1
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2024. [PMID: 39056295 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
2
|
Yuan Z, Li P, Yang X, Cai X, Wu L, Zhao F, Wen W, Zhou M, Hou Y. FgPfn participates in vegetative growth, sexual reproduction, pathogenicity, and fungicides sensitivity via affecting both microtubules and actin in the filamentous fungus Fusarium graminearum. PLoS Pathog 2024; 20:e1012215. [PMID: 38701108 PMCID: PMC11095717 DOI: 10.1371/journal.ppat.1012215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/15/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgβ2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 μg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.
Collapse
Affiliation(s)
- Zhili Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xin Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowei Cai
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Luoyu Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feifei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weidong Wen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Werner B, Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken) 2023; 80:275-289. [PMID: 36127729 PMCID: PMC10025170 DOI: 10.1002/cm.21728] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Septins are highly conserved GTP-binding proteins that oligomerize and form higher order structures. The septin cytoskeleton plays an important role in cellular organization, intracellular transport, and cytokinesis. Kinase-mediated phosphorylation of septins regulates various aspects of their function, localization, and dynamics. Septins are enriched in the mammalian nervous system where they contribute to neurodevelopment and neuronal function. Emerging research has implicated aberrant changes in septin cytoskeleton in several human diseases. The mechanisms through which aberrant phosphorylation by kinases contributes to septin dysfunction in neurological disorders are poorly understood and represent an important question for future research with therapeutic implications. This review summarizes the current state of knowledge of the diversity of kinases that interact with and phosphorylate mammalian septins, delineates how phosphoregulation impacts septin dynamics, and describes how aberrant septin phosphorylation contributes to neurological disorders.
Collapse
Affiliation(s)
- Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Ayoubi R, McDowell I, Fotouhi M, Southern K, McPherson PS, Laflamme C. The identification of high-performing antibodies for Profilin-1 for use in Western blot, immunoprecipitation and immunofluorescence. F1000Res 2023; 12:348. [PMID: 37576538 PMCID: PMC10415725 DOI: 10.12688/f1000research.132249.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 08/15/2023] Open
Abstract
Profilin-1, a member of the Profilin family, is a ubiquitously expressed protein that controls actin polymerization in a concentration-dependent manner. As mutations in the Profilin-1 gene have potential implications in neurodegenerative disease progression, well-characterized anti-Profilin-1 antibodies would be beneficial to the scientific community. In this study, we characterized sixteen Profilin-1 commercial antibodies for Western blot, immunoprecipitation, and immunofluorescence applications, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.
Collapse
Affiliation(s)
- Riham Ayoubi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Kathleen Southern
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Carl Laflamme
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | - ABIF Consortium
- Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
5
|
Angelov T, Chamova T, Atemin S, Todorov T, Ormandzhiev S, Tourtourikov I, Todorova A, Devos D, Tournev I. Novel variant c.92T > G (p.Val31Gly) in the PFN1 gene (ALS18) responsible for a specific phenotype in a large Bulgarian amyotrophic lateral sclerosis pedigree. Front Neurol 2023; 14:1094234. [PMID: 36846111 PMCID: PMC9947785 DOI: 10.3389/fneur.2023.1094234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Objectives Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of motor function, disability, and death. Variants in the PFN1 gene, encoding the Profilin-1 protein, are related to ALS18. Methods We present a pedigree consisting of 3 generations and 4 affected individuals, 3 of which carry a novel heterozygous variant: c.92T > G (p.Val31Gly) in the PFN1 gene. This variant was discovered through means of whole exome sequencing (WES) and targeted analysis of ALS-related genes. Results The mean age of onset in our pedigree was 59.75 (±10.11 SD) years with a significant difference between the first two generations (females) and the third (male) of 22.33 (±3.4 SD) years. For this ALS form, we observed a longer disease progression of 4 (±1.87 SD) years (three of four affected are still alive). Clinical manifestations displayed predominant impairment of the lower motor neuron (LMN) in one limb, with gradual involvement of other limbs. A novel heterozygous missense variant c.92T > G, p. Val31Gly (NM_005022.4) in exon 1 in the PFN1 gene was discovered through means of whole exome sequencing (WES). Segregation analysis in the family showed that the detected variant was inherited from the affected mother, and the affected aunt also turned out to be a variant carrier. Conclusions ALS18 is a very rare form of the disease. We report here a relatively large pedigree with a novel variant, leading to late onset (after 50 years), initial involvement of the lower limbs and relatively slow progression.
Collapse
Affiliation(s)
- Teodor Angelov
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria,*Correspondence: Teodor Angelov ✉
| | - Teodora Chamova
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Slavena Atemin
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria
| | - Tihomir Todorov
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria
| | | | - Ivan Tourtourikov
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria,Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Albena Todorova
- Genetic Medico-Diagnostic Laboratory “Genica”, Sofia, Bulgaria,Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - David Devos
- Department of Medical Pharmacology, Expert Center of Parkinson's Disease, LICEND COEN Center, NS-Park/FCRIN Network, Univ. Lille, Lille Neuroscience and Cognition, Team DVCD, INSERM UMRS_1172, CHU Lille, Lille, France
| | - Ivailo Tournev
- Department of Neurology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria,Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, Bulgaria
| |
Collapse
|
6
|
Kiaei L, Kiaei M. RNA as a source of biomarkers for amyotrophic lateral sclerosis. Metab Brain Dis 2022; 37:1697-1702. [PMID: 33905071 DOI: 10.1007/s11011-021-00738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, leads to the loss of motor neurons. There are currently no effective therapies to treat this disease as the molecular mechanisms of motor neuron degeneration are largely unknown. The diagnosis of ALS, or motor neuron disease, is not a simple process that can be carried out with one doctor visit or a single simple test. This has created a major problem for patients with ALS and their physicians since they are often not diagnosed until about a year into the disease. In order to combat this issue, new techniques of detecting the clinical and pathological changes of the disease are critical. These techniques are currently being studied and developed which can revolutionize the diagnosis of ALS. Once this technology is established, it may have application to monitor the progression of the disease. RNA-Seq is a powerful tool that has potential to identify RNA as small molecules in patients' biological samples (Plasma, Cerebral Spinal Fluid) which can be used to inform the system changes in patients with ALS. In this review, we will explore and discuss our current work on RNA-Seq and its development of biomarkers to diagnose and assess the rate of progression in the disease.
