1
|
Liu J, Zhang Y, Yu Y. Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases. Cell Mol Life Sci 2025; 82:33. [PMID: 39751829 PMCID: PMC11699091 DOI: 10.1007/s00018-024-05557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithelium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in the field of organoid research and application.
Collapse
Affiliation(s)
- Jinxia Liu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yunfeng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yiqun Yu
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
| |
Collapse
|
2
|
Kim J, Kim BG, Hong YS, Lee EY. Effects of mixed metal exposure on MRI metrics in basal ganglia. Toxicol Sci 2024; 202:291-301. [PMID: 39331844 DOI: 10.1093/toxsci/kfae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Welding fumes contain various metals. Past studies, however, mainly focused on Manganese (Mn)-related neurotoxicity. This study investigated welding-related mixed metal exposure effects on MRI metrics in the basal ganglia (BG) and their dose-response relationship. Subjects with (N = 23) and without (N = 24) a welding exposure history were examined. Metal exposure was estimated with an exposure history questionnaire and whole blood metal levels. T1 (weighted-intensity and relaxation time; estimates of brain Mn accumulation), diffusion tensor imaging (axial [AD], mean [MD], radial diffusivity, and fractional anisotropy [FA]; estimates of microstructural differences) metrics in BG (caudate nucleus, putamen, and globus pallidus [GP]), and voxel-based morphometry (for volume) were examined and related with metal exposure measures. Compared with controls, welders showed higher GP R1 (1/T1; P = 0.034) but no differences in blood metal and T1-weighted (T1W) values in any ROIs (P's > 0.120). They also had higher AD and MD values in the GP (P's < 0.033) but lower FA values in the putamen (P = 0.039) with no morphologic differences. In welders, higher blood Mn and Vanadium (V) levels predicted higher BG R1 and T1W values (P's < 0.015). There also were significant overall metal mixture effects on GP T1W and R1 values. Moreover, GP AD and MD values showed nonlinear associations with BG T1W values: They increased with increasing T1W values only above certain threshold of T1 values. The current findings suggest that Mn and V individually but also metal mixtures jointly predict GP T1 signals that may in turn contribute to altered DTI metrics in the BG after certain exposure threshold levels.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Health Care and Science, Dong-A University, Busan 49315, South Korea
| | - Byoung-Gwon Kim
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan 49201, South Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan 49201, South Korea
| | - Eun-Young Lee
- Department of Health Care and Science, Dong-A University, Busan 49315, South Korea
| |
Collapse
|
3
|
Kiss DS, Toth I, Bartha T, Jerzsele A, Zsarnovszky A, Pasztine Gere E, Ondrasovicova S, Varro P, Kovago C. Effects of metal oxide inhalation on the transcription of some hormone receptors in the brain, examined in an in vivo mouse model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51834-51843. [PMID: 39134792 PMCID: PMC11374873 DOI: 10.1007/s11356-024-34425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 09/06/2024]
Abstract
Respirable metal oxide nanoparticles in welding fumes pose significant health risks upon inhalation, potentially leading to neurodegenerative diseases. While the exact mechanisms remain unclear, it is evident that metal oxide nanoparticles can disrupt cellular functions, including metabolism and inflammatory responses after crossing the blood-brain barrier (BBB). Our study investigates the impact of manual metal arc welding fumes on hormone receptor transcription in an in vivo mouse model. After collecting samples from six different brain regions at 24 and 96 h upon exposure, we focused on expression levels of estrogen receptors (ERs), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) due to their roles in modulating neuroprotective responses and neuroinflammatory processes. Analysis revealed differential susceptibility of brain regions to hormonal disruption induced by welding fumes, with the hypothalamus (HT) and olfactory bulb (OB) showing prominent changes in receptor expression. Considering ERs, 24 h sampling showed an elevation in OB, with later increases in both ERα and ERβ. HT showed significant ERβ change only by 96 h. TRs mirrored ER patterns, with notable changes in OB and less in HT. PPARγ followed TR trends, with early upregulation in HT and downregulation elsewhere. These findings suggest a compensatory response within the CNS aimed at mitigating neuroinflammatory effects, as evidenced by the upregulation of ERβ, TRα, and PPARγ. The coordinated increase in ERs, TRs, and PPARs in the hypothalamus and olfactory bulb also highlights their potential neuroprotective roles in response to welding fume exposure. Our results also support the theory of metal oxide penetration to the CNS via the lungs-blood-BBB pathway, making HT and OB more vulnerable to welding fume exposure.
Collapse
Affiliation(s)
- David Sandor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Istvan Toth
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary.
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Akos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsarnovszky
- Department of Physiology and Animal Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agricultural and Life Sciences, Godollo, Hungary
| | - Erzsebet Pasztine Gere
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Silvia Ondrasovicova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Petra Varro
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Csaba Kovago
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Ngwa HA, Bargues-Carot A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese and Vanadium Co-Exposure Induces Severe Neurotoxicity in the Olfactory System: Relevance to Metal-Induced Parkinsonism. Int J Mol Sci 2024; 25:5285. [PMID: 38791326 PMCID: PMC11121436 DOI: 10.3390/ijms25105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.
Collapse
Affiliation(s)
- Hilary Afeseh Ngwa
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
| | - Alejandra Bargues-Carot
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Anumantha G. Kanthasamy
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| |
Collapse
|
5
|
Levi UI, Bintu MM, Daniella OC, Oyenike OAF, Agbonu AO, Adedamola AM, Ndidi E, Saka SF, Gela BV, Mbagwu SI, Edem EE, Olukayode OJ, James C. Neurobehavioral deficits, histoarchitectural alterations, parvalbumin neuronal damage and glial activation in the brain of male Wistar rat exposed to Landfill leachate. J Chem Neuroanat 2024; 136:102377. [PMID: 38176474 DOI: 10.1016/j.jchemneu.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Concerns about inappropriate disposal of waste into unsanitary municipal solid waste landfills around the world have been on the increase, and this poses a public health challenge due to leachate production. The neurotoxic effect of Gwagwalada landfill leachate (GLL) was investigated in male adult Wistar rats. Rats were exposed to a 10% concentration of GLL for 21 days. The control group received tap water for the same period of the experiment. Our results showed that neurobehavior, absolute body and brain weights and brain histomorphology as well as parvalbumin interneurons were severely altered, with consequent astrogliosis and microgliosis after 21 days of administrating GLL. Specifically, there was severe loss and shrinkage of Purkinje cells, with their nucleus, and severe diffused vacuolations of the white matter tract of GLL-exposed rat brains. There was severe cell loss in the granular layer of the cerebellum resulting in a reduced thickness of the layer. Also, there was severe loss of dendritic arborization of the Purkinje cells in GLL-exposed rat brains, and damage as well as reduced populations of parvalbumin-containing fast-spiking GABAergic interneurons in various regions of the brain. In conclusion, data from the present study demonstrated the detrimental effects of Gwagwalada landfill leachate on the brain which may be implicated in neuropsychological conditions.
