1
|
Sturgis J, Singh R, Caron QR, Samuels IS, Shiju TM, Mukkara A, Freedman P, Bonilha VL. Modeling aging and retinal degeneration with mitochondrial DNA mutation burden. Aging Cell 2024; 23:e14282. [PMID: 39210608 PMCID: PMC11561647 DOI: 10.1111/acel.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024] Open
Abstract
Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a polymerase gamma (POLG) exonuclease-deficient model, the PolgD257A mutator mice (D257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial (mt) dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the D257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mt morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress and parkin-mediated mitophagy in the ages analyzed in the retina or RPE of D257A mice. Additionally, D257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mt markers displayed different abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mtDNA mutations leads to impaired mt function and accelerated aging, resulting in retinal degeneration.
Collapse
Affiliation(s)
- John Sturgis
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Quinn R. Caron
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Ivy S. Samuels
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Research ServiceLouis Stokes Cleveland VA Medical CenterClevelandOhioUSA
| | - Thomas Micheal Shiju
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Aditi Mukkara
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- College of Arts and SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Paul Freedman
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Present address:
Debusk College of Osteopathic MedicineKnoxvilleTennesseeUSA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye InstituteCleveland ClinicClevelandOhioUSA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, School of MedicineCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Lee PY, Bui BV. Age-related differences in retinal function and structure in C57BL/6J and Thy1-YFPh mice. Neurobiol Aging 2024; 141:171-181. [PMID: 38964014 DOI: 10.1016/j.neurobiolaging.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024]
Abstract
Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related in vivo retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to in vivo retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar in vivo retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.
Collapse
Affiliation(s)
- Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Xu Y, Tummala SR, Chen X, Vardi N. VDAC in Retinal Health and Disease. Biomolecules 2024; 14:654. [PMID: 38927058 PMCID: PMC11201675 DOI: 10.3390/biom14060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The retina, a tissue of the central nervous system, is vital for vision as its photoreceptors capture light and transform it into electrical signals, which are further processed before they are sent to the brain to be interpreted as images. The retina is unique in that it is continuously exposed to light and has the highest metabolic rate and demand for energy amongst all the tissues in the body. Consequently, the retina is very susceptible to oxidative stress. VDAC, a pore in the outer membrane of mitochondria, shuttles metabolites between mitochondria and the cytosol and normally protects cells from oxidative damage, but when a cell's integrity is greatly compromised it initiates cell death. There are three isoforms of VDAC, and existing evidence indicates that all three are expressed in the retina. However, their precise localization and function in each cell type is unknown. It appears that most retinal cells express substantial amounts of VDAC2 and VDAC3, presumably to protect them from oxidative stress. Photoreceptors express VDAC2, HK2, and PKM2-key proteins in the Warburg pathway that also protect these cells. Consistent with its role in initiating cell death, VDAC is overexpressed in the retinal degenerative diseases retinitis pigmentosa, age related macular degeneration (AMD), and glaucoma. Treatment with antioxidants or inhibiting VDAC oligomerization reduced its expression and improved cell survival. Thus, VDAC may be a promising therapeutic candidate for the treatment of these diseases.
Collapse
Affiliation(s)
- Ying Xu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Shanti R. Tummala
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Xiongmin Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; (Y.X.); (X.C.)
| | - Noga Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Sturgis J, Singh R, Caron Q, Samuels IS, Shiju TM, Mukkara A, Freedman P, Bonilha VL. Modeling aging and retinal degeneration with mitochondrial DNA mutation burden. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569464. [PMID: 38076962 PMCID: PMC10705408 DOI: 10.1101/2023.11.30.569464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Somatic mitochondrial DNA (mtDNA) mutation accumulation has been observed in individuals with retinal degenerative disorders. To study the effects of aging and mtDNA mutation accumulation in the retina, a Polymerase gamma (POLG) deficiency model, the POLGD257A mutator mice (PolgD257A), was used. POLG is an enzyme responsible for regulating mtDNA replication and repair. Retinas of young and older mice with this mutation were analyzed in vivo and ex vivo to provide new insights into the contribution of age-related mitochondrial dysfunction due to mtDNA damage. Optical coherence tomography (OCT) image analysis revealed a decrease in retinal and photoreceptor thickness starting at 6 months of age in mice with the POLGD257A mutation compared to wild-type (WT) mice. Electroretinography (ERG) testing showed a significant decrease in all recorded responses at 6 months of age. Sections labeled with markers of different types of retinal cells, including cones, rods, and bipolar cells, exhibited decreased labeling starting at 6 months. However, electron microscopy analysis revealed differences in retinal pigment epithelium (RPE) mitochondria morphology beginning at 3 months. Interestingly, there was no increase in oxidative stress observed in the retina or RPE of POLGD257A mice. Additionally, POLGD257A RPE exhibited an accelerated rate of autofluorescence cytoplasmic granule formation and accumulation. Mitochondrial markers displayed decreased abundance in protein lysates obtained from retina and RPE samples. These findings suggest that the accumulation of mitochondrial DNA mutations leads to impaired mitochondrial function and accelerated aging, resulting in retinal degeneration.
Collapse
Affiliation(s)
- John Sturgis
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Quinn Caron
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ivy S. Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH
| | - Thomas Micheal Shiju
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aditi Mukkara
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Paul Freedman
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Debusk College of Osteopathic Medicine, Knoxville, TN, USA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
6
|
Goodman C, Podolsky RH, Childers KL, Roberts R, Katz R, Waseem R, Paruchuri A, Stanek J, Berkowitz BA. Do multiple physiological OCT biomarkers indicate age-related decline in rod mitochondrial function in C57BL/6J mice? Front Neurosci 2023; 17:1280453. [PMID: 38046657 PMCID: PMC10693340 DOI: 10.3389/fnins.2023.1280453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Purpose To test the hypothesis that rod photoreceptor mitochondria function in vivo progressively declines over time. Methods 2, 12, and 24 month-old dark- and light-adapted C57BL/6J (B6J) mice were examined by OCT. We measured (i) an index of mitochondrial configuration within photoreceptors measured from the profile shape aspect ratio (MCP/AR) of the hyperreflective band posterior to the external limiting membrane (ELM), (ii) a proxy for energy-dependent pH-triggered water removal, the thickness of the ELM-retinal pigment epithelium (ELM-RPE), and its correlate (iii) the hyporeflective band (HB) signal intensity at the photoreceptor tips. Visual performance was assessed by optokinetic tracking. Results In 2 and 24 month-old mice, MCP/AR in both inferior and superior retina was smaller in light than in dark; no dark-light differences were noted in 12 month-old mice. Dark-adapted inferior and superior, and light-adapted superior, ELM-RPE thickness increased with age. The dark-light difference in ELM-RPE thickness remained constant across all ages. All ages showed a decreased HB signal intensity magnitude in dark relative to light. In 12 month-old mice, the dark-light difference in HB magnitude was greater than in younger and older mice. Anatomically, outer nuclear layer thickness decreased with age. Visual performance indices were reduced at 24 month-old compared to 2 month-old mice. Conclusion While the working hypothesis was not supported herein, the results raise the possibility of a mid-life adaptation in rod mitochondrial function during healthy aging in B6J mice based on OCT biomarkers, a plasticity that occurred prior to declines in visual performance.
