and in vivo. Moreover, this nanoparticle drug delivery system could achieve targeted detection and detoxification in liver.
Collapse
Affiliation(s)
- Binghui Wei
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Muye He
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xiaoran Cai
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xinyu Hou
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Yujie Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jiaojiao Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai200237, People’s Republic of China
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
9
|
Wang J, Wu W, Li H, Cao L, Wu M, Liu J, Gao Z, Zhou C, Liu J, Yan C. Relation of prenatal low-level mercury exposure with early child neurobehavioral development and exploration of the effects of sex and DHA on it. ENVIRONMENT INTERNATIONAL 2019; 126:14-23. [PMID: 30776746 DOI: 10.1016/j.envint.2019.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND The extent to which low-level, in utero mercury exposure affects child neurobehavioral development during early childhood has been inconclusive. In addition, the effects of sex and docosahexaenoic acid (DHA) on these relationships remain unclear and controversial. OBJECTIVES This study aimed to explore the associations between prenatal low-level mercury exposure and child neurobehavioral development during the neonatal and toddler periods and to examine the potential confounding or interactive effects of sex and DHA status on these relationships. METHODS This longitudinal study included 286 mother-child pairs in Shanghai, China, whose cord blood samples were analyzed for total mercury, DHA, other nutrients and coexposure contaminants possibly due to maternal consumption of seafood. Children's neurobehavioral development was assessed with the Neonatal Behavioral Neurological Assessment (NBNA) three days after birth and the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) at 18 months of age. RESULTS Cord blood mercury concentration, with geometric mean of 2.00 μg/l, was related to poorer NBNA performance but unrelated to BSID-III scores with adjustment for DHA and other covariates. Cord serum DHA was positively associated with motor development assessed by the BSID-III. The interaction was found between mercury and DHA on the NBNA score, and the inverse relation of cord blood mercury with NBNA was significant only among the children with lower DHA levels (<45.54 μg/ml). Additional adjustment for DHA didn't change the associations between cord blood mercury and neurodevelopmental outcomes substantially. The mercury by sex interaction for language of BSID-III was borderline significant. CONCLUSIONS Our research provides initial evidence for the negative effects of prenatal low-level mercury exposure on neonates' neurobehavioral development. Prenatal DHA status may modify the relationship between cord blood mercury level and neonatal neurobehavioral development, but the confounding effects of DHA were not observed. Further studies are warranted before the causality of the observed associations can be determined.
Collapse
Affiliation(s)
- Ju Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wu
- Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Li
- Jining No.1 People's Hospital, Jining, Shandong, China
| | - Lulu Cao
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqin Wu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Gao
- Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, China
| | - Cancan Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianghong Liu
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Ghizoni H, Ventura M, Colle D, Gonçalves CL, de Souza V, Hartwig JM, Santos DB, Naime AA, Cristina de Oliveira Souza V, Lopes MW, Barbosa F, Brocardo PS, Farina M. Effects of perinatal exposure to n-3 polyunsaturated fatty acids and methylmercury on cerebellar and behavioral parameters in mice. Food Chem Toxicol 2018; 120:603-615. [DOI: 10.1016/j.fct.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
|
11
|
Ferain A, Bonnineau C, Neefs I, Das K, Larondelle Y, Rees JF, Debier C, Lemaire B. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:174-187. [PMID: 29649756 DOI: 10.1016/j.aquatox.2018.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Lipids, and their constitutive fatty acids, are key nutrients for fish health as they provide energy, maintain cell structure, are precursors of signalling molecules and act as nuclear receptor ligands. These specific roles may be of crucial importance in a context of exposure to pollutants. We recently showed that the fatty acid profile of rainbow trout liver cell phospholipids modulates sensitivity to an acute methylmercury challenge. In order to investigate mechanisms of effects, we herein tested whether specific polyunsaturated fatty acids (PUFAs) may protect cells from methylmercury through decreasing intracellular mercury accumulation and/or enhancing cellular defences (e.g. via modulation of gene expression patterns). We also investigated the inverse relationship and assessed the impact of methylmercury on cellular fatty acid metabolism. To do so, the fatty acid composition of rainbow trout liver cell phospholipids was first modified by incubating them in a medium enriched in a specific PUFA from either the n-3 family (alpha-linolenic acid, ALA; eicosapentaenoic acid, EPA) or the n-6 family (linoleic acid, LA; arachidonic acid, AA). Cells were then exposed to methylmercury (0.15 or 0.50 μM) for 24 h and sampled thereafter for assessing phospholipid fatty acid profile, intracellular total mercury burden, and expression pattern of genes involved in fatty acid metabolism, synthesis of PUFA-derived signalling molecules and stress response. We observed that cells incorporated the given PUFA and some biotransformation products in their phospholipids. Methylmercury had few impacts on this cellular phospholipid composition. None of the PUFA enrichments affected the cellular mercury burden, suggesting that the previously observed cytoprotection conferred by ALA and EPA was not linked to a global decrease in cellular accumulation of mercury. Fatty acid enrichments and methylmercury exposure both modulated gene expression patterns. Genes involved in the synthesis of PUFA-derived signalling molecules, in stress response and the orphan cytochrome P450 20A1 were identified as possible sites of interaction between fatty acids and methylmercury in rainbow trout liver cells.
