1
|
Wu Y, Dong JH, Dai YF, Zhu MZ, Wang MY, Zhang Y, Pan YD, Yuan XR, Guo ZX, Wang CX, Li YQ, Zhu XH. Hepatic soluble epoxide hydrolase activity regulates cerebral Aβ metabolism and the pathogenesis of Alzheimer's disease in mice. Neuron 2023; 111:2847-2862.e10. [PMID: 37402372 DOI: 10.1016/j.neuron.2023.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Alzheimer's disease (AD) is caused by a complex interaction between genetic and environmental factors. However, how the role of peripheral organ changes in response to environmental stimuli during aging in AD pathogenesis remains unknown. Hepatic soluble epoxide hydrolase (sEH) activity increases with age. Hepatic sEH manipulation bidirectionally attenuates brain amyloid-β (Aβ) burden, tauopathy, and cognitive deficits in AD mouse models. Moreover, hepatic sEH manipulation bidirectionally regulates the plasma level of 14,15-epoxyeicosatrienoic acid (-EET), which rapidly crosses the blood-brain barrier and modulates brain Aβ metabolism through multiple pathways. A balance between the brain levels of 14,15-EET and Aβ is essential for preventing Aβ deposition. In AD models, 14,15-EET infusion mimicked the neuroprotective effects of hepatic sEH ablation at biological and behavioral levels. These results highlight the liver's key role in AD pathology, and targeting the liver-brain axis in response to environmental stimuli may constitute a promising therapeutic approach for AD prevention.
Collapse
Affiliation(s)
- Yu Wu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Jing-Hua Dong
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yong-Feng Dai
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng-Yao Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yuan Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Yi-Da Pan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xin-Rui Yuan
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Zhi-Xin Guo
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China
| | - Chen-Xi Wang
- Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuan-Qing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou 510330, China
| | - Xin-Hong Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China; Research Center for Brain Health, Pazhou Lab, Guangzhou 510330, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021; 10:cells10102581. [PMID: 34685563 PMCID: PMC8533897 DOI: 10.3390/cells10102581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Most AD patients develop the disease in late life, named late onset AD (LOAD). Currently, the most recognized explanation for AD pathology is the amyloid cascade hypothesis. It is assumed that amyloid beta (Aβ) aggregation and deposition are critical pathogenic processes in AD, leading to the formation of amyloid plaques, as well as neurofibrillary tangles, neuronal cell death, synaptic degeneration, and dementia. In LOAD, the causes of Aβ accumulation and neuronal loss are not completely clear. Importantly, the blood–brain barrier (BBB) disruption seems to present an essential role in the induction of neuroinflammation and consequent AD development. In addition, we propose that the systemic inflammation triggered by conditions like metabolic diseases or infections are causative factors of BBB disruption, coexistent inflammatory cascade and, ultimately, the neurodegeneration observed in AD. In this regard, the use of anti-inflammatory molecules could be an interesting strategy to treat, delay or even halt AD onset and progression. Herein, we review the inflammatory cascade and underlying mechanisms involved in AD pathogenesis and revise the anti-inflammatory effects of compounds as emerging therapeutic drugs against AD.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - Ewa Kucharska
- Faculty of Education, Institute of Educational Sciences, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland;
| | - Michelle Lima Garcez
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil;
| | - Matheus Scarpatto Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-000, Brazil; (J.d.O.); (M.S.R.)
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, MD Anderson Cancer Center, UTHealth, The University of Texas Houston, Houston, TX 77030, USA
- Graduate Program in Health Sciences, Translational Psychiatry Laboratory, University of Southern Santa Catarina (UNESC), Criciuma 88806-000, Brazil
| | - Ines Moreno-Gonzalez
- Department of Cell Biology, Faculty of Sciences, University of Malaga, IBIMA, 29010 Malaga, Spain;
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), 29010 Malaga, Spain
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Josiane Budni
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Neurologia Experimental, Universidade do Extremo Sul Catarinense, Criciuma 88806-000, Brazil
- Correspondence: ; Tel.: +55-48431-2539
| |
Collapse
|
3
|
Wang SY, Gong PY, E Y, Zhang YD, Jiang T. The Role of TREML2 in Alzheimer's Disease. J Alzheimers Dis 2021; 76:799-806. [PMID: 32568208 DOI: 10.3233/jad-200406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Late-onset Alzheimer's disease (AD) accounts for most of all AD casesand is currently considered a complex disorder caused by a combination of environmental and genetic factors. As an important family member of triggering receptor expressed on myeloid cells (TREM), TREM-like transcript 2 gene (TREML2) locates on human chromosome 6p21.1, a newly-identified hot zone for AD susceptibility, and encodes atransmembrane immune receptor. Emerging evidence implied a potential role of TREML2 in the susceptibility and pathogenesis of AD. Here, we review the recent literature about the association of TREML2 variants with AD risk and disease endophenotypes. Moreover, we summarize the latest findings regarding cellular localization and biological functions of TREML2 and speculate its possible role in AD pathogenesis. In addition, we discuss future research directions of TREML2 and AD.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Yuhua Hospital, Nanjing, China
| | - Peng-Yu Gong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Yuhua Hospital, Nanjing, China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Yuhua Hospital, Nanjing, China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Yuhua Hospital, Nanjing, China.,School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Neurology, Nanjing Yuhua Hospital, Nanjing, China
| |
Collapse
|
4
|
Chen W, Wang M, Zhu M, Xiong W, Qin X, Zhu X. 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease. J Neurosci 2020; 40:8188-8203. [PMID: 32973044 PMCID: PMC7574654 DOI: 10.1523/jneurosci.1246-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-β (Aβ) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Aβ deposition in the brains of both male and female familial Alzheimer's disease (5×FAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5×FAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Aβ clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5×FAD mice prevented the aggregation of Aβ. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Aβ deposition in the brains of 6-month-old male 5×FAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5×FAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-β (Aβ) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5×FAD mice not only prevented the aggregation of Aβ, but also reversed the deposition of Aβ. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
Collapse
Affiliation(s)
- Wenjun Chen
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Mengyao Wang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Minzhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Wenchao Xiong
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
| | - Xihe Qin
- Eusyn Medical Technology Company, Guangzhou 510663, People's Republic of China
| | - Xinhong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
- Key Laboratory of Mental Health of the Ministry of Education and Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou 510515, People's Republic of China
- School of Psychology, Shenzhen University, Shenzhen 518060, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, People's Republic of China
| |
Collapse
|
5
|
Liu Z, Shriner D, Hansen NF, Rotimi CN, Mullikin JC. Admixture mapping identifies genetic regions associated with blood pressure phenotypes in African Americans. PLoS One 2020; 15:e0232048. [PMID: 32315356 PMCID: PMC7173845 DOI: 10.1371/journal.pone.0232048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/06/2020] [Indexed: 01/11/2023] Open
Abstract
Hypertension occurs at a higher rate in African Americans than in European Americans. Based on the assumption that causal variants are more frequently found on DNA segments inherited from the ancestral population with higher disease risk, we employed admixture mapping to identify genetic loci with excess local African ancestry associated with blood pressure. Chromosomal regions 1q21.2–21.3, 4p15.1, 19q12 and 20p13 were significantly associated with diastolic blood pressure (β = 5.28, -7.94, -6.82 and 5.89, P-value = 6.39E-04, 2.07E-04, 6.56E-05 and 5.04E-04, respectively); 1q21.2–21.3 and 19q12 were also significantly associated with mean arterial pressure (β = 5.86 and -6.40, P-value = 5.32E-04 and 6.37E-04, respectively). We further selected SNPs that had large allele frequency differences within these regions and tested their association with blood pressure. SNP rs4815428 was significantly associated with diastolic blood pressure after Bonferroni correction (β = -2.42, P-value = 9.57E-04), and it partially explained the admixture mapping signal at 20p13. SNPs rs771205 (β = -1.99, P-value = 3.37E-03), rs3126067, rs2184953 and rs58001094 (the latter three exhibit strong linkage disequilibrium, β = -2.3, P-value = 1.4E-03) were identified to be significantly associated with mean arterial pressure, and together they fully explained the admixture signal at 1q21.2–21.3. Although no SNP at 4p15.1 showed large ancestral allele frequency differences in our dataset, we detected association at low-frequency African-specific variants that mapped predominantly to the gene PCDH7, which is most highly expressed in aorta. Our results suggest that these regions may harbor genetic variants that contribute to the different prevalence of hypertension.