Collapse
Affiliation(s)
- Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, 72205, USA.
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, AR, Little Rock, USA.
- Department of Neurology, College of Medicine, University of Arkansas for Medical Sciences, AR, Little Rock, USA.
- Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Multiple roles for the cytoskeleton in ALS. Exp Neurol 2022; 355:114143. [PMID: 35714755 PMCID: PMC10163623 DOI: 10.1016/j.expneurol.2022.114143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by more than sixty genes identified through classic linkage analysis and new sequencing methods. Yet no clear mechanism of onset, cure, or effective treatment is known. Popular discourse classifies the proteins encoded from ALS-related genes into four disrupted processes: proteostasis, mitochondrial function and ROS, nucleic acid regulation, and cytoskeletal dynamics. Surprisingly, the mechanisms detailing the contribution of the neuronal cytoskeletal in ALS are the least explored, despite involvement in these cell processes. Eight genes directly regulate properties of cytoskeleton function and are essential for the health and survival of motor neurons, including: TUBA4A, SPAST, KIF5A, DCTN1, NF, PRPH, ALS2, and PFN1. Here we review the properties and studies exploring the contribution of each of these genes to ALS.
Collapse
|
8
|
The Amyotrophic Lateral Sclerosis M114T PFN1 Mutation Deregulates Alternative Autophagy Pathways and Mitochondrial Homeostasis. Int J Mol Sci 2022; 23:ijms23105694. [PMID: 35628504 PMCID: PMC9143529 DOI: 10.3390/ijms23105694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/10/2022] Open
Abstract
Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.
Collapse
|
9
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
10
|
Murk K, Ornaghi M, Schiweck J. Profilin Isoforms in Health and Disease - All the Same but Different. Front Cell Dev Biol 2021; 9:681122. [PMID: 34458253 PMCID: PMC8387879 DOI: 10.3389/fcell.2021.681122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and "typical" profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington's disease and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Kai Murk
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marta Ornaghi
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Juliane Schiweck
- Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
ALS-linked PFN1 variants exhibit loss and gain of functions in the context of formin-induced actin polymerization. Proc Natl Acad Sci U S A 2021; 118:2024605118. [PMID: 34074767 DOI: 10.1073/pnas.2024605118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.
Collapse
|
12
|
Nekouei M, Aliahmadi A, Kiaei M, Ghassempour AR. Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis. Basic Clin Neurosci 2021; 12:213-222. [PMID: 34925718 PMCID: PMC8672666 DOI: 10.32598/bcn.12.2.1631.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing mutant PFN1 may be a mechanism for motor neuron death. Hence, we were interested in investigating the aggregation of PFN1 further and searching for co-aggregated proteins in our mouse model overexpressing mutant PFN1. METHODS We investigated protein aggregation in several tissues of transgenic and notransgenic mice using western blotting. To further understand the neurotoxicity of mutant PFN1, we conducted a pull-down assay using an insoluble fraction of spinal cord lysates from hPFN1G118V transgenic mice. For this assay, we expressed His6-tagged PFN1WT and PFN1G118V in E. coli and purified these proteins using the Ni-NTA column. RESULTS In this study, we demonstrated that mutant PFN1 forms aggregate in the brain and spinal cord of hPFN1G118V mice, while WT-PFN1 remains soluble. Among these tissues, spinal cord lysates were found to have PFN1 bands at higher molecular weights recognized with anti-PFN1. Moreover, the pull-down assay using His6-PFN1G118V showed that Myelin Binding Protein (MBP) was present in the insoluble fraction. CONCLUSION Our analysis of PFN1 aggregation in vivo revealed further details of mutant PFN1 aggregation and its possible complex formation with other proteins, providing new insights into the ALS mechanism.
Collapse
Affiliation(s)
- Mina Nekouei
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mahmoud Kiaei
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Ali Reza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Castellanos-Montiel MJ, Chaineau M, Durcan TM. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 2020; 14:594975. [PMID: 33281562 PMCID: PMC7691654 DOI: 10.3389/fncel.2020.594975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics (ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high importance for MN health and survival, considering that MNs are large polarized cells with axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate the transport of organelles and molecules across the long axonal distances within the cell, playing a key role in synapse maintenance. The majority of ALS-related genes affecting cytoskeletal dynamics were identified within the past two decades, making it a new area to explore for ALS. The purpose of this review is to provide insights into ALS-associated cytoskeletal genes and outline how recent studies have pointed towards novel pathways that might be impacted in ALS. Further studies making use of extensive analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9, human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the development of more transgenic animal models could potentially help to: differentiate the variants that truly act as a primary cause of the disease from the ones that act as risk factors or disease modifiers, identify potential interactions between two or more ALS-related genes in disease onset and progression and increase our understanding of the molecular mechanisms leading to cytoskeletal defects. Altogether, this information will give us a hint on the real contribution of the cytoskeletal ALS-related genes during this lethal disease.