Collapse
Affiliation(s)
- Aline Ferain
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium; Irstea, UR RiverLy, Centre de Lyon-Villeurbanne, 5, 69625 Villeurbanne, France
| | - Ineke Neefs
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), Laboratory of Oceanology, Université de Liège, Allée du 6 août B6C, B-4000 Liège, Belgium
| | - Yvan Larondelle
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-François Rees
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Benjamin Lemaire
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Carvalho-Silva M, Gomes LM, Scaini G, Rebelo J, Damiani AP, Pereira M, Andrade VM, Gava FF, Valvassori SS, Schuck PF, Ferreira GC, Streck EL. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II. Metab Brain Dis 2017; 32:1043-1050. [PMID: 28315992 DOI: 10.1007/s11011-017-9994-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Abstract
Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.
Collapse
Affiliation(s)
- Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Adriani P Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Maiara Pereira
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira S Valvassori
- Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Farina M, Aschner M. Methylmercury-Induced Neurotoxicity: Focus on Pro-oxidative Events and Related Consequences. ADVANCES IN NEUROBIOLOGY 2017; 18:267-286. [DOI: 10.1007/978-3-319-60189-2_13] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Ferain A, Bonnineau C, Neefs I, Rees JF, Larondelle Y, Schamphelaere KACD, Debier C. The fatty acid profile of rainbow trout liver cells modulates their tolerance to methylmercury and cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:171-181. [PMID: 27288598 DOI: 10.1016/j.aquatox.2016.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
The polyunsaturated fatty acid (PUFA) composition of fish tissues, which generally reflects that of the diet, affects various cellular properties such as membrane structure and fluidity, energy metabolism and susceptibility to oxidative stress. Since these cellular parameters can play an important role in the cellular response to organic and inorganic pollutants, a variation of the PUFA supply might modify the toxicity induced by such xenobiotics. In this work, we investigated whether the cellular fatty acid profile has an impact on the in vitro cell sensitivity to two environmental pollutants: methylmercury and cadmium. Firstly, the fatty acid composition of the rainbow trout liver cell line RTL-W1 was modified by enriching the growth medium with either alpha-linolenic acid (ALA, 18:3n-3), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), linoleic acid (LA, 18:2n-6), arachidonic acid (AA, 20:4n-6) or docosapentaenoic acid (DPA, 22:5n-6). These modified cells and their control (no PUFA enrichment) were then challenged for 24h with increasing concentrations of methylmercury or cadmium. We observed that (i) the phospholipid composition of the RTL-W1 cells was profoundly modulated by changing the PUFA content of the growth medium: major modifications were a high incorporation of the supplemented PUFA in the cellular phospholipids, the appearance of direct elongation and desaturation metabolites in the cellular phospholipids as well as a change in the gross phospholipid composition (PUFA and monounsaturated fatty acid (MUFA) levels and n-3/n-6 ratio); (ii) ALA, EPA and DPA enrichment significantly protected the RTL-W1 cells against both methylmercury and cadmium; (iv) DHA enrichment significantly protected the cells against cadmium but not methylmercury; (v) AA and LA enrichment had no impact on the cell tolerance to both methylmercury and cadmium; (vi) the abundance of 20:3n-6, a metabolite of the n-6 biotransformation pathway, in phospholipids was negatively correlated to the cell tolerance to both methylmercury and cadmium. Overall, our results highlighted the importance of the fatty acid supply on the tolerance of fish liver cells to methylmercury and cadmium.