Collapse
Affiliation(s)
- Cole Goodman
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children’s National Hospital, Silver Spring, MD, United States
| | | | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ryan Katz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rida Waseem
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
7
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
8
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Age and Sex-Related Changes in Retinal Function in the Vervet Monkey. Cells 2022; 11:cells11172751. [PMID: 36078159 PMCID: PMC9454622 DOI: 10.3390/cells11172751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Among the deficits in visual processing that accompany healthy aging, the earliest originate in the retina. Moreover, sex-related differences in retinal function have been increasingly recognized. To better understand the dynamics of the retinal aging trajectory, we used the light-adapted flicker electroretinogram (ERG) to functionally assess the state of the neuroretina in a large cohort of age- and sex-matched vervet monkeys (N = 35), aged 9 to 28 years old, with no signs of obvious ocular pathology. We primarily isolated the cone–bipolar axis by stimulating the retina with a standard intensity light flash (2.57 cd/s/m2) at eight different frequencies, ranging from 5 to 40 Hz. Sex-specific changes in the voltage and temporal characteristics of the flicker waveform were found in older individuals (21–28 years-old, N = 16), when compared to younger monkeys (9–20 years-old, N = 19), across all stimulus frequencies tested. Specifically, significantly prolonged implicit times were observed in older monkeys (p < 0.05), but a significant reduction of the amplitude of the response was only found in old male monkeys (p < 0.05). These changes might reflect ongoing degenerative processes targeting the retinal circuitry and the cone subsystem in particular. Altogether, our findings corroborate the existing literature in humans and other species, where aging detrimentally affects photopic retinal responses, and draw attention to the potential contribution of different hormonal environments.
Collapse
|
10
|
Saada J, McAuley RJ, Marcatti M, Tang TZ, Motamedi M, Szczesny B. Oxidative stress induces Z-DNA-binding protein 1-dependent activation of microglia via mtDNA released from retinal pigment epithelial cells. J Biol Chem 2022; 298:101523. [PMID: 34953858 PMCID: PMC8753185 DOI: 10.1016/j.jbc.2021.101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress, inflammation, and aberrant activation of microglia in the retina are commonly observed in ocular pathologies. In glaucoma or age-related macular degeneration, the chronic activation of microglia affects retinal ganglion cells and photoreceptors, respectively, contributing to gradual vision loss. However, the molecular mechanisms that cause activation of microglia in the retina are not fully understood. Here we show that exposure of retinal pigment epithelial (RPE) cells to chronic low-level oxidative stress induces mitochondrial DNA (mtDNA)-specific damage, and the subsequent translocation of damaged mtDNA to the cytoplasm results in the binding and activation of intracellular DNA receptor Z-DNA-binding protein 1 (ZBP1). Activation of the mtDNA/ZBP1 pathway triggers the expression of proinflammatory markers in RPE cells. In addition, we show that the enhanced release of extracellular vesicles (EVs) containing fragments of mtDNA derived from the apical site of RPE cells induces a proinflammatory phenotype of microglia via activation of ZBP1 signaling. Collectively, our report establishes oxidatively damaged mtDNA as an important signaling molecule with ZBP1 as its intracellular receptor in the development of an inflammatory response in the retina. We propose that this novel mtDNA-mediated autocrine and paracrine mechanism for triggering and maintaining inflammation in the retina may play an important role in ocular pathologies. Therefore, the molecular mechanisms identified in this report are potentially suitable therapeutic targets to ameliorate development of ocular pathologies.
Collapse
Affiliation(s)
- Jamal Saada
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ryan J McAuley
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michela Marcatti
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tony Zifeng Tang
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bartosz Szczesny
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, USA; Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
11
|
Tsantilas KA, Cleghorn WM, Bisbach CM, Whitson JA, Hass DT, Robbings BM, Sadilek M, Linton JD, Rountree AM, Valencia AP, Sweetwyne MT, Campbell MD, Zhang H, Jankowski CSR, Sweet IR, Marcinek DJ, Rabinovitch PS, Hurley JB. An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34797906 PMCID: PMC8606884 DOI: 10.1167/iovs.62.14.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods Scotopic and photopic electroretinogram (ERG) responses in young (3–6 months) and aged (23–26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.
Collapse
Affiliation(s)
- Kristine A Tsantilas
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Whitney M Cleghorn
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Celia M Bisbach
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Jeremy A Whitson
- Department of Biology, Davidson College, Davidson, North Carolina, United States
| | - Daniel T Hass
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Brian M Robbings
- Department of Biochemistry, University of Washington, Seattle, Washington, United States.,UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, Washington, United States
| | - Jonathan D Linton
- Department of Biochemistry, University of Washington, Seattle, Washington, United States
| | - Austin M Rountree
- UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - Ana P Valencia
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States
| | - Matthew D Campbell
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Connor S R Jankowski
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States
| | - Ian R Sweet
- UW Diabetes Institute, University of Washington, Seattle, Washington, United States
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, United States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington, United States.,Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
12
|
Campello L, Singh N, Advani J, Mondal AK, Corso-Díaz X, Swaroop A. Aging of the Retina: Molecular and Metabolic Turbulences and Potential Interventions. Annu Rev Vis Sci 2021; 7:633-664. [PMID: 34061570 PMCID: PMC11375453 DOI: 10.1146/annurev-vision-100419-114940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multifaceted and divergent manifestations across tissues and cell types have curtailed advances in deciphering the cellular events that accompany advanced age and contribute to morbidities and mortalities. Increase in human lifespan during the past century has heightened awareness of the need to prevent age-associated frailty of neuronal and sensory systems to allow a healthy and productive life. In this review, we discuss molecular and physiological attributes of aging of the retina, with a goal of understanding age-related impairment of visual function. We highlight the epigenome-metabolism nexus and proteostasis as key contributors to retinal aging and discuss lifestyle changes as potential modulators of retinal function. Finally, we deliberate promising intervention strategies for promoting healthy aging of the retina for improved vision.