Collapse
Affiliation(s)
- Zhi Liu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James C. Mullikin
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | | |
Collapse
|
6
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
7
|
Dehghani R, Rahmani F, Rezaei N. MicroRNA in Alzheimer's disease revisited: implications for major neuropathological mechanisms. Rev Neurosci 2018; 29:161-182. [PMID: 28941357 DOI: 10.1515/revneuro-2017-0042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
Abstract
Pathology of Alzheimer's disease (AD) goes far beyond neurotoxicity resulting from extracellular deposition of amyloid β (Aβ) plaques. Aberrant cleavage of amyloid precursor protein and accumulation of Aβ in the form of the plaque or neurofibrillary tangles are the known primary culprits of AD pathogenesis and target for various regulatory mechanisms. Hyper-phosphorylation of tau, a major component of neurofibrillary tangles, precipitates its aggregation and prevents its clearance. Lipid particles, apolipoproteins and lipoprotein receptors can act in favor or against Aβ and tau accumulation by altering neural membrane characteristics or dynamics of transport across the blood-brain barrier. Lipids also alter the oxidative/anti-oxidative milieu of the central nervous system (CNS). Irregular cell cycle regulation, mitochondrial stress and apoptosis, which follow both, are also implicated in AD-related neuronal loss. Dysfunction in synaptic transmission and loss of neural plasticity contribute to AD. Neuroinflammation is a final trail for many of the pathologic mechanisms while playing an active role in initiation of AD pathology. Alterations in the expression of microRNAs (miRNAs) in AD and their relevance to AD pathology have long been a focus of interest. Herein we focused on the precise pathomechanisms of AD in which miRNAs were implicated. We performed literature search through PubMed and Scopus using the search term: ('Alzheimer Disease') OR ('Alzheimer's Disease') AND ('microRNAs' OR 'miRNA' OR 'MiR') to reach for relevant articles. We show how a limited number of common dysregulated pathways and abnormal mechanisms are affected by various types of miRNAs in AD brain.
Collapse
Affiliation(s)
- Reihaneh Dehghani
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| | - Farzaneh Rahmani
- Students Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Molecular Immunology Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran 1419783151, Iran
| |
Collapse
|
8
|
Nafikov RA, Nato AQ, Sohi H, Wang B, Brown L, Horimoto AR, Vardarajan BN, Barral SM, Tosto G, Mayeux RP, Thornton TA, Blue E, Wijsman EM. Analysis of pedigree data in populations with multiple ancestries: Strategies for dealing with admixture in Caribbean Hispanic families from the ADSP. Genet Epidemiol 2018; 42:500-515. [PMID: 29862559 PMCID: PMC6160322 DOI: 10.1002/gepi.22133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 11/12/2022]
Abstract
Multipoint linkage analysis is an important approach for localizing disease-associated loci in pedigrees. Linkage analysis, however, is sensitive to misspecification of marker allele frequencies. Pedigrees from recently admixed populations are particularly susceptible to this problem because of the challenge of accurately accounting for population structure. Therefore, increasing emphasis on use of multiethnic samples in genetic studies requires reevaluation of best practices, given data currently available. Typical strategies have been to compute allele frequencies from the sample, or to use marker allele frequencies determined by admixture proportions averaged over the entire sample. However, admixture proportions vary among pedigrees and throughout the genome in a family-specific manner. Here, we evaluate several approaches to model admixture in linkage analysis, providing different levels of detail about ancestral origin. To perform our evaluations, for specification of marker allele frequencies, we used data on 67 Caribbean Hispanic admixed families from the Alzheimer's Disease Sequencing Project. Our results show that choice of admixture model has an effect on the linkage analysis results. Variant-specific admixture proportions, computed for individual families, provide the most detailed regional admixture estimates, and, as such, are the most appropriate allele frequencies for linkage analysis. This likely decreases the number of false-positive results, and is straightforward to implement.
Collapse
Affiliation(s)
- Rafael A Nafikov
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Alejandro Q Nato
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Harkirat Sohi
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Bowen Wang
- Department of Statistics, University of Washington, Seattle, Washington
| | - Lisa Brown
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Andrea R Horimoto
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Sandra M Barral
- Department of Neurology, Columbia University, New York, Washington
| | - Giuseppe Tosto
- Department of Neurology, Columbia University, New York, Washington
| | - Richard P Mayeux
- Department of Neurology, Columbia University, New York, Washington
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington.,Department of Biostatistics, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Genetic Risk Factors for Complex Forms of Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Girard H, Potvin O, Nugent S, Dallaire-Théroux C, Cunnane S, Duchesne S. Faster progression from MCI to probable AD for carriers of a single-nucleotide polymorphism associated with type 2 diabetes. Neurobiol Aging 2017; 64:157.e11-157.e17. [PMID: 29338921 DOI: 10.1016/j.neurobiolaging.2017.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Sporadic Alzheimer's disease (AD), as opposed to its autosomal dominant form, is likely caused by a complex interaction of genetic, environmental, and health lifestyle factors. Twin studies indicate that sporadic AD heritability could be between 58% and 79%, around half of which is explained by the ε4 allele of the apolipoprotein E (APOE4). We hypothesized that genes associated with known risk factors for AD, namely hypertension, hypercholesterolemia, obesity, diabetes, and cardiovascular disease, would contribute significantly to the remaining heritability. We analyzed 22 AD-associated single-nucleotide polymorphisms (SNPs), associated with these risk factors, that were included in the sequencing data of the Alzheimer's Disease Neuroimaging Initiative 1 data set, which included 355 participants with mild cognitive impairment (MCI). We built survival models with the selected SNPs to predict progression of MCI to probable AD over the 10-year follow-up of the study. The rs391300 SNP, located on the serine racemase (SRR) gene and linked to increased susceptibility to type 2 diabetes, was associated with progression from MCI to probable AD.
Collapse
Affiliation(s)
- Hugo Girard
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Département de radiologie, Faculté de médecine, Université Laval, Québec, Canada
| | - Olivier Potvin
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Scott Nugent
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada
| | - Caroline Dallaire-Théroux
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Faculté de médecine, Université Laval, Québec, Canada
| | - Stephen Cunnane
- Département de médecine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Simon Duchesne
- Centre de recherche CERVO de l'Institut universitaire en santé mentale de Québec, Québec, Canada; Département de radiologie, Faculté de médecine, Université Laval, Québec, Canada.