Collapse
Affiliation(s)
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Merlotti D, Materozzi M, Bianciardi S, Guarnieri V, Rendina D, Volterrani L, Bellan C, Mingiano C, Picchioni T, Frosali A, Orfanelli U, Cenci S, Gennari L. Mutation of PFN1 Gene in an Early Onset, Polyostotic Paget-like Disease. J Clin Endocrinol Metab 2020; 105:5835857. [PMID: 32392277 DOI: 10.1210/clinem/dgaa252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
CONTEXT Paget disease of bone (PDB) is a metabolic bone disease whose genetic cause remains unknown in up to 50% of familial patients. OBJECTIVE Our aim was to investigate the underlying genetic defect in a large pedigree with a severe, early onset, autosomal dominant form of PDB across 3 generations. METHODS Whole exome sequencing was performed in affected and unaffected family members, and then mutation screening was replicated in a sample of PDB patients with early-onset, polyostotic PDB. RESULTS We identified a frameshift D107Rfs*3 mutation in PFN1 (encoding for profilin 1, a highly conserved regulator of actin-polymerization and cell motility) causing the truncation of the C-terminal part of the protein. The mutation was also detected in a 17-year-old asymptomatic family member who upon biochemical and radiological analyses was indeed found to be affected. Sequencing of the entire PFN1 coding region in unrelated PDB patients identified the same mutation in 1 patient. All mutation carriers had a reduced response to bisphosphonates, requiring multiple zoledronate infusions to control bone pain and achieve biochemical remission over a long term. In vitro osteoclastogenesis in peripheral blood mononuclear cells (PBMCs) from mutation carriers showed a higher number of osteoclasts with PDB-like features. A similar phenotype was observed upon PFN1 silencing in murine bone marrow-derived monocytes, suggesting that the frameshift PFN1 mutation confers a loss of function in profilin 1 activity that induces PDB-like features in the osteoclasts, likely due to enhanced cell motility and actin ring formation. CONCLUSIONS Our findings indicate that PFN1 mutation causes an early onset, polyostotic PDB-like disorder.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Maria Materozzi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Simone Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Vito Guarnieri
- Medical Genetics Service, IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | - Domenico Rendina
- Department of Clinical and Surgical Sciences, Federico II University Medical School, Naples, Italy
| | - Luca Volterrani
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, University of Siena, Italy
| | - Christian Mingiano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Tommaso Picchioni
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Alessandro Frosali
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Ugo Orfanelli
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Simone Cenci
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| |
Collapse
|
15
|
A Systematic Review of Genotype-Phenotype Correlation across Cohorts Having Causal Mutations of Different Genes in ALS. J Pers Med 2020; 10:jpm10030058. [PMID: 32610599 PMCID: PMC7564886 DOI: 10.3390/jpm10030058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rare and fatal neurodegenerative disease characterised by progressive deterioration of upper and lower motor neurons that eventually culminates in severe muscle atrophy, respiratory failure and death. There is a concerning lack of understanding regarding the mechanisms that lead to the onset of ALS and as a result there are no reliable biomarkers that aid in the early detection of the disease nor is there an effective treatment. This review first considers the clinical phenotypes associated with ALS, and discusses the broad categorisation of ALS and ALS-mimic diseases into upper and lower motor neuron diseases, before focusing on the genetic aetiology of ALS and considering the potential relationship of mutations of different genes to variations in phenotype. For this purpose, a systematic review is conducted collating data from 107 original published clinical studies on monogenic forms of the disease, surveying the age and site of onset, disease duration and motor neuron involvement. The collected data highlight the complexity of the disease's genotype-phenotype relationship, and thus the need for a nuanced approach to the development of clinical assays and therapeutics.
Collapse
|
16
|
Casterton RL, Hunt RJ, Fanto M. Pathomechanism Heterogeneity in the Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Disease Spectrum: Providing Focus Through the Lens of Autophagy. J Mol Biol 2020; 432:2692-2713. [PMID: 32119873 DOI: 10.1016/j.jmb.2020.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) constitute aggressive neurodegenerative pathologies that lead to the progressive degeneration of upper and lower motor neurons and of neocortical areas, respectively. In the past decade, the identification of several genes that cause these disorders indicated that the two diseases overlap in a multifaceted spectrum of conditions. The autophagy-lysosome system has been identified as a main intersection for the onset and progression of neurodegeneration in ALS/FTD. Genetic evidence has revealed that several genes with a mechanistic role at different stages of the autophagy process are mutated in patients with ALS/FTD. Moreover, the three main proteins aggregating in ALS/FTD, including in sporadic cases, are also targeted by autophagy and affect this process. Here, we examine the varied dysfunctions and degrees of involvement of the autophagy-lysosome system that have been discovered in ALS/FTD. We argue that these findings shed light on the pathological mechanisms in the ALS/FTD spectrum and conclude that they have important consequences both for treatment options and for the basic biomolecular understanding of how this process intersects with RNA metabolism, the other major cellular process reported to be dysfunctional in part of the ALS/FTD spectrum.
Collapse
Affiliation(s)
- Rebecca L Casterton
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Rachel J Hunt
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, United Kingdom; Institut du Cerveau et de la Moelle épinière (ICM), 47, bd de l'hôpital, F-75013 Paris, France.
| |
Collapse
|
17
|
Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders. Cells 2020; 9:cells9020358. [PMID: 32033020 PMCID: PMC7072452 DOI: 10.3390/cells9020358] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023] Open
Abstract
Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
Collapse
|
18
|
Zou ZY, Chen SD, Feng SY, Liu CY, Cui M, Chen SF, Feng SM, Dong Q, Huang H, Yu JT. Familial flail leg ALS caused by PFN1 mutation. J Neurol Neurosurg Psychiatry 2020; 91:223-224. [PMID: 31401564 DOI: 10.1136/jnnp-2019-321366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shi-Dong Chen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Yan Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhenzhou, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei Cui
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shu-Man Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhenzhou, China
| | - Qiang Dong
- Department of Neurology, Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jin-Tai Yu
- WHO Collaborating Center for Research and Training in Neurosciences, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Pinto-Costa R, Sousa MM. Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton (Hoboken) 2019; 77:76-83. [PMID: 31811707 DOI: 10.1002/cm.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Although originally identified as G-actin sequestering proteins, profilins are emerging as critical regulators of actin dynamics, capable of interacting with multiple acting binding proteins, and being able to link membrane lipids to cytoskeleton components. Recently, in addition to its actin, poly-proline, and phosphatidylinositol binding domains, profilin has been shown to contain residues specialized in microtubule binding. Here we will discuss in a critical perspective the emerging body of data supporting that profilins are central mediators of actin microfilament and microtubule interaction. We will also address the unanswered questions in the field, including the nature of the interaction of profilin with microtubules, and its effect on microtubule dynamics. These recent discoveries deepen our understanding on how different cytoskeleton components are integrated within cells.