Collapse
Affiliation(s)
- Usende Ifukibot Levi
- Department of Veterinary Anatomy, University of Abuja, Nigeria; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA.
| | - Mofio M Bintu
- Department of Biological Sciences, University of Abuja, Abuja, Nigeria
| | | | | | - Adikpe Oluwa Agbonu
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | | | - Enefe Ndidi
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Sanni Fatimah Saka
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Beselia V Gela
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Department of Physiology and Pharmacology, Petre Schotadze Tbilisi Medical Academy, Tbilisi, Georgia
| | - Smart I Mbagwu
- Dept of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
| | - Edem Ekpenyong Edem
- Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
| | | | - Connor James
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
6
|
Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, Mouhamed MS, Shalamesh EM, Alhorieny NA, Abd Elaty AE, Elgendy IM, Etman AE, Saad KE, Tsigkou K, Ali SS, Kornaros M, Mahmoud YAG. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. TOXICS 2023; 11:580. [PMID: 37505546 PMCID: PMC10384455 DOI: 10.3390/toxics11070580] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Natural and anthropogenic sources of metals in the ecosystem are perpetually increasing; consequently, heavy metal (HM) accumulation has become a major environmental concern. Human exposure to HMs has increased dramatically due to the industrial activities of the 20th century. Mercury, arsenic lead, chrome, and cadmium have been the most prevalent HMs that have caused human toxicity. Poisonings can be acute or chronic following exposure via water, air, or food. The bioaccumulation of these HMs results in a variety of toxic effects on various tissues and organs. Comparing the mechanisms of action reveals that these metals induce toxicity via similar pathways, including the production of reactive oxygen species, the inactivation of enzymes, and oxidative stress. The conventional techniques employed for the elimination of HMs are deemed inadequate when the HM concentration is less than 100 mg/L. In addition, these methods exhibit certain limitations, including the production of secondary pollutants, a high demand for energy and chemicals, and reduced cost-effectiveness. As a result, the employment of microbial bioremediation for the purpose of HM detoxification has emerged as a viable solution, given that microorganisms, including fungi and bacteria, exhibit superior biosorption and bio-accumulation capabilities. This review deals with HM uptake and toxicity mechanisms associated with HMs, and will increase our knowledge on their toxic effects on the body organs, leading to better management of metal poisoning. This review aims to enhance comprehension and offer sources for the judicious selection of microbial remediation technology for the detoxification of HMs. Microbial-based solutions that are sustainable could potentially offer crucial and cost-effective methods for reducing the toxicity of HMs.
Collapse
Affiliation(s)
- Manar K. Abd Elnabi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biotechnology Program, Institute of Basic and Applied Science (BAS), Egypt-Japan University of Science and Technology, New Borg El-Arab City 21934, Egypt
| | - Nehal E. Elkaliny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Maha M. Elyazied
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shimaa H. Azab
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Shawky A. Elkhalifa
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Sohaila Elmasry
- Microbiology Department, Faculty of science, Damanhour University, Behaira 22514, Egypt;
| | - Moustafa S. Mouhamed
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ebrahim M. Shalamesh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Naira A. Alhorieny
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Abeer E. Abd Elaty
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Ibrahim M. Elgendy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Alaa E. Etman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Kholod E. Saad
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Sameh S. Ali
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, 26504 Patras, Greece;
| | - Yehia A.-G. Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (M.K.A.E.); (N.E.E.); (M.M.E.); (S.H.A.); (S.A.E.); (M.S.M.); (E.M.S.); (N.A.A.); (A.E.A.E.); (I.M.E.); (A.E.E.); (K.E.S.); (Y.A.-G.M.)
| |
Collapse
|
7
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. CNS-Related Effects Caused by Vanadium at Realistic Exposure Levels in Humans: A Comprehensive Overview Supplemented with Selected Animal Studies. Int J Mol Sci 2023; 24:ijms24109004. [PMID: 37240351 DOI: 10.3390/ijms24109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł Piotr Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
| |
Collapse
|
8
|
Zhu J, Zhou F, Zhou Q, Xu Y, Li Y, Huang D, Chen L, Liu A, Zou F, Meng X. NLRP3 activation in microglia contributes to learning and memory impairment induced by chronic lead exposure in mice. Toxicol Sci 2023; 191:179-191. [PMID: 36308466 DOI: 10.1093/toxsci/kfac115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lead (Pb)-induced microglial activation and neuroinflammation has been considered as one of the main pathological events of Pb neurotoxicity. The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. However, the relationship between chronic Pb exposure and neurogenic NLRP3 inflammasome is unclear. Therefore, the aim of this study was to characterize the role of NLRP3 inflammasome activation during the chronic Pb exposure using in vitro and in vivo models. Our results showed that chronic Pb exposure induce learning and memory impairment in mice, mainly related to the activation of microglia and NLRP3 inflammasome. This phenomenon was reversed in mice by treating with the NLRP3 inhibitor MCC950 and using NLRP3-/- mice. In addition, Pb caused the activation of NLRP3 inflammasome, the production of mitochondrial ROS (mtROS), and mitochondrial Ca2+ overload in BV2 cells. Amelioration of mtROS abolished Pb-induced NLRP3 inflammasome activation. Moreover, after regulation of Ca2+ redistribution, mtROS and NLRP3 inflammasome activation was restored. In conclusion, NLRP3 inflammasome activation in microglia plays a vital role in Pb neurotoxicity, by a novel mechanism of enhancing mtROS production and Ca2+ redistribution.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunting Li
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Dingbang Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Anfei Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Huang M, Bargues-Carot A, Riaz Z, Wickham H, Zenitsky G, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Impact of Environmental Risk Factors on Mitochondrial Dysfunction, Neuroinflammation, Protein Misfolding, and Oxidative Stress in the Etiopathogenesis of Parkinson's Disease. Int J Mol Sci 2022; 23:10808. [PMID: 36142718 PMCID: PMC9505762 DOI: 10.3390/ijms231810808] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.