| | | |
Collapse
|
11
|
Szefer E, Lu D, Nathoo F, Beg MF, Graham J. Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation. Stat Appl Genet Mol Biol 2017; 16:349-365. [PMID: 29091582 PMCID: PMC9008768 DOI: 10.1515/sagmb-2016-0077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractUsing publicly-available data from the Alzheimer’s Disease Neuroimaging Initiative, we investigate the joint association between single-nucleotide polymorphisms (SNPs) in previously established linkage regions for Alzheimer’s disease (AD) and rates of decline in brain structure. In an initial, discovery stage of analysis, we applied a weighted
Collapse
Affiliation(s)
- Elena Szefer
- Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Donghuan Lu
- School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Farouk Nathoo
- Department of Mathematics and Statistics, University of Victoria, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Jinko Graham
- Corresponding author: Jinko Graham, Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada,
| | | |
Collapse
|
12
|
Naj AC, Schellenberg GD. Genomic variants, genes, and pathways of Alzheimer's disease: An overview. Am J Med Genet B Neuropsychiatr Genet 2017; 174:5-26. [PMID: 27943641 PMCID: PMC6179157 DOI: 10.1002/ajmg.b.32499] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia. With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets. Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately ∼20 genes with common variants contributing to LOAD risk. In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses. Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple low-frequency and rare variant contributors to AD, and discuss on-going efforts with next-generation sequencing studies to develop statistically well- powered and comprehensive genomic studies of AD. Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam C Naj
- Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Du W, Tan J, Xu W, Chen J, Wang L. Association between clusterin gene polymorphism rs11136000 and late-onset Alzheimer's disease susceptibility: A review and meta-analysis of case-control studies. Exp Ther Med 2016; 12:2915-2927. [PMID: 27882096 PMCID: PMC5103725 DOI: 10.3892/etm.2016.3734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/28/2016] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to evaluate the association between rs11136000 in clusterin (CLU) and late-onset Alzheimer's disease (LOAD) by meta-analysis. Several databases including PubMed, EMbase, CBMdisc and CMCC were searched for relevant case-control studies based on defined selection criteria. Odds ratios (OR) and 95% confidence interval (CI) of the rs11136000 genotype and allele distribution were analyzed with RevMan and Stata software. The control population and heterogeneity between populations were examined in the selected studies using the Hardy-Weinberg equilibrium. Overall OR among the frequencies of the genotype and allele in both patients with AD and controls was estimated using fixed or random effect models. The summary of the OR and 95% CI were then analyzed to obtain the effects across the studies. Publication bias was examined using a funnel plot, Egger's test and Begg's test, and a Fail-safe Number (Nfs). A total of 20 reports were used. The summary OR for studies in the Caucasian population with a frequency of TT+TC/CC genotype and T/C allele at rs11136000 locus in CLU were 0.79 (95% CI, 0.73-0.86; P<0.00001) and 0.87 (95% CI, 0.85-0.90; P<0.00001). The summary OR for the studies conducted in the Asian population were 0.90 (95% CI, 0.81-0.99; P=0.04) and 0.87 (95% CI, 0.81-0.93; P<0.0001). The summary OR in other mixed ethnic groups with regards to the frequency of T/C allele was 0.82 (95% CI, 0.68-0.99; P=0.04). These results demonstrated the presence of a statistically significant difference in LOAD susceptibility between individuals with the T allele CLU rs11136000 polymorphism and those without. The studies conducted in populations of African descent or Hispanics showed no statistically significant difference. Negligible publication bias was present, with Nfs being 750.604. In summary, polymorphism rs11136000 in the CLU gene may contribute to susceptibility to LOAD, and the presence of the T allele may reduce the risk of LOAD in Caucasian and Asian populations. However, no definitive association was found between the presence of the CLU rs11136000 polymorphism and LOAD in populations of African or Hispanic descent.
Collapse
Affiliation(s)
- Wenjin Du
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Jiping Tan
- Department of Geriatric Neurology, Clinical Division of South Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wei Xu
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Jinwen Chen
- Department of Geriatric Neurology, Chinese PLA General Hospital of the Air Force, Beijing 100142, P.R. China
| | - Luning Wang
- Department of Geriatric Neurology, Clinical Division of South Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
14
|
Miners JS, Clarke P, Love S. Clusterin levels are increased in Alzheimer's disease and influence the regional distribution of Aβ. Brain Pathol 2016; 27:305-313. [PMID: 27248362 DOI: 10.1111/bpa.12392] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Clusterin, also known as apoJ, is a lipoprotein abundantly expressed within the CNS. It regulates Aβ fibril formation and toxicity and facilitates amyloid-β (Aβ) transport across the blood-brain barrier. Genome-wide association studies have shown variations in the clusterin gene (CLU) to influence the risk of developing sporadic Alzheimer's disease (AD). To explore whether clusterin modulates the regional deposition of Aβ, we measured levels of soluble (NP40-extracted) and insoluble (guanidine-HCl-extracted) clusterin, Aβ40 and Aβ42 by sandwich ELISA in brain regions with a predilection for amyloid pathology-mid-frontal cortex (MF), cingulate cortex (CC), parahippocampal cortex (PH), and regions with little or no pathology-thalamus (TH) and white matter (WM). Clusterin level was highest in regions with plaque pathology (MF, CC, PH and PC), approximately mirroring the regional distribution of Aβ. It was significantly higher in AD than controls, and correlated positively with Aβ42 and insoluble Aβ40. Soluble clusterin level rose significantly with severity of cerebral amyloid angiopathy, and in MF and PC regions was highest in APOE ɛ4 homozygotes. In the TH and WM (areas with little amyloid pathology) clusterin was unaltered in AD and did not correlate with Aβ level. There was a significant positive correlation between the concentration of clusterin and the regional levels of insoluble Aβ42; however, the molar ratio of clusterin : Aβ42 declined with insoluble Aβ42 level in a region-dependent manner, being lowest in regions with predilection for Aβ plaque pathology. Under physiological conditions, clusterin reduces aggregation and promotes clearance of Aβ. Our findings indicate that in AD, clusterin increases, particularly in regions with most abundant Aβ, but because the increase does not match the rising level of Aβ42, the molar ratio of clusterin : Aβ42 in those regions falls, probably contributing to Aβ deposition within the tissue.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Polly Clarke
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| | - Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, United Kingdom
| |
Collapse
|
15
|
Barral S, Cheng R, Reitz C, Vardarajan B, Lee J, Kunkle B, Beecham G, Cantwell LS, Pericak-Vance MA, Farrer LA, Haines JL, Goate AM, Foroud T, Boerwinkle E, Schellenberg GD, Mayeux R. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer's disease. Alzheimers Dement 2015; 11:1397-1406. [PMID: 26433351 PMCID: PMC4690771 DOI: 10.1016/j.jalz.2015.07.487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION We performed linkage analyses in Caribbean Hispanic families with multiple late-onset Alzheimer's disease (LOAD) cases to identify regions that may contain disease causative variants. METHODS We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of the linked regions was repeated using the entire sample of 282 families. Validated chromosomal regions were analyzed using joint linkage and association. RESULTS We identified 26 regions linked to LOAD (HLOD ≥3.6). We validated 13 of the regions (HLOD ≥2.5) using the entire family sample. The strongest signal was at 11q12.3 (rs2232932: HLODmax = 4.7, Pjoint = 6.6 × 10(-6)), a locus located ∼2 Mb upstream of the membrane-spanning 4A gene cluster. We additionally identified a locus at 7p14.3 (rs10255835: HLODmax = 4.9, Pjoint = 1.2 × 10(-5)), a region harboring genes associated with the nervous system (GARS, GHRHR, and NEUROD6). DISCUSSION Future sequencing efforts should focus on these regions because they may harbor familial LOAD causative mutations.
Collapse
Affiliation(s)
- Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Rong Cheng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Joseph Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Brian Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gary Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Laura S Cantwell
- Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Lindsay A Farrer
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; Department of Medicine (Biomedical Genetics), Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Neurology, Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine and Public Health, Boston, MA, USA; Department of Epidemiology, Boston University School of Medicine and Public Health, Boston, MA, USA
| | - Jonathan L Haines
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Alison M Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, Houston, TX, USA; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Talwar P, Sinha J, Grover S, Rawat C, Kushwaha S, Agarwal R, Taneja V, Kukreti R. Dissecting Complex and Multifactorial Nature of Alzheimer's Disease Pathogenesis: a Clinical, Genomic, and Systems Biology Perspective. Mol Neurobiol 2015; 53:4833-64. [PMID: 26351077 DOI: 10.1007/s12035-015-9390-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/11/2015] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory and other cognitive functions. AD can be classified into familial AD (FAD) and sporadic AD (SAD) based on heritability and into early onset AD (EOAD) and late onset AD (LOAD) based on age of onset. LOAD cases are more prevalent with genetically complex architecture. In spite of significant research focused on understanding the etiological mechanisms, search for diagnostic biomarker(s) and disease-modifying therapy is still on. In this article, we aim to comprehensively review AD literature on established etiological mechanisms including role of beta-amyloid and apolipoprotein E (APOE) along with promising newer etiological factors such as epigenetic modifications that have been associated with AD suggesting its multifactorial nature. As genomic studies have recently played a significant role in elucidating AD pathophysiology, a systematic review of findings from genome-wide linkage (GWL), genome-wide association (GWA), genome-wide expression (GWE), and epigenome-wide association studies (EWAS) was conducted. The availability of multi-dimensional genomic data has further coincided with the advent of computational and network biology approaches in recent years. Our review highlights the importance of integrative approaches involving genomics and systems biology perspective in elucidating AD pathophysiology. The promising newer approaches may provide reliable means of early and more specific diagnosis and help identify therapeutic interventions for LOAD.