Collapse
Affiliation(s)
- Rita Pinto-Costa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal.,Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Chi J, Chen J, Li Y, Huang Z, Wang L, Zhang Y. A Familial Phenotypic and Genetic Study of Mutations in PFN1 Associated with Amyotrophic Lateral Sclerosis. Neurosci Bull 2019; 36:174-178. [PMID: 31802421 DOI: 10.1007/s12264-019-00448-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jieshan Chi
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Junling Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yan Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiheng Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
21
|
Roggenbuck J, Doyle C, Lincoln T, Glass J. Theme 2 Genetics and genomics. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:114-134. [PMID: 31702465 DOI: 10.1080/21678421.2019.1646990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: A genetic basis is found in ∼70% of familial and ∼15% of sporadic ALS, in research cohorts. Clinical trials of gene-targeted therapies are underway, heralding a new era of personalized medicine in ALS treatment. However, ALS management guidelines do not include recommendations for the offer of genetic testing. Many persons with ALS who desire genetic testing are not currently offered it, and the yield of genetic testing in clinic-based ALS populations is unknown. The ALS GAP program, sponsored by the Northeast ALS (NEALS) Consortium, provides free genetic testing for patients with ALS who have a family history of ALS or dementia. We report genetic testing outcomes in the first 142 patients tested in the
program.Objectives: 1) To create a pilot ALS genetic testing program for NEALS clinics, 2) To study the rate of ALS gene identification in a US clinic-based populationMethods: Persons with ALS and a family history of ALS (fALS) or dementia (dALS) who receive care at a US NEALS clinic are eligible for testing. Patients classified as fALS (having a positive family history of ALS in a 1st, 2nd, or 3rd degree relative) are eligible for C9orf72 testing, with the option to reflex to a 5 gene (SOD1, FUS, TARDBP, TBK1, VCP) panel. Patients classified as dALS (having a positive family history of dementia of any type in a 1st or 2nd degree relative) are eligible for C9orf72 testing only.Results: Currently, 29.5% (34/115) of US NEALS clinics have participated in the program. Of 142 patients who have completed testing to date, 78 (54.9%) were classified as fALS and 64 (45.1%) as dALS. Among fALS cases, 42/78 (53.9%) tested positive, including 32/78 (41%) with a C9orf72 repeat expansion, and 10/78 (12.8%) with other pathogenic or likely pathogenic variants in SOD, FUS, TARDP or VCP. Variants of uncertain significance (VUS) in FUS were identified in 2/78 (2.6%). Among dALS cases, 12/60 (20%) tested positive for C9orf72.Discussion and conclusions: Participation in ALS-GAP indicates significant clinician and patient interest in ALS genetic testing. This program addresses several current barriers to testing access, including cost, identifying appropriate candidates for testing, and appropriate test selection. Although 38% of patients who participated in the program have thus far received a genetic diagnosis, our testing outcome data suggests that the gene identification rate in fALS cases may be lower in clinic-based patients than in research cohorts, particularly for genes other than C9orf72. This program may serve as a model for the practice of ALS genetic testing in the clinic setting. Consistent, equitable testing policies, as well as an accurate understanding of the genetic profile of clinic-based ALS populations, are needed as gene-targeted therapies reach patient care.
Collapse
|
22
|
Brettle M, Stefen H, Djordjevic A, Fok SYY, Chan JW, van Hummel A, van der Hoven J, Przybyla M, Volkerling A, Ke YD, Delerue F, Ittner LM, Fath T. Developmental Expression of Mutant PFN1 in Motor Neurons Impacts Neuronal Growth and Motor Performance of Young and Adult Mice. Front Mol Neurosci 2019; 12:231. [PMID: 31611772 PMCID: PMC6776973 DOI: 10.3389/fnmol.2019.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment and no cure. Mutations in profilin 1 were identified as a cause of familial ALS (fALS) in 2012. We investigated the functional impact of mutant profilin 1 expression in spinal cords during mouse development. We developed a novel mouse model with the expression of profilin 1 C71G under the control of the Hb9 promoter, targeting expression to α-motor neurons in the spinal cord during development. Embryos of transgenic mice showed evidence of a significant reduction of brachial nerve diameter and a loss of Mendelian inheritance. Despite the lack of transgene expression, adult mice presented with significant motor deficits. Transgenic mice had a significant reduction in the number of motor neurons in the spinal cord. Further analysis of these motor neurons in aged transgenic mice revealed reduced levels of TDP-43 and ChAT expression. Although profilin 1 C71G was only expressed during development, adult mice presented with some ALS-associated pathology and motor symptoms. This study highlights the effect of profilin 1 during neurodevelopment and the impact that this may have in later ALS.
Collapse
Affiliation(s)
- Merryn Brettle
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Aleksandra Djordjevic
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Sandra Y Y Fok
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Biomedical Imaging Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Randwick, NSW, Australia
| | - Josephine W Chan
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alexander Volkerling
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
| | - Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
23
|
Pereira GRC, Tellini GHAS, De Mesquita JF. In silico analysis of PFN1 related to amyotrophic lateral sclerosis. PLoS One 2019; 14:e0215723. [PMID: 31216283 PMCID: PMC6583998 DOI: 10.1371/journal.pone.0215723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Profilin 1 (PFN1) protein plays key roles in neuronal growth and differentiation, membrane trafficking, and regulation of the actin cytoskeleton. Four natural variants of PFN1 were described as related to ALS, the most common adult-onset motor neuron disorder. However, the pathological mechanism of PFN1 in ALS is not yet completely understood. The goal of this work is to thoroughly analyze the effects of the ALS-related mutations on PFN1 structure and function using computational simulations. Here, PhD-SNP, PMUT, PolyPhen-2, SIFT, SNAP, SNPS&GO, SAAP, nsSNPAnalyzer, SNPeffect4.0 and I-Mutant2.0 were used to predict the functional and stability effects of PFN1 mutations. ConSurf was used for the evolutionary conservation analysis, and GROMACS was used to perform the MD simulations. The mutations C71G, M114T, and G118V, but not E117G, were predicted as deleterious by most of the functional prediction algorithms that were used. The stability prediction indicated that the ALS-related mutations could destabilize PFN1. The ConSurf analysis indicated that the mutation C71G, M114T, E117G, and G118V occur in highly conserved positions. The MD results indicated that the studied mutations could affect the PFN1 flexibility at the actin and PLP-binding domains, and consequently, their intermolecular interactions. It may be therefore related to the functional impairment of PFN1 upon C71G, M114T, E117G and G118V mutations, and their involvement in ALS development. We also developed a database, SNPMOL (http://www.snpmol.org/), containing the results presented on this paper for biologists and clinicians to exploit PFN1 and its natural variants.
