1
|
Blum K, Steinberg B, Gondre-Lewis MC, Baron D, Modestino EJ, Badgaiyan RD, Downs BW, Bagchi D, Brewer R, McLaughlin T, Bowirrat A, Gold M. A Review of DNA Risk Alleles to Determine Epigenetic Repair of mRNA Expression to Prove Therapeutic Effectiveness in Reward Deficiency Syndrome (RDS): Embracing "Precision Behavioral Management". Psychol Res Behav Manag 2021; 14:2115-2134. [PMID: 34949945 PMCID: PMC8691196 DOI: 10.2147/prbm.s292958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
This is a review of research on "Precision Behavioral Management" of substance use disorder (SUD). America is experiencing a high prevalence of substance use disorder, primarily involving legal and illegal opioid use. A 3000% increase in treatment for substance abuse has occurred between 2000 and 2016. Unfortunately, present day treatment of opioid abuse involves providing replacement therapy with powerful opioids to, at best, induce harm reduction, not prophylaxis. These interventions do not enhance gene expression and restore the balance of the brain reward system's neurotransmitters. We are proposing a generalized approach called "Precision Behavioral Management". This approach includes 1) using the Genetic Addiction Risk Severity (GARS, a 10 candidate polymorphic gene panel shown to predict ASI-alcohol and drug severity) to assess early pre-disposition to substance use disorder; 2) using a validated reward deficiency syndrome (RDS) questionnaire; 3) utilization of the Comprehensive Analysis of Reported Drugs (CARD™) to assess treatment compliance and abstinence from illicit drugs during treatment, and, importantly; 4) utilization of a "Pro-dopamine regulator (KB220)" (via IV or oral [KB220Z] delivery systems) to optimize gene expression, restore the balance of the Brain Reward Cascade's neurotransmitter systems and prevent relapse by induction of dopamine homeostasis, and; 5) utilization of targeted DNA polymorphic reward genes to direct mRNA genetic expression profiling during the treatment process. Incorporation of these events can be applied to not only the under-considered African-American RDS community, but all victims of RDS, as a demonstration of a paradigm shift that uniquely provides a novel putative "standard of care" based on DNA guided precision nutrition therapy to induce "dopamine homeostasis" and rebalance neurotransmitters in the Brain Reward Cascade. We are also developing a Reward Deficiency Syndrome Diagnostic Criteria (RDSDC) to assist in potential tertiary treatment.
Collapse
Affiliation(s)
- Kenneth Blum
- Center for Psychiatry, Medicine & Primary Care, Division of Addiction Research & Education, Graduate College, Western University Health Sciences, Pomona, CA, USA
- Eötvös Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH (IE), USA
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, USA
| | | | - Marjorie C Gondre-Lewis
- Developmental Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - David Baron
- Center for Psychiatry, Medicine & Primary Care, Division of Addiction Research & Education, Graduate College, Western University Health Sciences, Pomona, CA, USA
| | | | - Rajendra D Badgaiyan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA
- Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - B William Downs
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA, USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA, USA
| | - Raymond Brewer
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, USA
| | - Thomas McLaughlin
- Department of Psychopharmacology, Center for Psychiatric Medicine, Lawrence, MA, USA
| | - Abdalla Bowirrat
- Adelson School of Medicine & Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mark Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Franklin JM, Broseguini de Souza RK, Carrasco GA. Cannabinoid 2 receptors regulate dopamine 2 receptor expression by a beta-arrestin 2 and GRK5-dependent mechanism in neuronal cells. Neurosci Lett 2021; 753:135883. [PMID: 33838258 DOI: 10.1016/j.neulet.2021.135883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
We have previously reported that the repeated exposure to cannabinoids upregulates and enhances the activity of serotonin 2A (5-HT2A) and dopamine 2 (D2) receptors and facilitates the formation of D2-5-HT2A receptor heterodimers in the rat prefrontal cortex and two neuronal cell lines. Because the repeated exposure to cannabinoids has been associated with adverse neuropsychiatric disorders, this study investigated the mechanisms that underly the cannabinoid-mediated regulation of D2 receptor expression in a neuronal cell model, CLU213 cells. We initially tested the effects of repeated exposure (72 h) to a non-selective cannabinoid agonist (1 nM CP55940), a selective CB1 receptor agonist (15 nM ACEA), or a selective CB2 receptor drug (1 nM GP1a) on the expression of postsynaptic D2 (D2L) receptors in CLU213 cells. Repeated CP55940, GP1a, or ACEA treatments significantly increased D2L receptor protein levels (99 % ± 7%, 30 % ± 7%, and 39 % ± 5% increases compared with control levels, respectively). Repeated exposure to both GP1a and ACEA increased D2L receptor protein levels by 73 % ± 8%. Interestingly, CP55940 and GP1a, but not ACEA, upregulated D2 mRNA. Using cells that were stably transfected with short-hairpin RNA (shRNA) lentiviral particles targeting CB2 receptors, G protein-coupled receptor kinase 5 (GRK5), and β-arrestin 2, we found that CB2 receptors regulated D2 expression through a mechanism that is dependent on GRK5, β-arrestin 2, and extracellular signal-related kinase (ERK)1/2. We also found that repeated exposure to either ACEA or GP1a selectively stimulated the protein and mRNA expression of GRK proteins. ACEA significantly upregulated GRK2 proteins, whereas GP1a upregulated GRK5 protein expression. Our results identified mechanisms associated with the upregulation of D2 receptors in neuronal cells after the repeated exposure to cannabinoids. These data can shed light on the mechanisms that can be targeted to prevent potential adverse effects, while simultaneously determining the therapeutic benefits of cannabinoids.