Collapse
Affiliation(s)
- Puneet Talwar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Juhi Sinha
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Sandeep Grover
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.,Department of Paediatrics, Division of Pneumonology-Immunology, Charité University Medical Centre, Berlin, Germany
| | - Chitra Rawat
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India.,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India
| | - Suman Kushwaha
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Rachna Agarwal
- Institute of Human Behaviour and Allied Sciences (IHBAS), Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Ritushree Kukreti
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, New Delhi, India. .,Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, 110 007, India.
| |
Collapse
|
17
|
Painter MM, Atagi Y, Liu CC, Rademakers R, Xu H, Fryer JD, Bu G. TREM2 in CNS homeostasis and neurodegenerative disease. Mol Neurodegener 2015; 10:43. [PMID: 26337043 PMCID: PMC4560063 DOI: 10.1186/s13024-015-0040-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 02/07/2023] Open
Abstract
Myeloid-lineage cells accomplish a myriad of homeostatic tasks including the recognition of pathogens, regulation of the inflammatory milieu, and mediation of tissue repair and regeneration. The innate immune receptor and its adaptor protein—triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12)—possess the ability to modulate critical cellular functions via crosstalk with diverse signaling pathways. As such, mutations in TREM2 and DAP12 have been found to be associated with a range of disease phenotypes. In particular, mutations in TREM2 increase the risk for Alzheimer's disease and other neurodegenerative disorders. The leading hypothesis is that microglia, the resident immune cells of the central nervous system, are the major myeloid cells affected by dysregulated TREM2-DAP12 function. Here, we review how impaired signaling by the TREM2-DAP12 pathway leads to altered immune responses in phagocytosis, cytokine production, and microglial proliferation and survival, thus contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Meghan M Painter
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. .,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. .,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA. .,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361102, China. .,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
18
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
19
|
Medway C, Morgan K. Review: The genetics of Alzheimer's disease; putting flesh on the bones. Neuropathol Appl Neurobiol 2014; 40:97-105. [PMID: 24443964 PMCID: PMC4282344 DOI: 10.1111/nan.12101] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 01/14/2023]
Abstract
For two decades the search for genes involved in Alzheimer's disease brought little reward; it was not until the advent of genome-wide association studies (GWAS) that genetic associations started to be revealed. Since 2009 increasingly large GWAS have revealed 20 loci, which in itself is a substantial increase in our understanding, but perhaps the more important feature is that these studies have highlighted novel pathways that are potentially involved in the disease process. This commentary assembles our latest knowledge while acknowledging that the casual functional variants, and undoubtedly, other genes are still yet to be discovered. This is the challenge that remains and the promise of next-generation sequencing is anticipated as there are a number of large initiatives which themselves should start to yield information before long.
Collapse
Affiliation(s)
- C Medway
- Translation Cell Sciences - Human Genetics, School of Life Sciences, Queens Medical Centre, Nottingham, UK
| | | |
Collapse
|
20
|
Ma J, Zhou Y, Xu J, Liu X, Wang Y, Deng Y, Wang G, Xu W, Ren R, Liu X, Zhang Y, Wang C, Tang H, Chen S. Association study ofTREM2polymorphism rs75932628 with late-onset Alzheimer’s disease in Chinese Han population. Neurol Res 2014; 36:894-6. [DOI: 10.1179/1743132814y.0000000376] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, Kukreti R. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease. BMC Genomics 2014; 15:199. [PMID: 24628925 PMCID: PMC4028079 DOI: 10.1186/1471-2164-15-199] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/21/2014] [Indexed: 01/28/2023] Open
Abstract
Background Alzheimer’s disease (AD) is one of the leading genetically complex and heterogeneous disorder that is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis (GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the identification of several candidate genes associated with AD. However, due to lack of consistency within their findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling. Results Our approach employs integration of three different AD datasets- GWL,GWA and GWE to identify overlapping candidate genes ranked using a novel cumulative rank score (SR) based method followed by prioritization using clusters derived from PPI network. SR for each gene is calculated by addition of rank assigned to individual gene based on either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins. Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion, endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two most significant AD risk genes. Conclusions With the assumption that common genetic signals obtained from different methodological platforms might serve as robust AD risk markers than candidates identified using single dimension approach, here we demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from heterogeneous data sources linked to AD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-199) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110 007, India.
| |
Collapse
|
22
|
Amyloid beta: multiple mechanisms of toxicity and only some protective effects? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:795375. [PMID: 24683437 PMCID: PMC3941171 DOI: 10.1155/2014/795375] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/21/2013] [Accepted: 12/22/2013] [Indexed: 12/22/2022]
Abstract
Amyloid beta (Aβ) is a peptide of 39–43 amino acids found in large amounts and forming deposits in the brain tissue of patients with Alzheimer's disease (AD). For this reason, it has been implicated in the pathophysiology of damage observed in this type of dementia. However, the role of Aβ in the pathophysiology of AD is not yet precisely understood. Aβ has been experimentally shown to have a wide range of toxic mechanisms in vivo and in vitro, such as excitotoxicity, mitochondrial alterations, synaptic dysfunction, altered calcium homeostasis, oxidative stress, and so forth. In contrast, Aβ has also shown some interesting neuroprotective and physiological properties under certain experimental conditions, suggesting that both physiological and pathological roles of Aβ may depend on several factors. In this paper, we reviewed both toxic and protective mechanisms of Aβ to further explore what their potential roles could be in the pathophysiology of AD. The complete understanding of such apparently opposed effects will also be an important guide for the therapeutic efforts coming in the future.
Collapse
|
23
|
Zetzsche T, Rujescu D, Hardy J, Hampel H. Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev Mol Diagn 2014; 10:667-90. [PMID: 20629514 DOI: 10.1586/erm.10.48] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Zetzsche
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Nussbaumstrasse 7, Munich, Germany. thomas.zetzsche@ med.uni-muenchen.de
| | | | | | | |
Collapse
|
24
|
Caberlotto L, Lauria M, Nguyen TP, Scotti M. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer's disease: a multifactor network analysis. PLoS One 2013; 8:e78919. [PMID: 24265728 PMCID: PMC3827084 DOI: 10.1371/journal.pone.0078919] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized by the hallmark pathology of amyloid-β deposition, neurofibrillary tangle formation, and extensive neuronal degeneration in the brain. Wealth of data related to Alzheimer’s disease has been generated to date, nevertheless, the molecular mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and ultimately, in genes associated to Alzheimer’s disease, due to the cumulative effect of different combinations of the starting data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a series of brain functions altered in Alzheimer’s disease and could link genetic perturbation with neuronal transmission and energy regulation, representing a potential candidate to be targeted by therapy.
