1
|
Matos-Sousa JM, Souza-Monteiro D, dos Santos VRN, Ferreira MKM, Frazão DR, Chemelo VS, Bittencourt LDO, Moura JDMD, Maia CDSF, Collares FM, Fernandes LDMP, Lima RR. High-intensity ethanol binge drinking accentuates bone damage in induced apical periodontitis in rats. Heliyon 2024; 10:e40163. [PMID: 39641066 PMCID: PMC11617731 DOI: 10.1016/j.heliyon.2024.e40163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
This study aimed to evaluate the effects of excessive and episodic consumption of ethanol (EtOH, a high-intensity drinking manner) on induced apical periodontitis in rats. Thirty-two animals were divided into the following four groups: control, EtOH, apical periodontitis, and EtOH + apical periodontitis. Ethanol exposure (3 g/kg 20 % w/v EtOH) was performed by orogastric gavage for 3 consecutive days, followed by 4 days of withdrawal for 4 weeks. Lesions were induced by exposing the dental pulp of the lower first molar and by the absence of any treatment/curative for 28 days. Finally, the animals were euthanized, and mandibles were collected. The mandible was divided medially, with one hemimandible being used for micro-computed tomography analysis of the volume of the periapical lesion and bone quality parameters, such as bone volume and trabecular bone assessments; the other hemimandible was used for histological analysis, with a descriptive histopathological analysis of the tissue and the pattern of bone loss presented, as well as an assessment of the collagen content present. The data were subjected to statistical analysis (one-way analysis of variance with Tukey's post-hoc test). Our results showed that the EtOH + apical periodontitis group had a larger volume of periapical lesions than animals that were not exposed to ethanol. Additionally, bone quality parameters showed a reduction in bone volume and thickening of the trabeculae, associated with increased tissue destruction and reduced collagen content in the remnant region of the alveolar bone. These results suggest that exposure to EtOH in a pattern of excessive alcohol consumption is an aggravating factor in apical periodontitis and, consequently, in its progression, the quality and quantity of the alveolar bone remaining in the region of the periapical lesion are the modulating aspects.
Collapse
Affiliation(s)
- José Mário Matos-Sousa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vinicius Ruan Neves dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leonardo de Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - João Daniel Mendonça de Moura
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavioral Pharmacology, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fabrício Mezzomo Collares
- Laboratory of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luanna de Melo Pereira Fernandes
- Laboratory of Neuropharmacology and Behavior, Center for Biological |Health Sciences, State University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Kim JH, Na JE, Lee J, Park YE, Lee J, Choi JH, Heo NY, Park J, Kim TO, Jang HJ, Park HY, Park SH. Blood Concentrations of Lead, Cadmium, and Mercury Are Associated With Alcohol-Related Liver Disease. J Korean Med Sci 2023; 38:e412. [PMID: 38111282 PMCID: PMC10727920 DOI: 10.3346/jkms.2023.38.e412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/24/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND An association between environmental pollutants and alcohol-related liver disease (ALD) has not been determined until now. The objectives of this study were to examine the association of the pollutants with ALD, and whether the pollutants together increased the risk of ALD. METHODS Data were extracted from the Korea National Health and Nutrition Examination Survey (2010-2013 and 2016-2017; n = 11,993). Blood levels of lead, cadmium, and mercury were measured. ALD was defined by a combination of excessive alcohol consumption and ALD/non-alcoholic fatty liver disease index > 0. The aspartate aminotransferase-to-platelet ratio index and fibrosis (FIB)-4 score were used to evaluate ALD FIB. RESULTS The odds ratios (ORs) of ALD for the highest versus the lowest quartiles of exposure were for lead, 7.39 (95% confidence interval [CI], 5.51-9.91); cadmium, 1.68 (95% CI, 1.32-2.14); and mercury, 5.03 (95% CI, 3.88-6.53). Adjusting for age, gender, smoking, occupation, education, and personal income attenuated the associations but indicated significant positive trends (all Ptrend < 0.001). A positive additive interaction between cadmium and lead was observed. The relative excess OR due to the interaction was 0.96 (95% CI, 0.41-1.51); synergy index = 2.92 (95% CI, 0.97-8.80). Among 951 subjects with ALD, advanced FIB was associated with lead and cadmium (OR, 3.46, 95% CI, 1.84-6.53; OR, 8.50, 95% CI, 2.54-28.42, respectively), but not with mercury. The effect estimates for lead and cadmium remained significant even after adjustment for daily alcohol intake. CONCLUSION Blood levels of lead, cadmium, and mercury were significantly associated not only with the risk of ALD but also with ALD FIB. Cadmium and lead have synergistic effects that increase the risk of ALD.
Collapse
Affiliation(s)
- Jae Hoon Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ji Eun Na
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Junghwan Lee
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Yong Eun Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jin Lee
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Joon Hyuk Choi
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Nae Yun Heo
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jongha Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hang Jea Jang
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ha Young Park
- Department of Emergency Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Seung Ha Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
3
|
Wu X, Li P, Tao J, Chen X, Zhang A. Subchronic Low-Dose Methylmercury Exposure Accelerated Cerebral Telomere Shortening in Relevant with Declined Urinary aMT6s Level in Rats. TOXICS 2023; 11:191. [PMID: 36851065 PMCID: PMC9961034 DOI: 10.3390/toxics11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg) is a global pollutant with established toxic effects on the central nervous system (CNS). However, early events and early-warning biomarkers of CNS damage following exposure to low-dose MeHg are still lacking. This study aimed to investigate whether subchronic low-dose MeHg exposure had adverse effects on the cerebral telomere length, as well as serum melatonin and its urinary metabolite 6-sulfatoxymelatonin (aMT6s) in rats. Sixteen male Sprague Dawley rats were divided into two groups. Group I was the control group. In group II, rats were exposed to MeHg by gavage at a dose of 0.1 mg/kg/day for 3 months. This study revealed that MeHg exposure resulted in impairment of learning and memory ability, a slightly reduced number of neurons and an irregular arrangement of neurons in the hippocampus. It also significantly accelerated telomere shortening in the cerebral cortex, hippocampus and hypothalamus. Moreover, MeHg exposure decreased the levels of melatonin in serum and aMT6s in urine, partly by suppressing the synthesis of 5-hydroxytryptamine (5-HT) in the brain but promoted the expression of melatonin-catalyzing AANAT and ASMT. Importantly, cerebral telomere length was positively correlated with MT and aMT6s after MeHg exposure. These results suggested that the shortened telomere length in the brain may be an early event in MeHg-induced CNS toxicity, and the level of aMT6s in urine may serve as an early-warning biomarker for MeHg-induced CNS damage.