Collapse
Affiliation(s)
- Aline Ferain
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium.
| | - Chloé Bonnineau
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium; Irstea, UR MALY, Centre de Lyon-Villeurbanne, rue de la Doua 5/32108, F-69616 Villeurbanne, France
| | - Ineke Neefs
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Jean François Rees
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Yvan Larondelle
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| | - Karel A C De Schamphelaere
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium
| | - Cathy Debier
- Institute of Life Sciences, Université catholique de Louvain, Place Croix du Sud 2/L7.05.08, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
15
|
Harvey LD, Yin Y, Attarwala IY, Begum G, Deng J, Yan HQ, Dixon CE, Sun D. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury. ASN Neuro 2015; 7. [PMID: 26685193 PMCID: PMC4710127 DOI: 10.1177/1759091415618969] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1+ microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32+ microglia or macrophages, but an increased CD206+ phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1+ microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1+ microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to ameliorate TBI-induced cellular pathology.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Yin
- Department of Neurology, the Second Hospital of Dalian Medical University, Dalian, China
| | | | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julia Deng
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Q Yan
- Department of Neurosurgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - C Edward Dixon
- Department of Neurosurgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA, USA Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain. Lipids 2015; 51:61-73. [DOI: 10.1007/s11745-015-4087-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022]
|
17
|
Krey A, Ostertag SK, Chan HM. Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:237-247. [PMID: 24958011 DOI: 10.1016/j.scitotenv.2014.05.134] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/19/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75 mg/kg wet weight (ww)), neuropathological signs (>4 mg/kg ww), neurochemical changes (>0.4 mg/kg ww), and neurobehavioral changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.
Collapse
Affiliation(s)
- Anke Krey
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada.
| | - Hing Man Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, 20 Marie-Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
18
|
Begum G, Harvey L, Dixon CE, Sun D. ER stress and effects of DHA as an ER stress inhibitor. Transl Stroke Res 2013; 4:635-42. [PMID: 24323417 PMCID: PMC3864671 DOI: 10.1007/s12975-013-0282-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Abstract
The endoplasmic reticulum (ER) functions in the synthesis, folding, modification, and transport of newly synthesized transmembrane and secretory proteins. The ER also has important roles in the storage of intracellular Ca(2+) and regulation of Ca(2+) homeostasis. The integrity of the Ca(2+) homeostasis in the ER lumen is vital for proper folding of proteins. Dysregulation of ER Ca(2+) could result in an increase in unfolded or misfolded proteins and ER stress. ER stress triggers activation of the unfolded protein response (UPR), which is a fundamentally adaptive cell response and functions as a cytoprotective mechanism by over-expression of relevant chaperones and the global shutdown of protein synthesis. UPR activation occurs when three key ER membrane-sensor proteins detect an accumulation of aberrant proteins. The UPR acts to alleviate ER stress, but if the stress is too severe or prolonged, apoptosis will be triggered. In this review, we focused on ER stress and the effects of docosahexaenoic acid (DHA) on ER stress. DHA and its bioactive compounds, such as protectins and resolvins, provide neuroprotection against oxidative stress and apoptosis and have the ability to resolve inflammation in neurological diseases. New studies reveal that DHA blocks inositol trisphosphate receptor (IP3R)-mediated ER Ca(2+) depletion and ER stress. The administration of DHA post-traumatic brain injury (TBI) reduces ER stress, aberrant protein accumulation, and neurological deficits. Therefore, DHA presents therapeutic potentials for TBI via its pleiotropic effects including inhibition of ER stress.