Collapse
Affiliation(s)
- Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational Systems Biology, Rovereto, Italy
- * E-mail:
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational Systems Biology, Rovereto, Italy
| | - Thanh-Phuong Nguyen
- The Microsoft Research - University of Trento Centre for Computational Systems Biology, Rovereto, Italy
| | - Marco Scotti
- The Microsoft Research - University of Trento Centre for Computational Systems Biology, Rovereto, Italy
| |
Collapse
|
25
|
Zhao W, Marchani EE, Cheung CYK, Steinbart EJ, Schellenberg GD, Bird TD, Wijsman EM. Genome scan in familial late-onset Alzheimer's disease: a locus on chromosome 6 contributes to age-at-onset. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:201-12. [PMID: 23355194 PMCID: PMC3654841 DOI: 10.1002/ajmg.b.32133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 12/26/2012] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is a common, genetically complex, fatal neurodegenerative disorder of late life. Although several genes are known to play a role in early-onset AD, identification of the genetic basis of late onset AD (LOAD) has been challenging, with only the APOE gene known to have a high contribution to both AD risk and age-at-onset. Here, we present the first genome-scan analysis of the complete, well-characterized University of Washington LOAD sample of 119 pedigrees, using age-at-onset as the trait of interest. The analysis approach used allows for a multilocus trait model while at the same time accommodating age censoring, effects of APOE as a known genetic covariate, and full pedigree and marker information. The results provide strong evidence for linkage of loci contributing to age-at-onset to genomic regions on chromosome 6q16.3, and to 19q13.42 in the region of the APOE locus. There was evidence for interaction between APOE and the locus on chromosome 6q and suggestive evidence for linkage to chromosomes 11p13, 15q12-14, and 19p13.12. These results provide the first independent confirmation of an AD age-at-onset locus on chromosome 6 and suggest that further efforts towards identifying the underlying causal locus or loci are warranted.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Elizabeth E. Marchani
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | | | - Ellen J. Steinbart
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
| | - Thomas D. Bird
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Ellen M. Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
26
|
Yu JT, Ma XY, Wang YL, Sun L, Tan L, Hu N, Tan L. Genetic variation in clusterin gene and Alzheimer's disease risk in Han Chinese. Neurobiol Aging 2013; 34:1921.e17-23. [PMID: 23411014 DOI: 10.1016/j.neurobiolaging.2013.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/18/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
Clusterin gene (CLU), also known as apolipoprotein J (ApoJ), is a strong candidate gene for late-onset Alzheimer's disease (LOAD) according to the Alzgene database. To further characterize this association and to isolate the variants contributing to the pathogenesis of LOAD in Han Chinese, we first sequenced a small sample (n = 100) to discover variants in the promoter, exons, the 5' and 3' untranslated regions, and exon-intron boundaries of CLU. Follow-up genotyping of identified variants in a larger sample (n = 1592). Sequencing analysis identified 18 variants. Analysis in the larger population revealed that only the rs9331949 C allele was significantly associated with an increased risk of LOAD, even after adjusting for multiple testing (p = 0.026). Logistic analysis identified the rs9331949 polymorphism was still strongly associated with LOAD (additive model: p = 0.004, odds ratio = 1.274; dominant model: p = 0.039, odds ratio = 1.239; recessive model: p = 0.002, OR = 1.975) after adjusting for sex, age, and APOE ε4 status. Our findings implicate CLU as a susceptibility gene for LOAD in Han Chinese.
Collapse
Affiliation(s)
- Jin-Tai Yu
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J. TREM2 variants in Alzheimer's disease. N Engl J Med 2013; 368:117-27. [PMID: 23150934 PMCID: PMC3631573 DOI: 10.1056/nejmoa1211851] [Citation(s) in RCA: 2154] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.).
Collapse
Affiliation(s)
- Rita Guerreiro
- University College London (UCL) Institute of Neurology, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Family history is the second strongest risk factor for Alzheimer disease (AD) following advanced age. Twin and family studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The inheritance of AD exhibits a dichotomous pattern. On one hand, rare mutations in APP, PSEN1, and PSEN2 virtually guarantee early-onset (<60 years) familial AD, which represents ∼5% of AD. On the other hand, common gene polymorphisms, such as the ε4 and ε2 variants of the APOE gene, can influence susceptibility for ∼50% of the common late-onset AD. These four genes account for 30%-50% of the inheritability of AD. Genome-wide association studies have recently led to the identification of 11 additional AD candidate genes. This paper reviews the past, present, and future attempts to elucidate the complex and heterogeneous genetic underpinnings of AD.
Collapse
Affiliation(s)
- Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.
| |
Collapse
|
29
|
Lalli MA, Garcia G, Madrigal L, Arcos-Burgos M, Arcila ML, Kosik KS, Lopera F. Exploratory data from complete genomes of familial alzheimer disease age-at-onset outliers. Hum Mutat 2012; 33:1630-4. [PMID: 22829467 DOI: 10.1002/humu.22167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/07/2012] [Indexed: 11/08/2022]
Abstract
Identifying genes that modify the age at onset (AAO) of Alzheimer disease and targeting them pharmacologically represent a potential treatment strategy. In this exploratory study, we sequenced the complete genomes of six individuals with familial Alzheimer disease due to the autosomal dominant mutation p.Glu280Ala in PSEN1 (MIM# 104311; NM_000021.3:c.839A>C). The disease and its AAO are highly heritable, motivating our search for genetic variants that modulate AAO. The median AAO of dementia in carriers of the mutant allele is 49 years. Extreme phenotypic outliers for AAO in this genetically isolated population with limited environmental variance are likely to harbor onset modifying genetic variants. A narrow distribution of AAO in this kindred suggests large effect sizes of genetic determinants of AAO in these outliers. Identity by descent (IBD) analysis and a combination of bioinformatics filters have suggested several candidate variants for AAO modifiers. Future work and replication studies on these variants may provide mechanistic insights into the etiopathology of Alzheimer disease.
Collapse
Affiliation(s)
- Matthew A Lalli
- Neuroscience Research Institute, University of California at Santa Barbara, CA, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bertram L, Tanzi RE. The genetics of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:79-100. [PMID: 22482448 DOI: 10.1016/b978-0-12-385883-2.00008-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors play a major role in determining a person's risk to develop Alzheimer's disease (AD). Rare mutations transmitted in a Mendelian fashion within affected families, for example, APP, PSEN1, and PSEN2, cause AD. In the absence of mutations in these genes, disease risk is largely determined by common polymorphisms that, in concert with each other and nongenetic risk factors, modestly impact risk for AD (e.g., the ε4-allele in APOE). Recent genome-wide screening approaches have revealed several additional AD susceptibility loci and more are likely to be discovered over the coming years. In this chapter, we review the current state of AD genetics research with a particular focus on loci that now can be considered established disease genes. In addition to reviewing the potential pathogenic relevance of these genes, we provide an outlook into the future of AD genetics research based on recent advances in high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
31
|
Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging 2012; 33:437-56. [PMID: 20594621 PMCID: PMC2980860 DOI: 10.1016/j.neurobiolaging.2010.03.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 03/01/2010] [Accepted: 03/11/2010] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a complex disorder with a clear genetic component. Three genes have been identified as the cause of early onset familial AD (EOAD). The most common form of the disease, late onset Alzheimer's disease (LOAD), is, however, a sporadic one presenting itself in later stages of life. The genetic component of this late onset form of AD has been the target of a large number of studies, because only one genetic risk factor (APOE4) has been consistently associated with the disease. However, technological advances allow new approaches in the study of complex disorders. In this review, we discuss the new results produced by genome wide association studies, in light of the current knowledge of the complexity of AD genetics.
Collapse
Affiliation(s)
- Rita J Guerreiro
- Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
32
|
The role of clusterin in Alzheimer's disease: pathways, pathogenesis, and therapy. Mol Neurobiol 2012; 45:314-26. [PMID: 22274961 DOI: 10.1007/s12035-012-8237-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
Abstract
Genetic variation in clusterin gene, also known as apolipoprotein J, has been associated with Alzheimer's disease (AD) through replicated genome-wide studies, and plasma clusterin levels are associated with brain atrophy, baseline prevalence and severity, and rapid clinical progression in patients with AD, highlighting the importance of clusterin in AD pathogenesis. Emerging data suggest that clusterin contributes to AD through various pathways, including amyloid-β aggregation and clearance, lipid metabolism, neuroinflammation, and neuronal cell cycle control and apoptosis. Moreover, epigenetic regulation of the clusterin expression also seems to play an important role in the pathogenesis of AD. Emerging knowledge of the contribution of clusterin to the pathogenesis of AD presents new opportunities for AD therapy.
Collapse
|
33
|
MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer's disease. J Neurosci 2011; 31:14820-30. [PMID: 21994399 DOI: 10.1523/jneurosci.3883-11.2011] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The contribution of mutations in amyloid precursor protein (APP) and presenilin (PSEN) to familial Alzheimer's disease (AD) is well established. However, little is known about the molecular mechanisms leading to amyloid β (Aβ) generation in sporadic AD. Increased brain ceramide levels have been associated with sporadic AD, and are a suggested risk factor. Serine palmitoyltransferase (SPT) is the first rate-limiting enzyme in the de novo ceramide synthesis. However, the regulation of SPT is not yet understood. Evidence suggests that it may be posttranscriptionally regulated. Therefore, we investigated the role of miRNAs in the regulation of SPT and amyloid β (Aβ) generation. We show that SPT is upregulated in a subgroup of sporadic AD patient brains. This is further confirmed in mouse model studies of risk factors associated with AD. We identified that the loss of miR-137, -181c, -9, and 29a/b-1 increases SPT and in turn Aβ levels, and provides a mechanism for the elevated risk of AD associated with age, high-saturated-fat diet, and gender. Finally, these results suggest SPT and the respective miRNAs may be potential therapeutic targets for sporadic AD.
