1
|
Daniels MJD, Lefevre L, Szymkowiak S, Drake A, McCulloch L, Tzioras M, Barrington J, Dando OR, He X, Mohammad M, Sasaguri H, Saito T, Saido TC, Spires-Jones TL, McColl BW. Cystatin F ( Cst7) drives sex-dependent changes in microglia in an amyloid-driven model of Alzheimer's disease. eLife 2023; 12:e85279. [PMID: 38085657 PMCID: PMC10715728 DOI: 10.7554/elife.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aβ) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aβ burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.
Collapse
Affiliation(s)
- Michael JD Daniels
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Lucas Lefevre
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Stefan Szymkowiak
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Alice Drake
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Laura McCulloch
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Makis Tzioras
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Jack Barrington
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Owen R Dando
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Xin He
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, University of EdinburghEdinburghUnited Kingdom
| | - Mehreen Mohammad
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Hiroki Sasaguri
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental UniversityTokyoJapan
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya UniversityNagoyaJapan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science InstituteWakoJapan
| | - Tara L Spires-Jones
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | - Barry W McColl
- UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
2
|
Schilling S, Pradhan A, Heesch A, Helbig A, Blennow K, Koch C, Bertgen L, Koo EH, Brinkmalm G, Zetterberg H, Kins S, Eggert S. Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity. Acta Neuropathol Commun 2023; 11:87. [PMID: 37259128 DOI: 10.1186/s40478-023-01577-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aβ peptide, which is generated by consecutive cleavages of β- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the β- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aβ profiles. Importantly, N-terminally truncated Aβ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aβ40/Aβ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aβ1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, β-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ajay Pradhan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Andrea Helbig
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christian Koch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Lea Bertgen
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Edward H Koo
- San Diego (UCSD), Department of Neuroscience, University of California, La Jolla, CA, 92093-0662, USA
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
4
|
Lucas MJ, Pan HS, Verbeke EJ, Partipilo G, Helfman EC, Kann L, Keitz BK, Taylor DW, Webb LJ. Cross-Seeding Controls Aβ Fibril Populations and Resulting Functions. J Phys Chem B 2022; 126:2217-2229. [PMID: 35276047 DOI: 10.1021/acs.jpcb.1c09995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid peptides nucleate from monomers to aggregate into fibrils through primary nucleation. Pre-existing fibrils can then act as seeds for additional monomers to fibrillize through secondary nucleation. Both nucleation processes occur simultaneously, yielding a distribution of fibril polymorphs that can generate a spectrum of neurodegenerative effects. Understanding the mechanisms driving polymorph structural distribution during both nucleation processes is important for uncovering fibril structure-function relationships, as well as for creating polymorph distributions in vitro that better match fibril structures found in vivo. Here, we explore how cross-seeding wild-type (WT) Aβ1-40 with Aβ1-40 mutants E22G (Arctic) and E22Δ (Osaka), as well as with WT Aβ1-42, affects the distribution of fibril structural polymorphs and how changes in structural distribution impact toxicity. Transmission electron microscopy analysis revealed that fibril seeds derived from mutants of Aβ1-40 imparted their structure to WT Aβ1-40 monomers during secondary nucleation, but WT Aβ1-40 fibril seeds do not affect the structure of fibrils assembled from mutant Aβ1-40 monomers, despite the kinetic data indicating accelerated aggregation when cross-seeding of any combination of mutants. Additionally, WT Aβ1-40 fibrils seeded with mutant fibrils produced similar structural distributions to the mutant seeds with similar cytotoxicity profiles. This indicates that mutant fibril seeds not only impart their structure to growing WT Aβ1-40 aggregates but also impart cytotoxic properties. Our findings establish a relationship between the fibril structure and the phenotype on a polymorph population level and that these properties can be passed on through secondary nucleation to the succeeding generations of fibrils.