Collapse
Affiliation(s)
- Jade M Franklin
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Kansas, United States
| | | | - Gonzalo A Carrasco
- Department of Biomedical Sciences, Copper Medical School of Rowan University, New Jersey, United States; Rowan University Institute for Cannabis Research, Policy, & Workforce Development, New Jersey, United States.
| |
Collapse
|
3
|
Differential roles of two isoforms of dopamine D2 receptors in l-dopa-induced abnormal involuntary movements in mice. Neuroreport 2021; 32:555-561. [PMID: 33850083 DOI: 10.1097/wnr.0000000000001623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
l-dopa and dopamine D2 receptor (D2R) agonists are commonly used to relieve the motor deficits of Parkinson's disease. However, long-term treatment with l-dopa or D2R agonists can induce adverse effects such as abnormal involuntary movements (AIMs), which are major limiting factors in achieving long-term control of parkinsonian syndromes. The pathophysiological mechanisms involved in the development of dopaminergic agonist-induced adverse effects are not well understood. Here, we examined the role of two D2R isoforms, D2S and D2L, in l-dopa-induced AIMs using dopamine D2L knockout (D2L KO) mice (expressing purely D2S) and wild-type mice (expressing predominantly D2L). We found that D2L KO mice displayed markedly enhanced AIMs in response to chronic treatment of l-dopa compared to wild-type mice. The l-dopa-induced enhancement of AIMs in D2L KO mice was significantly reduced by the D2R antagonist eticlopride. D2L KO mice also displayed markedly enhanced AIMs in response to chronic treatment with quinpirole, a preferential D2R agonist. These results suggest that D2S contributes more than D2L to dopaminergic agonist-induced AIMs. Our findings may uncover a new factor that contributes to the pathophysiology of dopaminergic drug-induced AIMs, a characteristic manifestation of dyskinesia and also present in psychosis. There is a possibility that the increased ratio of D2S to D2L in the brain plays a significant role in the development of AIM side effects induced by l-dopa or D2R agonists. See Video Abstract, http://links.lww.com/WNR/A622.
Collapse
|
4
|
Espadas I, Ortiz O, García-Sanz P, Sanz-Magro A, Alberquilla S, Solis O, Delgado-García JM, Gruart A, Moratalla R. Dopamine D2R is Required for Hippocampal-dependent Memory and Plasticity at the CA3-CA1 Synapse. Cereb Cortex 2021; 31:2187-2204. [PMID: 33264389 PMCID: PMC7945019 DOI: 10.1093/cercor/bhaa354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dopamine receptors play an important role in motivational, emotional, and motor responses. In addition, growing evidence suggests a key role of hippocampal dopamine receptors in learning and memory. It is well known that associative learning and synaptic plasticity of CA3-CA1 requires the dopamine D1 receptor (D1R). However, the specific role of the dopamine D2 receptor (D2R) on memory-related neuroplasticity processes is still undefined. Here, by using two models of D2R loss, D2R knockout mice (Drd2-/-) and mice with intrahippocampal injections of Drd2-small interfering RNA (Drd2-siRNA), we aimed to investigate how D2R is involved in learning and memory as well as in long-term potentiation of the hippocampus. Our studies revealed that the genetic inactivation of D2R impaired the spatial memory, associative learning, and the classical conditioning of eyelid responses. Similarly, deletion of D2R reduced the activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. Our results demonstrate the first direct evidence that D2R is essential in behaving mice for trace eye blink conditioning and associated changes in hippocampal synaptic strength. Taken together, these results indicate a key role of D2R in regulating hippocampal plasticity changes and, in consequence, acquisition and consolidation of spatial and associative forms of memory.
Collapse
Affiliation(s)
- Isabel Espadas
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Ortiz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Patricia García-Sanz
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Adrián Sanz-Magro
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Samuel Alberquilla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | - Oscar Solis
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| | | | - Agnès Gruart
- División de Neurociencias, Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Rosario Moratalla
- Neurobiologia Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid 28002, Spain
- CIBERNED, ISCIII, Madrid 28002, Spain
| |
Collapse
|
5
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
6
|
Kilpeläinen T, Julku UH, Svarcbahs R, Myöhänen TT. Behavioural and dopaminergic changes in double mutated human A30P*A53T alpha-synuclein transgenic mouse model of Parkinson´s disease. Sci Rep 2019; 9:17382. [PMID: 31758049 PMCID: PMC6874660 DOI: 10.1038/s41598-019-54034-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022] Open
Abstract
Alpha-synuclein (aSyn) is the main component of Lewy bodies, the histopathological marker in Parkinson's disease (PD), and point mutations and multiplications of the aSyn coding SNCA gene correlate with early onset PD. Therefore, various transgenic mouse models overexpressing native or point-mutated aSyn have been developed. Although these models show highly increased aSyn expression they rarely capture dopaminergic cell loss and show a behavioural phenotype only at old age, whereas SNCA mutations are risk factors for PD with earlier onset. The aim of our study was to re-characterize a transgenic mouse strain carrying both A30P and A53T mutated human aSyn. Our study revealed decreased locomotor activity for homozygous transgenic mice starting from 3 months of age which was different from previous studies with this mouse strain that had behavioural deficits starting only after 7-9 months. Additionally, we found a decreased amphetamine response in locomotor activity and decreased extracellular dopaminergic markers in the striatum and substantia nigra with significantly elevated levels of aSyn oligomers. In conclusion, homozygous transgenic A30P*A53T aSyn mice capture several phenotypes of PD with early onset and could be a useful tool for aSyn studies.