Collapse
Affiliation(s)
- Xi Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
4
|
Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Fernandes LMP, Farias SV, Kobayashi NHC, de Souza PHFS, do Prado AF, Ferreira MKM, Lima RR, de Oliveira EHC, de Luna FCF, Burbano RMR, Fontes-Júnior EA, Maia CDSF. “K-Powder” Exposure during Adolescence Elicits Psychiatric Disturbances Associated with Oxidative Stress in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15111373. [PMID: 36355545 PMCID: PMC9698848 DOI: 10.3390/ph15111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Ketamine, also called ‘K-powder’ by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | | | - Bruno Gonçalves Pinheiro
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Physiological and Morphological Sciences Department, Biological and Health Science Centre, State University of Pará, Belém 66087-662, PA, Brazil
| | - Sarah Viana Farias
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Natália Harumi Correa Kobayashi
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Pablo Henrique Franco Santos de Souza
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Alejandro Ferraz do Prado
- Laboratory of Pharmacology and Toxicology of Cardiovascular System, Institute of Biological Science, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | - Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua 67030-000, PA, Brazil
| | | | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Health Sciences Institute, Pharmacy College, Federal University of Pará, Belém 66075-900, PA, Brazil
- Correspondence:
| |
Collapse
|
5
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
6
|
Repeated Cycles of Binge-Like Ethanol Exposure Induces Neurobehavioral Changes During Short- and Long-Term Withdrawal in Adolescent Female Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7207755. [PMID: 36329802 PMCID: PMC9626226 DOI: 10.1155/2022/7207755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Alcohol consumption is spread worldwide and can lead to an abuse profile associated with severe health problems. Adolescents are more susceptible to addiction and usually consume ethanol in a binge drinking pattern. This form of consumption can lead to cognitive and emotional disorders, however scarce studies have focused on long-term hazardous effects following withdrawal periods after binge drinking in adolescents. Thus, the present study aims at investigating whether behavioral and cognitive changes persist until mid and late adulthood. Female Wistar rats (9-10 animals/group) received intragastric administration of four cycles of ethanol binge-like pattern (3.0 g/kg/day, 20% w/v; 3 days-on/4 days-off) from 35th to 58th days old, followed withdrawal checkpoints 1 day, 30 days, and 60 days. At each checkpoint period, behavioral tests of open field, object recognition test, elevated plus maze, and forced swimming test were performed, and blood and hippocampus were collected for oxidative biochemistry and brain-derived neurotrophic factor (BDNF) levels analysis, respectively. The results demonstrated that adolescent rats exposed to binge drinking displayed anxiogenic- and depressive-like phenotype in early and midadulthood, however, anxiety-like profile persisted until late adulthood. Similarly, short-term memory was impaired in all withdrawal periods analysed, including late adult life. These behavioral data were associated with oxidative damage in midadulthood but not BDNF alterations. Taken together, the present work highlights the long-lasting emotional and cognitive alterations induced by ethanol binge drinking during adolescence, even after a long period of abstinence, which might impact adult life.
Collapse
|
7
|
Luz DA, Cartágenes SDC, da Silveira CCSDM, Pinheiro BG, Ferraro KMMM, Fernandes LDMP, Fontes-Júnior EA, Maia CDSF. Methylmercury plus Ethanol Exposure: How Much Does This Combination Affect Emotionality? Int J Mol Sci 2021; 22:ijms222313131. [PMID: 34884935 PMCID: PMC8658096 DOI: 10.3390/ijms222313131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mercury is a heavy metal found in organic and inorganic forms that represents an important toxicant with impact on human health. Mercury can be released in the environment by natural phenoms (i.e., volcanic eruptions), industrial products, waste, or anthropogenic actions (i.e., mining activity). Evidence has pointed to mercury exposure inducing neurological damages related to emotional disturbance, such as anxiety, depression, and insomnia. The mechanisms that underlie these emotional disorders remain poorly understood, although an important role of glutamatergic pathways, alterations in HPA axis, and disturbance in activity of monoamines have been suggested. Ethanol (EtOH) is a psychoactive substance consumed worldwide that induces emotional alterations that have been strongly investigated, and shares common pathophysiological mechanisms with mercury. Concomitant mercury and EtOH intoxication occur in several regions of the world, specially by communities that consume seafood and fish as the principal product of nutrition (i.e., Amazon region). Such affront appears to be more deleterious in critical periods of life, such as the prenatal and adolescence period. Thus, this review aimed to discuss the cellular and behavioral changes displayed by the mercury plus EtOH exposure during adolescence, focused on emotional disorders, to answer the question of whether mercury plus EtOH exposure intensifies depression, anxiety, and insomnia observed by the toxicants in isolation.
Collapse
Affiliation(s)
- Diandra Araújo Luz
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Sabrina de Carvalho Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Cinthia Cristina Sousa de Menezes da Silveira
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Bruno Gonçalves Pinheiro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Kissila Márvia Matias Machado Ferraro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Luanna de Melo Pereira Fernandes
- Departamento de Ciências Morfológicas e Fisiológicas, Centro das Ciências Biológicas e da Saúde (CCBS), Universidade Estadual do Pará, Belém 66095-100, PA, Brazil;
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66075-110, PA, Brazil; (D.A.L.); (S.d.C.C.); (C.C.S.d.M.d.S.); (B.G.P.); (K.M.M.M.F.); (E.A.F.-J.)
- Correspondence:
| |
Collapse
|
8
|
Mechanisms of oxidative stress in methylmercury-induced neurodevelopmental toxicity. Neurotoxicology 2021; 85:33-46. [PMID: 33964343 DOI: 10.1016/j.neuro.2021.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022]
Abstract
Methylmercury (MeHg) is a long-lasting organic environmental pollutant that poses a great threat to human health. Ingestion of seafood containing MeHg is the most important way by which it comes into contact with human body, where the central nervous system (CNS) is the primary target of MeHg toxicity. During periods of pre-plus postnatal, in particular, the brain of offspring is vulnerable to specific developmental insults that result in abnormal neurobehavioral development, even without symptoms in mothers. While many studies on neurotoxic effects of MeHg on the developing brain have been conducted, the mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity is less clear. Hitherto, no single process can explain the many effects observed in MeHg-induced neurodevelopmental toxicity. This review summarizes the possible mechanisms of oxidative stress in MeHg-induced neurodevelopmental toxicity, highlighting modulation of Nrf2/Keap1/Notch1, PI3K/AKT, and PKC/MAPK molecular pathways as well as some preventive drugs, and thus contributes to the discovery of endogenous and exogenous molecules that can counteract MeHg-induced neurodevelopmental toxicity.