Collapse
Affiliation(s)
- Michael J Lucas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Henry S Pan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric J Verbeke
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ethan C Helfman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Leah Kann
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - David W Taylor
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences, University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Jin N, Babiloni C, Drinkenburg WH, Hajós M, Nygaard HB, Tanila H. Recommendations for Preclinical Testing of Treatments Against Alzheimer's Disease-Related Epileptiform Spikes in Transgenic Rodent Models. J Alzheimers Dis 2021; 88:849-865. [PMID: 34092642 DOI: 10.3233/jad-210209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that about 30%of patients with mild to moderate Alzheimer's disease (AD) without a known diagnosis of epilepsy may display epileptiform spikes during electroencephalographic (EEG) recordings. These abnormal discharges occur predominantly during sleep and may be associated with accelerated disease progression. Subclinical spikes may represent a relevant target for clinical drug interventions, and there is a clear unmet need for preclinical testing of novel disease modifying agents in suitable animal models. Transgenic rodent models of AD pathology exhibit various forms of epileptiform EEG activity related to the abnormal levels of amyloid species in the brain. Among them, large-amplitude cortical and hippocampal EEG spikes in mouse and rat AD models may be reminiscent of the subclinical epileptiform EEG spikes recorded in some AD patients. This article reports the recommendations of a multidisciplinary panel of experts on optimal EEG markers and experimental designs to measure and report epileptiform activities and their response to symptomatic and disease-modifying drugs in transgenic AD model rodents. These recommendations may harmonize future preclinical EEG studies in the drug discovery research and may increase the comparability of experimental outcomes and their translational clinical value.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Hospital San Raffaele Cassino, Cassino (FR), Italy
| | - Wilhelmus H Drinkenburg
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Mihály Hajós
- Cognito Therapeutics, Cambridge, MA, USA.,Yale University School of Medicine, New Haven, CT, USA
| | - Haakon B Nygaard
- Division of Neurology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Bi C, Bi S, Li B. Processing of Mutant β-Amyloid Precursor Protein and the Clinicopathological Features of Familial Alzheimer's Disease. Aging Dis 2019; 10:383-403. [PMID: 31011484 PMCID: PMC6457050 DOI: 10.14336/ad.2018.0425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disease involving many pathological mechanisms. Nonetheless, single pathogenic mutations in amyloid precursor protein (APP) or presenilin 1 or 2 can cause AD with almost all of the clinical and neuropathological features, and therefore, we believe an important mechanism of pathogenesis in AD could be revealed from examining pathogenic APP missense mutations. A comprehensive review of the literature, including clinical, neuropathological, cellular and animal model data, was conducted through PubMed and the databases of Alzforum mutations, HGMD, UniProt, and AD&FTDMDB. Pearson correlation analysis combining the clinical and neuropathological data and aspects of mutant APP processing in cellular models was performed. We find that an increase in Aβ42 has a significant positive correlation with the appearance of neurofibrillary tangles (NFTs) and tends to cause an earlier age of AD onset, while an increase in Aβ40 significantly increases the age at death. The increase in the α-carboxyl terminal fragment (CTF) has a significantly negative correlation with the age of AD onset, and β-CTF has a similar effect without statistical significance. Animal models show that intracellular Aβ is critical for memory defects. Based on these results and the fact that amyloid plaque burden correlates much less well with cognitive impairment than do NFT counts, we propose a "snowball hypothesis": the accumulation of intraneuronal NFTs caused by extracellular Aβ42 and the increase in intraneuronal APP proteolytic products (CTFs and Aβs) could cause cellular organelle stress that leads to neurodegeneration in AD, which then resembles the formation of abnormal protein "snowballs" both inside and outside of neurons.
Collapse
Affiliation(s)
- Christopher Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Stephanie Bi
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
| | - Bin Li
- Washington Institute for Health Sciences, Arlington, VA 22203, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
7
|
Input-Specific Synaptic Location and Function of the α5 GABA A Receptor Subunit in the Mouse CA1 Hippocampal Neurons. J Neurosci 2018; 39:788-801. [PMID: 30523065 DOI: 10.1523/jneurosci.0567-18.2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hippocampus-dependent learning processes are coordinated via a large diversity of GABAergic inhibitory mechanisms. The α5 subunit-containing GABAA receptor (α5-GABAAR) is abundantly expressed in the hippocampus populating primarily the extrasynaptic domain of CA1 pyramidal cells, where it mediates tonic inhibitory conductance and may cause functional deficits in synaptic plasticity and hippocampus-dependent memory. However, little is known about synaptic expression of the α5-GABAAR and, accordingly, its location site-specific function. We examined the cell- and synapse-specific distribution of the α5-GABAAR in the CA1 stratum oriens/alveus (O/A) using a combination of immunohistochemistry, whole-cell patch-clamp recordings and optogenetic stimulation in hippocampal slices obtained from mice of either sex. In addition, the input-specific role of the α5-GABAAR in spatial learning and anxiety-related behavior was studied using behavioral testing and chemogenetic manipulations. We demonstrate that α5-GABAAR is preferentially targeted to the inhibitory synapses made by the vasoactive intestinal peptide (VIP)- and calretinin-positive terminals onto dendrites of somatostatin-expressing interneurons. In contrast, synapses made by the parvalbumin-positive inhibitory inputs to O/A interneurons showed no or little α5-GABAAR. Inhibiting the α5-GABAAR in control mice in vivo improved spatial learning but also induced anxiety-like behavior. Inhibiting the α5-GABAAR in mice with inactivated CA1 VIP input could still improve spatial learning and was not associated with anxiety. Together, these data indicate that the α5-GABAAR-mediated phasic inhibition via VIP input to interneurons plays a predominant role in the regulation of anxiety while the α5-GABAAR tonic inhibition via this subunit may control spatial learning.SIGNIFICANCE STATEMENT The α5-GABAAR subunit exhibits high expression in the hippocampus, and regulates the induction of synaptic plasticity and the hippocampus-dependent mnemonic processes. In CA1 principal cells, this subunit occupies mostly extrasynaptic sites and mediates tonic inhibition. Here, we provide evidence that, in CA1 somatostatin-expressing interneurons, the α5-GABAAR subunit is targeted to synapses formed by the VIP- and calretinin-expressing inputs, and plays a specific role in the regulation of anxiety-like behavior.