Collapse
Affiliation(s)
- Minhong Huang
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Alejandra Bargues-Carot
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Zainab Riaz
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Hannah Wickham
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Gary Zenitsky
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Huajun Jin
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Vellareddy Anantharam
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Arthi Kanthasamy
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
- Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, 325 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
10
|
Usende IL, Olopade JO, Azeez IA, Andrioli A, Bankole MO, Olopade FE, Nafady AA, Bentivoglio M. Neuroecotoxicology: Effects of environmental heavy metal exposure on the brain of African giant rats and the contribution of vanadium to the neuropathology. IBRO Neurosci Rep 2022; 13:215-234. [PMID: 36590095 PMCID: PMC9795313 DOI: 10.1016/j.ibneur.2022.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Increased exploitation of minerals has led to pollution of confined environments as documented in Nigeria Niger Delta. Information on the effects on brain of such exposure is limited. Due to its exploratory activities, the African giant rat (Cricetomys gambianus) (AGR) provides a unique model for neuroecotoxicological research to determine levels of animal and human exposure to different pollutants. This study aims to unravel neuropathological features of AGR sampled from three agro-ecological zones of Nigeria. Fifteen AGR were sampled according to previously determined data on heavy metal exposure: high vanadium, high lead, and low metals. Eighteen AGR were collected from low metal zone and divided into two groups. Control group received vehicle while SMV exposed group received 3 mg/kg sodium metavanadate (SMV) intraperitoneally for 14days. Brain immunohistochemical analyses were conducted, and ultrastructural changes were studied in experimentally exposed group. Results showed significant loss of tyrosin hydroxylase, parvalbumin, orexin-A and melanin concentration hormone containing neuronal populations in brains obtained from high vanadium and high lead zones and in experimentally intoxicated SMV groups. Similarly, significant decrease numbers of dendritic arborations; extracellular matrix density, perineuronal nets; astrocytes and microglia activations are documented in same groups. Ultrastructural studies revealed mass denudation, cilia loss, disintegration of ependymal layer and intense destructions of myelin sheaths in SMV exposed group. These are the first "neuroecotoxicological" findings in distinct neuronal cells. The implications of these findings are highly relevant for human population living in these areas, not only in Nigeria but also in similarly polluted areas elsewhere in the world.
Collapse
Affiliation(s)
- Ifukibot Levi Usende
- Department of Veterinary Anatomy, University of Abuja, Nigeria,Department of Veterinary Anatomy, University of Ibadan, Nigeria,Corresponding author at: Department of Veterinary Anatomy, University of Abuja, Nigeria.
| | | | | | - Anna Andrioli
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - Molakun O. Bankole
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | | | - Allam A. Nafady
- Department of Veterinary Pathology, Electron Microscope Unit, Assuit University, Egypt
| | - Marina Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Italy
| |
Collapse
|
11
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Ocampo-Aguilera NA, Altamirano-Lozano MA. Vanadium(IV) oxide affects embryonic development in mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1587-1596. [PMID: 35243760 DOI: 10.1002/tox.23508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Vanadium(V) and vanadium(IV) are the predominant redox forms present in the environment, and epidemiological studies have reported that prenatal vanadium exposure is associated with restricted fetal growth and adverse birth outcomes. However, data about the toxic effects of vanadium(IV) oxide (V2 O4 ) on the development of mammals are still limited. Therefore, in this work, 4.7, 9.4, or 18.7 mg/kg body weight/injection/day V2 O4 was administered through an intraperitoneal (ip) injection to pregnant mice from gestational days 6 to 16. The results showed that V2 O4 produced maternal and embryo-fetal toxicity and external abnormalities in the offspring, such as malrotated and malpositioned hind limbs, hematomas and head injuries. Moreover, the skeletons of the fetuses presented reduced ossification of the cranial bones, including the frontal and parietal bones, corresponding to head injuries observed in the external assessment of the fetuses. These results demonstrate that administration of V2 O4 to pregnant females in the organogenesis period adversely affects embryonic development.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Nydia Angélica Ocampo-Aguilera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| | - Mario Agustín Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Mexico City, Mexico
| |
Collapse
|
12
|
Hao L, He Y, Wang X, Wang B, Hao X. Optimizing the added ratio of mixed auxiliary packings for enhancing the biological vanadium (V) removal. BIORESOURCE TECHNOLOGY 2022; 346:126670. [PMID: 34995781 DOI: 10.1016/j.biortech.2021.126670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Developing sustainable and low-cost bio-reduction technologies is essential for vanadium (V) bioremediation in groundwater. With both agricultural waste (wheat stalk) being a solid carbon source and ceramsite and medical stone being auxiliary packings, V(V) removal was confirmed and optimized in this study. The ratio of ceramsite to medical stone was maintained at 1:3 in Group I, which accomplished a V(V) removal efficiency up to 97.5% within 120 h and an average removal rate was around 0.305 mg/(L·h). The dissolution and utilization of carbon and trace elements (Mg, Fe, Mo and Ni) by microbes also contributed to the V(V) bio-reduction enhancement. The main components of DOM (tryptophan and humic acid-like substances) were vital in the V(V) binding and electron transfer processes. This study could promote the current knowledge on the sustainable V(V) bioremediation by using agricultural waste and auxiliary packings.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xinli Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Bangyan Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
13
|
Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2022; 163:105601. [PMID: 34954321 PMCID: PMC9525101 DOI: 10.1016/j.nbd.2021.105601] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) may take decades to develop, during which many risk or protective factors may come into play to initiate the pathogenesis or modify its progression to clinical PD. The lack of understanding of this prodromal phase of PD and the factors involved has been a major hurdle in the study of PD etiology and preventive strategies. Although still controversial, the Braak and dual-hit hypotheses that PD may start peripherally in the olfactory structures and/or the gut provides a theoretical platform to identify the triggers and modifiers of PD prodromal development and progression. This is particularly true for the search of environmental causes of PD as the olfactory structures and gut are the major human mucosal interfaces with the environment. In this review, we lay out our personal views about how the Braak and dual-hit hypotheses may help us search for the environmental triggers and modifiers for PD, summarize available experimental and epidemiological evidence, and discuss research gaps and strategies.