Collapse
Affiliation(s)
- Gulnaz Begum
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Lloyd Harvey
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - C. Edward Dixon
- Dept. of Neurosurgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dandan Sun
- Dept. of Neurology, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
19
|
Chaung HC, Chang CD, Chen PH, Chang CJ, Liu SH, Chen CC. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain. Food Chem 2013; 138:342-7. [DOI: 10.1016/j.foodchem.2012.10.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/27/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
|
20
|
Lam HS, Kwok KM, Chan PHY, So HK, Li AM, Ng PC, Fok TF. Long term neurocognitive impact of low dose prenatal methylmercury exposure in Hong Kong. ENVIRONMENT INTERNATIONAL 2013; 54:59-64. [PMID: 23416249 DOI: 10.1016/j.envint.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND International studies suggest that low dose prenatal methylmercury exposure (>29 nmol/L) has long-term adverse neurocognitive effects. There is evidence that the majority of children in Hong Kong exceed this level as a result of high fish consumption of mothers during pregnancy. OBJECTIVE To study whether there are any associations between low-dose prenatal methylmercury exposure and neurocognitive outcomes in Hong Kong children. MATERIALS AND METHODS All 1057 children from the original birth cohort were eligible for entry into the study, except children with conditions that would affect neurocognitive development, but were unrelated to methylmercury exposure. Subjects were assessed by a wide panel of tests covering a broad range of neurocognitive functions: Hong Kong Wechsler Intelligence Scale for Children (HK-WISC), Hong Kong List Learning Test (HKLLT), Tests of Everyday Attention for Children (TEACH), Boston Naming Test, and Grooved Pegboard Test. RESULTS 608 subjects were recruited (median age 8.2 years, IQR 7.3, 8.8; 53.9% boys). After correction by confounders including child age and sex, multivariate analysis showed that cord blood mercury concentration was significantly associated with three subtests: Picture Arrangement of HK-WISC (coefficient -0.944, P=0.049) and Short and Long Delay Recall Difference of the HKLLT (coefficient -1.087, P=0.007 and coefficient -1.161, P=0.005, respectively), i.e., performance worsened with increasing prenatal methylmercury exposure in these subtests. CONCLUSIONS Small, but statistically significant adverse associations between prenatal methylmercury exposure and long-term neurocognitive effects (a visual sequencing task and retention ability of verbal memory) were found in our study. These effects are compatible with findings of studies with higher prenatal methylmercury exposure levels and suggest that safe strategies to further reduce exposure levels in Hong Kong are desirable.
Collapse
Affiliation(s)
- Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
21
|
Syversen T, Kaur P. The toxicology of mercury and its compounds. J Trace Elem Med Biol 2012; 26:215-26. [PMID: 22658719 DOI: 10.1016/j.jtemb.2012.02.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 12/27/2022]
Abstract
A concentrated review on the toxicology of inorganic mercury together with an extensive review on the neurotoxicology of methylmercury is presented. The challenges of using inorganic mercury in dental amalgam are reviewed both regarding the occupational exposure and the possible health problems for the dental patients. The two remaining "mysteries" of methylmercury neurotoxicology are also being reviewed; the cellular selectivity and the delayed onset of symptoms. The relevant literature on these aspects has been discussed and some suggestions towards explaining these observations have been presented.
Collapse
Affiliation(s)
- Tore Syversen
- Norwegian University of Science and Technology, Department of Neuroscience, Trondheim, Norway.