Collapse
|
8
|
Dolfe L, Tambaro S, Tigro H, Del Campo M, Hoozemans JJM, Wiehager B, Graff C, Winblad B, Ankarcrona M, Kaldmäe M, Teunissen CE, Rönnbäck A, Johansson J, Presto J. The Bri2 and Bri3 BRICHOS Domains Interact Differently with Aβ 42 and Alzheimer Amyloid Plaques. J Alzheimers Dis Rep 2018; 2:27-39. [PMID: 30480246 PMCID: PMC6159705 DOI: 10.3233/adr-170051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and there is no successful treatment available. Evidence suggests that fibril formation of the amyloid β-peptide (Aβ) is a major underlying cause of AD, and treatment strategies that reduce the toxic effects of Aβ amyloid are sought for. The BRICHOS domain is found in several proteins, including Bri2 (also called integral membrane protein 2B (ITM2B)), mutants of which are associated with amyloid and neurodegeneration, and Bri3 (ITM2C). We have used mouse hippocampal neurons and brain tissues from mice and humans and show Bri3 deposits dispersed on AD plaques. In contrast to what has been shown for Bri2, Bri3 immunoreactivity is decreased in AD brain homogenates compared to controls. Both Bri2 and Bri3 BRICHOS domains interact with Aβ40 and Aβ42 present in neurons and reduce Aβ42 amyloid fibril formation in vitro, but Bri3 BRICHOS is less efficient. These results indicate that Bri2 and Bri3 BRICHOS have different roles in relation to Aβ aggregation.
Collapse
Affiliation(s)
- Lisa Dolfe
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Helene Tigro
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Marta Del Campo
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, The Netherlands
| | - Birgitta Wiehager
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,Genetic Unit, Theme Aging, Karolinska University Hospital, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Margit Kaldmäe
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Annica Rönnbäck
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Jenny Presto
- Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
9
|
Trans-Synaptic Spread of Amyloid- β in Alzheimer's Disease: Paths to β-Amyloidosis. Neural Plast 2017; 2017:5281829. [PMID: 29435372 PMCID: PMC5757149 DOI: 10.1155/2017/5281829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/10/2023] Open
Abstract
Neuronal activity has a strong causal role in the production and release of the neurotoxic β-amyloid peptide (Aβ). Because of this close link, gradual accumulation of Aβ into amyloid plaques has been reported in brain areas with intense neuronal activity, including cortical regions that display elevated activation at resting state. However, the link between Aβ and activity is not always linear and recent studies report exceptions to the view of “more activity, more plaques.” Here, we review the literature about the activity-dependent production of Aβ in both human cases and AD models and focus on the evidences that brain regions with elevated convergence of synaptic connections (herein referred to as brain nodes) are particularly vulnerable to Aβ accumulation. Next, we will examine data supporting the hypothesis that, since Aβ is released from synaptic terminals, β-amyloidosis can spread in AD brain by advancing through synaptically connected regions, which makes brain nodes vulnerable to Aβ accumulation. Finally, we consider possible mechanisms that account for β-amyloidosis progression through synaptically linked regions.
Collapse
|
10
|
Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component. Brain Imaging Behav 2017; 12:1160-1196. [PMID: 29075922 DOI: 10.1007/s11682-017-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurodegenerative disorders are very complicated and multifactorial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very difficult to be interpretated and often useless. Mouse models could be condiderated a 'pathway models', rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high field Magnetic resonance, Optical Imaging scanners and of highly specific contrast agents. Behavioral test are useful tool to characterize different animal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the different neurodegenerative disorders. Aim of this review is to focus on the different existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases.
Collapse
|
11
|
Lodeiro M, Puerta E, Ismail MAM, Rodriguez-Rodriguez P, Rönnbäck A, Codita A, Parrado-Fernandez C, Maioli S, Gil-Bea F, Merino-Serrais P, Cedazo-Minguez A. Aggregation of the Inflammatory S100A8 Precedes Aβ Plaque Formation in Transgenic APP Mice: Positive Feedback for S100A8 and Aβ Productions. J Gerontol A Biol Sci Med Sci 2017; 72:319-328. [PMID: 27131040 DOI: 10.1093/gerona/glw073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Inflammation plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Although chronic inflammation in later stages of AD is well described, little is known about the inflammatory processes in preclinical or early stages of the disease prior to plaque deposition. In this study, we report that the inflammatory mediator S100A8 is increased with aging in the mouse brain. It is observed as extracellular aggregates, which do not correspond to corpora amylacea. S100A8 aggregation is enhanced in the hippocampi of two different mouse models for amyloid-β (Aβ) overproduction (Tg2576 and TgAPParctic mice). S100A8 aggregates are seen prior the formation of Aβ plaques and do not colocalize. In vitro treatment of glial cells from primary cultures with Aβ42 resulted in an increased production of S100A8. In parallel, treatment of a neuronal cell line with recombinant S100A8 protein resulted in enhanced Aβ42 and decreased Aβ40 production. Our results suggest that important inflammatory processes are occurring prior to Aβ deposition and the existence of a positive feedback between S100A8 and Aβ productions. The possible relevance of aging- or AD-dependent formation of S100A8 aggregates in the hippocampus thus affecting learning and memory processes is discussed.
