1
|
Stout MB, Vaughan KL, Isola JVV, Mann SN, Wellman B, Hoffman JM, Porter HL, Freeman WM, Mattison JA. Assessing tolerability and physiological responses to 17α-estradiol administration in male rhesus macaques. GeroScience 2023; 45:2337-2349. [PMID: 36897526 PMCID: PMC10651821 DOI: 10.1007/s11357-023-00767-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
17α-estradiol has recently been shown to extend healthspan and lifespan in male mice through multiple mechanisms. These benefits occur in the absence of significant feminization or deleterious effects on reproductive function, which makes 17α-estradiol a candidate for translation into humans. However, human dosing paradigms for the treatment of aging and chronic disease are yet to be established. Therefore, the goals of the current studies were to assess tolerability of 17α-estradiol treatment, in addition to evaluating metabolic and endocrine responses in male rhesus macaque monkeys during a relatively short treatment period. We found that our dosing regimens (0.30 and 0.20 mg/kg/day) were tolerable as evidenced by a lack of GI distress, changes in blood chemistry or complete blood counts, and unaffected vital signs. We also found that the higher dose did elicit mild benefits on metabolic parameters including body mass, adiposity, and glycosylated hemoglobin. However, both of our 17α-estradiol trial doses elicited significant feminization to include testicular atrophy, increased circulating estrogens, and suppressed circulating androgens and gonadotropins. We suspect that the observed level of feminization results from a saturation of the endogenous conjugation enzymes, thereby promoting a greater concentration of unconjugated 17α-estradiol in serum, which has more biological activity. We also surmise that the elevated level of unconjugated 17α-estradiol was subjected to a greater degree of isomerization to 17β-estradiol, which is aligned with the sevenfold increase in serum 17β-estradiol in 17α-estradiol treated animals in our first trial. Future studies in monkeys, and certainly humans, would likely benefit from the development and implementation of 17α-estradiol transdermal patches, which are commonly prescribed in humans and would circumvent potential issues with bolus dosing effects.
Collapse
Affiliation(s)
- Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US.
- Oklahoma Medical Research Foundation, 825 NE 13Th Street Chapman S212, 73104, Oklahoma City, OK, US.
| | - Kelli L Vaughan
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jose V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Shivani N Mann
- Department of Neuroscience, University of Arizona, Tucson, AZ, US
| | - Bayli Wellman
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, US
| | - Hunter L Porter
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Willard M Freeman
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, US
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, US
| | - Julie A Mattison
- Laboratory of Experimental Gerontology, National Institute On Aging, Dickerson, MD, US.
- National Institute On Aging, 16701 Elmer School Road, Building 103, 20842, Dickerson, MD, US.
| |
Collapse
|
2
|
Zijlmans DGM, Maaskant A, Louwerse AL, Sterck EHM, Langermans JAM. Overweight Management through Mild Caloric Restriction in Multigenerational Long-Tailed Macaque Breeding Groups. Vet Sci 2022; 9:262. [PMID: 35737314 PMCID: PMC9230116 DOI: 10.3390/vetsci9060262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Caloric restriction (CR) is an effective method to reduce overweight in captive non-human primates (NHPs). CR has been applied to individually- and pair-housed NHPs, but whether applying CR can be effective and safe in group-housed NHPs has not yet been assessed. This study investigates the effect of mild (20%) CR on adult overweight and biochemical parameters, immature growth, veterinary consultations, and reproductive success in multigenerational long-tailed macaque (Macaca fascicularis) breeding groups. Data were derived from anthropometric measurements and blood samples during yearly health checks, complemented with retrospective data on veterinary consultations and reproductive success. Adult body measures decreased after CR, with heavier individuals and females losing more weight compared to leaner individuals and males. CR lowered cholesterol levels in adults but had no overall effect on other biochemical parameters. Yet, biochemical parameters of individuals with high baseline values were reduced more compared to individuals with low baseline values. Immature growth, veterinary consultations and reproductive success were not influenced by CR. Thus, CR targeted the right individuals, i.e., overweight adults, and had no adverse effects on the variables examined in this study. This implies that mild CR can be a valuable overweight management strategy in group-housed NHPs.
Collapse
Affiliation(s)
- Dian G. M. Zijlmans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Annemiek Maaskant
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Annet L. Louwerse
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
| | - Elisabeth H. M. Sterck
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Animal Behaviour and Cognition, Department of Biology, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Jan A. M. Langermans
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.M.); (A.L.L.); (E.H.M.S.); (J.A.M.L.)