Collapse
Affiliation(s)
- Honglei Chen
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Keran Wang
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Bryan Killinger
- Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Response of Cytoprotective and Detoxifying Proteins to Vanadate and/or Magnesium in the Rat Liver: The Nrf2-Keap1 System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8447456. [PMID: 34950419 PMCID: PMC8689234 DOI: 10.1155/2021/8447456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 10/15/2021] [Indexed: 01/11/2023]
Abstract
Oxidative stress (OS) is a mechanism underlying metal-induced toxicity. As a redox-active element, vanadium (V) can act as a strong prooxidant and generate OS at certain levels. It can also attenuate the antioxidant barrier and intensify lipid peroxidation (LPO). The prooxidant potential of V reflected in enhanced LPO, demonstrated by us previously in the rat liver, prompted us to analyze the response of the nuclear factor erythroid-derived 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) system involved in cellular regulation of OS to administration of sodium metavanadate (SMV, 0.125 mg V/mL) and/or magnesium sulfate (MS, 0.06 mg Mg/mL). The levels of some Nrf2-dependent cytoprotective and detoxifying proteins, i.e., glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), glutamate cysteine ligase catalytic subunit (GCLC), glutathione synthetase (GSS), NAD(P) H dehydrogenase quinone 1 (NQO1), UDP-glucumno-syltransferase 1 (UGT1), and heme oxygenase 1 (HO-1); glutathione (GSH); metallothionein (MT1); and glutamate-cysteine ligase (GCL) mRNA were measured. We also focused on the V-Mg interactive effects and trends toward interactive action as well as relationships between the examined indices. The elevated levels of Nrf2, GCL mRNA, and GCL catalytic subunit (GCLC) confirm OS in response to SMV and point to the capacity to synthesize GSH. The results also suggest a limitation of the second step in GSH synthesis reflected by the unchanged glutathione synthetase (GSS) and GSH levels. The positive correlations between certain cytoprotective/detoxifying proteins (which showed increasing trends during the SMV and/or MS administration, compared to the control) and between them and malondialdehyde (MDA), the hepatic V concentration/total content, and/or V dose (discussed by us previously) point to cooperation between the components of antioxidant defense in the conditions of the hepatic V accumulation and SMV-induced LPO intensification. The V-Mg interactive effect and trend are involved in changes in Nrf2 and UGT1, respectively. The p62 protein has to be determined in the context of potential inhibition of degradation of Keap1, which showed a visible upward trend, in comparison with the control. The impact of Mg on MT1 deserves further exploration.
Collapse
|
15
|
Liu P, Qin D, Lv H, Fan W, Tao Z, Xu Y. Neuroprotective effects of dopamine D2 receptor agonist on neuroinflammatory injury in olfactory bulb neurons in vitro and in vivo in a mouse model of allergic rhinitis. Neurotoxicology 2021; 87:174-181. [PMID: 34624383 DOI: 10.1016/j.neuro.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Available evidence indicates that dopamine D2 receptor modulates the neurotoxic effects induced by glutamate. However, neurotoxicity mediated by AMPA-subtype glutamate receptor has rarely been studied in the olfactory bulb. This study mainly explores the neuroprotective effects of dopamine D2 receptor agonist on AMPA receptor-mediated neurotoxicity in the olfactory bulb in a mouse model of allergic rhinitis (AR) with olfactory dysfunction (OD). In our study, we found that AR with OD was closely associated with increased surface expression of the AMPA receptor GluR1, reduced surface expression of GluR2, and apoptosis damage in the olfactory bulb in vivo. Quinpirole (a dopamine D2 receptor agonist) improved olfactory function in mice, ameliorated apoptosis injury in the olfactory bulb but not in the olfactory mucosa, and inhibited the internalization of GluR2-containing AMPA receptor in vitro and in vivo. In addition, phosphorylation plays a crucial role in the regulation of AMPA receptor trafficking. Our results showed that quinpirole reduced the phosphorylation of GluR1 S845 and GluR2 S880 in olfactory bulb neurons in vitro, but it had no obvious effect on GluR1 S831. Therefore, dopamine D2 receptor agonist may inhibit the phosphorylation of GluR1 S845 and GluR2 S880, thereby reducing AMPA receptor-mediated neurotoxicity and alleviating neurotoxic injury to the olfactory bulb caused by AR.
Collapse
Affiliation(s)
- Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Hu D, Cui Y, Zhang J. Nervonic Acid Ameliorates Motor Disorder in Mice with Parkinson’s Disease. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
18
|
Hu D, Cui Y, Zhang J. Nervonic acid amends motor disorder in a mouse model of Parkinson's disease. Transl Neurosci 2021; 12:237-246. [PMID: 34055392 PMCID: PMC8149914 DOI: 10.1515/tnsci-2020-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Parkinson's disease (PD) is a kind of common neurodegenerative disease in the world. Previous studies have proved that nervonic acid (NA), extracted from Xanthoceras sorbifolia Bunge, has the potentials of neuroprotection. However, the effect of NA on the PD remained unknown. This study was designed to investigate the NA's potential function and relative mechanism on motor disorder. METHODS 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used for producing parkinsonism motor disorder on male C57BL/6 mice. Toxicity experiments and behavioral assay were performed to evaluate the effect of NA. Besides, the expression levels of tyrosine hydroxylase and α-synuclein, as well as striatal dopamine (DA), serotonin, and their metabolites were explored through immunoblotting and chromatography after NA treatment in vivo. RESULTS We found that NA could alleviate the MPTP-induced behavioral deficits dose-dependently. Moreover, NA has no toxic effects on the mouse liver and kidney. Of note, we found that NA significantly reduced the impact of MPTP impairment and striatal DA, serotonin, and metabolites were remained unaffected. In addition, tyrosine hydroxylase was upregulated while α-synuclein being downregulated and the oxidative stress was partially repressed evidenced by the upregulation of superoxide dismutase and glutathione activity after NA treatment. CONCLUSION Our findings unveil NA's potential for protecting motor system against motor disorder in the PD mouse model without any side effects, indicating NA as an alternative strategy for PD symptom remission.