Collapse
|
9
|
Dąbrowska-Bouta B, Sulkowski G, Orzelska-Górka J, Strużyńska L, Kędzierska E, Biała G. Response of immature rats to a low dose of nanoparticulate silver: Alterations in behavior, cerebral vasculature-related transcriptome and permeability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111416. [PMID: 33075587 DOI: 10.1016/j.ecoenv.2020.111416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
The increasing production and use of silver nanoparticles (AgNPs) as antimicrobial agents in medicinal and commercial products creates a substantial risk of exposure, especially for infants and children. Our current knowledge concerning the impact of AgNPs on developing brain is insufficient. Therefore we investigated the temporal profile of transcriptional changes in cellular components of the neurovascular unit in immature rats exposed to a low dose of AgNPs. The behavior of animals under these conditions was also monitored. Significant deposition of AgNPs in brain of exposed rats was identified and found to persist over the post-exposure time. Substantial changes were noted in the transcriptional profile of tight junction proteins such as occludin and claudin-5, and pericyte-related molecules such as angiopoietin-1. Moreover, downregulation of platelet-derived growth factor (PDGFβ) and its receptor (PDGFβR) which constitute the main signaling pathway between endothelial cells and pericytes was observed. These were long-lasting effects, accompanied by overexpression of astroglial-specific GFAP mRNA and endothelial cell adhesion molecule, ICAM-1, involved in the pathomechanism of neuroinflammation. The profile of changes indicates that even low doses of AgNPs administered during the early stage of life induce dysregulation of neurovascular unit constituents which may lead to disintegration of the blood-brain barrier. This was confirmed by ultrastructural analysis that revealed enhanced permeability of cerebral microvessels resulting in perivascular edema. Changes in the behavior of exposed rats indicating pro-depressive and anti-anxiety impacts were also identified. The results show a high risk of using AgNPs in medical and consumer products dedicated for infants and children.
Collapse
Affiliation(s)
- Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str., 02-106 Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str., 02-106 Warsaw, Poland
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki str., 20-093 Lublin, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego str., 02-106 Warsaw, Poland.
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki str., 20-093 Lublin, Poland
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodźki str., 20-093 Lublin, Poland
| |
Collapse
|
10
|
Nascimento PC, Bittencourt LO, Pinto SO, Santana LNS, Souza-Rodrigues RD, Pereira-Neto AL, Maia CSF, Rösing CK, Lima RR. Effects of Chronic Ethanol Consumption and Ovariectomy on the Spontaneous Alveolar Bone Loss in Rats. Int J Dent 2020; 2020:8873462. [PMID: 33273924 PMCID: PMC7676921 DOI: 10.1155/2020/8873462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
Postmenopausal estrogen deficiency and ethanol (EtOH) abuse are known risk factors for different diseases including bone tissues. However, little is known about the synergic effects of EtOH abuse and estrogen deficiency on alveolar bone loss in women. The present study evaluated the effects of EtOH chronic exposure and ovariectomy on the alveolar bone loss in female rats. For this, 40 female Wistar rats were randomly divided into 4 groups: control, EtOH exposure, ovariectomy (OVX), and OVX plus EtOH exposure. Initially, half of the animals were ovariectomized at 75 days of age. After that, the groups received distilled water or EtOH 6.5 g/kg/day (20% w/v) for 55 days via gavage. Thereafter, animals were sacrificed and the mandibles were collected, dissected, and separated into hemimandibles. Alveolar bone loss was evaluated by measuring the distance between the cementoenamel junction and the alveolar bone crest through a stereomicroscope in 3 different anatomical regions of the tissue. One-way ANOVA and post hoc Tukey were used to compare groups (p < 0.05). The results showed that the ovariectomy and EtOH exposure per se were able to induce alveolar bone loss, and their association did intensify significantly the effect. Therefore, OVX associated with heavy EtOH exposure increase the spontaneous alveolar bone loss in rats.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Soraya O. Pinto
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Luana N. S. Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Armando L. Pereira-Neto
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Cristiane S. F. Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Cassiano K. Rösing
- Department of Periodontology, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| |
Collapse
|
11
|
Lopes GO, Martins Ferreira MK, Davis L, Bittencourt LO, Bragança Aragão WA, Dionizio A, Rabelo Buzalaf MA, Crespo-Lopez ME, Maia CSF, Lima RR. Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int J Mol Sci 2020; 21:E7297. [PMID: 33023249 PMCID: PMC7582550 DOI: 10.3390/ijms21197297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.
Collapse
Affiliation(s)
- Géssica Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Lodinikki Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Aline Dionizio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Marília Afonso Rabelo Buzalaf
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| |
Collapse
|
12
|
Ganoderma lucidum Ameliorates Neurobehavioral Changes and Oxidative Stress Induced by Ethanol Binge Drinking. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2497845. [PMID: 32802260 PMCID: PMC7415090 DOI: 10.1155/2020/2497845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Ganoderma lucidum, mushroom used for centuries by Asian peoples as food supplement, has been shown interesting biological activities, including over the Central Nervous System. Besides, these mushroom bioactive compounds present antioxidant and anti-inflammatory activities. On the side, binge drinking paradigm consists of ethanol exposure that reflects the usual consumption of adolescents, which elicits deleterious effects, determined by high ethanol consumption, in a short period. In this study, we investigated whether the Aqueous Extract of G. lucidum (AEGl) reduces the behavioral disorders induced by alcohol. Male (n = 30) and female Wistar rats (n = 40), seventy-two days old, were used for behavioral/biochemical and oral toxicity test, respectively. Animals were exposed to 5 binges (beginning at 35 days old) of ethanol (3 g/kg/day) or distilled water. Twenty-four hours after the last binge administration, animals received AEGl (100 mg/kg/day) or distilled water for three consecutive days. After treatment protocol, open field, elevated plus maze, forced swim, and step-down inhibitory avoidance tests were performed. Oxidative stress parameters were measured to evaluate the REDOX balance. Our results demonstrated that AEGl elicited the recovery of spontaneous horizontal exploration capacity, anxiogenic- and depressive-profile, as well as short-term memory damage induced by binge-ethanol exposure. The behavioral effects of the extract were associated to the reequilibrium of the animals' REDOX balance. Thus, AEGl, a medicinal mushroom, ameliorates behavioral alteration on a model of motor, cognitive and psychiatric-like disorders induced by binge drinking paradigm and emerges as a useful tool as a food supplement in the management of disorders of alcoholic origin.
Collapse
|
13
|
Oliveira AN, Pinheiro AM, Belém-Filho IJA, Fernandes LMP, Cartágenes SC, Ribera PC, Fontes-Júnior EA, Crespo-Lopez ME, Monteiro MC, Lima MO, Maia CSF. Unravelling motor behaviour hallmarks in intoxicated adolescents: methylmercury subtoxic-dose exposure and binge ethanol intake paradigm in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21937-21948. [PMID: 29797195 DOI: 10.1007/s11356-018-2235-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is a hazardous environmental pollutant, affecting Amazon basin communities by anthropogenic activities. The exact safe level of MeHg exposure is unclear, despite the efforts of health international societies to avoid mercury (Hg) poisoning. Central nervous system is severely impacted by Hg intoxication, reflecting on motor impairment. In addition, alcohol has been associated to an overall brain damage. According to lifestyle of Amazon riverside communities, alcohol intake occurs frequently. Thus, we investigated if continuous MeHg exposure at low doses during adolescence displays motor deficits (experiment 1). In the experiment 2, we examine if the co-intoxication (i.e. MeHg plus ethanol exposure) during adolescence intensify motor damage. In the experiment 1, Wistar adolescent rats (31 days old) received chronic exposure to low dose (CELD) of MeHg (40 μg/kg/day) for 35 days. For the experiment 2, five sessions of alcohol binge drinking paradigm (3ON-4OFF; 3.0 g/kg/day) were employed associated to MeHg intoxication. Motor behaviour was evaluated by the open field, pole test, beam walking and rotarod paradigms. CELDS of MeHg display motor function damage, related to hypoactivity, bradykinesia-like behaviour, coordination deficits and motor learning impairment. Co-intoxication of MeHg plus ethanol reduced cerebellar Hg content, however also resulted in motor behavioural impairment, as well as additive effects on bradykinesia and fine motor evaluation.