| | | |
Collapse
|
22
|
Moreira EL, de Oliveira J, Dutra MF, Santos DB, Gonçalves CA, Goldfeder EM, de Bem AF, Prediger RD, Aschner M, Farina M. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicol Sci 2012; 130:373-82. [PMID: 22903822 DOI: 10.1093/toxsci/kfs252] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that biomagnifies throughout the aquatic food chain, thus representing a toxicological concern for humans subsiding on fish for their dietary intake. Although the developing brain is considered the critical target organ of MeHg toxicity, recent evidence indicates that the cardiovascular system may be the most sensitive in adults. However, data on the mechanisms mediating MeHg-induced cardiovascular toxicity are scarce. Based on the close relationship between cardiovascular disease and dyslipidemia, this study was designed to investigate the effects of long-term MeHg exposure on plasma lipid levels in mice, as well as their underlying mechanisms and potential relationships to MeHg-induced neurotoxicity. Our major finding was that long-term MeHg exposure induced dyslipidemia in rodents. Specifically, Swiss and C57BL/6 mice treated for 21 days with a drinking solution of MeHg (40 mg/l, ad libitum) diluted in tap water showed increased total and non-HDL plasma cholesterol levels. MeHg-induced hypercholesterolemia was also observed in low-density lipoprotein receptor knockout (LDLr⁻/⁻) mice, indicating that this effect was not related to decreased LDLr-mediated cholesterol transport from blood to other tissues. Although the hepatic synthesis of cholesterol was unchanged, significant signs of nephrotoxicity (glomerular shrinkage, tubular vacuolization, and changed urea levels) were observed in MeHg-exposed mice, indicating that the involvement of nephropathy in MeHg-induced lipid dyshomeostasis may not be ruled out. Notably, Probucol (a lipid-lowering drug) prevented the development of hypercholesterolemia when coadministered with MeHg. Finally, hypercholesterolemic LDLr⁻/⁻ mice were more susceptible to MeHg-induced cerebellar glial activation, suggesting that hypercholesterolemia in itself may pose a risk factor in MeHg-induced neurotoxicity. Overall, based on the strong and graded positive association between total as well as LDL cholesterol and risk of cardiovascular diseases, our data support the concept of MeHg-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Eduardo Luiz Moreira
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Prophylactic effect of α-linolenic acid and α-eleostearic acid against MeHg induced oxidative stress, DNA damage and structural changes in RBC membrane. Food Chem Toxicol 2012; 50:2811-8. [DOI: 10.1016/j.fct.2012.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/31/2022]
|
24
|
Becerir C, Kılıç İ, Şahin Ö, Özdemir Ö, Tokgün O, Özdemir B, Akca H. The protective effect of docosahexaenoic acid on the bilirubin neurotoxicity. J Enzyme Inhib Med Chem 2012; 28:801-7. [DOI: 10.3109/14756366.2012.684053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Onur Tokgün
- Department of Medical Biology,
Denizli, Turkey
| | - Bülent Özdemir
- Department Anatomy, Pamukkale University Faculty of Medicine,
Denizli, Turkey
| | - Hakan Akca
- Department of Medical Biology,
Denizli, Turkey
| |
Collapse
|
25
|
Effect of marine omega 3 fatty acids on methylmercury-induced toxicity in fish and mammalian cells in vitro. J Biomed Biotechnol 2012; 2012:417652. [PMID: 22654480 PMCID: PMC3359764 DOI: 10.1155/2012/417652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/29/2012] [Indexed: 11/18/2022] Open
Abstract
Methylmercury (MeHg) is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK) cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293), proliferation (HEK293 and ASK), apoptosis (ASK), oxidation of the red-ox probe roGFP (HEK293), and regulation of selected toxicological and metabolic transcriptional markers (ASK). DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA) or by reducing MeHg uptake (DHA). However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.
Collapse
|
26
|
Denny Joseph K, Muralidhara M. Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain. Food Chem Toxicol 2012; 50:1529-37. [DOI: 10.1016/j.fct.2012.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 01/06/2012] [Accepted: 01/15/2012] [Indexed: 12/21/2022]
|
27
|
Amlund H, Andreasen L, Torstensen BE. Dietary methylmercury and vegetable oil affects brain lipid composition in Atlantic salmon (Salmo salar L.). Food Chem Toxicol 2012; 50:518-25. [DOI: 10.1016/j.fct.2011.12.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
|
28
|
Pal M, Ghosh M. Studies on comparative efficacy of α-linolenic acid and α-eleostearic acid on prevention of organic mercury-induced oxidative stress in kidney and liver of rat. Food Chem Toxicol 2012; 50:1066-72. [PMID: 22269903 DOI: 10.1016/j.fct.2011.12.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
The present study was undertaken to evaluate the effect of α-linolenic acid and α-eleostearic acid, two isomers of linolenic acid, against oxidative stress induced by organic mercury in kidney and liver cells of rat. Male albino rats were divided into six groups. Groups 1, 2 were normal control and methyl mercury chloride (MeHgCl) treated (5 mg/kg BW/day) control, respectively. Groups 3, 4, 5 and 6 were orally treated with different doses of two fatty acids (0.5% and 1.0% of total lipid given for each isomer) along with MeHgCl (5 mg/kg BW). Results showed that activity of antioxidant enzymes viz. catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) in liver and kidney decreased significantly due to oxidative stress generated by MeHg. Administration of the linolenic acid isomers almost restored all the altered parameters and also reduced lipid peroxidation and leakage of trans-aminase enzymes from liver to blood due to liver injury when administrated in higher doses. Histopathology of liver and kidney cells showed that administration of α-linolenic acid significantly reduced the damage generated by MeHg. Thus, α-linolenic acid and α-eleostearic acid could serve as cost-effective and natural phytochemical preparation to protect against the adverse effects caused by organic mercury in human.