Collapse
Affiliation(s)
- Dandong Hu
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
- Beijing Yanqing District Food and Drug Safety Monitoring Center, Beijing Yanqing Center for Diseases Prevention and Control, Beijing, 102100, People’s Republic of China
| | - Yujuan Cui
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
- Beijing Yanqing District Food and Drug Safety Monitoring Center, Beijing Yanqing Center for Diseases Prevention and Control, Beijing, 102100, People’s Republic of China
| | - Ji Zhang
- School of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China
| |
Collapse
|
19
|
Ohiomokhare S, Olaolorun F, Ladagu A, Olopade F, Howes MJR, Okello E, Olopade J, Chazot PL. The Pathopharmacological Interplay between Vanadium and Iron in Parkinson's Disease Models. Int J Mol Sci 2020; 21:E6719. [PMID: 32937783 PMCID: PMC7554808 DOI: 10.3390/ijms21186719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) pathology is characterised by distinct types of cellular defects, notably associated with oxidative damage and mitochondria dysfunction, leading to the selective loss of dopaminergic neurons in the brain's substantia nigra pars compacta (SNpc). Exposure to some environmental toxicants and heavy metals has been associated with PD pathogenesis. Raised iron levels have also been consistently observed in the nigrostriatal pathway of PD cases. This study explored, for the first time, the effects of an exogenous environmental heavy metal (vanadium) and its interaction with iron, focusing on the subtoxic effects of these metals on PD-like oxidative stress phenotypes in Catecholaminergic a-differentiated (CAD) cells and PTEN-induced kinase 1 (PINK-1)B9Drosophila melanogaster models of PD. We found that undifferentiated CAD cells were more susceptible to vanadium exposure than differentiated cells, and this susceptibility was modulated by iron. In PINK-1 flies, the exposure to chronic low doses of vanadium exacerbated the existing motor deficits, reduced survival, and increased the production of reactive oxygen species (ROS). Both Aloysia citrodora Paláu, a natural iron chelator, and Deferoxamine Mesylate (DFO), a synthetic iron chelator, significantly protected against the PD-like phenotypes in both models. These results favour the case for iron-chelation therapy as a viable option for the symptomatic treatment of PD.
Collapse
Affiliation(s)
- Samuel Ohiomokhare
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| | - Francis Olaolorun
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Amany Ladagu
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Funmilayo Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria;
| | - Melanie-Jayne R. Howes
- Natural Capital and Plant Health Department, Royal Botanic Gardens Kew, Surrey TW9 3DS, UK;
| | - Edward Okello
- Human Nutrition Research Centre, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Tyne and Wear NE1 7RU, UK;
| | - James Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria;
| | - Paul L. Chazot
- Department of Biosciences, Durham University, County Durham DH1 3LE, UK; (S.O.); (F.O.); (A.L.)
| |
Collapse
|
20
|
Wang XJ, Ma MM, Zhou LB, Jiang XY, Hao MM, Teng RKF, Wu E, Tang BS, Li JY, Teng JF, Ding XB. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun 2020; 11:934. [PMID: 32071315 PMCID: PMC7028908 DOI: 10.1038/s41467-019-14189-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/18/2019] [Indexed: 11/18/2022] Open
Abstract
α-Synucleinopathies are characterized by autonomic dysfunction and motor impairments. In the pure autonomic failure (PAF), α-synuclein (α-Syn) pathology is confined within the autonomic nervous system with no motor features, but mouse models recapitulating PAF without motor dysfunction are lacking. Here, we show that in TgM83+/- mice, inoculation of α-Syn preformed fibrils (PFFs) into the stellate and celiac ganglia induces spreading of α-Syn pathology only through the autonomic pathway to both the central nervous system (CNS) and the autonomic innervation of peripheral organs bidirectionally. In parallel, the mice develop autonomic dysfunction, featured by orthostatic hypotension, constipation, hypohidrosis and hyposmia, without motor dysfunction. Thus, we have generated a mouse model of pure autonomic dysfunction caused by α-Syn pathology. This model may help define the mechanistic link between transmission of pathological α-Syn and the cardinal features of autonomic dysfunction in α-synucleinopathy.
Collapse
Affiliation(s)
- Xue-Jing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Ming-Ming Ma
- Department of Neurology, Affiliated People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Le-Bo Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiao-Yi Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Miao-Miao Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Robert K F Teng
- Collage of Electronic and Information Engineering, Shenzhen University, Shen Zhen, Guangdong, 518060, China
| | - Erxi Wu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, 76508, USA
| | - Bei-Sha Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84, Lund, Sweden.
- Institute of Health Sciences, China Medical University, 110112, Shenyang, China.
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xue-Bing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
21
|
Zychowski KE, Kodali V, Harmon M, Tyler CR, Sanchez B, Ordonez Suarez Y, Herbert G, Wheeler A, Avasarala S, Cerrato JM, Kunda NK, Muttil P, Shuey C, Brearley A, Ali AM, Lin Y, Shoeb M, Erdely A, Campen MJ. Respirable Uranyl-Vanadate-Containing Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol Sci 2019; 164:101-114. [PMID: 29660078 DOI: 10.1093/toxsci/kfy064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared with background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤ 10 μm) fraction. Mice were dosed with either PM sample, uranyl acetate, or vanadyl sulfate via aspiration (100 µg), with assessments of pulmonary and vascular toxicity 24 h later. Particulate matter samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared with background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated interleukin [IL]-1β, tumor necrosis factor-α, and keratinocyte chemoattractant/human growth-regulated oncogene) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, and IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.