Collapse
Affiliation(s)
- Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nivedita Singh
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
13
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
14
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Schneider M, Graffice E, Sinan K, Berri A, Harp L. Correcting QUEST Magnetic Resonance Imaging-Sensitive Free Radical Production in the Outer Retina In Vivo Does Not Correct Reduced Visual Performance in 24-Month-Old C57BL/6J Mice. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34036313 PMCID: PMC8164372 DOI: 10.1167/iovs.62.6.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To test the hypothesis that acutely correcting a sustained presence of outer retina free radicals measured in vivo in 24-month-old mice corrects their reduced visual performance. Methods Male C57BL/6J mice two and 24 months old were noninvasively evaluated for unremitted production of paramagnetic free radicals based on whether 1/T1 in retinal laminae are reduced after acute antioxidant administration (QUEnch-assiSTed [QUEST] magnetic resonance imaging [MRI]). Superoxide production was measured in freshly excised retina (lucigenin assay). Combining acute antioxidant administration with optical coherence tomography (i.e., QUEST OCT) tested for excessive free radical–induced shrinkage of the subretinal space volume. Combining antioxidant administration with optokinetic tracking tested for a contribution of uncontrolled free radical production to cone-based visual performance declines. Results At two months, antioxidants had no effect on 1/T1 in vivo in any retinal layer. At 24 months, antioxidants reduced 1/T1 only in superior outer retina. No age-related change in retinal superoxide production was measured ex vivo, suggesting that free radical species other than superoxide contributed to the positive QUEST MRI signal at 24 months. Also, subretinal space volume did not show evidence for age-related shrinkage and was unresponsive to antioxidants. Finally, visual performance declined with age and was not restored by antioxidants that were effective per QUEST MRI. Conclusions An ongoing uncontrolled production of outer retina free radicals as measured in vivo in 24 mo C57BL/6J mice appears to be insufficient to explain reductions in visual performance.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Michael Schneider
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kenan Sinan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali Berri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lamis Harp
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
15
|
Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The Roles of mitochondrial dysfunction and Reactive Oxygen Species in Aging and Senescence. Curr Mol Med 2021; 22:37-49. [PMID: 33602082 DOI: 10.2174/1566524021666210218112616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
The aging process deteriorates organs' function at different levels, causing its progressive decline to resist stress, damage, and disease. In addition to alterations in metabolic control and gene expression, the rate of aging has been connected with the generation of high amounts of Reactive Oxygen Species (ROS). The essential perspective in free radical biology is that reactive oxygen species (ROS) and free radicals are toxic, mostly cause direct biological damage to targets, and are thus a major cause of oxidative stress. Different enzymatic and non-enzymatic compounds in the cells have roles in neutralizing this toxicity. Oxidative damage in aging is mostly high in particular molecular targets, such as mitochondrial DNA and aconitase, and oxidative stress in mitochondria can cause tissue aging across intrinsic apoptosis. Mitochondria's function and morphology are impaired through aging, following a decrease in the membrane potential by an increase in peroxide generation and size of the organelles. Telomeres may be the significant trigger of replicative senescence. Oxidative stress accelerates telomere loss, whereas antioxidants slow it down. Oxidative stress is a crucial modulator of telomere shortening, and that telomere-driven replicative senescence is mainly a stress response. The age-linked mitochondrial DNA mutation and protein dysfunction aggregate in some organs like the brain and skeletal muscle, thus contributing considerably to these post-mitotic tissues' aging. The aging process is mostly due to accumulated damage done by harmful species in some macromolecules such proteins, DNA, and lipids. The degradation of non-functional, oxidized proteins is a crucial part of the antioxidant defenses of cells, in which the clearance of these proteins occurs through autophagy in the cells, which is known as mitophagy for mitochondria.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran. Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand. Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
16
|
Mitochondria: The Retina's Achilles' Heel in AMD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:237-264. [PMID: 33848005 DOI: 10.1007/978-3-030-66014-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Strong experimental evidence from studies in human donor retinas and animal models supports the idea that the retinal pathology associated with age-related macular degeneration (AMD) involves mitochondrial dysfunction and consequent altered retinal metabolism. This chapter provides a brief overview of mitochondrial structure and function, summarizes evidence for mitochondrial defects in AMD, and highlights the potential ramifications of these defects on retinal health and function. Discussion of mitochondrial haplogroups and their association with AMD brings to light how mitochondrial genetics can influence disease outcome. As one of the most metabolically active tissues in the human body, there is strong evidence that disruption in key metabolic pathways contributes to AMD pathology. The section on retinal metabolism reviews cell-specific metabolic differences and how the metabolic interdependence of each retinal cell type creates a unique ecosystem that is disrupted in the diseased retina. The final discussion includes strategies for therapeutic interventions that target key mitochondrial pathways as a treatment for AMD.
Collapse
|
17
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Ha A, Kim YK, Kim JS, Jeoung JW, Park KH. Temporal Raphe Sign in Elderly Patients With Large Optic Disc Cupping: Its Evaluation as a Predictive Factor for Glaucoma Conversion. Am J Ophthalmol 2020; 219:205-214. [PMID: 32652053 DOI: 10.1016/j.ajo.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine baseline clinical features associated with conversion to glaucoma in elderly patients with large optic-disc cupping. DESIGN Retrospective cohort study. METHODS Seventy-two eyes of 72 untreated elderly (≥65-year-old) patients with large vertical cup-to-disc ratio (CDR ≥0.7) and without any other glaucomatous findings were included. They had undergone a full ophthalmologic examination twice per year for at least 5 years. The optic nerve head (ONH), peripapillary retinal nerve fiber layer (RNFL), and macular ganglion cell-inner plexiform layer (GCIPL) were imaged with Cirrus high-definition optical coherence tomography (OCT). Presence of temporal raphe sign on the OCT's GCIPL thickness map was assessed as one of the morphologic factors. Conversion to normal-tension glaucoma (NTG) was defined as structural or functional deterioration on either red-free RNFL photography or standard automated perimetry, respectively. The utility of the baseline factors associated with conversion to NTG were identified. RESULTS During the 5.5-year follow-up, 19 eyes (26.4%) converted to NTG. There were no significant differences in demographics, systemic factors, intraocular pressure factors, or OCT parameters between the nonconverters and converters. Interestingly, the temporal raphe sign was observed in the converters (18/19, 94.7%) much more frequently than in the nonconverters (3/53, 5.7%, P < .001) at baseline. A Cox proportional hazards model indicated the significant influences of temporal raphe sign positivity (hazard ratio 6.823, 95% confidence interval 2.574, 18.088, P < .001) on conversion to NTG. CONCLUSIONS In elderly subjects with large CDR, temporal raphe sign positivity on the baseline macular GCIPL thickness map was associated with faster conversion to NTG.
Collapse
Affiliation(s)
- Ahnul Ha
- Department of Ophthalmology, Jeju National University Hospital, Jeju-si, Republic of Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Kook Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Jin Wook Jeoung
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Luna C, Pablo LE, Polo V, Garcia-Martin E. Effect of age and sex on neurodevelopment and neurodegeneration in the healthy eye: Longitudinal functional and structural study in the Long-Evans rat. Exp Eye Res 2020; 200:108208. [PMID: 32882213 DOI: 10.1016/j.exer.2020.108208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023]
Abstract
The processes involved in neurodevelopment and aging have not yet been fully discovered. This is especially challenging in premorbid or borderline situations of neurodegenerative diseases such as Alzheimer's or glaucoma. The retina, as part of the central nervous system, can be considered the easiest and most accessible neural structure that can be analyzed using non-invasive methods. Animal studies of neuroretinal tissue in situations of health and under controlled conditions allow the earliest sex- and aging-induced changes to be analyzed so as to differentiate them from the first signs occurring in manifested disease. This study evaluates differences by age and sex based on intraocular pressure (IOP) and neuroretinal function and structure in healthy young and adult rats before decline due to senescence. For this purpose, eighty-five healthy Long-Evans rats (31 males and 54 females) were analyzed in this 6-month longitudinal study running from childhood to adulthood. IOP was measured by tonometer (Tonolab; Tiolat Oy Helsinki, Finland), neuroretinal function was recorded by flash scotopic and light-adapted photopic negative response electroretinography (ERG) (Roland consult® RETIanimal ERG, Germany) at 4, 16 and 28 weeks of age; and structure was evaluated by in vivo optical coherence tomography (OCT) (Spectralis, Heidelberg® Engineering, Germany). Analyzing both sexes together, IOP was below 20 mmHg throughout the study; retina (R), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thicknesses measured by OCT decreased over time; an increase in ERG signal was recorded at week 16; and no differences were found between right and left eyes. However, analyzing differences by sex revealed that males had higher IOP (even reaching ocular hypertension [>20 mmHg] by the end of the study [7 months of age]), exhibited greater neuroretinal thickness but higher structural percentage loss, and had worse dark- and light-adapted function as measured by ERG than females. This study concludes that age and sex influenced neurodevelopment and neurodegeneration. Different structural and functional degenerative patterns were observed by sex; these occurred earlier and more intensely in males than in age-matched females.