Collapse
Affiliation(s)
- Aline Nascimento Oliveira
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Alana Miranda Pinheiro
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Ivaldo Jesus Almeida Belém-Filho
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Sabrina Carvalho Cartágenes
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Paula Cardoso Ribera
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | | | - Marta Chagas Monteiro
- Laboratório de Microbiologia e Imunologia Clinica, Faculdade de Ciências Farmacêuticas, UFPA, Belém, Brazil
| | - Marcelo Oliveira Lima
- Laboratório de Toxicologia, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Ciências Farmacêuticas, Universidade Federal do Pará (UFPA), Belém, Brazil.
| |
Collapse
|
14
|
Belém-Filho IJA, Ribera PC, Nascimento AL, Gomes ARQ, Lima RR, Crespo-Lopez ME, Monteiro MC, Fontes-Júnior EA, Lima MO, Maia CSF. Low doses of methylmercury intoxication solely or associated to ethanol binge drinking induce psychiatric-like disorders in adolescent female rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:184-194. [PMID: 29734102 DOI: 10.1016/j.etap.2018.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment.
Collapse
Affiliation(s)
| | - Paula Cardoso Ribera
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Aline Lima Nascimento
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratório de Biologia Funcional e Estrutural, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Ensaios In Vitro, Imunologia e Microbiologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratório de Farmacologia Molecular, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcelo Oliveira Lima
- Laboratório de Toxicologia, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | | |
Collapse
|
15
|
Camsari C, Folger JK, McGee D, Bursian SJ, Wang H, Knott JG, Smith GW. Effects of Periconception Cadmium and Mercury Co-Administration to Mice on Indices of Chronic Diseases in Male Offspring at Maturity. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:643-650. [PMID: 27814245 PMCID: PMC5381999 DOI: 10.1289/ehp481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Long-term exposure to the heavy metals cadmium (Cd) and mercury (Hg) is known to increase the risk of chronic diseases. However, to our knowledge, exposure to Cd and Hg beginning at the periconception period has not been studied to date. OBJECTIVE We examined the effect of Cd and Hg that were co-administered during early development on indices of chronic diseases in adult male mice. METHODS Adult female CD1 mice were subcutaneously administered a combination of cadmium chloride (CdCl2) and methylmercury (II) chloride (CH3HgCl) (0, 0.125, 0.5, or 2.0 mg/kg body weight each) 4 days before and 4 days after conception (8 days total). Indices of anxiety-like behavior, glucose homeostasis, endocrine and molecular markers of insulin resistance, and organ weights were examined in adult male offspring. RESULTS Increased anxiety-like behavior, impaired glucose homeostasis, and higher body weight and abdominal adipose tissue weight were observed in male offspring of treated females compared with controls. Significantly increased serum leptin and insulin concentrations and impaired insulin tolerance in the male offspring of dams treated with 2.0 mg/kg body weight of Cd and Hg suggested insulin resistance. Altered mRNA abundance for genes associated with glucose and lipid homeostasis (GLUT4, IRS1, FASN, ACACA, FATP2, CD36, and G6PC) in liver and abdominal adipose tissues as well as increased IRS1 phosphorylation in liver (Ser 307) provided further evidence of insulin resistance. CONCLUSIONS Results suggest that the co-administration of Cd and Hg to female mice during the early development of their offspring (the periconception period) was associated with anxiety-like behavior, altered glucose metabolism, and insulin resistance in male offspring at adulthood.
Collapse
Affiliation(s)
- Cagri Camsari
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | - Joseph K. Folger
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | - Devin McGee
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| | | | | | - Jason G. Knott
- Department of Animal Science,
- Developmental Epigenetics Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - George W. Smith
- Laboratory of Mammalian Reproductive Biology and Genomics,
- Department of Animal Science,
| |
Collapse
|
16
|
Puga S, Pereira P, Pinto-Ribeiro F, O'Driscoll NJ, Mann E, Barata M, Pousão-Ferreira P, Canário J, Almeida A, Pacheco M. Unveiling the neurotoxicity of methylmercury in fish (Diplodus sargus) through a regional morphometric analysis of brain and swimming behavior assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:320-333. [PMID: 27780124 DOI: 10.1016/j.aquatox.2016.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The current study aims to shed light on the neurotoxicity of MeHg in fish (white seabream - Diplodus sargus) by the combined assessment of: (i) MeHg toxicokinetics in the brain, (ii) brain morphometry (volume and number of neurons plus glial cells in specific brain regions) and (iii) fish swimming behavior (endpoints associated with the motor performance and the fear/anxiety-like status). Fish were surveyed for all the components after 7 (E7) and 14 (E14) days of dietary exposure to MeHg (8.7μgg-1), as well as after a post-exposure period of 28days (PE28). MeHg was accumulated in the brain of D. sargus after a short time (E7) and reached a maximum at the end of the exposure period (E14), suggesting an efficient transport of this toxicant into fish brain. Divalent inorganic Hg was also detected in fish brain along the experiment (indicating demethylation reactions), although levels were 100-200 times lower than MeHg, which pinpoints the organic counterpart as the great liable for the recorded effects. In this regard, a decreased number of cells in medial pallium and optic tectum, as well as an increased hypothalamic volume, occurred at E7. Such morphometric alterations were followed by an impairment of fish motor condition as evidenced by a decrease in the total swimming time, while the fear/anxiety-like status was not altered. Moreover, at E14 fish swam a greater distance, although no morphometric alterations were found in any of the brain areas, probably due to compensatory mechanisms. Additionally, although MeHg decreased almost two-fold in the brain during post-exposure, the levels were still high and led to a loss of cells in the optic tectum at PE28. This is an interesting result that highlights the optic tectum as particularly vulnerable to MeHg exposure in fish. Despite the morphometric alterations reported in the optic tectum at PE28, no significant changes were found in fish behavior. Globally, the effects of MeHg followed a multiphasic profile, where homeostatic mechanisms prevented circumstantially morphometric alterations in the brain and behavioral shifts. Although it has become clear the complexity of matching brain morphometric changes and behavioral shifts, motor-related alterations induced by MeHg seem to depend on a combination of disruptions in different brain regions.