Collapse
Affiliation(s)
- Katherine E Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Molly Harmon
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Christina R Tyler
- Biosciences Division, Los Alamos National Laboratories, Los Alamos, New Mexico 87545
| | - Bethany Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Yoselin Ordonez Suarez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Abigail Wheeler
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sumant Avasarala
- Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - José M Cerrato
- Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, New Mexico 87196
| | | | | | - Yan Lin
- Department of Geography, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
22
|
Colín‐Barenque L, Bizarro‐Nevares P, González Villalva A, Pedraza‐Chaverri J, Medina‐Campos ON, Jimenez‐Martínez R, Rodríguez‐Rangel DS, Reséndiz S, Fortoul TI. Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model. Int J Exp Pathol 2018; 99:180-188. [PMID: 30198103 PMCID: PMC6157302 DOI: 10.1111/iep.12285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/07/2018] [Indexed: 12/25/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine) is synthesized in the olfactory system, has antioxidant activity as a scavenger of free radicals and has been reported to have neuroprotective action in diseases which have been attributed to oxidative damage. In neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases, impairment of olfactory function has been described. Vanadium derivatives are environmental pollutants, and its toxicity has been associated with oxidative stress. Vanadium toxicity on the olfactory bulb was reported previously. This study investigates the neuroprotective effect of carnosine on the olfactory bulb in a mice model of vanadium inhalation. Male mice were divided into four groups: vanadium pentoxide (V2 O5 ) [0.02 mol/L] inhalation for one hour twice a week; V2 O5 inhalation plus 1 mg/kg of carnosine administered daily; carnosine only, and the control group that inhaled saline. The olfactory function was evaluated using the odorant test. Animals were sacrificed four weeks after exposure. The olfactory bulbs were dissected and processed using the rapid Golgi method; cytological and ultrastructural analysis was performed and malondialdehyde (MDA) concentrations were measured. The results showed evidence of olfactory dysfunction caused by vanadium exposure and also an increase in MDA levels, loss of dendritic spines and necrotic neuronal death in the granule cells. But, in contrast, vanadium-exposed mice treated with carnosine showed an increase in dendritic spines and a decrease in neuronal death and in MDA levels when compared with the group exposed to vanadium without carnosine. These results suggest that dendritic spine loss and ultrastructural alterations in the granule cells induced by vanadium are mediated by oxidative stress and that carnosine may modulate the neurotoxic vanadium action, improving the olfactory function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stefanie Reséndiz
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| | - Teresa I. Fortoul
- Departamento de Biología Celular y TisularFacultad de MedicinaUNAMMéxico CityMéxico
| |
Collapse
|
23
|
Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull 2018; 145:75-80. [PMID: 29577939 DOI: 10.1016/j.brainresbull.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Vanadium, atomic number 23, is a transition metal widely distributed in nature. It is a major contaminant of fossil fuels and is widely used in industry as catalysts, in welding, and making steel alloys. Over the years, vanadium compounds have been generating interests due to their use as therapeutic agents in the control of diabetes, tuberculosis, and some neoplasms. However, the toxicity of vanadium compounds is well documented in literature with occupational exposure of workers in vanadium allied industries, environmental pollution from combustion of fossil fuels and industrial exhausts receiving concerns as major sources of toxicity and a likely predisposing factor in the aetiopathogenesis of neurodegenerative diseases. A lot has been done to understand the neurotoxic effects of vanadium, its mechanisms of action and possible antidotes. Sequel to our review of the subject in 2011, this present review is to detail the recent insights gained in vanadium neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
24
|
Langley MR, Ghaisas S, Ay M, Luo J, Palanisamy BN, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese exposure exacerbates progressive motor deficits and neurodegeneration in the MitoPark mouse model of Parkinson's disease: Relevance to gene and environment interactions in metal neurotoxicity. Neurotoxicology 2018; 64:240-255. [PMID: 28595911 PMCID: PMC5736468 DOI: 10.1016/j.neuro.2017.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental influences. Chronic manganese (Mn) exposure has been implicated in the development of PD. Since mitochondrial dysfunction is associated with PD pathology as well as Mn neurotoxicity, we investigated whether Mn exposure augments mitochondrial dysfunction and neurodegeneration in the nigrostriatal dopaminergic system using a newly available mitochondrially defective transgenic mouse model of PD, the MitoPark mouse. This unique PD model recapitulates key features of the disease including progressive neurobehavioral changes and neuronal degeneration. We exposed MitoPark mice to a low dose of Mn (10mg/kg, p.o.) daily for 4 weeks starting at age 8 wks and then determined the behavioral, neurochemical and histological changes. Mn exposure accelerated the rate of progression of motor deficits in MitoPark mice when compared to the untreated MitoPark group. Mn also worsened olfactory function in this model. Most importantly, Mn exposure intensified the depletion of striatal dopamine and nigral TH neuronal loss in MitoPark mice. The neurodegenerative changes were accompanied by enhanced oxidative damage in the striatum and substantia nigra (SN) of MitoPark mice treated with Mn. Furthermore, Mn-treated MitoPark mice had significantly more oligomeric protein and IBA-1-immunoreactive microglia cells, suggesting Mn augments neuroinflammatory processes in the nigrostriatal pathway. To further confirm the direct effect of Mn on impaired mitochondrial function, we also generated a mitochondrially defective dopaminergic cell model by knocking out the TFAM transcription factor by using a CRISPR-Cas9 gene-editing method. Seahorse mitochondrial bioenergetic analysis revealed that Mn decreases mitochondrial basal and ATP-linked respiration in the TFAM KO cells. Collectively, our results reveal that Mn can augment mitochondrial dysfunction to exacerbate nigrostriatal neurodegeneration and PD-related behavioral symptoms. Our study also demonstrates that the MitoPark mouse is an excellent model to study the gene-environment interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the contribution of potential environmental toxicant interactions in a slowly progressive model of Parkinsonism.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
25
|
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin Gallate Has a Neurorescue Effect in a Mouse Model of Parkinson Disease. J Nutr 2017; 147:1926-1931. [PMID: 28835392 PMCID: PMC5610551 DOI: 10.3945/jn.117.255034] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background: Parkinson disease (PD) is a neurodegenerative disorder that has been associated with many factors, including oxidative stress, inflammation, and iron accumulation. The antioxidant, anti-inflammatory, and iron-chelating properties of epigallocatechin gallate (EGCG), a major polyphenol in green tea, may offer protection against PD.Objective: We sought to determine the neurorescue effects of EGCG and the role of iron in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD.Methods: We evaluated the neurorescue effect of EGCG (25 mg/kg, 7 d, oral administration) against MPTP-induced (20 mg/kg, 3 d, intraperitoneal injection) neurodegeneration in C57 male black mice. Thirty mice weighing ∼25 g were divided into 3 groups: control, MPTP, and MPTP + EGCG. The neurorescue effect of EGCG was assessed with the use of motor behavior tests, neurotransmitter analysis, oxidative stress indicators, and iron-related protein expression.Results: Compared with the control group, MPTP treatment shortened the mice's latency to fall from the rotarod by 16% (P < 0.05), decreased the striatal dopamine concentration by 58% (P < 0.001) and dihydroxyphenylacetic acid by 35% (P < 0.05), and increased serum protein carbonyls by 71% (P = 0.07). However, EGCG rescued MPTP-induced neurotoxicity by increasing the rotational latency by 17% (P < 0.05) to a value similar to the control group. Striatal dopamine concentrations were 40% higher in the MPTP + EGCG group than in the MPTP group (P < 0.05), but the values were significantly lower than in the control group. Compared with the MPTP and control groups, mice in the MPTP + EGCG group had higher substantia nigra ferroportin expression (44% and 35%, respectively) (P < 0.05) but not hepcidin and divalent metal transporter 1 expression.Conclusion: Overall, our study demonstrated that EGCG regulated the iron-export protein ferroportin in substantia nigra, reduced oxidative stress, and exerted a neurorescue effect against MPTP-induced functional and neurochemical deficits in mice.