Collapse
Affiliation(s)
- Maria Jesus Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain.
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Coral Luna
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis Emilio Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| |
Collapse
|
20
|
Pollreisz A, Neschi M, Sloan KR, Pircher M, Mittermueller T, Dacey DM, Schmidt-Erfurth U, Curcio CA. Atlas of Human Retinal Pigment Epithelium Organelles Significant for Clinical Imaging. Invest Ophthalmol Vis Sci 2020; 61:13. [PMID: 32648890 PMCID: PMC7425708 DOI: 10.1167/iovs.61.8.13] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To quantify organelles impacting imaging in the cell body and intact apical processes of human retinal pigment epithelium (RPE), including melanosomes, lipofuscin-melanolipofuscin (LM), mitochondria, and nuclei. Methods A normal perifovea of a 21-year-old white male was preserved after rapid organ recovery. An aligned image stack was generated using serial block-face scanning electron microscopy and was annotated by expert readers (TrakEM, ImageJ). Acquired measures included cell body and nuclear volume (n = 17); organelle count in apical processes (n = 17) and cell bodies (n = 8); distance of cell body organelles along a normalized apical-basal axis (n = 8); and dimensions of organelle-bounding boxes in apical processes in selected subsamples of cell bodies and apical processes. Results In 2661 sections through 17 cells, apical processes contained 65 ± 24 melanosomes in mononucleate (n = 15) and 131 ± 28 in binucleate cells (n = 2). Cell bodies contained 681 ± 153 LM and 734 ± 170 mitochondria. LM was excluded from the basal quartile, and mitochondria from the apical quartile. Lengths of melanosomes, LM, and mitochondria, respectively were 2305 ± 528, 1320 ± 574, and 1195 ± 294 nm. The ratio of cell body to nucleus volume was 4.6 ± 0.4. LM and mitochondria covered 75% and 63%, respectively, of the retinal imaging plane. Conclusions Among RPE signal sources for optical coherence tomography, LM and mitochondria are the most numerous reflective cell body organelles. These and our published data show that most melanosomes are in apical processes. Overlapping LM and previously mitochondria cushions may support multiple reflective bands in cell bodies. This atlas of subcellular reflectivity sources can inform development of advanced optical coherence tomography technologies.
Collapse
Affiliation(s)
- Andreas Pollreisz
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Martina Neschi
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Kenneth R. Sloan
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Dennis M. Dacey
- Department of Biologic Structure, University of Washington, Seattle, Washington, United States
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
21
|
Weh E, Lutrzykowska Z, Smith A, Hager H, Pawar M, Wubben TJ, Besirli CG. Hexokinase 2 is dispensable for photoreceptor development but is required for survival during aging and outer retinal stress. Cell Death Dis 2020; 11:422. [PMID: 32499533 PMCID: PMC7272456 DOI: 10.1038/s41419-020-2638-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photoreceptor death is the ultimate cause of vision loss in many retinal degenerative conditions. Identifying novel therapeutic avenues for prolonging photoreceptor health and function has the potential to improve vision and quality of life for patients suffering from degenerative retinal disorders. Photoreceptors are metabolically unique among other neurons in that they process the majority of their glucose via aerobic glycolysis. One of the main regulators of aerobic glycolysis is hexokinase 2 (HK2). Beyond its enzymatic function of phosphorylating glucose to glucose-6-phosphate, HK2 has additional non-enzymatic roles, including the regulation of apoptotic signaling via AKT signaling. Determining the role of HK2 in photoreceptor homeostasis may identify novel signaling pathways that can be targeted with neuroprotective agents to boost photoreceptor survival during metabolic stress. Here we show that following experimental retinal detachment, p-AKT is upregulated and HK2 translocates to mitochondria. Inhibition of AKT phosphorylation in 661W photoreceptor-like cells results in translocation of mitochondrial HK2 to the cytoplasm, increased caspase activity, and decreased cell viability. Rod-photoreceptors lacking HK2 upregulate HK1 and appear to develop normally. Interestingly, we found that HK2-deficient photoreceptors are more susceptible to acute nutrient deprivation in the experimental retinal detachment model. Additionally, HK2 appears to be important for preserving photoreceptors during aging. We show that retinal glucose metabolism is largely unchanged after HK2 deletion, suggesting that the non-enzymatic role of HK2 is important for maintaining photoreceptor health. These results suggest that HK2 expression is critical for preserving photoreceptors during acute nutrient stress and aging. More specifically, p-AKT mediated translocation of HK2 to the mitochondrial surface may be critical for protecting photoreceptors from acute and chronic stress.
Collapse
Affiliation(s)
- Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | | | - Andrew Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, US.
| |
Collapse
|
22
|
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA Cell Biol 2020; 39:1410-1420. [PMID: 32315547 DOI: 10.1089/dna.2019.5347] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in numerous processes, including energy generation, regulating ion homeostasis, and cell signaling. Mitochondria are also the main source of reactive oxygen species (ROS). Due to the oxidative environment within mitochondria, the macromolecules therein, for example, mtDNA, proteins, and lipids are more susceptible to sustaining damage. During aging, mitochondrial functions decline, partly as a result of an accumulation of mtDNA mutations, decreased mtDNA copy number and protein expression, and a reduction in oxidative capacity. The aim of this study was to summarize the knowledge on DNA oxidative damage in aging and age-related neurodegenerative diseases. It has been hypothesized that various ROS may play an important role not only in physiological senescence but also in the development of neurodegenerative diseases, for example, Alzheimer's disease and Parkinson's disease. Thus, mitochondria seem to be a potential target of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Sodel
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
23
|
Wang AY, Lee PY, Bui BV, Jobling AI, Greferath U, Brandli A, Dixon MA, Findlay Q, Fletcher EL, Vessey KA. Potential mechanisms of retinal ganglion cell type-specific vulnerability in glaucoma. Clin Exp Optom 2019; 103:562-571. [PMID: 31838755 DOI: 10.1111/cxo.13031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a neurodegenerative disease characterised by progressive damage to the retinal ganglion cells (RGCs), the output neurons of the retina. RGCs are a heterogenous class of retinal neurons which can be classified into multiple types based on morphological, functional and genetic characteristics. This review examines the body of evidence supporting type-specific vulnerability of RGCs in glaucoma and explores potential mechanisms by which this might come about. Studies of donor tissue from glaucoma patients have generally noted greater vulnerability of larger RGC types. Models of glaucoma induced in primates, cats and mice also show selective effects on RGC types - particularly OFF RGCs. Several mechanisms may contribute to type-specific vulnerability, including differences in the expression of calcium-permeable receptors (for example pannexin-1, P2X7, AMPA and transient receptor potential vanilloid receptors), the relative proximity of RGCs and their dendrites to blood supply in the inner plexiform layer, as well as differing metabolic requirements of RGC types. Such differences may make certain RGCs more sensitive to intraocular pressure elevation and its associated biomechanical and vascular stress. A greater understanding of selective RGC vulnerability and its underlying causes will likely reveal a rich area of investigation for potential treatment targets.