Collapse
|
34
|
Choi Y, Marchani EE, Bird TD, Steinbart EJ, Blacker D, Wijsman EM. Genome scan of age-at-onset in the NIMH Alzheimer disease sample uncovers multiple loci, along with evidence of both genetic and sample heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:785-98. [PMID: 21812099 PMCID: PMC3168696 DOI: 10.1002/ajmg.b.31220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder of late life with a complex genetic basis. Although several genes are known to play a role in rare early onset AD, only the APOE gene is known to have a high contribution to risk of the common late-onset form of the disease (LOAD, onset >60 years). APOE genotypes vary in their AD risk as well as age-at-onset distributions, and it is likely that other loci will similarly affect AD age-at-onset. Here we present the first analysis of age-at-onset in the NIMH LOAD sample that allows for both a multilocus trait model and genetic heterogeneity among the contributing sites, while at the same time accommodating age censoring, effects of known genetic covariates, and full pedigree and marker information. The results provide evidence for genomic regions not previously implicated in this data set, including regions on chromosomes 7q, 15, and 19p. They also affirm evidence for loci on chromosomes 1q, 6p, 9q, 11, and, of course, the APOE locus on 19q, all of which have been reported previously in the same sample. The analyses failed to find evidence for linkage to chromosome 10 with inclusion of unaffected subjects and extended pedigrees. Several regions implicated in these analyses in the NIMH sample have been previously reported in genome scans of other AD samples. These results, therefore, provide independent confirmation of AD loci in family-based samples on chromosomes 1q, 7q, 19p, and suggest that further efforts towards identifying the underlying causal loci are warranted.
Collapse
Affiliation(s)
- Yoonha Choi
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Elizabeth E. Marchani
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA
| | - Thomas D. Bird
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Ellen J. Steinbart
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA,Department of Neurology, University of Washington, Seattle, WA
| | - Deborah Blacker
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School; Dept of Epidemiology, Harvard School of Public Health; Boston, MA
| | - Ellen M. Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA,Department of Genome Sciences, University of Washington, Seattle, WA,correspondence to Ellen M. Wijsman, Department of Medicine, Division of Medical Genetics, Box 357720, University of Washington, Seattle, WA 98195-7720. (206) 543-8987.
| |
Collapse
|
35
|
Hollingworth P, Harold D, Jones L, Owen MJ, Williams J. Alzheimer's disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 2011; 26:793-802. [PMID: 20957767 DOI: 10.1002/gps.2628] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 07/29/2010] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is highly heritable, but genetically complex. Recently, three large-scale genome-wide association studies have made substantial breakthroughs in disentangling the genetic architecture of the disease. These studies combined include data from over 43 000 independent individuals and provide compelling evidence that variants in four novel susceptibility genes (CLU, PICALM, CR1, BIN1) are associated with disease risk. These findings are tremendously exciting, not only in providing new avenues for exploration, but also highlighting the potential for further gene discovery when larger samples are analysed. Here we discuss progress to date in identifying risk genes for dementia, ways forward and how current findings are refining previous ideas and defining new putative primary disease mechanisms.
Collapse
Affiliation(s)
- Paul Hollingworth
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | |
Collapse
|
36
|
Wattamwar PR, Mathuranath PS. An overview of biomarkers in Alzheimer's disease. Ann Indian Acad Neurol 2011; 13:S116-23. [PMID: 21369416 PMCID: PMC3039167 DOI: 10.4103/0972-2327.74256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the commonest progressive, dementing neurodegenerative disease in elderly, which affects innumerable people each year, and these numbers are likely to further increase as the population ages. In addition to the financial burden of AD on health care system, the disease has powerful emotional impact on caregivers and families of those afflicted. In this advancing era of AD research, with the availability of new treatment strategies having disease-modifying effects, there is growing need for the early diagnosis in AD, often hampered by paucity of biomarkers of AD. Various candidate biomarkers for AD have been developed that can detect patients with AD at an early stage. In the recent years, the search for an ideal biomarker has undergone a rapid evolution. Novel technologies in proteomics, genomics, and imaging techniques further expand the role of a biomarker not only in early diagnosis, but also in monitoring the response to various treatments. However, the availability of sensitive and specific biomarkers requires the method to be standardized so as to be able to compare the results across studies. Inspite of tremendous advances in this field the quest for an “ideal biomarker” still continues. In this review, we will discuss the various candidate markers in five spheres namely biochemical, neuroanatomical, metabolic, genetic and neuropsychological, and their current status and limitations in AD diagnosis.
Collapse
Affiliation(s)
- Pandurang R Wattamwar
- Cognition & Behavioural Neurology Section, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Trivandrum, Kerala, India
| | | |
Collapse
|
37
|
Caramelli P, Teixeira AL, Buchpiguel CA, Lee HW, Livramento JA, Fernandez LL, Anghinah R. Diagnosis of Alzheimer's disease in Brazil: Supplementary exams. Dement Neuropsychol 2011; 5:167-177. [PMID: 29213741 PMCID: PMC5619476 DOI: 10.1590/s1980-57642011dn05030004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 06/22/2011] [Indexed: 11/21/2022] Open
Abstract
This article presents a review of the recommendations on supplementary exams employed for the clinical diagnosis of Alzheimer's disease (AD) in Brazil published in 2005. A systematic assessment of the consensus reached in other countries, and of articles on AD diagnosis in Brazil available on the PUBMED and LILACS medical databases, was carried out. Recommended laboratory exams included complete blood count, serum creatinine, thyroid stimulating hormone (TSH), albumin, hepatic enzymes, Vitamin B12, folic acid, calcium, serological reactions for syphilis and serology for HIV in patients aged younger than 60 years with atypical clinical signs or suggestive symptoms. Structural neuroimaging, computed tomography or - preferably - magnetic resonance exams, are indicated for diagnostic investigation of dementia syndrome to rule out secondary etiologies. Functional neuroimaging exams (SPECT and PET), when available, increase diagnostic reliability and assist in the differential diagnosis of other types of dementia. The cerebrospinal fluid exam is indicated in cases of pre-senile onset dementia with atypical clinical presentation or course, for communicant hydrocephaly, and suspected inflammatory, infectious or prion disease of the central nervous system. Routine electroencephalograms aid the differential diagnosis of dementia syndrome with other conditions which impair cognitive functioning. Genotyping of apolipoprotein E or other susceptibility polymorphisms is not recommended for diagnostic purposes or for assessing the risk of developing the disease. Biomarkers related to the molecular alterations in AD are largely limited to use exclusively in research protocols, but when available can contribute to improving the accuracy of diagnosis of the disease.
Collapse
Affiliation(s)
- Paulo Caramelli
- Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte MG, Brazil
| | - Antonio Lúcio Teixeira
- Department of Internal Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte MG, Brazil
| | | | - Hae Won Lee
- Institute of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo and Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - José Antônio Livramento
- Medical Investigation Laboratory (LIM 15), School of Medicine, University of São Paulo, São Paulo SP, Brazil
| | - Liana Lisboa Fernandez
- Department of Basic Health Sciences, Federal University of Health Sciences Foundation of Porto Alegre, Porto Alegre RS, Brazil
| | - Renato Anghinah
- Referral Center for Cognitive Disorders (CEREDIC), Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo SP, Brazil
| |
Collapse
|
38
|
Wangler MF, Reiter LT, Zimm G, Trimble-Morgan J, Wu J, Bier E. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila. Protein Cell 2011; 2:554-63. [PMID: 21822800 PMCID: PMC3702159 DOI: 10.1007/s13238-011-1073-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Michael F Wangler
- Department of Biology, University of California at San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lupton MK, Proitsi P, Danillidou M, Tsolaki M, Hamilton G, Wroe R, Pritchard M, Lord K, Martin BM, Kloszewska I, Soininen H, Mecocci P, Vellas B, Harold D, Hollingworth P, Lovestone S, Powell JF. Deep sequencing of the Nicastrin gene in pooled DNA, the identification of genetic variants that affect risk of Alzheimer's disease. PLoS One 2011; 6:e17298. [PMID: 21364883 PMCID: PMC3045431 DOI: 10.1371/journal.pone.0017298] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/27/2011] [Indexed: 11/18/2022] Open
Abstract
Nicastrin is an obligatory component of the γ-secretase; the enzyme complex that leads to the production of Aβ fragments critically central to the pathogenesis of Alzheimer's disease (AD). Analyses of the effects of common variation in this gene on risk for late onset AD have been inconclusive. We investigated the effect of rare variation in the coding regions of the Nicastrin gene in a cohort of AD patients and matched controls using an innovative pooling approach and next generation sequencing. Five SNPs were identified and validated by individual genotyping from 311 cases and 360 controls. Association analysis identified a non-synonymous rare SNP (N417Y) with a statistically higher frequency in cases compared to controls in the Greek population (OR 3.994, CI 1.105–14.439, p = 0.035). This finding warrants further investigation in a larger cohort and adds weight to the hypothesis that rare variation explains some of genetic heritability still to be identified in Alzheimer's disease.