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
3
|
Scott JT, Bourne JA. Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet? Prog Neurobiol 2021; 208:102183. [PMID: 34728308 DOI: 10.1016/j.pneurobio.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022]
Abstract
Recent years have seen a profound resurgence of activity with nonhuman primates (NHPs) to model human brain disorders. From marmosets to macaques, the study of NHP species offers a unique window into the function of primate-specific neural circuits that are impossible to examine in other models. Examining how these circuits manifest into the complex behaviors of primates, such as advanced cognitive and social functions, has provided enormous insights to date into the mechanisms underlying symptoms of numerous neurological and neuropsychiatric illnesses. With the recent optimization of modern techniques to manipulate and measure neural activity in vivo, such as optogenetics and calcium imaging, NHP research is more well-equipped than ever to probe the neural mechanisms underlying pathological behavior. However, methods for behavioral experimentation and analysis in NHPs have noticeably failed to keep pace with these advances. As behavior ultimately lies at the junction between preclinical findings and its translation to clinical outcomes for brain disorders, approaches to improve the integrity, reproducibility, and translatability of behavioral experiments in NHPs requires critical evaluation. In this review, we provide a unifying account of existing brain disorder models using NHPs, and provide insights into the present and emerging contributions of behavioral studies to the field.
Collapse
Affiliation(s)
- Jack T Scott
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
4
|
Horvath S, Zoller JA, Haghani A, Jasinska AJ, Raj K, Breeze CE, Ernst J, Vaughan KL, Mattison JA. Epigenetic clock and methylation studies in the rhesus macaque. GeroScience 2021; 43:2441-2453. [PMID: 34487267 PMCID: PMC8599607 DOI: 10.1007/s11357-021-00429-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022] Open
Abstract
Methylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA Los Angeles, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, , Didcot, UK
| | | | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Kelli L. Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, 16701 Elmer School Rd., MD 20842 Dickerson, USA
| |
Collapse
|
5
|
Stonebarger GA, Urbanski HF, Woltjer RL, Vaughan KL, Ingram DK, Schultz PL, Calderazzo SM, Siedeman JA, Mattison JA, Rosene DL, Kohama SG. Amyloidosis increase is not attenuated by long-term calorie restriction or related to neuron density in the prefrontal cortex of extremely aged rhesus macaques. GeroScience 2020; 42:1733-1749. [PMID: 32876855 PMCID: PMC7732935 DOI: 10.1007/s11357-020-00259-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/24/2020] [Indexed: 01/30/2023] Open
Abstract
As human lifespan increases and the population ages, diseases of aging such as Alzheimer's disease (AD) are a major cause for concern. Although calorie restriction (CR) as an intervention has been shown to increase healthspan in many species, few studies have examined the effects of CR on brain aging in primates. Using postmortem tissue from a cohort of extremely aged rhesus monkeys (22-44 years old, average age 31.8 years) from a longitudinal CR study, we measured immunohistochemically labeled amyloid beta plaques in Brodmann areas 32 and 46 of the prefrontal cortex, areas that play key roles in cognitive processing, are sensitive to aging and, in humans, are also susceptible to AD pathogenesis. We also evaluated these areas for cortical neuron loss, which has not been observed in younger cohorts of aged monkeys. We found a significant increase in plaque density with age, but this was unaffected by diet. Moreover, there was no change in neuron density with age or treatment. These data suggest that even in the oldest-old rhesus macaques, amyloid beta plaques do not lead to overt neuron loss. Hence, the rhesus macaque serves as a pragmatic animal model for normative human aging but is not a complete model of the neurodegeneration of AD. This model of aging may instead prove most useful for determining how even the oldest monkeys are protected from AD, and this information may therefore yield valuable information for clinical AD treatments.
Collapse
Affiliation(s)
- G A Stonebarger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - H F Urbanski
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - R L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - K L Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
- Charles River, Wilmington, MA, 01867, USA
| | - D K Ingram
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - P L Schultz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S M Calderazzo
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Siedeman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| |
Collapse
|
6
|
Nguyen CTY, Zhao M, Saltzman W. Effects of sex and age on parental motivation in adult virgin California mice. Behav Processes 2020; 178:104185. [PMID: 32603677 DOI: 10.1016/j.beproc.2020.104185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 11/18/2022]
Abstract
Female mammals often demonstrate a rapid initiation of maternal responsiveness immediately after giving birth, as a result of neuroendocrine changes that occur during pregnancy and parturition. However, fathers and virgins of some species may display infant care similar to that performed by mothers but without experiencing these physiological events. In biparental species, in which both mothers and fathers care for their offspring, both sex and age may affect parental motivation, even in adult virgins. We examined the effects of sex and age on parental motivation in the California mouse, a monogamous, biparental rodent. We compared parental motivation of male and female virgins in both mid- and old adulthood using two new tests - a T-maze test and a rain test - as well as in standard parental-behavior tests. Adult virgin males were more parentally motivated than adult virgin females in both the T-maze test and the parental-behavior test, but parental motivation did not differ markedly between middle-aged and older adults of either sex. These findings suggest that sex differences in parental motivation in adult virgins are similar to those observed in other biparental rodents, and indicate that the T-maze test may be useful for evaluating parental motivation in this species.