Collapse
Affiliation(s)
- Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Dopamine D 2L Receptor Deficiency Causes Stress Vulnerability through 5-HT 1A Receptor Dysfunction in Serotonergic Neurons. J Neurosci 2019; 39:7551-7563. [PMID: 31371425 DOI: 10.1523/jneurosci.0079-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mental disorders are caused by genetic and environmental factors. We here show that deficiency of an isoform of dopamine D2 receptor (D2R), D2LR, causes stress vulnerability in mouse. This occurs through dysfunction of serotonin [5-hydroxytryptamine (5-HT)] 1A receptor (5-HT1AR) on serotonergic neurons in the mouse brain. Exposure to forced swim stress significantly increased anxiety- and depressive-like behaviors in D2LR knock-out (KO) male mice compared with wild-type mice. Treatment with 8-OH-DPAT, a 5-HT1AR agonist, failed to alleviate the stress-induced behaviors in D2LR-KO mice. In forced swim-stressed D2LR-KO mice, 5-HT efflux in the medial prefrontal cortex was elevated and the expression of genes related to 5-HT levels was upregulated by the transcription factor PET1 in the dorsal raphe nucleus. Notably, D2LR formed a heteromer with 5-HT1AR in serotonergic neurons, thereby suppressing 5-HT1AR-activated G-protein-activated inwardly rectifying potassium conductance in D2LR-KO serotonergic neurons. Finally, D2LR overexpression in serotonergic neurons in the dorsal raphe nucleus alleviated stress vulnerability observed in D2LR-KO mice. Together, we conclude that disruption of the negative feedback regulation by the D2LR/5-HT1A heteromer causes stress vulnerability.SIGNIFICANCE STATEMENT Etiologies of mental disorders are multifactorial, e.g., interactions between genetic and environmental factors. In this study, using a mouse model, we showed that genetic depletion of an isoform of dopamine D2 receptor, D2LR, causes stress vulnerability associated with dysfunction of serotonin 1A receptor, 5-HT1AR in serotonergic neurons. The D2LR/5-HT1AR inhibitory G-protein-coupled heteromer may function as a negative feedback regulator to suppress psychosocial stress.
Collapse
|
8
|
Thanos PK, Hamilton J, O'Rourke JR, Napoli A, Febo M, Volkow ND, Blum K, Gold M. Dopamine D2 gene expression interacts with environmental enrichment to impact lifespan and behavior. Oncotarget 2017; 7:19111-23. [PMID: 26992232 PMCID: PMC4991369 DOI: 10.18632/oncotarget.8088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
Aging produces cellular, molecular, and behavioral changes affecting many areas of the brain. The dopamine (DA) system is known to be vulnerable to the effects of aging, which regulate behavioral functions such as locomotor activity, body weight, and reward and cognition. In particular, age-related DA D2 receptor (D2R) changes have been of particular interest given its relationship with addiction and other rewarding behavioral properties. Male and female wild-type (Drd2 +/+), heterozygous (Drd2 +/−) and knockout (Drd2 −/−) mice were reared post-weaning in either an enriched environment (EE) or a deprived environment (DE). Over the course of their lifespan, body weight and locomotor activity was assessed. While an EE was generally found to be correlated with longer lifespan, these increases were only found in mice with normal or decreased expression of the D2 gene. Drd2 +/+ EE mice lived nearly 16% longer than their DE counterparts. Drd2 +/+ and Drd2 +/− EE mice lived 22% and 21% longer than Drd2 −/− EE mice, respectively. Moreover, both body weight and locomotor activity were moderated by environmental factors. In addition, EE mice show greater behavioral variability between genotypes compared to DE mice with respect to body weight and locomotor activity.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Anthony Napoli
- Department of Psychology, Suffolk Community College, Riverhead, NY, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | | | - Kenneth Blum
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Mark Gold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Thiry L, Lemieux M, Bretzner F. Age- and speed-dependent modulation of gaits in DSCAM 2J mutant mice. J Neurophysiol 2017; 119:723-737. [PMID: 29093169 DOI: 10.1152/jn.00471.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaits depend on the interplay between distributed spinal neural networks, termed central pattern generators, generating rhythmic and coordinated movements, primary afferents, and descending supraspinal inputs. Recent studies demonstrated that the mouse displays a rich repertoire of gaits. Changes in gaits occur in mutant mice lacking particular neurons or molecular signaling pathways implicated in the normal establishment of these neural networks. Given the role of the Down syndrome cell adherence molecule (DSCAM) to the formation and maintenance of spinal interneuronal circuits and sensorimotor integration, we have investigated its functional contribution to gaits over a wide range of locomotor speeds using freely walking mice. We show in this study that the DSCAM2J mutation, while not precluding any gait, impairs the age- and speed-dependent modulation of gaits. It impairs the ability of mice to maintain their locomotion at high treadmill speeds. DSCAM2J mutation induces the dominance of lateral walk over trot and the emergence of aberrant gaits for mice, such as pace and diagonal walk. Gaits were also more labile in DSCAM2J mutant mice, i.e., less stable, less attractive, and less predictable than in their wild-type littermates. Our results suggest that the DSCAM mutation affects the behavioral repertoire of gaits in an age- and speed-dependent manner. NEW & NOTEWORTHY Gaits evolve throughout development, up to adulthood, and according to the genetic background. Using mutant mice lacking DSCAM (a cell adherence molecule associated with Down syndrome), we show that the DSCAM2J mutation alters the repertoire of gaits according to the mouse's age and speed, and prevents fast gaits. Such an incapacity suggests a reorganization of spinal, propriospinal, and supraspinal neuronal circuits underlying locomotor control in DSCAM2J mutant mice.