Collapse
Affiliation(s)
- Sónia Puga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Pereira
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Erin Mann
- Department of Earth and Environmental Science, Center for Analytical Research on the Environment, K.C. Irving Center, Acadia University, Wolfville, Nova Scotia, Canada
| | - Marisa Barata
- IPMA - Aquaculture Research Station, 8700-005 Olhão, Portugal
| | | | - João Canário
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4750-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2906953. [PMID: 27822336 PMCID: PMC5086397 DOI: 10.1155/2016/2906953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 01/24/2023]
Abstract
Propolis is a resin produced by bees from raw material collected from plants, salivary secretions, and beeswax. New therapeutic properties for the Central Nervous System have emerged. We explored the neurobehavioral and antioxidant effects of an ethanolic extract of yellow propolis (EEYP) rich in triterpenoids, primarily lupeol and β-amyrin. Male Wistar rats, 3 months old, were intraperitoneally treated with Tween 5% (control), EEYP (1, 3, 10, and 30 mg/kg), or diazepam, fluoxetine, and caffeine (positive controls) 30 min before the assays. Animals were submitted to open field, elevated plus maze, forced swimming, and inhibitory avoidance tests. After behavioral tasks, blood samples were collected through intracardiac pathway, to evaluate the oxidative balance. The results obtained in the open field and in the elevated plus maze assay showed spontaneous locomotion preserved and anxiolytic-like activity. In the forced swimming test, EEYP demonstrated antidepressant-like activity. In the inhibitory avoidance test, EEYP showed mnemonic activity at 30 mg/kg. In the evaluation of oxidative biochemistry, the extract reduced the production of nitric oxide and malondialdehyde without changing level of total antioxidant, catalase, and superoxide dismutase, induced by behavioral stress. Our results highlight that EEYP emerges as a promising anxiolytic, antidepressant, mnemonic, and antioxidant natural product.
Collapse
|
18
|
Sahin D, Erdolu CO, Karadenizli S, Kara A, Bayrak G, Beyaz S, Demir B, Ates N. Effects of gestational and lactational exposure to low dose mercury chloride (HgCl2) on behaviour, learning and hearing thresholds in WAG/Rij rats. EXCLI JOURNAL 2016; 15:391-402. [PMID: 27540351 PMCID: PMC4983802 DOI: 10.17179/excli2016-315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/05/2016] [Indexed: 01/18/2023]
Abstract
We investigated the effects of inorganic mercury exposure during gestational/lactational periods on the behaviour, learning and hearing functions in a total of 32, 5-week-old and 5-month-old WAG/Rij rats (equally divided into 4 groups as 5-week and 5-month control mercury exposure groups). We evaluated the rats in terms of locomotor activity (LA), the Morris-water-maze (MWM) test and the passive avoidance (PA) test to quantify learning and memory performance; we used distortion product otoacoustic emission (DPOAE) tests to evaluate hearing ability. There were no significant differences between the 5-week-old rat groups in LA, and we detected a significant difference (p < 0.05) in the HgCl2-treated group in PA, MWM and DPOAE tests compared with the control group. The HgCl2-treated 5-week-old group exhibited worse emotional memory performance in PA, worse spatial learning and memory performances in MWM. There were no significant differences between the groups of 5-month-old rats in LA, MWM or PA. However, the DPOAE tests worsened in the mid- and high-frequency hearing thresholds. The HgCl2-treated 5-month-old group exhibited the most hearing loss of all groups. Our results convey that mercury exposure in young rats may worsen learning and memory performances as well as hearing at high-frequency levels. While there was no statistically significant difference in the behavior and learning tests in adult rats, the DPOAE test produced poorer results. Early detection of effects of mercury exposure provides medicals team with an opportunity to determinate treatment regimens and mitigate ototoxicity. DPOAE test can be used in clinical and experimental research investigating heavy metal ototoxicity.
Collapse
Affiliation(s)
- Deniz Sahin
- Kocaeli University / Medical Faculty, Physiology, Kocaeli, Turkey
| | | | | | - Ahmet Kara
- Sakarya University Training and Research Hospital, Otorhinolaryngology Department, Sakarya,Turkey
| | - Gunce Bayrak
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Sumeyye Beyaz
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Buse Demir
- Kocaeli University / Medical Faculty, Kocaeli, Turkey
| | - Nurbay Ates
- Kocaeli University / Medical Faculty, Physiology, Kocaeli, Turkey
| |
Collapse
|
19
|
Gomez R, Schneider R, Quinteros D, Santos CF, Bandiera S, Thiesen FV, Coitinho AS, Fernandes MDC, Wieczorek MG. Effect of Alcohol and Tobacco Smoke on Long-Term Memory and Cell Proliferation in the Hippocampus of Rats. Nicotine Tob Res 2015; 17:1442-8. [PMID: 25744965 DOI: 10.1093/ntr/ntv051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/19/2015] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Alcohol is frequently used in combination with tobacco and few studies explore interactions between these two drugs of abuse. Here, we evaluated the effect of chronic alcohol administration and concomitant exposure to tobacco smoke on long-term memory and on cell proliferation in the hippocampus of rats. METHODS Forty male Wistar rats were assigned to four groups and treated with alcohol (2g/kg by gavage) and/or exposed to tobacco smoke (from six cigarettes, by inhalation) twice a day (at 9:00 AM and 2:00 PM) for 30 days. Long-term memory was evaluated in the inhibitory avoidance test and hippocampal cell proliferation was analyzed for bromodeoxyuridine immunohistochemistry. RESULTS Our results showed that alcohol, tobacco smoke, or their combination improved the long-term memory evaluated by the memory index in rats. Moreover, alcohol and tobacco coadministration decreased bromodeoxyuridine-labeled cells by 60% when compared to the control group, while alcohol treatment decreased labeled cells by 40%. The tobacco group showed a nonsignificant 26% decrease in labeled cells compared to the control group. CONCLUSIONS Chronic alcohol and tobacco coadministration improves the long-term memory in rats in the inhibitory avoidance test. However, coadministration decreases the cell proliferation in the hippocampus of rats, suggesting a deleterious effect by the combined use of these drugs of abuse.
Collapse
Affiliation(s)
- Rosane Gomez
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil;
| | - Ricardo Schneider
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Dayane Quinteros
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Carolina Ferreira Santos
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Solange Bandiera
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Flavia Valadão Thiesen
- Departamento de Toxicologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| | - Adriana Simon Coitinho
- Departamento de Microbiologia e Imunologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Marilda da Cruz Fernandes
- Laboratório de Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brasil
| | - Marina Godinho Wieczorek
- Laboratório de Álcool e Tabaco, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
20
|
Silva ML, Luz DA, Paixão TPD, Silva JPB, Belém-Filho IJA, Fernandes LMP, Gonçalves ACB, Fontes-Júnior EA, de Andrade MA, Maia CSF. Petiveria alliacea exerts mnemonic and learning effects on rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:124-129. [PMID: 25895883 DOI: 10.1016/j.jep.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Petiveria alliacea L. (Phytolaccaceae) is a perennial shrub native to the Amazon region and other tropical areas such as Central America and the Caribbean. Popularly known as mucuracaá, P. alliacea is used in the folk medicine for a broad variety of therapeutic purpose and also in religious ceremonies by slaves as a sedative, which highlights its properties on the Central Nervous System (CNS). AIM OF THE STUDY The present study evaluated the effects of the P. alliacea leaves hydroalcoholic extract (PaLHE) on the cognition, including learning and memory. MATERIAL AND METHODS Three-month-old male and female Wistar rats (n=8-10/group) were administered with 900mg/kg of PaLHE. The behavioral assays included Step-down Inhibitory avoidance (IA) and Morris Water Maze (MWM) tests. RESULTS Consistent with our previous reports, P. alliacea improved long-term memory. It also exerted previously unreported effects on short-term and spatial memory improvement, and increased learning in the tasks. CONCLUSIONS The P. alliacea extract elicited mnemonic effects and improved the learning process in both IA and MWM tests. Our results highlight the importance of further studies in order to identify the active substances of the PaLHE and investigate the pharmacological mechanisms that underlies the reported effects.