Collapse
Affiliation(s)
- Moumita Pal
- Oil Technology Section, Department of Chemical Technology, University College of Science & Technology, University of Calcutta, India
| | | |
Collapse
|
29
|
Nøstbakken OJ, Goksøyr A, Martin SAM, Cash P, Torstensen BE. Marine n-3 fatty acids alter the proteomic response to methylmercury in Atlantic salmon kidney (ASK) cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:65-75. [PMID: 22071128 DOI: 10.1016/j.aquatox.2011.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 05/31/2023]
Abstract
Fish based diets have been linked to the amelioration of methylmercury (MeHg) induced symptoms in several epidemiological studies, particularly due to their contents of marine n-3 fatty acids. It has been suggested that n-3 fatty acids may mask the detrimental effects of MeHg due to their beneficial effect on the same biological functions which are negatively affected by MeHg. However, in vitro studies have implied that there may be direct interactions between the marine n-3 FAs and MeHg, which ameliorates MeHg toxicity through interactions at a biological level. To understand how marine n-3 FAs and MeHg interact in fish as a biological system, we wanted to investigate molecular interaction in a fish cell system. Atlantic salmon kidney (ASK) cells were pre-incubated with the marine n-3 FAs docosahexaenoic acid (22:6n-3, DHA) and eicosapentaenoic acid (20:5n-3, EPA) before exposing them to MeHg. Modulating effects of the marine FAs on MeHg toxicity were subsequently assessed using the exploratory technique of proteomics, in a factorial design. Thirty-four differentially regulated proteins were identified. From these; twenty-seven were shown to be differentially regulated by MeHg, twelve were regulated by the fatty acids, and another eight showed interaction effects between MeHg and the FAs. Several of the proteins were concomitantly affected by MeHg- and FA-main effects, as well as interaction effects. Functional annotations and pathway analysis of the proteins revealed that marine n-3 FAs and MeHg concurrently affected the abundance of protein markers relating to such molecular mechanisms as: cell signaling, calcium homeostasis, structural integrity, apoptosis, and energy metabolism. In conclusion, both marine n-3 FAs and MeHg can differentially affect the abundances of the same proteins, indicating modulating effects of EPA and DHA on MeHg metabolism, and possibly on its toxicity.
Collapse
Affiliation(s)
- Ole Jakob Nøstbakken
- NIFES (National Institute of Nutrition and Seafood Research), Pb 2029 Nordnes, 5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
30
|
Kaur P, Aschner M, Syversen T. Biochemical factors modulating cellular neurotoxicity of methylmercury. J Toxicol 2011; 2011:721987. [PMID: 21941541 PMCID: PMC3177097 DOI: 10.1155/2011/721987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022] Open
Abstract
Methylmercury (MeHg), an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH), fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s) of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC); diethyl maleate, (DEM); docosahexaenoic acid, (DHA); selenomethionine, SeM; Trolox) and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.