Collapse
Affiliation(s)
- Louise Thiry
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada
| | - Maxime Lemieux
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada
| | - Frédéric Bretzner
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL-Neurosciences, Quebec City, Quebec , Canada.,Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval , Quebec City, Quebec , Canada
| |
Collapse
|
10
|
Shioda N, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K. Endocytosis following dopamine D 2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Mol Psychiatry 2017; 22:1205-1222. [PMID: 27922607 DOI: 10.1038/mp.2016.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.
Collapse
Affiliation(s)
- N Shioda
- Department of Biofunctional Analysis Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | - Y Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, IL, USA
| | - M Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - M Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | - K Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Morita M, Wang Y, Sasaoka T, Okada K, Niwa M, Sawa A, Hikida T. Dopamine D2L Receptor Is Required for Visual Discrimination and Reversal Learning. MOLECULAR NEUROPSYCHIATRY 2016; 2:124-132. [PMID: 27867937 DOI: 10.1159/000447970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/14/2016] [Indexed: 12/15/2022]
Abstract
The corticostriatothalamic circuit regulates learning behaviors via dopamine neurotransmission. D2 long (D2L) receptors are an isoform of dopamine D2 receptors (D2Rs) and may act mainly at postsynaptic sites. It is well known that D2Rs influence high brain functions, but the roles of individual D2R isoforms are still unclear. To assess the influence of D2L receptors in visual discrimination learning, we performed visual discrimination and reversal tasks with D2L knockout mice using a touchscreen operant system. There were no significant differences in an operant conditioning task between genotypes. However, D2L knockout mice were impaired in both visual discrimination and reversal learning tasks. D2L knockout mice were also significantly slower than wild-type mice in collecting the reward in the visual discrimination task. These results indicate that D2L receptors play an important role in visual discrimination and reversal learning.
Collapse
Affiliation(s)
- Makiko Morita
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yanyan Wang
- Department of Pharmacology and Beckman Institute, University of Illinois, Urbana-Champaign, Ill., USA
| | | | - Kinya Okada
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Minae Niwa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Takatoshi Hikida
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Macpherson T, Morita M, Wang Y, Sasaoka T, Sawa A, Hikida T. Nucleus accumbens dopamine D2-receptor expressing neurons control behavioral flexibility in a place discrimination task in the IntelliCage. ACTA ACUST UNITED AC 2016; 23:359-64. [PMID: 27317196 PMCID: PMC4918782 DOI: 10.1101/lm.042507.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 01/17/2023]
Abstract
Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated group-housing experimental cage apparatus, in combination with a reversible neurotransmission blocking technique to examine the role of NAc D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task. We demonstrated that NAc D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. These results suggest that D2L receptors and NAc D2-MSNs act to suppress the influence of previously correct behavioral strategies allowing transfer of behavioral control to new strategies.
Collapse
Affiliation(s)
- Tom Macpherson
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Makiko Morita
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yanyan Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Takatoshi Hikida
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Novier A, Diaz-Granados JL, Matthews DB. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol Biochem Behav 2015; 133:65-82. [PMID: 25842258 DOI: 10.1016/j.pbb.2015.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Adolescence and old age are unique periods of the lifespan characterized by differential sensitivity to the effects of alcohol. Adolescents and the elderly appear to be more vulnerable to many of alcohol's physiological and behavioral effects compared to adults. The current review explores the differential effects of acute alcohol, predominantly in terms of motor function and cognition, in adolescent and aged humans and rodents. Adolescents are less sensitive to the sedative-hypnotic, anxiolytic, and motor-impairing effects of acute alcohol, but research results are less consistent as it relates to alcohol's effects on cognition. Specifically, previous research has shown adolescents to be more, less, and similarly sensitive to alcohol-induced cognitive deficits compared to adults. These equivocal findings suggest that learning acquisition may be differentially affected by ethanol compared to memory, or that ethanol-induced cognitive deficits are task-dependent. Older rodents appear to be particularly vulnerable to the motor- and cognitive-impairing effects of acute alcohol relative to younger adults. Given that alcohol consumption and abuse is prevalent throughout the lifespan, it is important to recognize age-related differences in response to acute and long-term alcohol. Unfortunately, diagnostic measures and treatment options for alcohol dependence are rarely dedicated to adolescent and aging populations. As discussed, although much scientific advancement has been made regarding the differential effects of alcohol between adolescents and adults, research with the aged is underrepresented. Future researchers should be aware that adolescents and the aged are uniquely affected by alcohol and should continue to investigate alcohol's effects at different stages of maturation.
Collapse
Affiliation(s)
- Adelle Novier
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Jaime L Diaz-Granados
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Douglas B Matthews
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States; University of Wisconsin - Eau Claire, Department of Psychology, HHH 273, Eau Claire, WI 54702, United States.