Collapse
Affiliation(s)
- Gabriel Rodrigues Coutinho Pereira
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanni Henrique Almeida Silva Tellini
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joelma Freire De Mesquita
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
24
|
Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 2019; 697:34-48. [PMID: 29626651 PMCID: PMC6170747 DOI: 10.1016/j.neulet.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Age-dependent neurodegenerative diseases are associated with a decline in protein quality control systems including autophagy. Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disease of complex etiology with increasing connections to other neurodegenerative conditions such as frontotemporal dementia. Among the diverse genetic causes for ALS, a striking feature is the common connection to autophagy and its associated pathways. There is a recurring theme of protein misfolding as in other neurodegenerative diseases, but importantly there is a distinct common thread among ALS genes that connects them to the cascade of autophagy. However, the roles of autophagy in ALS remain enigmatic and it is still unclear whether activation or inhibition of autophagy would be a reliable avenue to ameliorate the disease. The main evidence that links autophagy to different genetic forms of ALS is discussed.
Collapse
Affiliation(s)
- Dao K H Nguyen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat Neurosci 2018; 22:65-77. [PMID: 30559480 DOI: 10.1038/s41593-018-0294-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of people with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTLD cases into at least four subtypes, which are correlated with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for biochemical isolation of pathological TDP-43. By combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43 that become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from brain forms stable assemblies of distinct densities and morphologies that are associated with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies showed differential neurotoxicity and seeding that were correlated with disease duration of FTLD subjects. Our data are consistent with the notion that disease heterogeneity could originate from alternate pathological TDP-43 conformations, which are reminiscent of prion strains.
Collapse
|
26
|
Nekouei M, Ghezellou P, Aliahmadi A, Arjmand S, Kiaei M, Ghassempour A. Changes in biophysical characteristics of PFN1 due to mutation causing amyotrophic lateral sclerosis. Metab Brain Dis 2018; 33:1975-1984. [PMID: 30203378 PMCID: PMC6230493 DOI: 10.1007/s11011-018-0305-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
Single amino acid mutations in profilin 1 (PFN1) have been found to cause amyotrophic lateral sclerosis (ALS). Recently, we developed a mouse model for ALS using a PFN1 mutation (glycine 118 to valine, G118V), and we are now interested in understanding how PFN1 becomes toxically lethal with only one amino acid substitution. Therefore, we studied mutation-related changes in the PFN1 protein and hypothesized that such changes significantly disturb its structure. Initially, we expressed and studied the purified PFN1WT and PFN1G118V proteins from bacterial culture. We found that the PFN1G118V protein has a different mean residue ellipticity, as measured by far-UV circular dichroism, accompanied by a spectral shift. The intrinsic fluorescence of PFN1G118V showed a small fluctuation in maximum fluorescence absorption and intensity. Moreover, we examined the time course of PFN1 aggregation using SDS-PAGE, western blotting, and MALDI-TOF/TOF and found that compared with PFN1WT, PFN1G118V had an increased tendency to form aggregates. Dynamic light scattering data confirmed this, showing a larger size distribution for PFN1G118V. Our data explain why PFN1G118V tends to aggregate, a phenotype that may be the basis for its neurotoxicity.
Collapse
Affiliation(s)
- Mina Nekouei
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Parviz Ghezellou
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Atousa Aliahmadi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G.C., Evin, Tehran, Iran
| | - Mahmoud Kiaei
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Alireza Ghassempour
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran, Iran.
| |
Collapse
|
27
|
ALS-causing mutations in profilin-1 alter its conformational dynamics: A computational approach to explain propensity for aggregation. Sci Rep 2018; 8:13102. [PMID: 30166578 PMCID: PMC6117255 DOI: 10.1038/s41598-018-31199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Profilin-1 (PFN1) is a 140-amino-acid protein with two distinct binding sites―one for actin and one for poly-L-proline (PLP). The best-described function of PFN1 is to catalyze actin elongation and polymerization. Thus far, eight DNA mutations in the PFN1 gene encoding the PFN1 protein are associated with human amyotrophic lateral sclerosis (ALS). We and others recently showed that two of these mutations (Gly118Val or G118V and Cys71Gly or C71G) cause ALS in rodents. In vitro studies suggested that Met114Thr and Thr109Met cause the protein to behave abnormally and cause neurotoxicity. The mechanism by which a single amino acid change in human PFN1 causes the degeneration of motor neurons is not known. In this study, we investigated the structural perturbations of PFN1 caused by each ALS-associated mutation. We used molecular dynamics simulations to assess how these mutations alter the secondary and tertiary structures of human PFN1. Herein, we present our in silico data and analysis on the effect of G118V and T109M mutations on PFN1 and its interactions with actin and PLP. The substitution of valine for glycine reduces the conformational flexibility of the loop region between the α-helix and β-strand and enhances the hydrophobicity of the region. Our in silico analysis of T109M indicates that this mutation alters the shape of the PLP-binding site and reduces the flexibility of this site. Simulation studies of PFN1 in its wild type (WT) and mutant forms (both G118V and T109M mutants) revealed differential fluctuation patterns and the formation of salt bridges and hydrogen bonds between critical residues that may shed light on differences between WT and mutant PFN1. In particular, we hypothesize that the flexibility of the actin- and PLP-binding sites in WT PFN1 may allow the protein to adopt slightly different conformations in its free and bound forms. These findings provide new insights into how each of these mutations in PFN1 might increase its propensity for misfolding and aggregation, leading to its dysfunction.