Collapse
Affiliation(s)
- Parvinder Kaur
- Department of Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology and The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, B-3307 Medical Center North, 1162 21st Avenue, Nashville, TN 37232-2495, USA
| | - Tore Syversen
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 3, 7489 Trondheim, Norway
| |
Collapse
|
31
|
Toyama T, Shinkai Y, Yasutake A, Uchida K, Yamamoto M, Kumagai Y. Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1117-22. [PMID: 21382770 PMCID: PMC3237354 DOI: 10.1289/ehp.1003123] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/07/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Methylmercury (MeHg) exhibits neurotoxicity through accumulation in the brain. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) plays an important role in reducing the cellular accumulation of MeHg. OBJECTIVES We investigated the protective effect of isothiocyanates, which are known to activate Nrf2, on the accumulation of mercury after exposure to MeHg in vitro and in vivo. METHODS We used primary mouse hepatocytes in in vitro experiments and mice as an in vivo model. We used Western blotting, luciferase assays, atomic absorption spectrometry assays, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, and we identified toxicity in mice based on hind-limb flaccidity and mortality. RESULTS The isothiocyanates 6-methylsulfinylhexyl isothiocyanate (6-HITC) and sulforaphane (SFN) activated Nrf2 and up-regulated downstream proteins associated with MeHg excretion, such as glutamate-cysteine ligase, glutathione S-transferase, and multidrug resistance-associated protein, in primary mouse hepatocytes. Under these conditions, intracellular glutathione levels increased in wild-type but not Nrf2-deficient primary mouse hepatocytes. Pretreatment with 6-HITC and SFN before MeHg exposure suppressed cellular accumulation of mercury and cytotoxicity in wild-type but not Nrf2-deficient primary mouse hepatocytes. In comparison, in vivo administration of MeHg to Nrf2-deficient mice resulted in increased sensitivity to mercury concomitant with an increase in mercury accumulation in the brain and liver. Injection of SFN before administration of MeHg resulted in a decrease in mercury accumulation in the brain and liver of wild-type, but not Nrf2-deficient, mice. CONCLUSIONS Through activation of Nrf2, 6-HITC and SFN can suppress mercury accumulation and intoxication caused by MeHg intake.
Collapse
Affiliation(s)
- Takashi Toyama
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Remø S, Olsvik P, Torstensen B, Amlund H, Breck O, Waagbø R. Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Exp Eye Res 2011; 92:414-24. [DOI: 10.1016/j.exer.2011.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 11/28/2022]
|
33
|
Almaguel FG, Liu JW, Pacheco FJ, De Leon D, Casiano CA, De Leon M. Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res 2010; 1318:133-43. [PMID: 20043885 DOI: 10.1016/j.brainres.2009.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 01/03/2023]
Abstract
Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity.
Collapse
Affiliation(s)
- Frankis G Almaguel
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St., Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bellinger DC. Interpreting epidemiologic studies of developmental neurotoxicity: conceptual and analytic issues. Neurotoxicol Teratol 2009; 31:267-74. [PMID: 19595760 DOI: 10.1016/j.ntt.2009.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 11/25/2022]
Abstract
This paper discusses issues pertaining to the validity, precision, and interpretation of epidemiologic studies of neurotoxicity. With regard to validity, the critical issues pertain to the appropriate strategy for confounder adjustment, particularly when confounders are complex, multi-faceted constructs, and to the need for greater clarity and transparency in articulating the causal relationships implicit in the analytic approach applied. With regard to precision, the critical issue is a need to identify the contributors to the substantial variability observed in the effect estimates that describe dose-response and dose-effect relationships. In addition to methodological sources, such as imprecision in estimating dose at the critical organ site(s), true inter-individual differences in susceptibility to a neurotoxicant could also contribute to the variability. Variability might be reduced by taking full account of factors such as co-exposures or health co-morbidities, genetic polymorphisms, and the social ecology of exposure. With regard to interpretation, we need to do a better job as a field conveying to risk assessors and others the ecological significance of the types of performance deficits observed following neurotoxicant exposure, emphasizing the distinction between individual and population risk. A final issue discussed is the need to define standards for the conduct, analysis, and reporting of epidemiologic studies of neurotoxicity, similar to those developed for other fields.
Collapse
Affiliation(s)
- David C Bellinger
- Children's Hospital Boston, Harvard Medical School, Harvard School of Public Health, Farley Basement Box 127, Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|