Collapse
Affiliation(s)
- Michelle K. Lupton
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
- * E-mail:
| | - Petroula Proitsi
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Makrina Danillidou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Gillian Hamilton
- Medical Genetics, Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Wroe
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Megan Pritchard
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Kathryn Lord
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Belinda M. Martin
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Iwona Kloszewska
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, University of Perugia, Perugia, Italy
| | - Bruno Vellas
- Department of Internal and Geriatrics Medicine, Hôpitaux de Toulouse, Toulouse, France
| | - Denise Harold
- Department of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul Hollingworth
- Department of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Lovestone
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| | - John F. Powell
- MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Abstract
Dementia is a syndrome and not a single disease. Approximately 0.5% of those with Alzheimer's disease have an autosomal dominant inherited early onset Alzheimer's disease, caused by mutations in the APP, PSEN1 or PSEN2 gene. A large population-based twin study of late onset Alzheimer's disease supports complex inheritance. The APOE epsilon4 allele is a major risk factor for late onset Alzheimer's disease, whereas the epsilon2 allele has a protective effect. Two large size genome-wide association studies from two Internationals study groups recently identified the genes CLU, PICALM and CRI to be important for late onset Alzheimer's disease. Stroke is like dementia a syndrome and not a single disease. CADASIL is the most common autosomal dominant inherited cause of stroke and vascular dementia. CADASIL is caused by mutations in the NOTCH3 gene, which encodes a single-pass transmembrane receptor. Stroke can cause dementia, as it is the stroke itself rather than the underlying vascular risk factors that cause the dementia.
Collapse
Affiliation(s)
- M B Russell
- Head and Neck Research Group, Research Centre, Akershus University Hospital, Oslo, Norway.
| |
Collapse
|
41
|
Wijsman EM, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R, Lee JH, Bird TD, Bennett DA, Diaz-Arrastia R, Goate AM, Farlow M, Ghetti B, Sweet RA, Foroud TM, Mayeux R. Genome-wide association of familial late-onset Alzheimer's disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 2011; 7:e1001308. [PMID: 21379329 PMCID: PMC3040659 DOI: 10.1371/journal.pgen.1001308] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/12/2011] [Indexed: 12/13/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia in the elderly. The National Institute of Aging-Late Onset Alzheimer's Disease Family Study and the National Cell Repository for Alzheimer's Disease conducted a joint genome-wide association study (GWAS) of multiplex LOAD families (3,839 affected and unaffected individuals from 992 families plus additional unrelated neurologically evaluated normal subjects) using the 610 IlluminaQuad panel. This cohort represents the largest family-based GWAS of LOAD to date, with analyses limited here to the European-American subjects. SNPs near APOE gave highly significant results (e.g., rs2075650, p = 3.2×10(-81)), but no other genome-wide significant evidence for association was obtained in the full sample. Analyses that stratified on APOE genotypes identified SNPs on chromosome 10p14 in CUGBP2 with genome-wide significant evidence for association within APOE ε4 homozygotes (e.g., rs201119, p = 1.5×10(-8)). Association in this gene was replicated in an independent sample consisting of three cohorts. There was evidence of association for recently-reported LOAD risk loci, including BIN1 (rs7561528, p = 0.009 with, and p = 0.03 without, APOE adjustment) and CLU (rs11136000, p = 0.023 with, and p = 0.008 without, APOE adjustment), with weaker support for CR1. However, our results provide strong evidence that association with PICALM (rs3851179, p = 0.69 with, and p = 0.039 without, APOE adjustment) and EXOC3L2 is affected by correlation with APOE, and thus may represent spurious association. Our results indicate that genetic structure coupled with ascertainment bias resulting from the strong APOE association affect genome-wide results and interpretation of some recently reported associations. We show that a locus such as APOE, with large effects and strong association with disease, can lead to samples that require appropriate adjustment for this locus to avoid both false positive and false negative evidence of association. We suggest that similar adjustments may also be needed for many other large multi-site studies.
Collapse
Affiliation(s)
- Ellen M. Wijsman
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Nathan D. Pankratz
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yoonha Choi
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Joseph H. Rothstein
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
| | - Kelley M. Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rong Cheng
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Joseph H. Lee
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Thomas D. Bird
- Division of Medical Genetics, University of Washington, Seattle, Washington, United States of America
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alison M. Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bernardino Ghetti
- Department of Pathology, Division of Neuropathology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Richard Mayeux
- The Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | | |
Collapse
|
42
|
Broer L, Ikram MA, Schuur M, DeStefano AL, Bis JC, Liu F, Rivadeneira F, Uitterlinden AG, Beiser AS, Longstreth WT, Hofman A, Aulchenko Y, Seshadri S, Fitzpatrick AL, Oostra BA, Breteler MMB, van Duijn CM. Association of HSP70 and its co-chaperones with Alzheimer's disease. J Alzheimers Dis 2011; 25:93-102. [PMID: 21403392 PMCID: PMC3483142 DOI: 10.3233/jad-2011-101560] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The heat shock protein (HSP) 70 family has been implicated in the pathology of Alzheimer's disease (AD). In this study, we examined common genetic variations in the 80 genes encoding HSP70 and its co-chaperones. We conducted a study in a series of 462 patients and 5238 unaffected participants derived from the Rotterdam Study, a population-based study including 7983 persons aged 55 years and older. We genotyped a total of 12,053 Single Nucleotide Polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. Replication was performed in two independent cohort studies, the Framingham Heart study (FHS; n = 806) and Cardiovascular Health Study (CHS; n = 2150). When adjusting for multiple testing, we found a small but consistent, though not significant effect of rs12118313 located 32 kb from PFDN2, with an OR of 1.19 (p-value from meta-analysis = 0.003). However this SNP was in the intron of another gene, suggesting it is unlikely this SNP reflects the effect of PFDN2. In a formal pathway analysis we found nominally significant evidence for an association of BAG, DNAJA and prefoldin with AD. These findings corroborate with those of a study of 2032 AD patients and 5328 controls, in which several members of the prefoldin family showed evidence for association to AD. Our study did not reveal evidence for a genetic variant if the HSP70 family with a major effect on AD. However, our findings of the single SNP analysis and pathway analysis suggest that multiple genetic variants in prefoldin are associated with AD.
Collapse
Affiliation(s)
- Linda Broer
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010; 68:270-81. [PMID: 20955934 DOI: 10.1016/j.neuron.2010.10.013] [Citation(s) in RCA: 606] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/27/2022]
Abstract
Three decades of genetic research in Alzheimer disease (AD) have substantially broadened our understanding of the pathogenetic mechanisms leading to neurodegeneration and dementia. Positional cloning led to the identification of rare, disease-causing mutations in APP, PSEN1, and PSEN2 causing early-onset familial AD, followed by the discovery of APOE as the single most important risk factor for late-onset AD. Recent genome-wide association approaches have delivered several additional AD susceptibility loci that are common in the general population, but exert only very small risk effects. As a result, a large proportion of the heritability of AD continues to remain unexplained by the currently known disease genes. It seems likely that much of this "missing heritability" may be accounted for by rare sequence variants, which, owing to recent advances in high-throughput sequencing technologies, can now be assessed in unprecedented detail.