Collapse
Affiliation(s)
- Maria Lodeiro
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Elena Puerta
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad-Al-Mustafa Ismail
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Annica Rönnbäck
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Alina Codita
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Cristina Parrado-Fernandez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francisco Gil-Bea
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Neurosciences, Department of Cellular and Molecular Neuropharmacology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Paula Merino-Serrais
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Merlini M, Shi Y, Keller S, Savarese G, Akhmedov A, Derungs R, Spescha RD, Kulic L, Nitsch RM, Lüscher TF, Camici GG. Reduced nitric oxide bioavailability mediates cerebroarterial dysfunction independent of cerebral amyloid angiopathy in a mouse model of Alzheimer's disease. Am J Physiol Heart Circ Physiol 2016; 312:H232-H238. [PMID: 27836896 DOI: 10.1152/ajpheart.00607.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD), cerebral arteries, in contrast to cerebral microvessels, show both cerebral amyloid angiopathy (CAA) -dependent and -independent vessel wall pathology. However, it remains unclear whether CAA-independent vessel wall pathology affects arterial function, thereby chronically reducing cerebral perfusion, and, if so, which mechanisms mediate this effect. To this end, we assessed the ex vivo vascular function of the basilar artery and a similar-sized peripheral artery (femoral artery) in the Swedish-Arctic (SweArc) transgenic AD mouse model at different disease stages. Furthermore, we used quantitative immunohistochemistry to analyze CAA, endothelial morphology, and molecular pathways pertinent to vascular relaxation. We found that endothelium-dependent, but not smooth muscle-dependent, vasorelaxation was significantly impaired in basilar and femoral arteries of 15-mo-old SweArc mice compared with that of age-matched wild-type and 6-mo-old SweArc mice. This impairment was accompanied by significantly reduced levels of cyclic GMP, indicating a reduced nitric oxide (NO) bioavailability. However, no age- and genotype-related differences in oxidative stress as measured by lipid peroxidation were observed. Although parenchymal capillaries, arterioles, and arteries showed abundant CAA in the 15-mo-old SweArc mice, no CAA or changes in endothelial morphology were detected histologically in the basilar and femoral artery. Thus our results suggest that, in this AD mouse model, dysfunction of large intracranial, extracerebral arteries important for brain perfusion is mediated by reduced NO bioavailability rather than by CAA. This finding supports the growing body of evidence highlighting the therapeutic importance of targeting the cerebrovasculature in AD. NEW & NOTEWORTHY We show that vasorelaxation of the basilar artery, a large intracranial, extracerebral artery important for cerebral perfusion, is impaired independent of cerebral amyloid angiopathy in a transgenic mouse model of Alzheimer's disease. Interestingly, this dysfunction is specifically endothelium related and is mediated by impaired nitric oxide-cyclic GMP bioavailability.
Collapse
Affiliation(s)
- Mario Merlini
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland.,Neuroscience Center Zurich, Schlieren, Switzerland
| | - Yi Shi
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Stephan Keller
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Gianluigi Savarese
- Department of Medicine, Karolinska University Hospital, Stockholm, Sweden; and
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Rebecca Derungs
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Remo D Spescha
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Luka Kulic
- Neuroscience Center Zurich, Schlieren, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Roger M Nitsch
- Neuroscience Center Zurich, Schlieren, Switzerland.,Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren, University of Zurich, and Department of Cardiology, University Heart Center, University Hospital Zurich, Schlieren, Switzerland; .,Neuroscience Center Zurich, Schlieren, Switzerland
| |
Collapse
|
13
|
Lee JC, Choe SY. Region-specific changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of Alzheimer’s disease model mice. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0389-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Rönnbäck A, Pavlov PF, Mansory M, Gonze P, Marlière N, Winblad B, Graff C, Behbahani H. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation. J Neurochem 2015; 136:497-502. [PMID: 26500157 DOI: 10.1111/jnc.13410] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 02/03/2023]
Abstract
Accumulation of amyloid β-peptide (Aβ) in the brain is an important event in the pathogenesis of Alzheimer disease. We have used a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation to investigate whether Aβ deposition is correlated with mitochondrial functions in these animals. We found evidence of mitochondrial dysfunction (i.e., decreased mitochondrial membrane potential, increased production of reactive oxygen species and oxidative DNA damage) at 6 months of age, when the mice showed very mild Aβ deposition. More pronounced mitochondrial abnormalities were present in 24-month-old TgAPParc mice with more extensive Aβ pathology. This study demonstrates for the first time mitochondrial dysfunction in transgenic mice with a mutation within the Aβ peptide (the Arctic APP mutation), and confirms previous studies suggesting that mitochondrial dysfunction and oxidative stress is an early event in the pathogenesis of Alzheimer disease. This study demonstrates mitochondrial dysfunction in transgenic mice with a mutation within the amyloid beta (Aβ) peptide (the Arctic amyloid precursor protein (APP) mutation). We found evidence of mitochondrial dysfunction (i.e. decreased mitochondrial membrane potential (MMP), increased production of reactive oxygen species (ROS) and oxidative DNA damage) at 6 months of age, when very mild Aβ deposition is present in the mice. Also, the cytochrome c (COX) activity was significantly decreased in mitochondria from transgenic mice at 24 months of age.