Collapse
Affiliation(s)
- Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States.
| |
Collapse
|
7
|
Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving healthspan via changes in gut microbiota and fermentation. AGE (DORDRECHT, NETHERLANDS) 2015; 37:98. [PMID: 26371059 PMCID: PMC5005825 DOI: 10.1007/s11357-015-9817-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/13/2015] [Indexed: 04/17/2023]
Abstract
Dietary resistant starch impact on intestinal microbiome and improving healthspan is the topic of this review. In the elderly population, dietary fiber intake is lower than recommended. Dietary resistant starch as a source of fiber produces a profound change in gut microbiota and fermentation in animal models of aging. Dietary resistant starch has the potential for improving healthspan in the elderly through multiple mechanisms as follows: (1) enhancing gut microbiota profile and production of short-chain fatty acids, (2) improving gut barrier function, (3) increasing gut peptides that are important in glucose homeostasis and lipid metabolism, and (4) mimicking many of the effects of caloric restriction including upregulation of genes involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Michael J Keenan
- Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Maria L Marco
- Robert Mondavi Institute for Wine and Food Science, 1136 RMI North, 392 Old Davis Rd, Davis, CA, 95616, USA
| | | | - Roy J Martin
- Western Human Nutrition Research Center, Davis, CA, USA.
| |
Collapse
|
8
|
Verma V, Yu QJ, Connell DW. A comparison of Reduced Life Expectancy (RLE) model with Haber's Rule to describe effects of exposure time on toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 204:26-31. [PMID: 25898234 DOI: 10.1016/j.envpol.2015.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/29/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
The Reduced Life Expectancy (RLE) Model (LC50 = [ln(NLE) - ln(LT50)]/d) has been proposed as an alternative to Haber's Rule. The model is based on a linear relationship between LC50 (Lethal Exposure Concentration) and lnLT50 (Lethal Exposure Time) and uses NLE (Normal Life Expectancy) as a limiting point as well as a long term data point (where d is a constant). The purposes of this paper were to compare the RLE Model with Haber's Rule with available toxicity data and to evaluate the strengths and weaknesses of each approach. When LT50 is relatively short and LC50 is high, Haber's Rule is consistent with the RLE model. But the difference between the two was evident in the situation when LT50 is relatively long and LC50 is low where the RLE model is a marked departure from Haber's Rule. The RLE Model can be used to appropriately evaluate long term effects of exposure.
Collapse
Affiliation(s)
- Vibha Verma
- Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
| | - Qiming J Yu
- Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Des W Connell
- Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| |
Collapse
|
9
|
Klockars A, Levine AS, Olszewski PK. Central oxytocin and food intake: focus on macronutrient-driven reward. Front Endocrinol (Lausanne) 2015; 6:65. [PMID: 25972841 PMCID: PMC4412129 DOI: 10.3389/fendo.2015.00065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Centrally acting oxytocin (OT) is known to terminate food consumption in response to excessive stomach distension, increase in salt loading, and presence of toxins. Hypothalamic-hindbrain OT pathways facilitate these aspects of OT-induced hypophagia. However, recent discoveries have implicated OT in modifications of feeding via reward circuits: OT has been found to differentially affect consumption of individual macronutrients in choice and no-choice paradigms. In this mini-review, we focus on presenting and interpreting evidence that defines OT as a key component of mechanisms that reduce eating for pleasure and shape macronutrient preferences. We also provide remarks on challenges in integrating the knowledge on physiological and pathophysiological states in which both OT activity and macronutrient preferences are affected.
Collapse
Affiliation(s)
- Anica Klockars
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Allen Stuart Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Pawel Karol Olszewski
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
- *Correspondence: Pawel Karol Olszewski, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand,
| |
Collapse
|
10
|
Lorenzini A. How Much Should We Weigh for a Long and Healthy Life Span? The Need to Reconcile Caloric Restriction versus Longevity with Body Mass Index versus Mortality Data. Front Endocrinol (Lausanne) 2014; 5:121. [PMID: 25126085 PMCID: PMC4115619 DOI: 10.3389/fendo.2014.00121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Total caloric restriction (CR) without malnutrition is a well-established experimental approach to extend life span in laboratory animals. Although CR in humans is capable of shifting several endocrinological parameters, it is not clear where the minimum inflection point of the U-shaped curve linking body mass index (BMI) with all-cause mortality lies. The exact trend of this curve, when used for planning preventive strategies for public health is of extreme importance. Normal BMI ranges from 18.5 to 24.9; many epidemiological studies show an inverse relationship between mortality and BMI inside the normal BMI range. Other studies show that the lowest mortality in the entire range of BMI is obtained in the overweight range (25-29.9). Reconciling the extension of life span in laboratory animals by experimental CR with the BMI-mortality curve of human epidemiology is not trivial. In fact, one interpretation is that the CR data are identifying a known: "excess fat is deleterious for health"; although a second interpretation may be that: "additional leanness from a normal body weight may add health and life span delaying the process of aging." This short review hope to start a discussion aimed at finding the widest consensus on which weight range should be considered the "healthiest" for our species, contributing in this way to the picture of what is the correct life style for a long and healthy life span.