Collapse
Affiliation(s)
- Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | |
Collapse
|
44
|
Association study of interferon-γ, cytosolic phospholipase A2, and cyclooxygenase-2 gene polymorphisms in Alzheimer disease. Am J Geriatr Psychiatry 2010; 18:983-7. [PMID: 20808133 DOI: 10.1097/jgp.0b013e3181e70c05] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The increased production of proinflammatory mediators such as cytokines and prostaglandins may interact at multiple levels with neurodegeneration in Alzheimer disease (AD). This study was undertaken to evaluate the possible role of interferon-γ (IFN-γ) T+874A, cytoplasmic phospholipase A₂ (cPLA2) BanI, and cyclooxygenase-2 (COX-2) G-765C polymorphisms in AD. METHODS The study included 237 probable patients with AD who met the diagnostic criteria of National Institute of Neurological and Communicative Disorders and Stroke-AD and Related Disorders Association, and 245 probands in the healthy comparison (HC) group. RESULTS No significant difference in mean age or in the distribution of genders between AD and HC groups was found. The COX-2 G/G genotype was significantly more frequent in the AD, when compared with the HC group. There was no significant correlation between IFN-γ or cPLA2 genotypes and AD. CONCLUSIONS Our findings indicate that the COX-2 G/G genotype is associated with AD and support the involvement of COX-2 in AD etiology.
Collapse
|
45
|
Marchani EE, Bird TD, Steinbart EJ, Rosenthal E, Yu CE, Schellenberg GD, Wijsman EM. Evidence for three loci modifying age-at-onset of Alzheimer's disease in early-onset PSEN2 families. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1031-41. [PMID: 20333730 PMCID: PMC3022037 DOI: 10.1002/ajmg.b.31072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Families with early-onset Alzheimer's disease (AD) sharing a single PSEN2 mutation exhibit a wide range of age-at-onset, suggesting that modifier loci segregate within these families. While APOE is known to be an age-at-onset modifier, it does not explain all of this variation. We performed a genome scan within nine such families for loci influencing age-at-onset, while simultaneously controlling for variation in the primary PSEN2 mutation (N141I) and APOE. We found significant evidence of linkage between age-at-onset and chromosome 1q23.3 (P < 0.001) when analysis included all families, and to chromosomes 1q23.3 (P < 0.001), 17p13.2 (P = 0.0002), 7q33 (P = 0.017), and 11p14.2 (P = 0.017) in a single large pedigree. Simultaneous analysis of these four chromosomes maintained strong evidence of linkage to chromosomes 1q23.3 and 17p13.2 when all families were analyzed, and to chromosomes 1q23.3, 7q33, and 17p13.2 within the same single pedigree. Inclusion of major gene covariates proved essential to detect these linkage signals, as all linkage signals dissipated when PSEN2 and APOE were excluded from the model. The four chromosomal regions with evidence of linkage all coincide with previous linkage signals, associated SNPs, and/or candidate genes identified in independent AD study populations. This study establishes several candidate regions for further analysis and is consistent with an oligogenic model of AD risk and age-at-onset. More generally, this study also demonstrates the value of searching for modifier loci in existing datasets previously used to identify primary causal variants for complex disease traits.
Collapse
Affiliation(s)
- Elizabeth E. Marchani
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas D. Bird
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington,Department of Neurology, University of Washington, Seattle, Washington
| | - Ellen J. Steinbart
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington,Department of Neurology, University of Washington, Seattle, Washington
| | - Elisabeth Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Chang-En Yu
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen M. Wijsman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington,Department of Biostatistics, University of Washington, Seattle, Washington,Department of Genome Sciences, University of Washington, Seattle, Washington,Correspondence to: Dr. Ellen M. Wijsman, Department of Medicine, Division of Medical, Genetics, Box 357720, University of Washington, Seattle,WA98195-7720.
| |
Collapse
|
46
|
Ma SL, Tang NLS, Tam CWC, Lui VWC, Lam LCW, Chiu HFK, Driver JA, Pastorino L, Lu KP. A PIN1 polymorphism that prevents its suppression by AP4 associates with delayed onset of Alzheimer's disease. Neurobiol Aging 2010; 33:804-13. [PMID: 20580132 DOI: 10.1016/j.neurobiolaging.2010.05.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/12/2010] [Accepted: 05/16/2010] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the presence of neurofibrillary tangles composed of tau and senile plaques of amyloid-beta peptides (Aβ) derived from amyloid precursor protein (APP). Pin1 is a unique prolyl isomerase that has been shown to protect against age-dependent neurodegeneration by acting on phosphorylated tau and APP to suppress tangle formation and amyloidogenic APP processing. Here we report a functional polymorphism, rs2287839, in the Pin1 promoter that is significantly associated with a 3-year delay in the average age at onset (AAO) of late-onset AD in a Chinese population. More significantly, the Pin1 polymorphism rs2287839 is located within the consensus binding motif for the brain-selective transcription factor, AP4 (CAGCTG) and almost completely abolishes the ability of AP4 to bind and suppress the Pin1 promoter, as shown by chromatin immunoprecipitation, electrophoretic mobility shift assay, and promoter luciferase assay. Moreover, overexpression or knockdown of AP4 resulted in an 80% reduction or 2-fold increase in endogenous Pin1 levels, respectively. Thus, AP4 is a novel transcriptional repressor of Pin1 expression and the Pin1 promoter single nucleotide polymorphism (SNP) identified in this study that prevents such suppression is associated with delayed onset of AD. These results indicate that regulation of Pin1 by AP4 plays a critical role in determining age at onset of AD and might be a novel therapeutic target to delay the onset of AD.
Collapse
Affiliation(s)
- Suk Ling Ma
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Implication of CLU gene polymorphisms in Chinese patients with Alzheimer's disease. Clin Chim Acta 2010; 411:1516-9. [PMID: 20599866 DOI: 10.1016/j.cca.2010.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/15/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Clusterin (also called apolipoprotein J) has a potential central role in the pathogenesis of Alzheimer's disease (AD). Recently, two genome-wide association studies have identified three variants in CLU gene encoding clusterin associated with AD risk in Caucasians, while there are no studies on the association of CLU with AD risk in Asians. METHODS The study investigated 324 sporadic late-onset AD (LOAD) and 388 healthy controls matched for sex and age in a Han Chinese population. Three common genetic variants (rs2279590, rs11136000 and rs9331888) in CLU gene were genotyped using MALDI-TOF mass spectrometry. RESULTS The minor allele (G) of the rs9331888 polymorphism within CLU was significantly associated with an increased risk of LOAD (OR=1.39, 95% CI=1.13-1.72, P=0.002). Logistic regression analysis revealed that the rs9331888 polymorphism presented strong associations with LOAD in the dominant, recessive and additive models. No significant differences in genotype and allele frequencies of the rs2279590 and rs11136000 polymorphisms were found between LOAD patients and controls. Haplotype analysis identified a risk haplotype (CCG) (OR=1.66) and a protective haplotype (CCC)(OR=0.70). CONCLUSIONS Our findings implicate CLU as a susceptibility gene for LOAD in Han Chinese.
Collapse
|
48
|
Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 2009; 41:1094-9. [PMID: 19734903 DOI: 10.1038/ng.439] [Citation(s) in RCA: 1872] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/31/2009] [Indexed: 12/11/2022]
Abstract
The gene encoding apolipoprotein E (APOE) on chromosome 19 is the only confirmed susceptibility locus for late-onset Alzheimer's disease. To identify other risk loci, we conducted a large genome-wide association study of 2,032 individuals from France with Alzheimer's disease (cases) and 5,328 controls. Markers outside APOE with suggestive evidence of association (P < 10(-5)) were examined in collections from Belgium, Finland, Italy and Spain totaling 3,978 Alzheimer's disease cases and 3,297 controls. Two loci gave replicated evidence of association: one within CLU (also called APOJ), encoding clusterin or apolipoprotein J, on chromosome 8 (rs11136000, OR = 0.86, 95% CI 0.81-0.90, P = 7.5 x 10(-9) for combined data) and the other within CR1, encoding the complement component (3b/4b) receptor 1, on chromosome 1 (rs6656401, OR = 1.21, 95% CI 1.14-1.29, P = 3.7 x 10(-9) for combined data). Previous biological studies support roles of CLU and CR1 in the clearance of beta amyloid (Abeta) peptide, the principal constituent of amyloid plaques, which are one of the major brain lesions of individuals with Alzheimer's disease.
Collapse
|