Collapse
Affiliation(s)
- Qi Xu
- Departments of Food Science and Human Nutrition and,School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Monica Langley
- Biomedical Sciences, Iowa State University, Ames, IA; and
| | | | | |
Collapse
|
26
|
Kajita Y, Kojima N, Koganezawa N, Yamazaki H, Sakimura K, Shirao T. Drebrin E regulates neuroblast proliferation and chain migration in the adult brain. Eur J Neurosci 2017; 46:2214-2228. [DOI: 10.1111/ejn.13668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Kajita
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior; Gunma University Graduate School of Medicine; 3-39-22 Showa-machi Maebashi 371-8511 Japan
| |
Collapse
|
27
|
Folarin OR, Snyder AM, Peters DG, Olopade F, Connor JR, Olopade JO. Brain Metal Distribution and Neuro-Inflammatory Profiles after Chronic Vanadium Administration and Withdrawal in Mice. Front Neuroanat 2017; 11:58. [PMID: 28790895 PMCID: PMC5524677 DOI: 10.3389/fnana.2017.00058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 01/23/2023] Open
Abstract
Vanadium is a potentially toxic environmental pollutant and induces oxidative damage in biological systems including the central nervous system (CNS). Its deposition in brain tissue may be involved in the pathogenesis of certain neurological disorders which after prolonged exposure can culminate into more severe pathology. Most studies on vanadium neurotoxicity have been done after acute exposure but in reality some populations are exposed for a lifetime. This work was designed to ascertain neurodegenerative consequences of chronic vanadium administration and to investigate the progressive changes in the brain after withdrawal from vanadium treatment. A total of 85 male BALB/c mice were used for the experiment and divided into three major groups of vanadium treated (intraperitoneally (i.p.) injected with 3 mg/kg body weight of sodium metavanadate and sacrificed every 3 months till 18 months); matched controls; and animals that were exposed to vanadium for 3 months and thereafter the metal was withdrawn. Brain tissues were obtained after animal sacrifice. Sagittal cut sections of paraffin embedded tissue (5 μm) were analyzed by the Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to show the absorption and distribution of vanadium metal. Also, Haematoxylin and Eosin (H&E) staining of brain sections, and immunohistochemistry for Microglia (Iba-1), Astrocytes (GFAP), Neurons (Neu-N) and Neu-N + 4',6-diamidine-2'-pheynylindole dihydrochloride (Dapi) Immunofluorescent labeling were observed for morphological and morphometric parameters. The LA-ICP-MS results showed progressive increase in vanadium uptake with time in different brain regions with prediction for regions like the olfactory bulb, brain stem and cerebellum. The withdrawal brains still show presence of vanadium metal in the brain slightly more than the controls. There were morphological alterations (of the layering profile, nuclear shrinkage) in the prefrontal cortex, cellular degeneration (loss of dendritic arborization) and cell death in the Hippocampal CA1 pyramidal cells and Purkinje cells of the cerebellum, including astrocytic and microglial activation in vanadium exposed brains which were all attenuated in the withdrawal group. With exposure into old age, the evident neuropathology was microgliosis, while progressive astrogliosis became more attenuated. We have shown that chronic administration of vanadium over a lifetime in mice resulted in metal accumulation which showed regional variabilities with time. The metal profile and pathological effects were not completely eliminated from the brain even after a long time withdrawal from vanadium metal.
Collapse
Affiliation(s)
- Oluwabusayo R Folarin
- Department of Medical Laboratory Science, Ladoke Akintola University of TechnologyOsogbo, Nigeria
| | - Amanda M Snyder
- Department of Neurosurgery, Pennsylvania State College of MedicineHershey, PA, United States
| | - Douglas G Peters
- Department of Neurosurgery, Pennsylvania State College of MedicineHershey, PA, United States
| | | | - James R Connor
- Department of Neurosurgery, Pennsylvania State College of MedicineHershey, PA, United States
| | - James O Olopade
- Department of Veterinary Anatomy, University of IbadanIbadan, Nigeria
| |
Collapse
|
28
|
Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 2017; 64:204-218. [PMID: 28539244 DOI: 10.1016/j.neuro.2017.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
Chronic manganese (Mn) exposure induces neurotoxicity, which is characterized by Parkinsonian symptoms resulting from impairment in the extrapyramidal motor system of the basal ganglia. Mitochondrial dysfunction and oxidative stress are considered key pathophysiological features of Mn neurotoxicity. Recent evidence suggests astrocytes as a major target of Mn neurotoxicity since Mn accumulates predominantly in astrocytes. However, the primary mechanisms underlying Mn-induced astroglial dysfunction and its role in metal neurotoxicity are not completely understood. In this study, we examined the interrelationship between mitochondrial dysfunction and astrocytic inflammation in Mn neurotoxicity. We first evaluated whether Mn exposure alters mitochondrial bioenergetics in cultured astrocytes. Metabolic activity assessed by MTS assay revealed an IC50 of 92.68μM Mn at 24h in primary mouse astrocytes (PMAs) and 50.46μM in the human astrocytic U373 cell line. Mn treatment reduced mitochondrial mass, indicative of impaired mitochondrial function and biogenesis, which was substantiated by the significant reduction in mRNA of mitofusin-2, a protein that serves as a ubiquitination target for mitophagy. Furthermore, Mn increased mitochondrial circularity indicating augmented mitochondrial fission. Seahorse analysis of bioenergetics status in Mn-treated astrocytes revealed that Mn significantly impaired the basal mitochondrial oxygen consumption rate as well as the ATP-linked respiration rate. The effect of Mn on mitochondrial energy deficits was further supported by a reduction in ATP production. Mn-exposed primary astrocytes also exhibited a severely quiescent energy phenotype, which was substantiated by the inability of oligomycin to increase the extracellular acidification rate. Since astrocytes regulate immune functions in the CNS, we also evaluated whether Mn modulates astrocytic inflammation. Mn exposure in astrocytes not only stimulated the release of proinflammatory cytokines, but also exacerbated the inflammatory response induced by aggregated α-synuclein. The novel mitochondria-targeted antioxidant, mito-apocynin, significantly attenuated Mn-induced inflammatory gene expression, further supporting the role of mitochondria dysfunction and oxidative stress in mediating astrogliosis. Lastly, intranasal delivery of Mn in vivo elevated GFAP and depressed TH levels in the olfactory bulbs, clearly supporting the involvement of astrocytes in Mn-induced dopaminergic neurotoxicity. Collectively, our study demonstrates that Mn drives proinflammatory events in astrocytes by impairing mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Hilary A Ngwa
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
29
|
|
30
|
Gordon R, Neal ML, Luo J, Langley MR, Harischandra DS, Panicker N, Charli A, Jin H, Anantharam V, Woodruff TM, Zhou QY, Kanthasamy AG, Kanthasamy A. Prokineticin-2 upregulation during neuronal injury mediates a compensatory protective response against dopaminergic neuronal degeneration. Nat Commun 2016; 7:12932. [PMID: 27703142 PMCID: PMC5059486 DOI: 10.1038/ncomms12932] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 08/17/2016] [Indexed: 02/07/2023] Open
Abstract
Prokineticin-2 (PK2), a recently discovered secreted protein, regulates important physiological functions including olfactory biogenesis and circadian rhythms in the CNS. Interestingly, although PK2 expression is low in the nigral system, its receptors are constitutively expressed on nigrostriatal neurons. Herein, we demonstrate that PK2 expression is highly induced in nigral dopaminergic neurons during early stages of degeneration in multiple models of Parkinson's disease (PD), including PK2 reporter mice and MitoPark mice. Functional studies demonstrate that PK2 promotes mitochondrial biogenesis and activates ERK and Akt survival signalling pathways, thereby driving neuroprotection. Importantly, PK2 overexpression is protective whereas PK2 receptor antagonism exacerbates dopaminergic degeneration in experimental PD. Furthermore, PK2 expression increased in surviving nigral dopaminergic neurons from PD brains, indicating that PK2 upregulation is clinically relevant to human PD. Collectively, our results identify a paradigm for compensatory neuroprotective PK2 signalling in nigral dopaminergic neurons that could have important therapeutic implications for PD. Prokineticin-2 (PK2) is a secreted protein involved in a number of physiological functions. Here, the authors find that PK2 expression increases in surviving DA neurons from Parkinson's disease patients, and show it protects against dopaminergic degeneration in PD mouse models.