Collapse
Affiliation(s)
- Mallone Lopes Silva
- Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Diandra Araújo Luz
- Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Thiago Portal da Paixão
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - João Paulo Bastos Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | | | | | | | - Enéas Andrade Fontes-Júnior
- Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Marciene Ataíde de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil.
| |
Collapse
|
21
|
Kong LY, Li GP, Yang P, Wu W, Shi JH, Li XL, Wang WZ. Identification of gene expression profile in the rat brain resulting from acute alcohol intoxication. Mol Biol Rep 2014; 41:8303-17. [PMID: 25218841 DOI: 10.1007/s11033-014-3731-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
This study aimed to identify gene expression profile in the rat brain resulting from acute alcohol intoxication (AAI). Eighteen SD rats were divided into the alcohol-treated group (n = 9) and saline control group (n = 9). Periorbital blood samples were taken to determine their blood alcohol content by gas chromatography. Tissue sections were analyzed by H and E staining and biochemical assays. Real-time reverse transcription PCR was used to validate microarray data. Statistical analysis was carried out using SPSS18.0 software (Version 18.0, SPSS Inc., Chicago, IL, USA). H and E staining demonstrated that alcohol-treated rats showed no obvious pathological changes in nerve cells compared with those in the control group. Biochemical tests revealed that alcohol-treated rats had lower superoxide dismutase activity than those in the control group (167.3 ± 10.3 U/mg vs. 189.2 ± 5.9 U/mg, P < 0.05). Furthermore, the malondialdehyde levels in alcohol-treated rats were higher than those in the control group (3.48 ± 0.24 mmol/mg vs. 2.51 ± 0.23 mmol/mg, P < 0.05). Microarray data presented 366 up-regulated genes and 300 down-regulated genes in the AAI rat brain. Gene ontology analysis identified 31 genes up-regulated and 39 down-regulated among all differentially expressed genes. Twenty-four pathways showed significant differences, including 12 pathways involved with up-regulated genes and 12 pathways involved with down-regulated genes. Selected genes showed significantly different expression in both alcohol-treated and control groups (P < 0.05). Gene expression analysis enabled clustering of alcohol intoxication-related genes by function. These genes expression may be potential targets for treatment or drug screening for acute alcohol intoxication.
Collapse
Affiliation(s)
- Ling-Yu Kong
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical University, No. 88 Health Road, Weihui, 453100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Evaluation of the effects of chronic intoxication with inorganic mercury on memory and motor control in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9171-85. [PMID: 25198682 PMCID: PMC4199013 DOI: 10.3390/ijerph110909171] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/19/2014] [Accepted: 08/28/2014] [Indexed: 11/16/2022]
Abstract
The aims of this study were to evaluate whether chronic intoxication with mercury chloride (HgCl2), in a low concentration over a long time, can be deposited in the central nervous tissue and to determine if this exposure induces motor and cognitive impairments. Twenty animals were intoxicated for 45 days at a dose of 0.375 mg/kg/day. After this period, the animals underwent a battery of behavioral tests, in a sequence of open field, social recognition, elevated T maze and rotarod tests. They were then sacrificed, their brains collected and the motor cortex and hippocampus dissected for quantification of mercury deposited. This study demonstrates that long-term chronic HgCl2 intoxication in rats promotes functional damage. Exposure to HgCl2 induced anxiety-related responses, short- and long-term memory impairments and motor deficits. Additionally, HgCl2 accumulated in both the hippocampus and cortex of the brain with a higher affinity for the cortex.
Collapse
|
23
|
Teixeira FB, Santana LNDS, Bezerra FR, De Carvalho S, Fontes-Júnior EA, Prediger RD, Crespo-López ME, Maia CSF, Lima RR. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress. PLoS One 2014; 9:e101074. [PMID: 24967633 PMCID: PMC4072717 DOI: 10.1371/journal.pone.0101074] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.
Collapse
Affiliation(s)
- Francisco Bruno Teixeira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Luana Nazaré da Silva Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Fernando Romualdo Bezerra
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Sabrina De Carvalho
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil; Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará, Brazil
| |
Collapse
|
24
|
Oliveira GB, Fontes EDA, de Carvalho S, da Silva JB, Fernandes LMP, Oliveira MCSP, Prediger RD, Gomes-Leal W, Lima RR, Maia CSF. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence. Brain Res 2014; 1561:23-34. [PMID: 24637259 DOI: 10.1016/j.brainres.2014.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/29/2014] [Accepted: 03/07/2014] [Indexed: 12/12/2022]
Abstract
Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.
Collapse
Affiliation(s)
- Gedeão Batista Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Enéas de Andrade Fontes
- Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Sabrina de Carvalho
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Josiane Batista da Silva
- Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Maria Cristina Souza Pereira Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900 Florianópolis, SC, Brazil
| | - Walace Gomes-Leal
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratório de Neuroproteção e Neurorregeneração Experimental do Instituto de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Cristiane Socorro Ferraz Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Programa de Pós-graduação em Neurociências e Biologia Celular, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil; Laboratório de Farmacologia da Inflamação e do Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil.
| |
Collapse
|
25
|
Liu W, Xu Z, Deng Y, Xu B, Yang H, Wei Y, Feng S. Excitotoxicity and oxidative damages induced by methylmercury in rat cerebral cortex and the protective effects of tea polyphenols. ENVIRONMENTAL TOXICOLOGY 2014; 29:269-283. [PMID: 22223486 DOI: 10.1002/tox.21755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Methylmercury (MeHg) is a highly neurotoxic environmental pollutant that has a high appetency to the central nervous system. The underlying mechanisms of MeHg-induced neurotoxicity have not been elucidated clearly until now. Therefore, to explore the mechanisms contribute to MeHg-induced neurotoxicity, rats were exposed to different dosage of methylmercury chloride (CH3 ClHg) (0, 4, and 12 μmol kg(-1)) for 4 weeks to evaluate the neurotoxic effects of MeHg. In addition, considering the antioxidative properties of tea polyphenols (TP), 1 mmol kg(-1) TP was pretreated to observe the possible protective effects on MeHg-induced neurotoxicity. Then Hg, glutamate (Glu) and glutamine (Gln) levels, glutamine synthetase (GS), phosphate-activated glutaminase (PAG), Na(+)-K(+)-ATPase, and Ca(2+)-ATPase activities, intracellular Ca(2+) level were examined, glutathione (GSH), malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and reactive oxygen species (ROS) levels, N-methyl-D-aspartate receptors (NMDARs) mRNA and protein expressions, apoptosis level and morphological changes in the cerebral cortex were also investigated. Study results showed that compared with those in control, exposure to CH3 ClHg resulted in excitotoxicity in a concentration-dependent manner, which was shown by the Glu-Gln cycle disruption and intracellular Ca(2+) homeostasis disturbance. On the other hand, CH3 ClHg exposure resulted in oxidative damages of brain, which were supported by the significant changes on GSH, MDA, sulfhydryl, carbonyl, 8-OHdG, and ROS levels. Moreover, apoptosis rate increased obviously and many morphological changes were found after CH3 ClHg exposure. Furthermore, this research indicated that TP pretreatment significantly mitigated the toxic effects of MeHg. In conclusion, findings from this study indicated that exposure to MeHg could induce excitotoxicity and oxidative damage in cerebral cortex while TP might antagonize the MeHg-induced neurotoxicity.