Collapse
Affiliation(s)
- Anna Ym Wang
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Alice Brandli
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Michael A Dixon
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Quan Findlay
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Wang N, Luo Z, Jin M, Sheng W, Wang HT, Long X, Wu Y, Hu P, Xu H, Zhang X. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11:3117-3137. [PMID: 31105084 PMCID: PMC6555466 DOI: 10.18632/aging.101966] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
It is currently believed that aging is closely linked with mitochondrial dysfunction, and that resveratrol exhibits anti-aging and neuroprotective effects by improving mitochondrial function, even though the mechanisms are not well defined. This study explored mitochondrial quality (mitochondrial DNA integrity and copy number), mitochondrial function (fusion/fission, mitophagy/autophagy), antioxidant system and activity of the Akt/mTOR and Ampk/Sirt1/Pgc1α pathways, and inflammation in aging zebrafish retinas to identify the probable mechanisms of resveratrol's anti-aging and neuroprotective effects. mtDNA integrity, mtDNA copy number, mitochondrial fusion regulators, mitophagy, and antioxidant-related genes were all decreased whereas Akt/mTOR activity and inflammation was increased upon aging in zebrafish retinas. Resveratrol was shown to not only increase mitochondrial quality and function, but also to suppress Akt/mTOR activity in zebrafish retinas. These results support the notion that mitochondrial dysfunction and increased Akt/mTOR activity are major players in age-related retinal neuropathy in zebrafish, and demonstrate a trend towards mitochondrial fragmentation in the aging retina. Importantly, resveratrol promoted mitochondrial function, up-regulating Ampk/Sirt1/Pgc1α, and down-regulated Akt/mTOR pathway activity in zebrafish retinas, suggesting that it may be able to prevent age-related oculopathy.
Collapse
Affiliation(s)
- Ning Wang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
- Equal contribution
| | - Zhiwen Luo
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
- Equal contribution
| | - Ming Jin
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Equal contribution
| | - Weiwei Sheng
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
| | - Han-Tsing Wang
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xinyi Long
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
| | - Yue Wu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Queen Mary School of Nanchang University, Nanchang, China
| | - Piaopiao Hu
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Hong Xu
- Institute of Life Science of Nanchang University, Nanchang, China
- School of Life Sciences of Nanchang University, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Nanchang, China
- Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, China
| |
Collapse
|
25
|
Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2019; 20:ijms20102374. [PMID: 31091656 PMCID: PMC6566654 DOI: 10.3390/ijms20102374] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease that affects millions of people worldwide and is the main reason for legal blindness and vision loss in the elderly in developed countries. Although the cause of AMD pathogenesis is not known, oxidative stress-related damage to retinal pigment epithelium (RPE) is considered an early event in AMD induction. However, the precise cause of such damage and of the induction of oxidative stress, including related oxidative effects occurring in RPE and the onset and progression of AMD, are not well understood. Many results point to mitochondria as a source of elevated levels of reactive oxygen species (ROS) in AMD. This ROS increase can be associated with aging and effects induced by other AMD risk factors and is correlated with damage to mitochondrial DNA. Therefore, mitochondrial DNA (mtDNA) damage can be an essential element of AMD pathogenesis. This is supported by many studies that show a greater susceptibility of mtDNA than nuclear DNA to DNA-damaging agents in AMD. Therefore, the mitochondrial DNA damage reaction (mtDDR) is important in AMD prevention and in slowing down its progression as is ROS-targeting AMD therapy. However, we know far less about mtDNA than its nuclear counterparts. Further research should measure DNA damage in order to compare it in mitochondria and the nucleus, as current methods have serious disadvantages.
Collapse
|
26
|
Eells JT. Mitochondrial Dysfunction in the Aging Retina. BIOLOGY 2019; 8:biology8020031. [PMID: 31083549 PMCID: PMC6627398 DOI: 10.3390/biology8020031] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria are central in retinal cell function and survival and they perform functions that are critical to cell function. Retinal neurons have high energy requirements, since large amounts of ATP are needed to generate membrane potentials and power membrane pumps. Mitochondria over the course of aging undergo a number of changes. Aged mitochondria exhibit decreased rates of oxidative phosphorylation, increased reactive oxygen species (ROS) generation and increased numbers of mtDNA mutations. Mitochondria in the neural retina and the retinal pigment epithelium are particularly susceptible to oxidative damage with aging. Many age-related retinal diseases, including glaucoma and age-related macular degeneration, have been associated with mitochondrial dysfunction. Therefore, mitochondria are a promising therapeutic target for the treatment of retinal disease.
Collapse
Affiliation(s)
- Janis T Eells
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
27
|
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25:816-824. [PMID: 30889315 PMCID: PMC6566063 DOI: 10.1111/cns.13116] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria not only supply the energy for cell function, but also take part in cell signaling. This review describes the dysfunctions of mitochondria in aging and neurodegenerative diseases, and the signaling pathways leading to mitochondrial biogenesis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 pathway). Understanding the regulation of these mitochondrial pathways may be beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for the removal of damaged mitochondria, thus reducing the onset and/or severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Fang Lin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
28
|
Complement factor H regulates retinal development and its absence may establish a footprint for age related macular degeneration. Sci Rep 2019; 9:1082. [PMID: 30705315 PMCID: PMC6355813 DOI: 10.1038/s41598-018-37673-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023] Open
Abstract
Age related macular degeneration (AMD) is the most common blinding disease in those over 60 years. In 50% of cases it is associated with polymorphisms of complement factor H (FH), implicating immune vulnerability. But such individuals may exhibit abnormal outer retinal blood flow decades before disease initiation, suggesting an early disease footprint. FH is expressed in the retinal pigmented epithelium (RPE). During development the RPE is adjacent to the site of retinal mitosis and complex regulatory interactions occur between the relatively mature RPE and retinal neuronal precursors that control the cell cycle. Here we ask if the absence of FH from the RPE influences retinal development using a mouse CFH knockout (Cfh−/−) with an aged retinal degenerative phenotype. We reveal that from birth, these mice have significantly disrupted and delayed retinal development. However, once development is complete, their retinae appear relatively normal, although many photoreceptor and RPE mitochondria are abnormally large, suggesting dysfunction consistent with premature ATP decline in Cfh−/−. Total retinal mtDNA is also reduced and these deficits are associated shortly after with reduced retinal function. Cfh−/+ mice also show significant abnormal patterns of cell production but not as great as in Cfh−/−. These results reveal that not only is FH an important player in sculpting retinal development but also that the developmental abnormality in Cfh−/− likely establishes critical vulnerability for later aged retinal degeneration.