Collapse
Affiliation(s)
- Annica Rönnbäck
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Pavel F Pavlov
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Mansorah Mansory
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Prisca Gonze
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Nicolas Marlière
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Bengt Winblad
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Caroline Graff
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Department of Geriatric Medicine, Genetics Unit, Karolinska University Hospital, Sweden
| | - Homira Behbahani
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Division of Neurogeriatrics and Clinical Geriatrics, Huddinge, Sweden
| |
Collapse
|
15
|
Ádori C, Glück L, Barde S, Yoshitake T, Kovacs GG, Mulder J, Maglóczky Z, Havas L, Bölcskei K, Mitsios N, Uhlén M, Szolcsányi J, Kehr J, Rönnbäck A, Schwartz T, Rehfeld JF, Harkany T, Palkovits M, Schulz S, Hökfelt T. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathol 2015; 129:541-63. [PMID: 25676386 DOI: 10.1007/s00401-015-1394-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is noteworthy since cortical and hypothalamic somatostatin content is reduced in neurodegenerative pathologies. Yet a possible role of a somatostatin signal deficit in the maintenance of noradrenergic projections remains unknown. Here, we deployed tissue microarrays, immunohistochemistry, quantitative morphometry and mRNA profiling in a cohort of Alzheimer's and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer's disease, we found significantly reduced somatostatin protein expression in the temporal cortex, with aberrant clustering and bulging of tyrosine hydroxylase-immunoreactive afferents. As such, somatostatin receptor 2 (SSTR2) mRNA was highly expressed in the human LC, with its levels significantly decreasing from Braak stages III/IV and onwards, i.e., a process preceding advanced Alzheimer's pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2(-/-) mice and, unlike in Sstr1(-/-) or Sstr4(-/-) genotypes, they showed selective, global and progressive degeneration of their central noradrenergic projections. However, neuronal perikarya in the LC were found intact until late adulthood (<8 months) in Sstr2(-/-) mice. In contrast, the noradrenergic neurons in the superior cervical ganglion lacked SSTR2 and, as expected, the sympathetic innervation of the head region did not show any signs of degeneration. Our results indicate that SSTR2-mediated signaling is integral to the maintenance of central noradrenergic projections at the system level, and that early loss of somatostatin receptor 2 function may be associated with the selective vulnerability of the noradrenergic system in Alzheimer's disease.
Collapse
Affiliation(s)
- Csaba Ádori
- Department of Neuroscience, Retzius Laboratory, Karolinska Institutet, Retzius väg 8, 17177, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin L, Fu Z, Xu X, Wu S. Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease. Microsc Res Tech 2015; 78:416-24. [PMID: 25810274 DOI: 10.1002/jemt.22489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/23/2015] [Indexed: 01/26/2023]
Abstract
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials.
Collapse
Affiliation(s)
- Lan Lin
- Biomedical Engineering Department, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China
| | | | | | | |
Collapse
|
17
|
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2014; 24:1-10. [PMID: 25471398 PMCID: PMC5588216 DOI: 10.1159/000369101] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Ju Y, Asahi T, Sawamura N. Arctic mutant Aβ40 aggregates on α7 nicotinic acetylcholine receptors and inhibits their functions. J Neurochem 2014; 131:667-74. [DOI: 10.1111/jnc.12837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Ye Ju
- Faculty of Science and Engineering; Waseda University; Shinjuku Tokyo Japan
| | - Toru Asahi
- Faculty of Science and Engineering; Waseda University; Shinjuku Tokyo Japan
- Consolidated Research Institute for Advanced Science and Medical Care (ASMeW); Waseda University; Shinjuku Tokyo Japan
| | - Naoya Sawamura
- Faculty of Science and Engineering; Waseda University; Shinjuku Tokyo Japan
- Consolidated Research Institute for Advanced Science and Medical Care (ASMeW); Waseda University; Shinjuku Tokyo Japan
| |
Collapse
|
19
|
Serial propagation of distinct strains of Aβ prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 2014; 111:10323-8. [PMID: 24982139 DOI: 10.1073/pnas.1408900111] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increasing number of studies argues that self-propagating protein conformations (i.e., prions) feature in the pathogenesis of several common neurodegenerative diseases. Mounting evidence contends that aggregates of the amyloid-β (Aβ) peptide become self-propagating in Alzheimer's disease (AD) patients. An important characteristic of prions is their ability to replicate distinct strains, the biological information for which is enciphered within different conformations of protein aggregates. To investigate whether distinct strains of Aβ prions can be discerned in AD patients, we performed transmission studies in susceptible transgenic mice using brain homogenates from sporadic or heritable (Arctic and Swedish) AD cases. Mice inoculated with the Arctic AD sample exhibited a pathology that could be distinguished from mice inoculated with the Swedish or sporadic AD samples, which was judged by differential accumulation of Aβ isoforms and the morphology of cerebrovascular Aβ deposition. Unlike Swedish AD- or sporadic AD-inoculated animals, Arctic AD-inoculated mice, like Arctic AD patients, displayed a prominent Aβ38-containing cerebral amyloid angiopathy. The divergent transmission behavior of the Arctic AD sample compared with the Swedish and sporadic AD samples was maintained during second passage in mice, showing that Aβ strains are serially transmissible. We conclude that at least two distinct strains of Aβ prions can be discerned in the brains of AD patients and that strain fidelity was preserved on serial passage in mice. Our results provide a potential explanation for the clinical and pathological heterogeneity observed in AD patients.