Collapse
Affiliation(s)
- Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Wilson ME, Moore CJ, Ethun KF, Johnson ZP. Understanding the control of ingestive behavior in primates. Horm Behav 2014; 66:86-94. [PMID: 24727080 PMCID: PMC4051844 DOI: 10.1016/j.yhbeh.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/08/2023]
Abstract
This article is part of a Special Issue "Energy Balance". Ingestive behavior in free-ranging populations of nonhuman primates is influenced by resource availability and social group organization and provides valuable insight on the evolution of ecologically adaptive behaviors and physiological systems. As captive populations were established, questions regarding proximate mechanisms that regulate food intake in these animals could be more easily addressed. The availability of these captive populations has led to the use of selected species to understand appetite control or metabolic physiology in humans. Recognizing the difficulty of quantitating food intake in free-ranging groups, the use of captive, singly-housed animals provided a distinct advantage though, at the same time, produced a different social ecology from the animals' natural habitat. However, the recent application of novel technologies to quantitate caloric intake and energy expenditure in free-feeding, socially housed monkeys permits prospective studies that can accurately define how food intake changes in response to any number of interventions in the context of a social environment. This review provides an overview of studies examining food intake using captive nonhuman primates organized into three areas: a) neurochemical regulation of food intake in nonhuman primates; b) whether exposure to specific diets during key developmental periods programs differences in diet preferences or changes the expression of feeding related neuropeptides; and c) how psychosocial factors influence appetite regulation. Because feeding patterns are driven by more than just satiety and orexigenic signals, appreciating how the social context influences pattern of feeding in nonhuman primates may be quite informative for understanding the biological complexity of feeding in humans.
Collapse
Affiliation(s)
- Mark E Wilson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | - Carla J Moore
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Nutrition & Health Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kelly F Ethun
- Division of Animal Resources, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Zachary P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Sitzmann BD, Brown DI, Garyfallou VT, Kohama SG, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of moderate calorie restriction on testicular morphology and endocrine function in adult rhesus macaques (Macaca mulatta). AGE (DORDRECHT, NETHERLANDS) 2014; 36:183-197. [PMID: 23881606 PMCID: PMC3889886 DOI: 10.1007/s11357-013-9563-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
We previously reported that moderate calorie restriction (CR) has minimal impact on testicular gene expression in young adult rhesus macaques, and no obvious negative impact on semen quality or plasma testosterone levels. We now extend these findings by examining the influence of CR on various aspects of the reproductive axis of older males, including 24-h circulating testosterone levels, testicular gene expression, and testicular morphology. Young adult and old adult male rhesus macaques were subjected to either 30 % CR for 5-7 years, or were fed a standard control diet. Analysis of the 24-h plasma testosterone profiles revealed a significant age-associated decline, but no evidence for CR-induced suppression in either the young or old males. Similarly, expression profiling of key genes associated with testosterone biosynthesis and Leydig cell maintenance showed no significant CR-induced changes in either the young or old animals. The only evidence for CR-associated negative effects on the testis was detected in the old animals at the histological level; when old CR animals were compared with their age-matched controls, there was a modest decrease in seminiferous tubule diameter and epithelium height, with a concomitant increase in the number of depleted germ cell lines. Reassuringly, data from this study and our previous study suggest that moderate CR does not negatively impact 24-h plasma testosterone profiles or testicular gene expression. Although there appear to be some minor CR-induced effects on testicular morphology in old animals, it is unclear if these would significantly compromise fertility.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Donald I. Brown
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Departamento de Biología y Ciencias Ambientales, Facultad Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Vasilios T. Garyfallou
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Julie A. Mattison
- />National Institute on Aging, National Institutes of Health, Translational Gerontology Branch, Baltimore, MD 21224 USA
| | - Donald K. Ingram
- />National Institute on Aging, National Institutes of Health, Translational Gerontology Branch, Baltimore, MD 21224 USA
- />Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808 USA
| | | | - Mary Ann Ottinger
- />Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Henryk F. Urbanski
- />Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
- />Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- />Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
- />Division of Neuroscience, ONPRC, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| |
Collapse
|
13
|
Abstract
Calorie Restriction (CR) without malnutrition slows aging and increases average and maximal lifespan in simple model organisms and rodents. In rhesus monkeys long-term CR reduces the incidence of type 2 diabetes, cardiovascular disease and cancer, and protects against age-associated sarcopenia and neurodegeneration. However, so far CR significantly increased average lifespan only in the Wisconsin, but not in the NIA monkey study. Differences in diet composition and study design between the 2 on-going trials may explain the discrepancies in survival and disease. Nevertheless, many of the metabolic and hormonal adaptations that are typical of the long-lived CR rodents did not occur in either the NIA or WNPRC CR monkeys. Whether or not CR will extend lifespan in humans is not yet known, but accumulating data indicate that moderate CR with adequate nutrition has a powerful protective effect against obesity, type 2 diabetes, inflammation, hypertension, cardiovascular disease and reduces metabolic risk factors associated with cancer. Moreover, CR in human beings improves markers of cardiovascular aging, and rejuvenates the skeletal muscle transcriptional profile. More studies are needed to understand the interactions between CR, diet composition, exercise, and other environmental and psychological factors on metabolic and molecular pathways that regulate health and longevity.