Collapse
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, North 2nd Road 92, Heping Ward, Shenyang 110001, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Mello-Carpes PB, Barros W, Borges S, Alves N, Rizzetti D, Peçanha FM, Vassallo DV, Wiggers GA, Izquierdo I. Chronic exposure to low mercury chloride concentration induces object recognition and aversive memories deficits in rats. Int J Dev Neurosci 2013; 31:468-72. [PMID: 23770019 DOI: 10.1016/j.ijdevneu.2013.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022] Open
Abstract
This work examines the effects of chronic exposure to low inorganic mercury (mercury chloride, HgCl(2)) concentration on the recognition and aversive memories. Forty male Wistar rats were divided into 4 groups treated during 30 or 60 days with saline (control) or HgCl(2) doses. After treated the animals were tested considering object recognition and inhibitory avoidance behavioral memory paradigms. Elevated plus maze, open field and tail flick tests were used to assess anxiety, locomotor and exploratory activity and pain thresholds. Only exposure for 60 days to HgCl(2) induced in memory deficits quantified in the object recognition task. In the inhibitory avoidance all the animals exposed to mercury (for 30 or 60 days) presented worst performance than control animals. Our results suggest that chronic exposure to low mercury chloride concentrations impairs memory formation.
Collapse
|
27
|
Thompson MR, Boekelheide K. Multiple environmental chemical exposures to lead, mercury and polychlorinated biphenyls among childbearing-aged women (NHANES 1999-2004): Body burden and risk factors. ENVIRONMENTAL RESEARCH 2013; 121:23-30. [PMID: 23158727 PMCID: PMC3578119 DOI: 10.1016/j.envres.2012.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lead, mercury and polychlorinated biphenyls (PCBs) are neurotoxicants with intergenerational health consequences from maternal body burden and gestational exposures. Little is known about multiple chemical exposures among childbearing-aged women. OBJECTIVES To determine the percentage of women aged 16-49 of diverse races and ethnicities whose body burdens for all three xenobiotics were at or above the median; to identify mixed exposures; and to describe those women disproportionately burdened by two or more of these chemicals based on susceptibility- and exposure-related attributes, socioeconomic factors and race-ethnicity. METHODS Secondary data analysis of National Health and Nutrition Examination Survey (1999-2004). RESULTS The best-fit logistic regression model without interactions contained 12 variables. Four risk factors associated with body burden were notable (P≤0.05). An exponential relationship was demonstrated with increasing age. Any fish consumption in past 30 days more than doubled the odds. Heavy alcohol consumption increased the relative risk. History of breastfeeding reduced this risk. These women were more likely to have two xenobiotics at or above the median than one. More than one-fifth of these childbearing-aged women had three xenobiotic levels at or above the median. CONCLUSIONS These findings are among the first description of US childbearing-aged women's body burden and risk factors for multiple chemical exposures. This study supports increasing age, any fish consumption and heavy alcohol consumption as significant risk factors for body burden. History of breastfeeding lowered the body burden. Limited evidence was found of increased risk among minority women independent of other risk factors.
Collapse
|
28
|
Hassauer M, Kaiser E, Schneider K, Schuhmacher‐Wolz U. Collate the literature on toxicity data on mercury in experimental animals and humans (Part I – Data on organic mercury). ACTA ACUST UNITED AC 2012. [DOI: 10.2903/sp.efsa.2012.en-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Hassauer
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Eva Kaiser
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | - Klaus Schneider
- Forschungs‐ und Beratungsinstitut Gefahrstoffe GmbH (FoBiG) Freiburg Germany
| | | |
Collapse
|
29
|
Silva AFJ, Aguiar MSS, Carvalho OSJ, Santana LDNS, Franco ECS, Lima RR, Siqueira NVMD, Feio RA, Faro LRF, Gomes-Leal W. Hippocampal neuronal loss, decreased GFAP immunoreactivity and cognitive impairment following experimental intoxication of rats with aluminum citrate. Brain Res 2012; 1491:23-33. [PMID: 23131585 DOI: 10.1016/j.brainres.2012.10.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/21/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
Aluminum (Al) is a neurotoxic agent with deleterious actions on cognitive processes. Nevertheless, few studies have investigated the neuropathological effects underlying the Al-induced cognitive impairment. We have explored the effects of acute Al citrate intoxication on both hippocampal morphology and mnemonic processes in rodents. Adult male Wistar rats were intoxicated with a daily dose of Al citrate (320 mg/kg) during 4 days by gavage. Animals were perfused at 8 (G2), 17 (G3) and 31 days (G4) after intoxication. Control animals were treated with sodium citrate (G1). Animals were submitted to behavioral tests of open field and elevated T-maze. Immunohistochemistry was performed to label neurons (anti-NeuN) and astrocytes (anti-GFAP) in both CA1 and CA3 hippocampal regions. There was an increase in the locomotor activity in open field test for G2 in comparison to control group and other groups (ANOVA-Bonferroni, P<0.05). The elevated T-maze avoidance latency (AL) was higher in all intoxicated groups compared to control (P<0.05) in avoidance 1. These values remained elevated in avoidance 2 (P<0.05), but abruptly decreased in G2 and G3, but not in G1 and G4 animals in avoidance 3 (P<0.05). There were no significant differences for 1 and 2 escape latencies. There were intense neuronal loss and a progressive decrease in GFAP immunoreactivity in the hippocampus of intoxicated animals. The results suggest that Al citrate treatment induces deficits on learning and memory concomitant with neuronal loss and astrocyte impairment in the hippocampus of intoxicated rats.