Collapse
|
20
|
Puzzo D, Lee L, Palmeri A, Calabrese G, Arancio O. Behavioral assays with mouse models of Alzheimer's disease: practical considerations and guidelines. Biochem Pharmacol 2014; 88:450-67. [PMID: 24462904 PMCID: PMC4014001 DOI: 10.1016/j.bcp.2014.01.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD) basic research and drug discovery, mouse models are essential resources for uncovering biological mechanisms, validating molecular targets and screening potential compounds. Both transgenic and non-genetically modified mouse models enable access to different types of AD-like pathology in vivo. Although there is a wealth of genetic and biochemical studies on proposed AD pathogenic pathways, as a disease that centrally features cognitive failure, the ultimate readout for any interventions should be measures of learning and memory. This is particularly important given the lack of knowledge on disease etiology - assessment by cognitive assays offers the advantage of targeting relevant memory systems without requiring assumptions about pathogenesis. A multitude of behavioral assays are available for assessing cognitive functioning in mouse models, including ones specific for hippocampal-dependent learning and memory. Here we review the basics of available transgenic and non-transgenic AD mouse models and detail three well-established behavioral tasks commonly used for testing hippocampal-dependent cognition in mice - contextual fear conditioning, radial arm water maze and Morris water maze. In particular, we discuss the practical considerations, requirements and caveats of these behavioral testing paradigms.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Linda Lee
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA
| | - Agostino Palmeri
- Department of Bio-Medical Sciences - Section of Physiology, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Giorgio Calabrese
- Department of Pharmacy, Federico II University, Via D. Montesano 49, Naples 80131, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, P&S #12-420D, 630W 168th Street, New York, NY 10032, USA.
| |
Collapse
|
21
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
22
|
Lillehaug S, Syverstad GH, Nilsson LN, Bjaalie JG, Leergaard TB, Torp R. Brainwide distribution and variance of amyloid-beta deposits in tg-ArcSwe mice. Neurobiol Aging 2014; 35:556-64. [DOI: 10.1016/j.neurobiolaging.2013.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
|
23
|
George S, Rönnbäck A, Gouras GK, Petit GH, Grueninger F, Winblad B, Graff C, Brundin P. Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:17. [PMID: 24517102 PMCID: PMC3932948 DOI: 10.1186/2051-5960-2-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The progressive development of Alzheimer's disease (AD) pathology follows a spatiotemporal pattern in the human brain. In a transgenic (Tg) mouse model of AD expressing amyloid precursor protein (APP) with the arctic (E693G) mutation, pathology spreads along anatomically connected structures. Amyloid-β (Aβ) pathology first appears in the subiculum and is later detected in interconnected brain regions, including the retrosplenial cortex. We investigated whether the spatiotemporal pattern of Aβ pathology in the Tg APP arctic mice to interconnected brain structures can be interrupted by destroying neurons using a neurotoxin and thereby disconnecting the neural circuitry. RESULTS We performed partial unilateral ibotenic acid lesions of the subiculum (first structure affected by Aβ pathology) in young Tg APParc mice, prior to the onset of pathology. We assessed Aβ/C99 pathology in mice aged up to 6 months after injecting ibotenate into the subiculum. Compared to the brains of intact Tg APP arctic mice, we observed significantly decreased Aβ/C99 pathology in the ipsilateral dorsal subiculum, CA1 region of the hippocampus and the retrosplenial cortex; regions connecting to and from the dorsal subiculum. By contrast, Aβ/C99 pathology was unchanged in the contralateral hippocampus in the mice with lesions. CONCLUSION These results, obtained in an animal model of AD, support the notion that Aβ/C99 pathology is transmitted between interconnected neurons in AD.
Collapse
Affiliation(s)
- Sonia George
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Annica Rönnbäck
- Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Géraldine H Petit
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Fiona Grueninger
- CNS Discovery and Translation Pharma Research and Exploratory Development, F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Bengt Winblad
- Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Graff
- Alzheimer Disease Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Geriatric Medicine, Genetics unit, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Brundin
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
24
|
Hedskog L, Pinho CM, Filadi R, Rönnbäck A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, Sandebring A, Westerlund M, Graff C, Winblad B, Galter D, Behbahani H, Pizzo P, Glaser E, Ankarcrona M. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc Natl Acad Sci U S A 2013; 110:7916-21. [PMID: 23620518 PMCID: PMC3651455 DOI: 10.1073/pnas.1300677110] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer's disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER-mitochondria interplay in the brain has so far remained unknown. Here, we studied ER-mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER-mitochondria bridging complex, inositol-1,4,5-triphosphate receptor-voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid β-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER-mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER-mitochondria contacts and cross-talk in AD pathology.