Collapse
|
28
|
Müller K, Brenner D, Weydt P, Meyer T, Grehl T, Petri S, Grosskreutz J, Schuster J, Volk AE, Borck G, Kubisch C, Klopstock T, Zeller D, Jablonka S, Sendtner M, Klebe S, Knehr A, Günther K, Weis J, Claeys KG, Schrank B, Sperfeld AD, Hübers A, Otto M, Dorst J, Meitinger T, Strom TM, Andersen PM, Ludolph AC, Weishaupt JH. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry 2018; 89:817-827. [PMID: 29650794 DOI: 10.1136/jnnp-2017-317611] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions. METHODS Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families. RESULTS 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes. CONCLUSIONS We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
Collapse
Affiliation(s)
| | - David Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Weydt
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, Bonn University, Bonn, Germany
| | - Thomas Meyer
- Department of Neurology, Charité Hospital, Humboldt University, Berlin, Germany
| | - Torsten Grehl
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Alexander E Volk
- Institute of Human Genetics, Ulm University, Ulm, Germany.,Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Guntram Borck
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | - Christian Kubisch
- Institute of Human Genetics, Ulm University, Ulm, Germany.,Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Stephan Klebe
- Department of Neurology, University of Würzburg, Würzburg, Germany.,Department of Neurology, University Duisburg-Essen, Essen, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Berthold Schrank
- Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Anne-Dorte Sperfeld
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SNergy), Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SNergy), Munich, Germany
| | - Peter M Andersen
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
29
|
[Genetic architecture of amyotrophic lateral sclerosis and frontotemporal dementia : Overlap and differences]. DER NERVENARZT 2018; 88:728-735. [PMID: 28573364 DOI: 10.1007/s00115-017-0349-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) overlap not only clinically, but also with respect to shared neuropathology and genes. A large number of novel genes has recently been identified which underlie both diseases, e. g., C9orf72, TARDBP, GRN, TBK1, UBQLN2, VCP, CHCHD10, or SQSTM1. In contrast, other genes are still largely associated with only one of the two diseases, e. g., SOD1 with ALS or MAPT with FTD. These genetic findings indicate a large number of shared mechanisms, yet along with still a certain cell-specific vulnerability. The recently identified genes are not only key to investigate the pathophysiology underlying ALS and FTD, but also the first step in the development of causal gene- or pathway-specific therapies. Mutations in these genes are also found in a substantial share of seemingly "sporadic" ALS and FTD patients. Given the large genetic heterogeneity with more than >25 genes having been identified for ALS and FTD, genetic diagnostics should - after exclusion of C9orf72 repeat expansions - no longer resort to single gene-diagnostics, but rather use next generation sequencing panels or whole exome sequencing.
Collapse
|
30
|
Del Poggetto E, Toto A, Aloise C, Di Piro F, Gori L, Malatesta F, Gianni S, Chiti F, Bemporad F. Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity. J Biol Chem 2018; 293:10303-10313. [PMID: 29760185 DOI: 10.1074/jbc.ra118.002087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig's disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclusions of the mutant proteins and correlates with the mutation-induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed profilin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluorescence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this conformational state as an aggregation-prone folding intermediate. In conclusion, our findings indicate that mutation-induced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the pathogenicity of the mutations.
Collapse
Affiliation(s)
- Edoardo Del Poggetto
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Angelo Toto
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and
| | - Chiara Aloise
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Di Piro
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Ludovica Gori
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Malatesta
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and
| | - Stefano Gianni
- the Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Sapienza University of Rome, 00185 Rome, Italy, and.,the Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, 00185 Rome, Italy
| | - Fabrizio Chiti
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy
| | - Francesco Bemporad
- From the Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Viale G. B. Morgagni 50, 50134, Firenze, Italy,
| |
Collapse
|
31
|
Lutz C. Mouse models of ALS: Past, present and future. Brain Res 2018; 1693:1-10. [PMID: 29577886 DOI: 10.1016/j.brainres.2018.03.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
Genome sequencing of both sporadic and familial patients of Amyotrophic Lateral Sclerosis (ALS) has led to the identification of new genes that are both contributing and causative in the disease. This gene discovery has come at an unprecedented rate, and much of it in recent years. Knowledge of these genetic mutations provides us with opportunities to uncover new and related mechanisms, increasing our understanding of the disease and bringing us closer to defined therapies for patients. Mouse models have played an important role in our current understanding of the pathophysiology of ALS and have served as important preclinical models in testing new therapeutics. With these new gene discoveries, new mouse models will follow. The information derived from these new models will depend on the careful construction and importantly, an understanding of the capabilities and limitations of each of the models. The genetic discovery in ALS comes at a time when genetic engineering technologies in mice are highly efficient through CRISPR/Cas9 and can be applied to a wide array of genetic backgrounds. New mouse resources in the forms of the Collaborative Cross and Diversity Outbred panels provide us with unique opportunities to study these mutations on diverse genetic backgrounds, and importantly in the context of a population. This review focuses on the mouse models of the past and present, and discusses exciting new opportunities for mouse models of the future.
Collapse
Affiliation(s)
- Cathleen Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| |
Collapse
|
32
|
Dervishi I, Ozdinler PH. Incorporating upper motor neuron health in ALS drug discovery. Drug Discov Today 2018; 23:696-703. [PMID: 29331501 PMCID: PMC5849515 DOI: 10.1016/j.drudis.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease, that affects the motor neuron circuitry. After consecutive failures in clinical trials for the past 20 years, edaravone was recently approved as the second drug for ALS. This generated excitement in the field revealed the need to improve preclinical assays for continued success. Here, we focus on the importance and relevance of upper motor neuron (UMN) pathology in ALS, and discuss how incorporation of UMN survival in preclinical assays will improve inclusion criteria for clinical trials and expedite the drug discovery effort in ALS and related motor neuron diseases.