| |
Collapse
|
15
|
Yao J, de la Iglesia HO, Bajjalieh SM. Loss of the SV2-like protein SVOP produces no apparent deficits in laboratory mice. PLoS One 2013; 8:e68215. [PMID: 23894296 PMCID: PMC3722232 DOI: 10.1371/journal.pone.0068215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Neurons express two families of transporter-like proteins − Synaptic Vesicle protein 2 (SV2A, B, and C) and SV2-related proteins (SVOP and SVOPL). Both families share structural similarity with the Major Facilitator (MF) family of transporters. SV2 is present in all neurons and endocrine cells, consistent with it playing a key role in regulated exocytosis. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Furthermore, SVOP is expressed earlier in development than SV2 and is one of the neuronal proteins whose expression declines most during aging. Although SV2 is essential for survival, it is not required for development. Because significant levels of neurotransmission remain in the absence of SV2 it has been proposed that SVOP performs a function similar to that of SV2 that mitigates the phenotype of SV2 knockout mice. To test this, we generated SVOP knockout mice and SVOP/SV2A/SV2B triple knockout mice. Mice lacking SVOP are viable, fertile and phenotypically normal. Measures of neurotransmission and behaviors dependent on the cerebellum and pineal gland revealed no measurable phenotype. SVOP/SV2A/SV2B triple knockout mice did not display a phenotype more severe than mice harboring the SV2A/SV2B gene deletions. These findings support the interpretation that SVOP performs a unique, though subtle, function that is not necessary for survival under normal conditions.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | | | - Sandra M. Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2012; 97:1-13. [PMID: 22387368 DOI: 10.1016/j.pneurobio.2012.02.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Cognitive dysfunction is one of the most typical characteristics in various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (advanced stage). Although several mechanisms like neuronal apoptosis and inflammatory responses have been recognized to be involved in the pathogenesis of cognitive dysfunction in these diseases, recent studies on neurodegeneration and cognitive dysfunction have demonstrated a significant impact of receptor modulation on cognitive changes. The pathological alterations in various receptors appear to contribute to cognitive impairment and/or deterioration with correlation to diversified mechanisms. This article recapitulates the present understandings and concepts underlying the modulation of different receptors in human beings and various experimental models of Alzheimer's disease and Parkinson's disease as well as a conceptual update on the underlying mechanisms. Specific roles of serotonin, adrenaline, acetylcholine, dopamine receptors, and N-methyl-D-aspartate receptors in Alzheimer's disease and Parkinson's disease will be interactively discussed. Complex mechanisms involved in their signaling pathways in the cognitive dysfunction associated with the neurodegenerative diseases will also be addressed. Substantial evidence has suggested that those receptors are crucial neuroregulators contributing to cognitive pathology and complicated correlations exist between those receptors and the expression of cognitive capacities. The pathological alterations in the receptors would, therefore, contribute to cognitive impairments and/or deterioration in Alzheimer's disease and Parkinson's disease. Future research may shed light on new clues for the treatment of cognitive dysfunction in neurodegenerative diseases by targeting specific alterations in these receptors and their signal transduction pathways in the frontal-striatal, fronto-striato-thalamic, and mesolimbic circuitries.
Collapse
Affiliation(s)
- Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Bulwa ZB, Sharlin JA, Clark PJ, Bhattacharya TK, Kilby CN, Wang Y, Rhodes JS. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor. Alcohol 2011; 45:631-9. [PMID: 21803530 DOI: 10.1016/j.alcohol.2011.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/14/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022]
Abstract
Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards.
Collapse
|
18
|
Zalachoras I, Evers MM, van Roon-Mom WMC, Aartsma-Rus AM, Meijer OC. Antisense-mediated RNA targeting: versatile and expedient genetic manipulation in the brain. Front Mol Neurosci 2011; 4:10. [PMID: 21811437 PMCID: PMC3142880 DOI: 10.3389/fnmol.2011.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/08/2011] [Indexed: 12/28/2022] Open
Abstract
A limiting factor in brain research still is the difficulty to evaluate in vivo the role of the increasing number of proteins implicated in neuronal processes. We discuss here the potential of antisense-mediated RNA targeting approaches. We mainly focus on those that manipulate splicing (exon skipping and exon inclusion), but will also briefly discuss mRNA targeting. Classic knockdown of expression by mRNA targeting is only one possible application of antisense oligonucleotides (AON) in the control of gene function. Exon skipping and inclusion are based on the interference of AONs with splicing of pre-mRNAs. These are powerful, specific and particularly versatile techniques, which can be used to circumvent pathogenic mutations, shift splice variant expression, knock down proteins, or to create molecular models using in-frame deletions. Pre-mRNA targeting is currently used both as a research tool, e.g., in models for motor neuron disease, and in clinical trials for Duchenne muscular dystrophy and amyotrophic lateral sclerosis. AONs are particularly promising in relation to brain research, as the modified AONs are taken up extremely fast in neurons and glial cells with a long residence, and without the need for viral vectors or other delivery tools, once inside the blood brain barrier. In this review we cover (1). The principles of antisense-mediated techniques, chemistry, and efficacy. (2) The pros and cons of AON approaches in the brain compared to other techniques of interfering with gene function, such as transgenesis and short hairpin RNAs, in terms of specificity of the manipulation, spatial, and temporal control over gene expression, toxicity, and delivery issues. (3) The potential applications for Neuroscience. We conclude that there is good evidence from animal studies that the central nervous system can be successfully targeted, but the potential of the diverse AON-based approaches appears to be under-recognized.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research Leiden, Netherlands
| | | | | | | | | |
Collapse
|
19
|
Kennard JA, Woodruff-Pak DS. Age sensitivity of behavioral tests and brain substrates of normal aging in mice. Front Aging Neurosci 2011; 3:9. [PMID: 21647305 PMCID: PMC3103996 DOI: 10.3389/fnagi.2011.00009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 11/21/2022] Open
Abstract
Knowledge of age sensitivity, the capacity of a behavioral test to reliably detect age-related changes, has utility in the design of experiments to elucidate processes of normal aging. We review the application of these tests in studies of normal aging and compare and contrast the age sensitivity of the Barnes maze, eyeblink classical conditioning, fear conditioning, Morris water maze, and rotorod. These tests have all been implemented to assess normal age-related changes in learning and memory in rodents, which generalize in many cases to age-related changes in learning and memory in all mammals, including humans. Behavioral assessments are a valuable means to measure functional outcomes of neuroscientific studies of aging. Highlighted in this review are the attributes and limitations of these measures in mice in the context of age sensitivity and processes of brain aging. Attributes of these tests include reliability and validity as assessments of learning and memory, well-defined neural substrates, and sensitivity to neural and pharmacological manipulations and disruptions. These tests engage the hippocampus and/or the cerebellum, two structures centrally involved in learning and memory that undergo functional and anatomical changes in normal aging. A test that is less well represented in studies of normal aging, the context pre-exposure facilitation effect (CPFE) in fear conditioning, is described as a method to increase sensitivity of contextual fear conditioning to changes in the hippocampus. Recommendations for increasing the age sensitivity of all measures of normal aging in mice are included, as well as a discussion of the potential of the under-studied CPFE to advance understanding of subtle hippocampus-mediated phenomena.