Collapse
Affiliation(s)
- Ademir F Junior Silva
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lucena GM, Prediger RD, Silva MV, Santos SN, Silva JFB, Santos ARS, Azevedo MS, Ferreira VM. Ethanolic extract from bulbs of Cipura paludosa reduced long-lasting learning and memory deficits induced by prenatal methylmercury exposure in rats. Dev Cogn Neurosci 2012; 3:1-10. [PMID: 23245215 DOI: 10.1016/j.dcn.2012.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 01/12/2023] Open
Abstract
Previous studies from our group have indicated important biological properties of the ethanolic extract (EE) and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil. In the present study, the effects of chronic treatment with the EE on the memory of adult rats exposed to methylmercury (MeHg) during early development were assessed. Pregnant rats were treated by gavage with a single dose of MeHg (8 mg/kg) on gestational day 15, the developmental stage critical for cortical neuron proliferation. Adult offspring were administered orally with the EE of C. paludosa (1, 10 or 100mg/kg) over 14 consecutive days. EE improved short-term social memory in a specific manner and facilitated the step-down inhibitory avoidance of short- and long-term memory. MeHg exposure induced pronounced long-lasting impairments in social recognition memory that were improved by EE. Moreover, EE significantly increased the step-down latencies specifically during the short-term session in prenatal MeHg-exposed rats. These results demonstrate that EE reduced the long-lasting short-term learning and memory deficits induced by MeHg exposure. These findings may encourage further studies evaluating the cognitive enhancing properties of C. paludosa and its components on neuropathological conditions associated with exposure to environmental contaminants.
Collapse
|
31
|
Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2011; 33:586-604. [PMID: 22198708 DOI: 10.1016/j.neuro.2011.12.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/11/2011] [Accepted: 12/11/2011] [Indexed: 01/16/2023]
Abstract
The brain develops and grows within a well-controlled internal environment that is provided by cellular exchange mechanisms in the interfaces between blood, cerebrospinal fluid and brain. These are generally referred to by the term "brain barriers": blood-brain barrier across the cerebral endothelial cells and blood-CSF barrier across the choroid plexus epithelial cells. An essential component of barrier mechanisms is the presence of tight junctions between the endothelial and epithelial cells of these interfaces. This review outlines historical evidence for the presence of effective barrier mechanisms in the embryo and newborn and provides an up to date description of recent morphological, biochemical and molecular data for the functional effectiveness of these barriers. Intercellular tight junctions between cerebral endothelial cells and between choroid plexus epithelial cells are functionally effective as soon as they differentiate. Many of the influx and efflux mechanisms are not only present from early in development, but the genes for some are expressed at much higher levels in the embryo than in the adult and there is physiological evidence that these transport systems are functionally more active in the developing brain. This substantial body of evidence supporting the concept of well developed barrier mechanisms in the developing brain is contrasted with the widespread belief amongst neurotoxicologists that "the" blood-brain barrier is immature or even absent in the embryo and newborn. A proper understanding of the functional capacity of the barrier mechanisms to restrict the entry of harmful substances or administered therapeutics into the developing brain is critical. This knowledge would assist the clinical management of pregnant mothers and newborn infants and development of protocols for evaluation of risks of drugs used in pregnancy and the neonatal period prior to their introduction into clinical practice.
Collapse
Affiliation(s)
- C Joakim Ek
- Department of Pharmacology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
32
|
Maximino C, Araujo J, Leão LKR, Grisolia ABA, Oliveira KRM, Lima MG, Batista EDJO, Crespo-López ME, Gouveia A, Herculano AM. Possible role of serotoninergic system in the neurobehavioral impairment induced by acute methylmercury exposure in zebrafish (Danio rerio). Neurotoxicol Teratol 2011; 33:727-34. [PMID: 21871955 DOI: 10.1016/j.ntt.2011.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 01/31/2023]
Abstract
Adult zebrafish were treated acutely with methylmercury (1.0 or 5.0 μg g(-1), i.p.) and, 24h after treatment, were tested in two behavioral models of anxiety, the novel tank and the light/dark preference tests. At the smaller dose, methylmercury produced a marked anxiogenic profile in both tests, while the greater dose produced hyperlocomotion in the novel tank test. These effects were accompanied by a decrease in extracellular levels of serotonin, and an increase in extracellular levels of tryptamine-4,5-dione, a partially oxidized metabolite of serotonin. A marked increase in the formation of malondialdehyde, a marker of oxidative stress, accompanied these parameters. It is suggested that methylmercury-induced oxidative stress produced mitochondrial dysfunction and originated tryptamine-4,5-dione, which could have further inhibited tryptophan hydroxylase. These results underscore the importance of assessing acute, low-level neurobehavioral effects of methylmercury.
Collapse
Affiliation(s)
- Caio Maximino
- Laboratório de Neuroendocrinologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Powers CM, Levin ED, Seidler FJ, Slotkin TA. Silver exposure in developing zebrafish produces persistent synaptic and behavioral changes. Neurotoxicol Teratol 2010; 33:329-32. [PMID: 21035540 DOI: 10.1016/j.ntt.2010.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/05/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
Abstract
Environmental silver exposures are increasing due to the use of silver nanoparticles, which exert antimicrobial actions by releasing Ag+, a suspected developmental neurotoxicant. We evaluated the long-term neurochemical and behavioral effects of embryonic Ag+ exposure in zebrafish at concentrations that had no overt effects on morphological development. Exposure to 0.03, 0.1 or 0.3 μM Ag+ during the first five days post-fertilization caused elevations in both dopamine and serotonin turnover in the adult zebrafish brain without affecting basal neurotransmitter levels. Consistent with these synaptic effects, Ag+-exposed fish showed a faster acquisition of avoidance behavior in a three-chamber test apparatus, without any change in response latency or overall swimming ability. Our results indicate that Ag+ is a developmental neurotoxicant that causes persistent neurobehavioral effects, reinforcing health concerns about Ag+ released from silver nanoparticles.
Collapse
Affiliation(s)
- Christina M Powers
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
34
|
Lucena GMRS, Porto FA, Campos EG, Azevedo MS, Cechinel-Filho V, Prediger RDS, Ferreira VMM. Cipura paludosa attenuates long-term behavioral deficits in rats exposed to methylmercury during early development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:1150-1158. [PMID: 20447691 DOI: 10.1016/j.ecoenv.2010.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/05/2010] [Accepted: 04/10/2010] [Indexed: 05/29/2023]
Abstract
In the present study, we evaluated the effects of the ethanolic extract (EE) of Cipura paludosa on locomotor, and anxiety- and depression-like behaviors of adult rats exposed to MeHg during early development. Additionally, the antioxidant enzymes catalase (CAT) and selenium-glutathione peroxidase (Se-GPx) were measured in cortical, hippocampal, and cerebellar tissues. Pregnant Wistar rats were treated by gavage with a single dose of MeHg (8 mg/kg) on gestational day 15, the developmental stage critical for cortical neuron proliferation. Moreover, prenatal MeHg exposure inhibited CAT and Se-GPx in the cortex and cerebellum. Chronic treatment with the EE of C. paludosa attenuated these emotional and antioxidant deficits induced by prenatal MeHg toxic exposure. This study provides novel evidence that developmental exposure to MeHg can affect not only cognitive functions but also locomotor, and anxiety- and depression-like behaviors.
Collapse
Affiliation(s)
- Greice M R S Lucena
- Faculdade de Ciências da Saúde, Curso de Ciências Farmacêuticas, Universidade de Brasília (UnB), Campus Universitário Darcy Ribeiro (Asa Norte), 70910-900 DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
Current world literature. Curr Opin Obstet Gynecol 2010; 21:541-9. [PMID: 20072097 DOI: 10.1097/gco.0b013e3283339a65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|