Collapse
Affiliation(s)
- Ina Dervishi
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - P Hande Ozdinler
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype-phenotype relationship in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:603-623. [PMID: 29478603 DOI: 10.1016/b978-0-444-64076-5.00039-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, noncurable neurodegenerative disorder of the upper and lower motor neurons causing weakness and death within a few years of symptom onset. About 10% of patients with ALS have a family history of the disease; however, ALS-associated genetic mutations are also found in sporadic cases. There are over 100 ALS-associated mutations, and importantly, several genetic mutations, including C9ORF72, SOD1, and TARDBP, have led to mechanistic insight into this complex disease. In the clinical realm, knowledge of ALS genetics can also help explain phenotypic heterogeneity, aid in genetic counseling, and in the future may help direct treatment efforts.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Abstract
Mutations in the profilin 1 (PFN1) gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS), and neuropathological studies indicate that TDP-43 is accumulated in brains of patients with PFN1 mutation. Here, we investigated the role of PFN1 mutations in the formation of prion-like abnormal TDP-43. Expression of PFN1 with pathogenic mutations resulted in the formation of cytoplasmic aggregates positive for p62 and ubiquitin, and these aggregates sequestered endogenous TDP-43. TDP-43 accumulation was facilitated in the presence of proteasome or lysosome inhibitor. Co-expression of mutant PFN1 and TDP-43 increased the levels of detergent-insoluble and phosphorylated TDP-43, and this increase required the C-terminal region of TDP-43. Moreover, detergent-insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 induced seed-dependent accumulation of TDP-43. These findings indicate that expression of PFN1 mutants induces accumulation of TDP-43, and promotes conversion of normal TDP-43 into an abnormal form. These results provide new insight into the mechanisms of TDP-43 proteinopathies and other diseases associated with amyloid-like protein deposition.
Collapse
Affiliation(s)
- Yoshinori Tanaka
- a Dementia Research Project, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Masato Hasegawa
- a Dementia Research Project, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| |
Collapse
|
35
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
36
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
37
|
Hensel N, Claus P. The Actin Cytoskeleton in SMA and ALS: How Does It Contribute to Motoneuron Degeneration? Neuroscientist 2017; 24:54-72. [PMID: 28459188 DOI: 10.1177/1073858417705059] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are neurodegenerative diseases with overlapping clinical phenotypes based on impaired motoneuron function. However, the pathomechanisms of both diseases are largely unknown, and it is still unclear whether they converge on the molecular level. SMA is a monogenic disease caused by low levels of functional Survival of Motoneuron (SMN) protein, whereas ALS involves multiple genes as well as environmental factors. Recent evidence argues for involvement of actin regulation as a causative and dysregulated process in both diseases. ALS-causing mutations in the actin-binding protein profilin-1 as well as the ability of the SMN protein to directly bind to profilins argue in favor of a common molecular mechanism involving the actin cytoskeleton. Profilins are major regulat ors of actin-dynamics being involved in multiple neuronal motility and transport processes as well as modulation of synaptic functions that are impaired in models of both motoneuron diseases. In this article, we review the current literature in SMA and ALS research with a focus on the actin cytoskeleton. We propose a common molecular mechanism that explains the degeneration of motoneurons for SMA and some cases of ALS.
Collapse
Affiliation(s)
- Niko Hensel
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany
| | - Peter Claus
- 1 Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany.,2 Niedersachsen Network on Neuroinfectiology (N-RENNT), Hannover, Germany.,3 Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
38
|
Santamaria N, Alhothali M, Alfonso MH, Breydo L, Uversky VN. Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis. Cell Mol Life Sci 2017; 74:1297-1318. [PMID: 27838743 PMCID: PMC11107678 DOI: 10.1007/s00018-016-2416-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Five structurally and functionally different proteins, an enzyme superoxide dismutase 1 (SOD1), a TAR-DNA binding protein-43 (TDP-43), an RNA-binding protein FUS, a cofilin-binding protein C9orf72, and polypeptides generated as a result of its intronic hexanucleotide expansions, and to lesser degree actin-binding profilin-1 (PFN1), are considered to be the major drivers of amyotrophic lateral sclerosis. One of the features common to these proteins is the presence of significant levels of intrinsic disorder. The goal of this study is to consider these neurodegeneration-related proteins from the intrinsic disorder perspective. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search to gain information on the structural peculiarities of SOD1, TDP-43, FUS, C9orf72, and PFN1 and their intrinsic disorder predispositions, and the roles of intrinsic disorder in their normal and pathological functions.
Collapse
Affiliation(s)
- Nikolas Santamaria
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Marwa Alhothali
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Maria Harreguy Alfonso
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
| | - Leonid Breydo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
39
|
Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A, Compadre CM, Goellner JJ, O’Brien CA, Fahmi T, Basnakian AG, Calingasan NY, Klessner JL, Beal FM, Peters OM, Metterville J, Brown RH, Ling KK, Rigo F, Ozdinler PH, Kiaei M. Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol Genet 2017; 26:686-701. [PMID: 28040732 PMCID: PMC5968635 DOI: 10.1093/hmg/ddw429] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The recent identification of profilin1 mutations in 25 familial ALS cases has linked altered function of this cytoskeleton-regulating protein to the pathogenesis of motor neuron disease. To investigate the pathological role of mutant profilin1 in motor neuron disease, we generated transgenic lines of mice expressing human profilin1 with a mutation at position 118 (hPFN1G118V). One of the mouse lines expressing high levels of mutant human PFN1 protein in the brain and spinal cord exhibited many key clinical and pathological features consistent with human ALS disease. These include loss of lower (ventral horn) and upper motor neurons (corticospinal motor neurons in layer V), mutant profilin1 aggregation, abnormally ubiquitinated proteins, reduced choline acetyltransferase (ChAT) enzyme expression, fragmented mitochondria, glial cell activation, muscle atrophy, weight loss, and reduced survival. Our investigations of actin dynamics and axonal integrity suggest that mutant PFN1 protein is associated with an abnormally low filamentous/globular (F/G)-actin ratio that may be the underlying cause of severe damage to ventral root axons resulting in a Wallerian-like degeneration. These observations indicate that our novel profilin1 mutant mouse line may provide a new ALS model with the opportunity to gain unique perspectives into mechanisms of neurodegeneration that contribute to ALS pathogenesis.