Collapse
Affiliation(s)
- Louise Hedskog
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Catarina Moreira Pinho
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Annica Rönnbäck
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Laura Hertwig
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Birgitta Wiehager
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Pia Larssen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Sandra Gellhaar
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; and
| | - Anna Sandebring
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Marie Westerlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
- Genetics Unit, Department of Geriatric Medicine, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; and
| | - Homira Behbahani
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Maria Ankarcrona
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Alzheimer’s Disease Research Center, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
25
|
The Arctic amyloid-β precursor protein (AβPP) mutation results in distinct plaques and accumulation of N- and C-truncated Aβ. Neurobiol Aging 2012; 33:1010.e1-13. [DOI: 10.1016/j.neurobiolaging.2011.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
|
26
|
Dehvari N, Mahmud T, Persson J, Bengtsson T, Graff C, Winblad B, Rönnbäck A, Behbahani H. Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochem Int 2012; 60:533-42. [PMID: 22366649 DOI: 10.1016/j.neuint.2012.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, γ-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of Physiology, The Wenner-Gren Institute Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shineman DW, Basi GS, Bizon JL, Colton CA, Greenberg BD, Hollister BA, Lincecum J, Leblanc GG, Lee L(BH, Luo F, Morgan D, Morse I, Refolo LM, Riddell DR, Scearce-Levie K, Sweeney P, Yrjänheikki J, Fillit HM. Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies. Alzheimers Res Ther 2011; 3:28. [PMID: 21943025 PMCID: PMC3218805 DOI: 10.1186/alzrt90] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable.
Collapse
Affiliation(s)
- Diana W Shineman
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Jennifer L Bizon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, 100 S. Newell Drive, Gainesville, FL 32610-0244, USA
| | - Carol A Colton
- Duke University Medical Center, 201H Bryan Research Building, Research Drive, Durham, NC 27710, USA
| | - Barry D Greenberg
- University Health Network, Toronto Western Research Institute, 399 Bathurst Street, MP 14-328, Toronto, ON, M5T 2S8, Canada
| | - Beth A Hollister
- Charles River Discovery Services, 3300 Gateway Centre Boulevard, Morrisville, NC 27560, USA
| | - John Lincecum
- ALS Therapy Development Institute, 215 First Street, Cambridge, MA 02142, USA
| | | | - Linda (Bobbi) H Lee
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
- Columbia University, 630 West 168th Street, Building PS 12-510, New York, NY 10032, USA
| | - Feng Luo
- Abbott Neuroscience, AP4-2, 100 Abbott Park Road, Abbott Park, IL 60064-6076, USA
| | - Dave Morgan
- USF Health Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Avenue, MDC Box 36, Tampa FL 33613, USA
| | - Iva Morse
- Genetically Engineered Models and Services/Charles River Laboratories, Inc., 251 Ballardvale Street, Wilmington, MA 01887, USA
| | - Lorenzo M Refolo
- National Institute on Aging, 7201 Wisconsin Avenue, Gateway Building, Suite 350, Bethesda, MD 20892, USA
| | - David R Riddell
- Pfizer Neuroscience Research Unit, MS 8220-3414, Eastern Point Road, Groton, CT 06340, USA
| | | | - Patrick Sweeney
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Juha Yrjänheikki
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Howard M Fillit
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| |
Collapse
|
28
|
Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol 2011; 122:293-311. [PMID: 21688176 PMCID: PMC3168476 DOI: 10.1007/s00401-011-0834-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/11/2011] [Accepted: 05/04/2011] [Indexed: 12/19/2022]
Abstract
Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of β-amyloid (Aβ) in Alzheimer's disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic β-amyloid (arcAβ) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the blood-brain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread β-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAβ mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice.
Collapse
|
29
|
Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions. Neurobiol Aging 2011; 33:831.e11-9. [PMID: 21880397 DOI: 10.1016/j.neurobiolaging.2011.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 11/21/2022]
Abstract
The Arctic APP mutation (E693G) within the amyloid β (Aβ) domain of amyloid precursor protein (APP) leads to dementia with clinical features similar to Alzheimer's disease (AD), which is believed to be mediated via increased formation of protofibrils. We have generated a transgenic mouse model, TgAPParc, with neuron-specific expression of human amyloid precursor protein with the Arctic mutation (hAPParc), showing mild amyloid pathology with a relatively late onset. Here we performed a detailed analysis of the spatiotemporal progression of neuropathology in homozygous TgAPParc, focusing on intracellular Aβ and diffuse Aβ aggregates rather than amyloid plaques. We show that the neuropathology in homozygous TgAPParc mice starts with intracellular Aβ aggregates, which is followed by diffuse extracellular Aβ deposits in subiculum that later expands to brain regions receiving neuronal projections from regions already affected. Together this suggests that the pathology in TgAPParc mice affects interconnected brain regions and may represent a valuable tool to study the spread and progression of neuropathology in Alzheimer's disease.