Collapse
Affiliation(s)
- Richard Gordon
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA.,School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew L Neal
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Dilshan S Harischandra
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Nikhil Panicker
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Adhithiya Charli
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Qun-Yong Zhou
- Department of Pharmacology, 363D Med Surge 2, University of California, Irvine, California 92697, USA
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
31
|
Azeez IA, Olopade F, Laperchia C, Andrioli A, Scambi I, Onwuka SK, Bentivoglio M, Olopade JO. Regional Myelin and Axon Damage and Neuroinflammation in the Adult Mouse Brain After Long-Term Postnatal Vanadium Exposure. J Neuropathol Exp Neurol 2016; 75:843-54. [PMID: 27390101 DOI: 10.1093/jnen/nlw058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Environmental exposure to vanadium occurs in areas of persistent burning of fossil fuels; this metal is known to induce oxidative stress and oligodendrocyte damage. Here, we determined whether vanadium exposure (3 mg/kg) in mice during the first 3 postnatal months leads to a sustained neuroinflammatory response. Body weight monitoring, and muscle strength and open field tests showed reduction of body weight gain and locomotor impairment in vanadium-exposed mice. Myelin histochemistry and immunohistochemistry for astrocytes, microglia, and nonphosphorylated neurofilaments revealed striking regional heterogeneity. Myelin damage involved the midline corpus callosum and fibers in cortical gray matter, hippocampus, and diencephalon that were associated with axonal damage. Astrocyte and microglial activation was identified in the same regions and in the internal capsule; however, no overt myelin and axon damage was observed in the latter. Double immunofluorescence revealed induction of high tumor necrosis factor (TNF) immunoreactivity in reactive astrocytes. Western blotting analysis showed significant induction of TNF and interleukin-1β expression. Together these findings show that chronic postnatal vanadium exposure leads to functional deficit and region-dependent myelin damage that does not spare axons. This injury is associated with glial cell activation and proinflammatory cytokine induction, which may reflect both neurotoxic and neuroprotective responses.
Collapse
Affiliation(s)
- Idris A Azeez
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Funmilayo Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Claudia Laperchia
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Anna Andrioli
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Ilaria Scambi
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Silas K Onwuka
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - Marina Bentivoglio
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO)
| | - James O Olopade
- From the Department of Veterinary Anatomy, University of Ibadan, Nigeria (IAA, SKO, JOO); Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Italy (IAA, CL, AA, IS, MB); Department of Anatomy, University of Ibadan, Nigeria (FO).
| |
Collapse
|
32
|
Ghosh A, Langley MR, Harischandra DS, Neal ML, Jin H, Anantharam V, Joseph J, Brenza T, Narasimhan B, Kanthasamy A, Kalyanaraman B, Kanthasamy AG. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson's Disease. J Neuroimmune Pharmacol 2016; 11:259-78. [PMID: 26838361 PMCID: PMC4995106 DOI: 10.1007/s11481-016-9650-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson's disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP(+))-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP(+)-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Monica R Langley
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Dilshan S Harischandra
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew L Neal
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Joy Joseph
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | | | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Abstract
The purpose of this study was to define the toxic effects of vanadium on thymic development in broilers fed on diets supplemented with 0, 5, 15, 30, 45 and 60 mg/kg of vanadium for 42 days. We examined the changes of relative weigh, cell cycle phase, apoptotic cells, and protein expression of Bcl-2, Bax, and caspase-3 in the thymus by the methods of flow cytometry, TUNEL (terminal-deoxynucleotidyl transferase mediated nick end labeling) and immunohistochemistry. The results showed that dietary high vanadium (30 mg/kg, 45 mg/kg and 60 mg/kg) caused the toxic effects on thymic development, which was characterized by decreasing relative weigh, increasing G0/G1 phase (a prolonged nondividing state), reducing S phase (DNA replication) and proliferating index (PI), and increasing percentages of apoptotic thymocytes. Concurrently, the protein expression levels of Bax and caspase-3 were increased, and protein expression levels of Bcl-2 were decreased. The thymic development suppression caused by dietary high vanadium further leads to inhibitive effects on T lymphocyte maturity and activity, and cellular immune function. The above-mentioned results provide new evidences for further understanding the vanadium immunotoxicity. In contrast, dietary 5 mg/kg vanadium promoted the thymic development by increasing relative weigh, decreasing G0/G1 phase, increasing S phase and PI, and reducing percentages of apoptotic thymocytes when compared to the control group and high vanadium groups.
Collapse
Affiliation(s)
- Wei Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Ya'an, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
34
|
Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC–ICP-MS. Talanta 2015; 142:164-9. [DOI: 10.1016/j.talanta.2015.04.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 11/22/2022]
|