Collapse
|
29
|
Interplay between Autophagy and the Ubiquitin-Proteasome System and Its Role in the Pathogenesis of Age-Related Macular Degeneration. Int J Mol Sci 2019; 20:ijms20010210. [PMID: 30626110 PMCID: PMC6337628 DOI: 10.3390/ijms20010210] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease with many pathogenesis factors, including defective cellular waste management in retinal pigment epithelium (RPE). Main cellular waste in AMD are: all-trans retinal, drusen and lipofuscin, containing unfolded, damaged and unneeded proteins, which are degraded and recycled in RPE cells by two main machineries—the ubiquitin-proteasome system (UPS) and autophagy. Recent findings show that these systems can act together with a significant role of the EI24 (etoposide-induced protein 2.4 homolog) ubiquitin ligase in their action. On the other hand, E3 ligases are essential in both systems, but E3 is degraded by autophagy. The interplay between UPS and autophagy was targeted in several diseases, including Alzheimer disease. Therefore, cellular waste clearing in AMD should be considered in the context of such interplay rather than either of these systems singly. Aging and oxidative stress, two major AMD risk factors, reduce both UPS and autophagy. In conclusion, molecular mechanisms of UPS and autophagy can be considered as a target in AMD prevention and therapeutic perspective. Further work is needed to identify molecules and effects important for the coordination of action of these two cellular waste management systems.
Collapse
|
30
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
31
|
Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: Induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res 2018; 183:88-97. [PMID: 30447198 DOI: 10.1016/j.exer.2018.11.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
Abstract
Glaucoma describes a distinct optic neuropathy with complex etiology and a variety of associated risk factors, but with similar pathological endpoints. Risk factors such as age, increased intraocular pressure (IOP), low mean arterial pressure, and autoimmune disease, can all be associated with death of retinal ganglion cells (RGCs) and optic nerve head remodeling. Today, IOP management remains the standard of care, even though IOP elevation is not pathognomonic of glaucoma, and patients can continue to lose vision despite effective IOP control. A contemporary view of glaucoma as a complex, neurodegenerative disease has developed, along with the recognition of a need for new disease modifying retinal treatment strategies and improved outcomes. However, the distinction between risk factors triggering the disease process and retinal injury responses is not always clear. In this review, we attempt to distinguish between the various triggers, and their association with subsequent key RGC injury mechanisms. We propose that distinct glaucomatous risk factors result in similar retinal and optic nerve injury cascades, including oxidative and metabolic stress, glial reactivity, and altered inflammatory responses, which induce common molecular signals to induce RGC apoptosis. This organization forms a coherent disease framework and presents conserved targets for therapeutic intervention that are not limited to specific risk factors.
Collapse
Affiliation(s)
- Samih Alqawlaq
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - John G Flanagan
- School of Optometry and Vision Science Program, University of California at Berkeley, Berkeley, CA, USA
| | - Jeremy M Sivak
- Department of Vision Science, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Vision Science Research Program, Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Makarenko MS, Chistyakov VA, Usatov AV, Mazanko MS, Prazdnova EV, Bren AB, Gorlov IF, Komarova ZB, Chikindas ML. The Impact of Bacillus subtilis KATMIRA1933 Supplementation on Telomere Length and Mitochondrial DNA Damage of Laying Hens. Probiotics Antimicrob Proteins 2018; 11:588-593. [DOI: 10.1007/s12602-018-9440-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Sakellariou GK, McDonagh B. Redox Homeostasis in Age-Related Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:281-306. [PMID: 30390257 DOI: 10.1007/978-981-13-1435-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and weakness, characterized by loss of lean muscle mass and function, has a significant effect on the independence and quality of life of older people. The cellular mechanisms that drive the age-related decline in neuromuscular integrity and function are multifactorial. Quiescent and contracting skeletal muscle can endogenously generate reactive oxygen and nitrogen species (RONS) from various cellular sites. Excessive RONS can potentially cause oxidative damage and disruption of cellular signaling pathways contributing to the initiation and progression of age-related muscle atrophy. Altered redox homeostasis and modulation of intracellular signal transduction processes have been proposed as an underlying mechanism of sarcopenia. This chapter summarizes the current evidence that has associated disrupted redox homeostasis and muscle atrophy as a result of skeletal muscle inactivity and aging.
Collapse
Affiliation(s)
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
34
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
35
|
Nadal-Nicolás FM, Vidal-Sanz M, Agudo-Barriuso M. The aging rat retina: from function to anatomy. Neurobiol Aging 2017; 61:146-168. [PMID: 29080498 DOI: 10.1016/j.neurobiolaging.2017.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023]
Abstract
In healthy beings, age is the ultimate reason of cellular malfunction and death. In the rat retina, age causes a functional decline and loss of specific neuronal populations. In this regard, controversial conclusions have been reported for the innermost retina. Here, we have studied the albino and pigmented retina for the duration of the rat life-span. Independent of age (21 days-22 months), the electroretinographic recordings and the volume of the retina and its layers are smaller in albinos. Functionally, aging causes in both strains a loss of cone- and rod-mediated responses. Anatomically, cell density decreases with age because the retina grows linearly with time; no cell loss is observed in the ganglion cell layer; and only in the pigmented rat, there is a decrease in cone photoreceptors. In old animals of both strains, there is gliosis in the superior colliculi and a diminution of the area innervated by retinal ganglion cells. In conclusion, this work provides the basis for further studies linking senescence to neurodegenerative retinal diseases.
Collapse
Affiliation(s)
- Francisco M Nadal-Nicolás
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca) and Departamento de Oftalmología Facultad de Medicina, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
36
|
Dobrzyńska MM, Pachocki KA, Owczarska K. DNA strand breaks in peripheral blood leucocytes of Polish blood donors. Mutagenesis 2017; 33:69-76. [DOI: 10.1093/mutage/gex024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/04/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Krzysztof A Pachocki
- Department of Radiation Hygiene, Central Laboratory for Radiological Protection, Warsaw, Poland
| | - Katarzyna Owczarska
- The Maria Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, Clinic of Diagnostic Oncology and Cardiooncology, Warsaw, Poland
| |
Collapse
|
37
|
Lucas ER, Augustyniak M, Kędziorski A, Keller L. Lifespan differences between queens and workers are not explained by rates of molecular damage. Exp Gerontol 2017; 92:1-6. [PMID: 28285146 DOI: 10.1016/j.exger.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022]
Abstract
The biological processes that underlie senescence are of universal biological importance, yet they remain poorly understood. A popular theory proposes that senescence is the result of limited investment into mechanisms involved in the prevention and repair of molecular damage, leading to an accumulation of molecular damage with age. In ants, queen and worker lifespans differ by an order of magnitude, and this remarkable difference in lifespan has been shown to be associated with differences in the expression of genes involved in DNA and protein repair. Here we use the comet assay and Western Blotting for poly-ubiquitinated proteins to explore whether these differences in expression lead to differences in the accumulation of DNA damage (comet assay) or protein damage (protein ubiquitination) with age. Surprisingly, there was no difference between queens and workers in the rate of accumulation of DNA damage. We also found that levels of ubiquitinated proteins decreased with age, as previously reported in honeybees. This is in contrast to what has been found in model organisms such as worms and flies. Overall, these results reveal that the link between investment into macromolecular repair, age-related damage accumulation and lifespan is more complex than usually recognised.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Maria Augustyniak
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- University of Silesia in Katowice, Faculty of Biology & Environmental Protection, Department of Animal Physiology & Ecotoxicology, Bankowa 9, PL 40-007 Katowice, Poland
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
38
|
Sivapathasuntharam C, Sivaprasad S, Hogg C, Jeffery G. Aging retinal function is improved by near infrared light (670 nm) that is associated with corrected mitochondrial decline. Neurobiol Aging 2017; 52:66-70. [PMID: 28129566 PMCID: PMC5364001 DOI: 10.1016/j.neurobiolaging.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/01/2017] [Accepted: 01/02/2017] [Indexed: 11/01/2022]
Abstract
Aging is associated with cellular decline and reduced function, partly mediated by mitochondrial compromise. However, aged mitochondrial function is corrected with near infrared light (670 nm) that improves their membrane potentials and adenosine triphosphate production and also reduces age-related inflammation. We ask if 670 nm light can also improve declining retinal function. Electroretinograms were measured in 2-, 7-, and 12-month old C57BL/6 mice. Significant age-related declines were measured in the photoreceptor generated a-wave and the postreceptoral b-wave. Seven- and 12-month-old mice were exposed to 670 nm for 15 minutes daily over 1 month. These showed significant improved retinal function in both waves of approximately 25% but did not reach levels found in 2-month-old animals. Our data suggest, 670 nm light can significantly improve aged retinal function, perhaps by providing additional adenosine triphosphate production for photoreceptor ion pumps or reduced aged inflammation. This may have implications for the treatment of retinal aging and age-related retinal disease, such as macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Glen Jeffery
- University College London Institute of Ophthalmology, London, UK.