Collapse
Affiliation(s)
- Edda Cava
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63130, USA
| | | |
Collapse
|
14
|
Urbanski HF, Mattison JA, Roth GS, Ingram DK. Dehydroepiandrosterone sulfate (DHEAS) as an endocrine marker of aging in calorie restriction studies. Exp Gerontol 2013; 48:1136-9. [PMID: 23318475 DOI: 10.1016/j.exger.2013.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/26/2022]
Abstract
The adrenal steroid, dehydroepiandrosterone sulfate (DHEAS), is generally regarded as being a reliable endocrine marker of aging, because in humans and nonhuman primates its circulating concentrations are very high during young adulthood, and the concentrations then decline markedly during aging. Despite promising results from early studies, we were recently surprised to find that caloric restriction (CR) did little to prevent or delay the decline of DHEAS concentrations in old rhesus macaques. Here we summarize the use of circulating DHEAS concentrations as a biomarker of aging in CR studies and suggest reasons for its limited value. Although DHEAS can reliably predict aging in animals maintained on a standard diet, dietary manipulations may affect liver enzymes involved in the metabolism of steroid hormones. Consequently, in CR studies the reliability of using DHEAS as a biomarker of aging may be compromised.
Collapse
Affiliation(s)
- Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
15
|
Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489:318-21. [PMID: 22932268 DOI: 10.1038/nature11432] [Citation(s) in RCA: 746] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
Abstract
Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.
Collapse
|
16
|
Abstract
In the 75 years since the seminal observation of Clive McCay that restriction of calorie intake extends the lifespan of rats, a great deal has been learned about the effects of calorie restriction (CR; reduced intake of a nutritious diet) on aging in various short-lived animal models. Studies have demonstrated many beneficial effects of CR on health, the rate of aging, and longevity. Two prospective investigations of the effects of CR on long-lived nonhuman primate (NHP) species began nearly 25 years ago and are still under way. This review presents the design, methods, and main findings of these and other important contributing studies, which have generally revealed beneficial effects of CR on physiological function and the retardation of disease consistent with studies in other species. Specifically, prolonged CR appears to extend the lifespan of rhesus monkeys, which exhibited lower body fat; slower rate of muscle loss with age; lower incidence of neoplasia, cardiovascular disease, type 2 diabetes mellitus, and endometriosis; improved insulin sensitivity and glucose tolerance; and no apparent adverse effect on bone health, as well as a reduction in total energy expenditure. In addition, there are no reports of deleterious effects of CR on reproductive endpoints, and brain morphology is preserved by CR. Adrenal and thyroid hormone profiles are inconsistently affected. More research is needed to delineate the mechanisms of the desirable outcomes of CR and to develop interventions that can produce similar beneficial outcomes for humans. This research offers tremendous potential for producing novel insights into aging and risk of disease.
Collapse
Affiliation(s)
- Joseph W Kemnitz
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| |
Collapse
|
17
|
Frutos MGS, Pistell PJ, Ingram DK, Berthoud HR. Feed efficiency, food choice, and food reward behaviors in young and old Fischer rats. Neurobiol Aging 2010; 33:206.e41-53. [PMID: 20970890 DOI: 10.1016/j.neurobiolaging.2010.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/25/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
Abstract
Increased susceptibility to energy imbalance and anorexia in old age are risk factors for malnutrition during aging, but the underlying mechanisms are not well understood. Here, we explored changes in taste-guided hedonic value ("liking") and motivation to obtain ("wanting") palatable foods as potential mediators of age-associated anorexia and weight loss in old Fischer-344 rats. "Liking" as measured by the number of positive hedonic orofacial responses to sucrose and corn oil was not different in old compared with young rats. Taste-guided, low effort "wanting" as measured by the number of licks per 10 seconds was also not different, although old rats exhibited a slight oromotor impairment as revealed by significantly increased interlick intervals. Medium effort "wanting" as measured by performance in the incentive runway was significantly decreased in old versus young rats. Although decreased net running speed was partially accountable, significantly increased duration of distractions suggested additional deficits in motivation and/or reinforcement learning. Together with early satiation on corn oil but not sucrose in aged rats, these changes are likely to have resulted in the significantly greater sucrose preference of old rats in 12-hour tests, and may ultimately lead to reduced energy intake and weight loss.
Collapse
Affiliation(s)
- Miriam García-San Frutos
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | |
Collapse
|
18
|
Sitzmann BD, Leone EH, Mattison JA, Ingram DK, Roth GS, Urbanski HF, Zelinski MB, Ottinger MA. Effects of moderate calorie restriction on testosterone production and semen characteristics in young rhesus macaques (Macaca mulatta). Biol Reprod 2010; 83:635-40. [PMID: 20610809 DOI: 10.1095/biolreprod.110.084186] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have previously reported a modest influence of moderate calorie restriction (CR) on testicular gene expression in young adult rhesus macaques (Macaca mulatta); however, it is unclear if these modifications correspond to subsequent changes in testicular function or sperm physiology. This study extends our earlier findings to examine potential physiological differences due to this differential gene expression. Animals were subjected to 30% CR (CR, n = 5) or were fed a standard control diet (CON, n = 5) starting during their peripubertal period. Circulating testosterone (T) levels were measured across a 24-h period after 7 yr of dietary treatment and were found to be similar in CR and CON males; however, maintenance of daily minimum T levels was significantly higher in the CR animals. Semen collection was performed on the same cohort of animals three times per male (CR, n = 4; CON, n = 4) after 8 yr of treatment, and samples were assessed by a variety of measures. Parameters, including semen quality and sperm cell viability and function, showed less variability in semen samples taken from CR males, but overall testicular function and sperm quality were comparable regardless of diet. There is mounting evidence that CR may promote health and longevity in a wide range of organisms, including nonhuman primates. Importantly, our data suggest that moderate CR has no obvious lasting detrimental effect on testicular function and sperm parameters in young adult primates and may in fact help maintain higher levels of circulating T.