Collapse
|
30
|
Lord A, Philipson O, Klingstedt T, Westermark G, Hammarström P, Nilsson KPR, Nilsson LNG. Observations in APP bitransgenic mice suggest that diffuse and compact plaques form via independent processes in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2286-98. [PMID: 21514441 DOI: 10.1016/j.ajpath.2011.01.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/04/2011] [Accepted: 01/13/2011] [Indexed: 11/26/2022]
Abstract
Studies of familial Alzheimer's disease suggest that misfolding and aggregation of amyloid-β (Aβ) peptides initiate the pathogenesis. The Arctic mutation of Aβ precursor protein (APP) results in AD, and Arctic Aβ is more prone to form Aβ protofibrils and extracellular deposits. Herein is demonstrated that the burden of diffuse Aβ deposits but not compact plaques is increased when tg-Swe mice are crossed with tg-ArcSwe mice synthesizing low levels of Arctic Aβ. The diffuse deposits in bitransgenic mice, which contain primarily wild-type Aβ42, accumulate in regions both with and without transgene expression. However, APP processing, when compared with tg-Swe, remains unchanged in young bitransgenic mice, whereas wild-type Aβ42 aggregation is accelerated and fibril architecture is altered in vitro and in vivo when a low level of Arctic Aβ42 is introduced. Thus, the increased number of diffuse deposits is likely due to physical interactions between Arctic Aβ and wild-type Aβ42. The selective increase of a single type of parenchymal Aβ deposit suggests that different pathways lead to formation of diffuse and compact plaques. These findings could have general implications for Alzheimer's disease pathogenesis and particular relevance to patients heterozygous for the Arctic APP mutation. Moreover, it further illustrates how Aβ neuropathologic features can be manipulated in vivo by mechanisms similar to those originally conceptualized in prion research.
Collapse
Affiliation(s)
- Anna Lord
- Department of Public Health and Caring Sciences/Molecular Geriatrics, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
31
|
Havas D, Hutter-Paier B, Ubhi K, Rockenstein E, Crailsheim K, Masliah E, Windisch M. A longitudinal study of behavioral deficits in an AβPP transgenic mouse model of Alzheimer's disease. J Alzheimers Dis 2011; 25:231-43. [PMID: 21403389 PMCID: PMC4944527 DOI: 10.3233/jad-2011-101866] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elucidating the age-dependent alterations in transgenic (Tg) mice overexpressing amyloid-β protein precursor (AβPP) is important for understanding the pathogenesis of Alzheimer's disease (AD) and designing experimental therapies. Cross-studies have previously characterized some time-dependent behavioral and pathological alterations in AβPP Tg mice, however, a more comprehensive longitudinal study is needed to fully examine the progressive nature of behavioral deficits in these mice. In order to better understand the age- and gender-dependent progression of behavioral alterations, we performed a longitudinal study wherein Tg mice overexpressing human AβPP751 with the London (V717I) and Swedish (K670M/N671L) mutations under the regulatory control of the neuron specific murine (m)Thy-1 promoter (mThy1-hAβPP751) were behaviorally analyzed at 3 months and then re-tested at 6 and 9 months of age. The results show that there was an age-associated impairment in learning in the water maze task and habituation in the hole-board task. Motor coordination of the mThy1-hAβPP751 Tg mice was well-preserved throughout the investigated life span however, gender-specific deficits were observed in spontaneous activity and thigmotaxis. Neuropathologically, mThy1-hAβPP751 Tg mice displayed a progressive increase in the number of Aβ plaques and mean plaque size in the cortex and hippocampus from 3 to 6 and from 6 to 9 months of age. Taken together, these results indicate that the mThy1-hAβPP751 Tg mice model AD from the early onset of the disease through to later stages, allowing them to be utilized at numerous points during the timeline for drug test designs.
Collapse
Affiliation(s)
| | | | - Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Karl Crailsheim
- Department of Zoology, Karl Franzens-University, 8010, Austria
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
- Department of Pathology, University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
32
|
Schaeffer EL, Figueiro M, Gattaz WF. Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics (Sao Paulo) 2011; 66 Suppl 1:45-54. [PMID: 21779722 PMCID: PMC3118437 DOI: 10.1590/s1807-59322011001300006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/16/2023] Open
Abstract
Alzheimer disease is the most common cause of dementia among the elderly, accounting for ~60-70% of all cases of dementia. The neuropathological hallmarks of Alzheimer disease are senile plaques (mainly containing p-amyloid peptide derived from amyloid precursor protein) and neurofibrillary tangles (containing hyperphosphorylated Tau protein), along with neuronal loss. At present there is no effective treatment for Alzheimer disease. Given the prevalence and poor prognosis of the disease, the development of animal models has been a research priority to understand pathogenic mechanisms and to test therapeutic strategies. Most cases of Alzheimer disease occur sporadically in people over 65 years old, and are not genetically inherited. Roughly 5% of patients with Alzheimer disease have familial Alzheimer disease--that is, related to a genetic predisposition, including mutations in the amyloid precursor protein, presenilin 1, and presenilin 2 genes. The discovery of genes for familial Alzheimer disease has allowed transgenic models to be generated through the overexpression of the amyloid precursor protein and/or presenilins harboring one or several mutations found in familial Alzheimer disease. Although none of these models fully replicates the human disease, they have provided valuable insights into disease mechanisms as well as opportunities to test therapeutic approaches. This review describes the main transgenic mouse models of Alzheimer disease which have been adopted in Alzheimer disease research, and discusses the insights into Alzheimer disease pathogenesis from studies in such models. In summary, the Alzheimer disease mouse models have been the key to understanding the roles of soluble b-amyloid oligomers in disease pathogenesis, as well as of the relationship between p-amyloid and Tau pathologies.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience, Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, Brazil.
| | | | | |
Collapse
|