Collapse
Affiliation(s)
- John A. Kennard
- Systems Neuroscience Laboratory, Neuroscience Program and Department of Psychology, Temple UniversityPhiladelphia, PA, USA
| | - Diana S. Woodruff-Pak
- Systems Neuroscience Laboratory, Neuroscience Program and Department of Psychology, Temple UniversityPhiladelphia, PA, USA
| |
Collapse
|
20
|
van Tijn P, Hobo B, Verhage MC, Oitzl MS, van Leeuwen FW, Fischer DF. Alzheimer-associated mutant ubiquitin impairs spatial reference memory. Physiol Behav 2011; 102:193-200. [DOI: 10.1016/j.physbeh.2010.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 10/15/2010] [Accepted: 11/01/2010] [Indexed: 12/18/2022]
|
21
|
Association Between Polymorphisms of the Dopamine Receptor D2 and Catechol-o-Methyl Transferase Genes and Cognitive Function. Behav Genet 2010; 40:630-8. [DOI: 10.1007/s10519-010-9372-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
22
|
Iarkov AV, Der TC, Joyce JN. Age-related differences in MK-801 induced behaviors in dopamine D3 receptor knock out mice. Eur J Pharmacol 2010; 627:177-84. [DOI: 10.1016/j.ejphar.2009.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 10/16/2009] [Accepted: 11/03/2009] [Indexed: 11/16/2022]
|
23
|
Krasnova IN, Hodges AB, Ladenheim B, Rhoades R, Phillip CG, Cesena A, Ivanova E, Hohmann CF, Cadet JL. Methamphetamine treatment causes delayed decrease in novelty-induced locomotor activity in mice. Neurosci Res 2009; 65:160-5. [PMID: 19559060 DOI: 10.1016/j.neures.2009.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/20/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Methamphetamine (METH) is a psychostimulant that causes damage to dopamine (DA) axons and to non-monoaminergic neurons in the brain. The aim of the present study was to investigate short- and long-term effects of neurotoxic METH treatment on novelty-induced locomotor activity in mice. Male BALB/c mice, 12-14 weeks old, were injected with saline or METH (i.p., 7.5 mg/kg x 4 times, every 2 h). Behavior and neurotoxic effects were assessed at 10 days, 3 and 5 months following drug treatment. METH administration caused marked decreases in DA levels in the mouse striatum and cortex at 10 days post-drug. However, METH did not induce any changes in novelty-induced locomotor activity. At 3 and 5 months after treatment METH-exposed mice showed significant recovery of DA levels in the striatum and cortex. In contrast, these animals demonstrated significant decreases in locomotor activity at 5 months in comparison to aged-matched control mice. Further assessment of METH toxicity using TUNEL staining showed that the drug induced increased cell death in the striatum and cortex at 3 days after administration. Taken together, these data suggest that delayed deficits in novelty-induced locomotor activity observed in METH-exposed animals are not due to neurodegeneration of DA terminals but to combined effects of METH and age-dependent dysfunction of non-DA intrinsic striatal and/or corticostriatal neurons.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6. Behav Brain Res 2009; 201:59-65. [PMID: 19428617 DOI: 10.1016/j.bbr.2009.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 11/23/2022]
Abstract
The kinematics of locomotion was analyzed in two strains of great importance for the creation of mutated mice (C56BL/6 and 129/Sv). Different behavioral situations were used to trigger sequences of movement covering the whole range of velocities in the mice, and the variations of kinematic parameters were analyzed in relation with velocity. Both stride frequency and stride length contributed to the moving speed, but stride frequency was found to be the main contributor to the speed increase. A trot-gallop transition was detected at speed about 70 cm/s, in relation with a sharp shift in limb coordination. The results of this study were consistent with pieces of information previously published concerning the gait analyses of other strains, and provided an integrative view of the basic motor pattern of mice. On the other hand some qualitative differences were found in the movement characteristics of the two strains. The stride frequency showed a higher contribution to speed in 129/Sv than in C57BL/6. In addition, 129/Sv showed a phase shift in the forelimb and hindlimb, and a different position of the foot during the stance time that revealed a different gait and body position during walking. Overall, 129/Sv moved at a slower speed than C57BL/6 in any behavioral situation. This difference was related to a basal lower level of motor activity. The possibility that an alteration in the dopamine circuit was responsible for the different movement pattern in 129/Sv is discussed.