Collapse
Affiliation(s)
- Brandon D Sitzmann
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
20
|
Oliveira L, Graeff FG, Pereira SRC, Oliveira-Silva IF, Franco GC, Ribeiro AM. Correlations among central serotonergic parameters and age-related emotional and cognitive changes assessed through the elevated T-maze and the Morris water maze. AGE (DORDRECHT, NETHERLANDS) 2010; 32:187-196. [PMID: 20431986 PMCID: PMC2861747 DOI: 10.1007/s11357-009-9123-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/30/2009] [Indexed: 05/29/2023]
Abstract
Emotion and spatial cognitive aspects were assessed in adult and middle-aged rats using the elevated T-maze (ETM) and the Morris water maze (MWM) tasks. Both adult and middle-aged rats were able to acquire inhibitory avoidance behaviour, though the middle-aged subjects showed larger latencies along the trials, including the baseline, which was significantly longer than that showed by adult rats. Further, compared to adult rats, middle-aged rats had longer escape latency. In spite of the worse performance in the second session of the spatial cognitive task, the middle-aged rats were able to learn the task and remember the information along the whole probe trial test. Both thalamic serotonin (5-HT) concentration and amygdala serotonergic activity (5-HIAA/5-HT) are significantly correlated, respectively, to escape latency and behavioural extinction in the MWM only for middle-aged rats. A significant correlation between the 5-HIAA/5-HT ratio in the amygdala and behavioural extinction for middle-aged, but not for adult, rats was observed. This result suggests that serotonergic activity in the amygdala may regulate behavioural flexibility in aged animals. In addition, a significant negative correlation was found between hippocampal 5-HIAA/5-HT ratio and the path length at the second training session of the MWM task, although only for adult subjects. This was the only session where a significant difference between the performance of middle-aged and adult rats has occurred. Although the involvement of the hippocampus in learning and memory is well established, the present work shows, for the first time, a correlation between a serotonergic hippocampal parameter and performance of a spatial task, which is lost with ageing.
Collapse
Affiliation(s)
- Luciana Oliveira
- Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Frederico G. Graeff
- Departmento de Neurociências e Ciências Comportamentais, FMRP-USP, Ribeirão Preto, 14049-900 Brazil
| | - Silvia R. C. Pereira
- Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Ieda F. Oliveira-Silva
- Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Glaura C. Franco
- Laboratório de Estatística, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Angela Maria Ribeiro
- Laboratório de Neurociências Comportamental e Molecular, LaNeC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| |
Collapse
|
21
|
Sitzmann BD, Mattison JA, Ingram DK, Roth GS, Ottinger MA, Urbanski HF. Impact of Moderate Calorie Restriction on the Reproductive Neuroendocrine Axis of Male Rhesus Macaques. OPEN LONGEVITY SCIENCE 2010; 3:38-47. [PMID: 20814446 PMCID: PMC2929798 DOI: 10.2174/1876326x00903010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The impact of moderate calorie restriction on reproductive neuroendocrine function was investigated in young adult male rhesus macaques (Macaca mulatta). The animals were subjected to either 30% calorie restriction (CR; n=5), or were fed a standard control diet (CON; n=5), starting during their peripubertal period. Plasma LH and testosterone concentrations were examined after 7 years of differential dietary treatment, and were found to be similar in both groups, both during the day and during the night. Microarray profiling of pituitary gland and testicular gene expression was performed after 8 years of treatment, using GeneChip® Rhesus Macaque Genome Arrays (Affymetrix), and showed very little effect of caloric restriction. Using a 1.5-fold difference threshold, our microarray analysis revealed differential expression of only 145 probesets in the pituitary gland and 260 in the testes, out of a total of >54,000. Semi-quantitative RT-PCR performed on pituitary gland mRNA corroborated the microarray findings for selected modulated genes, including TSH receptor (TSHR) and sperm-specific antigen 2 (SSFA2). Most notably, significantly lower expression of TSH receptor mRNA was observed in the pituitary of CR compared to CON animals. Also, significantly lower expression of the glycoprotein hormone alpha subunit (CGA) was observed in CR animals, and this finding was further corroborated using quantitative real-time RT-PCR. No significant diet-induced changes were detected in the testis for genes associated with reproduction, circadian clocks, or oxidative stress. There is mounting evidence that CR may promote health and longevity in a wide range of organisms, including nonhuman primates. Importantly, our data suggest that moderate CR has no obvious lasting detrimental effect on the reproductive neuroendocrine axis of long-lived primates, and has only a modest influence on pituitary and testicular gene expression.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Julie A. Mattison
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Donald K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | | | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742
| | - Henryk F. Urbanski