| |
Collapse
|
39
|
Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 2016; 6:33944. [PMID: 27681159 PMCID: PMC5041117 DOI: 10.1038/srep33944] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/24/2016] [Indexed: 02/08/2023] Open
Abstract
Age-related loss of skeletal muscle mass and function is a major contributor to morbidity and has a profound effect on the quality of life of older people. The potential role of age-dependent mitochondrial dysfunction and cumulative oxidative stress as the underlying cause of muscle aging remains a controversial topic. Here we show that the pharmacological attenuation of age-related mitochondrial redox changes in muscle with SS31 is associated with some improvements in oxidative damage and mitophagy in muscles of old mice. However, this treatment failed to rescue the age-related muscle fiber atrophy associated with muscle atrophy and weakness. Collectively, these data imply that the muscle mitochondrial redox environment is not a key regulator of muscle fiber atrophy during sarcopenia but may play a key role in the decline of mitochondrial organelle integrity that occurs with muscle aging.
Collapse
|
40
|
Lucas ER, Privman E, Keller L. Higher expression of somatic repair genes in long-lived ant queens than workers. Aging (Albany NY) 2016; 8:1940-1951. [PMID: 27617474 PMCID: PMC5076446 DOI: 10.18632/aging.101027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
Understanding why organisms senesce is a fundamental question in biology. One common explanation is that senescence results from an increase in macromolecular damage with age. The tremendous variation in lifespan between genetically identical queen and worker ants, ranging over an order of magnitude, provides a unique system to study how investment into processes of somatic maintenance and macromolecular repair influence lifespan. Here we use RNAseq to compare patterns of expression of genes involved in DNA and protein repair of age-matched queens and workers. There was no difference between queens and workers in 1-day-old individuals, but the level of expression of these genes increased with age and this up-regulation was greater in queens than in workers, resulting in significantly queen-biased expression in 2-month-old individuals in both legs and brains. Overall, these differences are consistent with the hypothesis that higher longevity is associated with increased investment into somatic repair.
Collapse
Affiliation(s)
- Eric R. Lucas
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 31905 Haifa, Israel
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Immunolocalisation pattern of complex I-V in ageing human retina: Correlation with mitochondrial ultrastructure. Mitochondrion 2016; 31:20-32. [PMID: 27581213 DOI: 10.1016/j.mito.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Earlier studies reported accumulation of mitochondrial DNA mutations in ageing and age-related macular degeneration. To know about the mitochondrial status with age, we examined immunoreactivity (IR) to markers of mitochondria (anti-mitochondrial antibody and voltage-dependent anion channel-1) and complex I-V (that mediate oxidative phosphorylation, OXPHOS) in donor human retinas (age: 19-94years; N=26; right eyes). In all samples, at all ages, IR to anti-mitochondrial antibody and voltage-dependent anion channel-1 was prominent in photoreceptor cells. Between second and seventh decade of life, strong IR to complex I-V was present in photoreceptors over macular to peripheral retina. With progressive ageing, the photoreceptors showed a decrease in complex I-IR (subunit NDUFB4) at eighth decade, and a weak or absence of IR in 10 retinas between ninth and tenth decade. Patchy IR to complex III and complex IV was detected at different ages. IR to ND1 (complex I) and complex II and V remained unaltered with ageing. Nitrosative stress (evaluated by IR to a nitro-tyrosine antibody) was found in photoreceptors. Superoxide dismutase-2 was found upregulated in photoreceptors with ageing. Mitochondrial ultrastructure was examined in two young retinas with intact complex IR and six aged retinas whose counterparts showed weak to absence of IR. Observations revealed irregular, photoreceptor inner segment mitochondria in aged maculae and mid-peripheral retina between eighth and ninth decade; many cones possessed autophagosomes with damaged mitochondria, indicating age-related alterations. A trend in age-dependent reduction of complex I-IR was evident in aged photoreceptors, whereas patchy complex IV-IR (subunits I and II) was age-independent, suggesting that the former is prone to damage with ageing perhaps due to oxidative stress. These changes in OXPHOS system may influence the energy budget of human photoreceptors, affecting their viability.
Collapse
|
42
|
Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Griffiths RD, McArdle A, Jackson MJ. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. FASEB J 2016; 30:3771-3785. [PMID: 27550965 PMCID: PMC5067250 DOI: 10.1096/fj.201600450r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Age-related skeletal muscle dysfunction is the underlying cause of morbidity that affects up to half the population aged 80 and over. Considerable evidence indicates that oxidative damage and mitochondrial dysfunction contribute to the sarcopenic phenotype that occurs with aging. To examine this, we administered the mitochondria-targeted antioxidant mitoquinone mesylate {[10-(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenylphosphonium; 100 μM} to wild-type C57BL/6 mice for 15 wk (from 24 to 28 mo of age) and investigated the effects on age-related loss of muscle mass and function, changes in redox homeostasis, and mitochondrial organelle integrity and function. We found that mitoquinone mesylate treatment failed to prevent age-dependent loss of skeletal muscle mass associated with myofiber atrophy or alter a variety of in situ and ex vivo muscle function analyses, including maximum isometric tetanic force, decline in force after a tetanic fatiguing protocol, and single-fiber-specific force. We also found evidence that long-term mitoquinone mesylate administration did not reduce mitochondrial reactive oxygen species or induce significant changes in muscle redox homeostasis, as assessed by changes in 4-hydroxynonenal protein adducts, protein carbonyl content, protein nitration, and DNA damage determined by the content of 8-hydroxydeoxyguanosine. Mitochondrial membrane potential, abundance, and respiration assessed in permeabilized myofibers were not significantly altered in response to mitoquinone mesylate treatment. Collectively, these findings demonstrate that long-term mitochondria-targeted mitoquinone mesylate administration failed to attenuate age-related oxidative damage in skeletal muscle of old mice or provide any protective effect in the context of muscle aging.—Sakellariou, G. K., Pearson, T., Lightfoot, A. P., Nye, G. A., Wells, N., Giakoumaki, I. I., Griffiths, R. D., McArdle, A., Jackson, M. J. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle.