Collapse
|
25
|
Niimi K, Takahashi E, Itakura C. Age dependence of motor activity and sensitivity to dopamine receptor 1 agonist, SKF82958, of inbred AKR/J, BALB/c, C57BL/6J, SAMR1, and SAMP6 strains. Brain Res 2008; 1250:175-82. [PMID: 19007759 DOI: 10.1016/j.brainres.2008.10.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/13/2008] [Accepted: 10/20/2008] [Indexed: 11/26/2022]
Abstract
Motor activity is a key component in many behavioral tests. To assess the relationship between aging and activity, we recorded motor activity for 72 consecutive hours for C57BL/6J (B6J), BALB/c, AKR/J, senescence-accelerated mouse prone 6 (SAMP6), and senescence-accelerated mouse resistant 1 (SAMR1) strains at the ages of 6 and 12 months. Further, to examine whether the dopamine receptor 1 (D1) signaling system is associated with the age-related alteration of activity, we evaluated the motor activity of the mice treated with SKF82958 (6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzazepine hydrobromide), a D1 agonist. Twelve-month-old B6J showed higher activity on day 1 and higher D1 sensitivity than 6-month-old mice. Twelve-month-old BALB/c showed higher activity on day 3 and a slightly lower threshold of D1 than 6-month-old mice. Twelve-month-old AKR/J, SAMR1 and SAMP6 strains showed lower motor activity than 6-month-old mice. The D1 sensitivities in 12-month-old AKR/J and SAMR1 were similar to those of corresponding 6-month-old mice, whereas the D1 sensitivity of 12-month-old SAMP6 was significantly lower than that of 6-month-old SAMP6. SKF82958 significantly increased the motor activity of 6-month-old SAMP6 compared with age-matched, AKR/J and SAMR1. Our results indicate that D1 contributes substantially to the age-related increase of activity in B6J, but not to that in BALB/c. In AKR/J, SAMR1, and SAMP6, an age-related decrease of activity was observed. The contribution of D1 to this appeared to be small in AKR/J and SAMR1, but substantial in SAMP6. Thus, the contribution of D1 to age-related changes of motor activity is strongly strain-dependent.
Collapse
Affiliation(s)
- Kimie Niimi
- Brain Science and Life Technology Research Foundation, Itabashi, Tokyo 175-0094, Japan
| | | | | |
Collapse
|
26
|
Hranilovic D, Bucan M, Wang Y. Emotional response in dopamine D2L receptor-deficient mice. Behav Brain Res 2008; 195:246-50. [PMID: 18835570 DOI: 10.1016/j.bbr.2008.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 07/02/2008] [Accepted: 09/10/2008] [Indexed: 11/29/2022]
Abstract
The dopamine D2 receptor (D2R) system has been implicated in emotional processing which is often impaired in neuropsychiatric disorders. The long (D2L) and the short (D2S) isoforms of D2R are generated by alternative splicing of the same gene. To study differential roles of the two D2R isoforms, D2L-deficient mice (D2L-/-) expressing functional D2S were previously generated. In this study the contribution of D2L isoform to emotional response was investigated by examining behaviors that reflect emotionality (exploratory behavior, anxiety-like behavior and learned helplessness) in D2L-/- and (wild-type) WT mice. While the thigmotactic, locomotor and general components of anxiety in zero maze did not differ among the genotypes, D2L-/- mice displayed significantly lower level of exploration in a hole board and zero maze, and significantly higher increase in latency to escape from a foot-shock after the learned helplessness training, compared with WT mice. These results suggest that D2L may play a more prominent role than D2S in mediating emotional response, such as behavioral reactions to novelty and inescapable stress. Our findings contribute to a better understanding of the molecular and cellular mechanisms underlying emotional responses.
Collapse
Affiliation(s)
- Dubravka Hranilovic
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
27
|
Wang Y. Differential effect of aging on synaptic plasticity in the ventral and dorsal striatum. Neurobiol Learn Mem 2008; 89:70-5. [PMID: 17942327 DOI: 10.1016/j.nlm.2007.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
|
28
|
Singh B, Wilson JH, Vasavada HH, Guo Z, Allore HG, Zeiss CJ. Motor deficits and altered striatal gene expression in aphakia (ak) mice. Brain Res 2007; 1185:283-92. [PMID: 17949697 DOI: 10.1016/j.brainres.2007.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Like humans with Parkinson's disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a linear mixed model. Ak mice significantly underperformed wt controls in rotarod, balance beam, string test, pole test and cotton shred tests at all ages examined. Motor performance in ak mice remained constant over the first 6 months of life, with the exception of the cotton shred test, in which ak mice exhibited marginal decline in performance. Dorsal striatal semi-quantitative RT-PCR for 19 dopaminergic, cholinergic, glutaminergic and catabolic genes was performed in 1- and 6-month-old groups of ak and wt mice. Preproenkephalin levels in ak mice were elevated in both age groups. Drd1, 3 and 4 levels declined over time, in contrast to increasing Drd2 expression. Additional findings included decreased Chrnalpha6 expression and elevated VGluT1 expression at both time points in ak mice and elevated AchE expression in young ak mice only. Results confirm that motor ability does not decline significantly for the first 6 months of life in ak mice. Their striatal gene expression patterns are consistent with dopaminergic denervation, and change over time, despite relatively unaltered motor performance.
Collapse
Affiliation(s)
- Bhupinder Singh
- Section of Comparative Medicine, Yale University, 375 Congress Ave., New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
29
|
Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 2007; 67:378-93. [PMID: 17443795 DOI: 10.1002/dneu.20355] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.