- Department of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006
- Departments of Behavioral Neuroscience, and Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
22
|
Effects of caloric restriction on inflammatory periodontal disease. Nutrition 2008; 25:88-97. [PMID: 18929461 DOI: 10.1016/j.nut.2008.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 05/12/2008] [Accepted: 07/07/2008] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Dietary caloric restriction (CR) has been found to reduce systemic markers of inflammation and may attenuate the effects of chronic inflammatory conditions. The purpose of this study was to examine the effects of long-term CR on naturally occurring chronic inflammatory periodontal disease in a nonhuman primate model. METHODS The effects of long-term CR on extent and severity of naturally occurring chronic periodontal disease, local inflammatory and immune responses, and periodontal microbiology, were evaluated in a cohort of 81 (35 female and 46 male; 13-40 y of age) rhesus monkeys (Macaca mulatta) with no previous exposure to routine oral hygiene. CR monkeys had been subjected to 30% CR for 13-17 y relative to control-fed (CON) animals starting at 3-5 y of age. RESULTS Same sex CR and CON monkeys exhibited similar levels of plaque, calculus, and bleeding on probing. Among CON animals, males showed significantly greater periodontal breakdown, as reflected by higher mean clinical attachment level and periodontal probing depth scores, than females. CR males exhibited significantly less periodontal pocketing, lower IgG antibody response, and lower IL-8 and ss-glucuronidase levels compared to CON males, whereas CR females showed a lower IgG antibody response but comparable clinical parameters and inflammatory marker levels relative to CON females. Long-term CR had no demonstrable effect on the periodontal microbiota. CONCLUSION Males demonstrated greater risk for naturally occurring periodontal disease than females. Long-term CR may differentially reduce the production of local inflammatory mediators and risk for inflammatory periodontal disease among males but not females.
Collapse
|
23
|
Sitzmann BD, Urbanski HF, Ottinger MA. Aging in male primates: reproductive decline, effects of calorie restriction and future research potential. AGE (DORDRECHT, NETHERLANDS) 2008; 30:157-168. [PMID: 19424865 PMCID: PMC2527629 DOI: 10.1007/s11357-008-9065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 05/17/2008] [Indexed: 05/27/2023]
Abstract
Although less dramatic than in females, male mammals experience decreasing reproductive function during aging. In primates, multiple facets of the hypothalamic-pituitary-gonadal axis show evidence of gradual age-related decline, including behavioral, neuroendocrine and endocrine alterations such as decreased testosterone levels, reduced circulating dehydroepiandrosterone sulfate (DHEAS) levels, increased numbers of sperm abnormalities, and a general decline in physiological responses. In this review we consider a range of age-related changes in males. These measures, including more subtle aging characteristics, are interesting additional indices for detecting the timing of age-related changes in behavioral, neuroendocrine, and endocrine responses. Evidence of potential effects of calorie restriction as an intervention in reproductive aging is also discussed. A discernable decline occurs in both metabolic and reproductive endocrine processes during male aging. This cascade of events includes neuroendocrine and behavioral changes; biomarkers such as circulating DHEAS also show clear age-related decline. The varied changes that occur during male aging are considered in the context of primate aging in general.
Collapse
Affiliation(s)
- Brandon D. Sitzmann
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Henryk F. Urbanski
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Mary Ann Ottinger
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
24
|
Downs JL, Mattison JA, Ingram DK, Urbanski HF. Effect of age and caloric restriction on circadian adrenal steroid rhythms in rhesus macaques. Neurobiol Aging 2008; 29:1412-22. [PMID: 17420071 PMCID: PMC2585543 DOI: 10.1016/j.neurobiolaging.2007.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 02/06/2007] [Accepted: 03/06/2007] [Indexed: 11/15/2022]
Abstract
Dietary caloric restriction (CR) slows aging, extends lifespan, and reduces the occurrence of age-related diseases in short-lived species. However, it is unclear whether CR can exert similar beneficial effects in long-lived species, like primates. Our objective was to determine if CR could attenuate purported age-related changes in the 24-h release of adrenal steroids. To this end, we examined 24-h plasma profiles of cortisol, and dehydroepiandrosterone sulfate (DHEAS) in young and old, male and female rhesus macaques (Macaca mulatta) subjected to either ad libitum (AL)-feeding or CR (70% of AL) for 2-4 years. Hormone profiles from young monkeys showed pronounced 24-h rhythms. Cortisol concentrations were higher in old males but not females, whereas DHEAS rhythms were dampened with age in both sexes. The cortisol rhythms of old CR males resembled those of young control males. However, CR failed to prevent age-related declines in DHEAS and further dampened DHEAS rhythms in both sexes. Apart from the partial attenuation of the age-related cortisol elevation in the old males, 24-h adrenal steroid rhythms did not benefit from late-onset CR.