Collapse
Affiliation(s)
- Giorgos K Sakellariou
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Pearson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Adam P Lightfoot
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Gareth A Nye
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nicola Wells
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ifigeneia I Giakoumaki
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Richard D Griffiths
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Anne McArdle
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm J Jackson
- Medical Research Council-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
43
|
Wu JH, Zhang SH, Nickerson JM, Gao FJ, Sun Z, Chen XY, Zhang SJ, Gao F, Chen JY, Luo Y, Wang Y, Sun XH. Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma. Neurobiol Dis 2014; 74:167-179. [PMID: 25478814 DOI: 10.1016/j.nbd.2014.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs.
Collapse
Affiliation(s)
- Ji-Hong Wu
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - Sheng-Hai Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China
| | - John M Nickerson
- Ophthalmology Department, Emory University, Atlanta, GA, 30322, USA
| | - Feng-Juan Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | | | - Xin-Ya Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Shu-Jie Zhang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Feng Gao
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Jun-Yi Chen
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yi Luo
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Yan Wang
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| | - Xing-Huai Sun
- Eye & ENT Hospital, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical college, Fudan University, Shanghai 200032, China
| |
Collapse
|
44
|
Yang Y, Shiao C, Hemingway JF, Jorstad NL, Shalloway BR, Chang R, Keene CD. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation. PLoS One 2013; 8:e64246. [PMID: 23750207 PMCID: PMC3672108 DOI: 10.1371/journal.pone.0064246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Christine Shiao
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Jake Frederick Hemingway
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Nikolas L. Jorstad
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Bryan Richard Shalloway
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Rubens Chang
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
45
|
El-Sayyad HIH, Khalifa SA, El-Sayyad FI, Mousa SA, Mohammed EAM. Analysis of fine structure and biochemical changes of retina during aging of Wistar albino rats. Clin Exp Ophthalmol 2013; 42:169-81. [PMID: 23601433 DOI: 10.1111/ceo.12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aging is a biological phenomenon that involves an increase of oxidative stress associated with gradual degradation of the structure and function of the retina. Gender differences and subsequent deterioration of retinal cell layers is an interesting topic, especially because there is no published work concerning it. METHODS One hundred and twenty male and female Wistar albino rats ages 1, 6, 18, 30 and 42 months (n = 20 equal for male and female) were used. At the time interval, retinae were investigated by light and transmission electron microscopy, assessments of neurotransmitters, anti-oxidant enzymes (catalase, superoxide dismustase and glutathione S transferase), caspase-3 and -7, malonadialdhyde, and DNA fragmentation. RESULTS Light and transmission electron microscopy observations of the older specimens (30 and 42 months) revealed apparent deterioration of retinal cell layers, especially ganglion and nerve fibres, nuclear, pigmented epithelium and stacked membranes of the photoreceptor's outer segments. Males were highly susceptible to aging processes. Retinal DNA fragmentation was remarked parallel with increase of apoptic markers caspase 3 and 7. Concomitantly, there was a marked reduction of neurotransmitters and anti-oxidant enzymes, and an increase of lipid peroxidation. CONCLUSIONS Aging contributed to an increase of oxidative stress resulting from damage of mitochondria in retinal cells, a decrease of the anti-oxidant enzyme system and an increase of markers of retinal cell death.
Collapse
|
46
|
Soares JP, Mota MP, Duarte JA, Collins A, Gaivão I. Age-related increases in human lymphocyte DNA damage: is there a role of aerobic fitness? Cell Biochem Funct 2013; 31:743-8. [DOI: 10.1002/cbf.2966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jorge Pinto Soares
- University of Trás-os-Montes e Alto Douro; CIDESD-Sports; Vila Real Portugal
| | - Maria Paula Mota
- University of Trás-os-Montes e Alto Douro; CIDESD-Sports; Vila Real Portugal
| | | | | | - Isabel Gaivão
- University of Trás-os-Montes e Alto Douro; CECAV-Genetic and Biotechnology; Vila Real Portugal
| |
Collapse
|
47
|
Mitochondrial Genetics of Retinal Disease. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Bhattacharya S, Chaum E, Johnson DA, Johnson LR. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association. Invest Ophthalmol Vis Sci 2012; 53:8350-66. [PMID: 23139272 DOI: 10.1167/iovs.12-10495] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). METHODS Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. RESULTS We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. CONCLUSIONS Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD.
Collapse
Affiliation(s)
- Sujoy Bhattacharya
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
49
|
Bosshard M, Markkanen E, van Loon B. Base excision repair in physiology and pathology of the central nervous system. Int J Mol Sci 2012. [PMID: 23203191 PMCID: PMC3546685 DOI: 10.3390/ijms131216172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Relatively low levels of antioxidant enzymes and high oxygen metabolism result in formation of numerous oxidized DNA lesions in the tissues of the central nervous system. Accumulation of damage in the DNA, due to continuous genotoxic stress, has been linked to both aging and the development of various neurodegenerative disorders. Different DNA repair pathways have evolved to successfully act on damaged DNA and prevent genomic instability. The predominant and essential DNA repair pathway for the removal of small DNA base lesions is base excision repair (BER). In this review we will discuss the current knowledge on the involvement of BER proteins in the maintenance of genetic stability in different brain regions and how changes in the levels of these proteins contribute to aging and the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthias Bosshard
- Institute for Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | | | |
Collapse
|
50
|
Wu B, Liu S, Guo X, Zhang Y, Zhang X, Li M, Cheng S. Responses of mouse liver to dechlorane plus exposure by integrative transcriptomic and metabonomic studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10758-10764. [PMID: 22913625 DOI: 10.1021/es301804t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Dechlorane plus (DP), a chlorinated flame retardant, has been widely detected in different environmental matrices and biota. However, toxicity data for DP have seldom been reported. In the present study, we investigated hepatic oxidative stress, DNA damage, and transcriptomic and metabonomic responses of male mice administered 500 mg/kg, 2000 mg/kg, and 5000 mg/kg of DP by gavage for 10 days. The results showed that DP exposure increased the level of superoxide dismutase (SOD) and 8-hydroxy-2-deoxyguanosine (8-OHdG). The microarray-based transcriptomic results demonstrated that DP exposure led to significant alteration of gene expression involved in carbohydrate, lipid, nucleotide, and energy metabolism, as well as signal transduction processes. The NMR-based metabonomic analyses corroborated these results showing changes of metabolites associated with the above altered mechanisms. Our results demonstrate that an oral exposure to DP can induce hepatic oxidative damage and perturbations of metabolism and signal transduction. These observations provide novel insight into toxicological effects and mechanisms of action of DP at the transcriptomic and metabonomic levels.
Collapse
Affiliation(s)
- Bing Wu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, P.R. China.
| | | | | | | | | | | | | |
Collapse
|