Collapse
Affiliation(s)
- Isabelle Draper
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
30
|
Bergerot A, Storer RJ, Goadsby PJ. Dopamine inhibits trigeminovascular transmission in the rat. Ann Neurol 2007; 61:251-62. [PMID: 17387726 DOI: 10.1002/ana.21077] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Clinical evidence, such as premonitory or postdromal symptoms, indicate involvement of dopamine in the pathophysiology of migraine. METHODS To study the influence of dopamine on nociceptive trigeminovascular neurotransmission, we first determined using immunohistofluorescence that dopamine receptors were present in the rat trigeminocervical complex; then using extracellular recording techniques, we examined whether dopamine modulates cell firing in the trigeminocervical complex. RESULTS We identified a discrete population of D1 receptors (median, 11; interquartile range, 7-30 neurons/hemisection) predominantly located in the deep laminae and a more abundant population of D2 receptors (median,75; interquartile range, 30-99 neurons/hemisection) that were evenly distributed in the trigeminocervical complex. Intravenous dopamine had no effect on trigeminovascular neurons, whereas when dopamine was applied microiontophoretically, a potent reversible inhibition of L-glutamate-evoked firing was observed. The effect of microiontophoretically applied dopamine was dose dependent. Dopamine also strongly inhibited activation of trigeminocervical neurons in response to middle meningeal artery stimulation in vivo with a maximum effect obtained within 10 minutes after the application and return to baseline within 30 minutes. INTERPRETATION We conclude that central dopamine-containing neurons may play a role in modulating trigeminovascular nociception; these neurons offer an important target that will expand our understanding of migraine and may offer new directions for therapy.
Collapse
Affiliation(s)
- Astrid Bergerot
- Headache Group, Institute of Neurology, and National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | | | | |
Collapse
|
31
|
Serradj N, Jamon M. Age-related changes in the motricity of the inbred mice strains 129/sv and C57BL/6j. Behav Brain Res 2007; 177:80-9. [PMID: 17126421 DOI: 10.1016/j.bbr.2006.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
The development of motor skills was studied at different stages in the life of the mouse, focusing on three key aspects of motor development: early rhythmic motor activities prior to the acquisition of quadruped locomotion, motor skills in young adults, and the effect of aging on motor skills. The age-related development pattern was analysed and compared in two strains of major importance for genomic studies (C57Bl6/j and 129/sv). Early rhythmic air-stepping activities by l-dopa injected mice showed similar overall development in both strains; differences were observed with greater beating frequency and less inter-limb coordination in 129/sv, suggesting that 129/sv had a different maturation process. Performance on the rotarod by young adult C57Bl6/j gradually improved between 1 and 3 months, but then declined with age; performance on the treadmill also declined with an age-related increase in fatigability. Overall performance by 129/sv mice was lower than C57Bl6/j, and the age-related pattern of change was different, with 129/sv having relatively stable performance over time. Inter-strain differences and their possible causes, in particular the role of dopaminergic pathways, are discussed together with repercussions affecting mutant phenotyping procedures.
Collapse
Affiliation(s)
- Najet Serradj
- CNRS, GFCP/P3M, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
32
|
Rani M, Kanungo MS. Expression of D2 dopamine receptor in the mouse brain. Biochem Biophys Res Commun 2006; 344:981-6. [PMID: 16643854 DOI: 10.1016/j.bbrc.2006.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
The neurotransmitter, dopamine, binds to dopamine receptor (DR), and is involved in several functions of the brain, such as initiation and execution of movement, emotion, prolactin secretion, etc. Of all the five DRs, D2 dopamine receptor has maximal affinity for dopamine. D2 has a short isoform, D2S, and a long isoform D2L. D2L is longer than D2S by 29 amino acid residues. We studied the expression of the gene and protein of D2 receptor in the cerebral and cerebellar cortices of the brain of new born, developing, adult, and old male mice to find out: (i) at what stage of development, expression of the gene peaks and (ii) if it undergoes any changes as the animal ages, which may account for the neurodegenerative changes and symptoms of Parkinson's and other diseases seen in old age. RT-PCR and Western blot studies show that peak expression of D2 gene occurs in the cerebral and cerebellar cortices around 15-day after birth. We speculate that the majority of dopaminergic synapses are established and possibly become functional in the brain around 15-day after birth. The expression of D2 receptor is upregulated in the cerebral cortex in old mice. However, it is down-regulated in the cerebellar cortex.
Collapse
Affiliation(s)
- Manjusha Rani
- Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
33
|
Li SC, Brehmer Y, Shing YL, Werkle-Bergner M, Lindenberger U. Neuromodulation of associative and organizational plasticity across the life span: Empirical evidence and neurocomputational modeling. Neurosci Biobehav Rev 2006; 30:775-90. [PMID: 16930705 DOI: 10.1016/j.neubiorev.2006.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developmental plasticity is the key mechanism that allows humans and other organisms to modify and adapt to contextual and experiential influences. Thus, reciprocal co-constructive interactions between behavioral and neuronal plasticity play important roles in regulating neurobehavioral development across the life span. This review focuses on behavioral and neuronal evidence of lifespan differences in associative memory plasticity and plasticity of the functional organization of cognitive and cortical processes, as well as the role of the dopaminergic system in modulating such plasticity. Special attention is given to neurocomputational models that help exploring lifespan differences in neuromodulation of neuronal and behavioral plasticity. Simulation results from these models suggest that lifespan changes in the efficacy of neuromodulatory mechanisms may shape associative memory plasticity and the functional organization of neurocognitive processes by affecting the fidelity of neuronal signal transmission, which has consequences for the distinctiveness of neurocognitive representations and the efficacy of distributed neural coding.
Collapse
Affiliation(s)
- Shu-Chen Li
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | | | | | | | | |
Collapse
|