Collapse
Affiliation(s)
- Jodi L. Downs
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| | - Julie A. Mattison
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, Maryland 21224
| | - Donald K. Ingram
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, Maryland 21224
- Nutritional Neuroscience and Aging Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
25
|
Hambly C, Mercer JG, Speakman JR. Hunger does not diminish over time in mice under protracted caloric restriction. Rejuvenation Res 2008; 10:533-42. [PMID: 17990972 DOI: 10.1089/rej.2007.0555] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Caloric restriction (CR) is the only nongenetic manipulation known to reliably prolong life-span. Modeling suggests that humans would need to restrict their intake for many years to reap any lifespan benefits. The feasibility of such prolonged restriction may hinge on whether hunger diminishes with the time period spent restricted. We used the magnitude of hyperphagia on release from restriction as a bioassay of hunger in restricted mice. During restriction, mice develop a characteristic pattern of neuropeptide signals in the arcuate nucleus that reflect their hunger. This pattern is normalized after the postrestriction hyperphagia, validating hyperphagia as an indicator of the hunger during restriction. Mice were food restricted (80% of ad lib.) for 50 days. They initially lost weight, but then became weight stable and were maintained in CR at this lower level of energy balance for between 0 and 50 days and were then fed ad lib. for 50 days. When released onto ad lib. food, the magnitude of the hyperphagic response was independent of the prior length of CR. Hyperphagia ended when body mass was normalized. Hunger therefore did not diminish even when they were restricted for 100 days, equivalent to about 11 years in humans. The pattern of hyperphagic response suggested that signals coding body mass drive hunger during restriction, and because body mass under restriction remains depressed, this suggests that hunger would never disappear, making restriction to prolong lifespan in humans difficult to accomplish.
Collapse
Affiliation(s)
- Catherine Hambly
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), Rowett Research Institute, Bucksburn, Aberdeen, Scotland, United Kingdom.
| | | | | |
Collapse
|
26
|
|
27
|
Mattison JA, Croft MA, Dahl DB, Roth GS, Lane MA, Ingram DK, Kaufman PL. Accommodative function in rhesus monkeys: effects of aging and calorie restriction. AGE (DORDRECHT, NETHERLANDS) 2005; 27:59-67. [PMID: 23598604 PMCID: PMC3456094 DOI: 10.1007/s11357-005-4005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 03/10/2005] [Indexed: 06/02/2023]
Abstract
Numerous degenerative changes in the visual system occur with age, including a loss of accommodative function possibly related to hardening of the lens or loss of ciliary muscle mobility. The rhesus monkey is a reliable animal model for studying age-related changes in ocular function, including loss of accommodation. Calorie restriction (CR) is the only consistent intervention to slow aging and extend lifespan in rodents, and more recently the beneficial effects of CR have been reported in nonhuman primates. The goal of the present study was to evaluate age-related changes in ocular accommodation and the potential effect of long-term (>8 years) CR on accommodation in male and female rhesus monkeys. Refraction, accommodation (Hartinger coincidence refractometer), and lens thickness (A-scan ultrasound) were measured in 97 male and female rhesus monkeys age 8-36 years under Telazol/acepromazine anesthesia. Refraction and accommodation measurements were taken before and after 40% carbachol corneal iontophoresis to induce maximum accommodation. Half the animals were in the control (CON) group and were fed ad libitum. The CR group received 30% fewer calories than age- and weight-matched controls. Males were on CR for 12 years and females for eight years. With increasing age, accommodative ability declined in both CON and CR monkeys by 1.03 ± 0.12 (P = 0.001) and 1.18 ± 0.12 (P = 0.001) diopters/year, respectively. The age-related decline did not differ significantly between the groups (P = 0.374). Baseline lens thickness increased with age in both groups by 0.03 ± 0.005 mm/year (P = 0.001) and 0.02 ± 0.005 mm/year (P = 0.001) for the CON and CR groups, respectively. The tendency for the for the lens to thicken with age occurred at a slower rate in the CR group vs. the CON group but the difference was not statistically significant (P = 0.086). Baseline refraction was -2.8 ± 0.55 and -3.0 ± 0.62 diopters for CON and CR, respectively. Baseline refraction tended to become slightly more negative with age (P = 0.070), but this trend did not differ significantly between the groups (P = 0.587). In summary, there was no difference in the slope of the age-related changes in accommodation, lens thickness, or refraction in the carbachol-treated eyes due to diet. These data are consistent with previous findings of decreased accommodative ability in aging rhesus monkeys, comparable to the age-dependent decrease in accommodative ability in humans. This study is the first to indicate that the accommodative system may not benefit from calorie restriction.
Collapse
Affiliation(s)
- J. A. Mattison
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - M. A. Croft
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI 53792 USA
| | - D. B. Dahl
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI 53792 USA
| | - G. S. Roth
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - M. A. Lane
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - D. K. Ingram
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 USA
| | - P. L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI 53792 USA
| |
Collapse
|