Collapse
Affiliation(s)
- Daniel Fil
- Department of Pharmacology and Toxicology
| | | | | | - Duah Alkam
- Department of Pharmacology and Toxicology
| | | | | | | | - Joseph J. Goellner
- Division of Endocrinology, University of Arkansas for Medical Sciences, AR,
USA
| | - Charles A. O’Brien
- Division of Endocrinology, University of Arkansas for Medical Sciences, AR,
USA
| | | | - Alexei G. Basnakian
- Department of Pharmacology and Toxicology
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Noel Y. Calingasan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New
York, NY 10065, USA
| | - Jodi L. Klessner
- Department of Neurology, Northwestern University, Feinberg School of
Medicine, 303 E. Chicago Ave, Chicago, IL 6011, USA
| | - Flint M. Beal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New
York, NY 10065, USA
| | - Owen M. Peters
- Department of Neurology, University of Massachusetts Medical School,
Worcester, MA 01605, USA
| | - Jake Metterville
- Department of Neurology, University of Massachusetts Medical School,
Worcester, MA 01605, USA
| | - Robert H. Brown
- Department of Neurology, University of Massachusetts Medical School,
Worcester, MA 01605, USA
| | - Karen K.Y. Ling
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New
York, NY, 10065, USA
| | - Frank Rigo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New
York, NY, 10065, USA
| | - P. Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of
Medicine, 303 E. Chicago Ave, Chicago, IL 6011, USA
| | - Mahmoud Kiaei
- Department of Pharmacology and Toxicology
- Physiology and Biophysics
- Center for Translational Neuroscience
- Department of Neurology
- Department of Geriatrics, The University of Arkansas for Medical Sciences,
AR, USA
| |
Collapse
|
40
|
Schäfer MK, Bellouze S, Jacquier A, Schaller S, Richard L, Mathis S, Vallat JM, Haase G. Sensory neuropathy in progressive motor neuronopathy (pmn) mice is associated with defects in microtubule polymerization and axonal transport. Brain Pathol 2016; 27:459-471. [PMID: 27488538 DOI: 10.1111/bpa.12422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) are now recognized as multi-system disorders also involving various non-motor neuronal cell types. The precise extent and mechanistic basis of non-motor neuron damage in human ALS and ALS animal models remain however unclear. To address this, we here studied progressive motor neuronopathy (pmn) mice carrying a missense loss-of-function mutation in tubulin binding cofactor E (TBCE). These mice manifest a particularly aggressive form of motor axon dying back and display a microtubule loss, similar to that induced by human ALS-linked TUBA4A mutations. Using whole nerve confocal imaging of pmn × thy1.2-YFP16 fluorescent reporter mice and electron microscopy, we demonstrate axonal discontinuities, bead-like spheroids and ovoids in pmn suralis nerves indicating prominent sensory neuropathy. The axonal alterations qualitatively resemble those in phrenic motor nerves but do not culminate in the loss of myelinated fibers. We further show that the pmn mutation decreases the level of TBCE, impedes microtubule polymerization in dorsal root ganglion (DRG) neurons and causes progressive loss of microtubules in large and small caliber suralis axons. Live imaging of axonal transport using GFP-tagged tetanus toxin C-fragment (GFP-TTC) demonstrates defects in microtubule-based transport in pmn DRG neurons, providing a potential explanation for the axonal alterations in sensory nerves. This study unravels sensory neuropathy as a pathological feature of mouse pmn, and discusses the potential contribution of cytoskeletal defects to sensory neuropathy in human motor neuron disease.
Collapse
Affiliation(s)
- Michael K Schäfer
- Department of Anesthesiology and Research Center Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Sarah Bellouze
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Arnaud Jacquier
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Sébastien Schaller
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| | - Laurence Richard
- Laboratoire de Neurologie, Centre de référence national "Neuropathies périphériques rares", Centre Hospitalo-Universitaire (CHU), Limoges, France
| | - Stéphane Mathis
- Department of Neurology, Centre Hospitalo-Universitaire (CHU) Poitiers, University of Poitiers, Poitiers, France
| | - Jean-Michel Vallat
- Laboratoire de Neurologie, Centre de référence national "Neuropathies périphériques rares", Centre Hospitalo-Universitaire (CHU), Limoges, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université UMR 7289, Marseille, France
| |
Collapse
|
41
|
Profilin1 biology and its mutation, actin(g) in disease. Cell Mol Life Sci 2016; 74:967-981. [PMID: 27669692 DOI: 10.1007/s00018-016-2372-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.
Collapse
|
42
|
Matsukawa K, Hashimoto T, Matsumoto T, Ihara R, Chihara T, Miura M, Wakabayashi T, Iwatsubo T. Familial Amyotrophic Lateral Sclerosis-linked Mutations in Profilin 1 Exacerbate TDP-43-induced Degeneration in the Retina of Drosophila melanogaster through an Increase in the Cytoplasmic Localization of TDP-43. J Biol Chem 2016; 291:23464-23476. [PMID: 27634045 DOI: 10.1074/jbc.m116.729152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive and selective loss of motor neurons. Causative genes for familial ALS (fALS), e.g. TARDBP or FUS/TLS, have been found, among which mutations within the profilin 1 (PFN1) gene have recently been identified in ALS18. To elucidate the mechanism whereby PFN1 mutations lead to neuronal death, we generated transgenic Drosophila melanogaster overexpressing human PFN1 in the retinal photoreceptor neurons. Overexpression of wild-type or fALS mutant PFN1 caused no degenerative phenotypes in the retina. Double overexpression of fALS mutant PFN1 and human TDP-43 markedly exacerbated the TDP-43-induced retinal degeneration, i.e. vacuolation and thinning of the retina, whereas co-expression of wild-type PFN1 did not aggravate the degenerative phenotype. Notably, co-expression of TDP-43 with fALS mutant PFN1 increased the cytoplasmic localization of TDP-43, the latter remaining in nuclei upon co-expression with wild-type PFN1, whereas co-expression of TDP-43 lacking the nuclear localization signal with the fALS mutant PFN1 did not aggravate the retinal degeneration. Knockdown of endogenous Drosophila PFN1 did not alter the degenerative phenotypes of the retina in flies overexpressing wild-type TDP-43 These data suggest that ALS-linked PFN1 mutations exacerbate TDP-43-induced neurodegeneration in a gain-of-function manner, possibly by shifting the localization of TDP-43 from nuclei to cytoplasm.
Collapse
Affiliation(s)
- Koji Matsukawa
- From the Departments of Neuropathology, Graduate School of Medicine
| | | | - Taisei Matsumoto
- From the Departments of Neuropathology, Graduate School of Medicine.,Neuropathology and Neuroscience, and
| | - Ryoko Ihara
- From the Departments of Neuropathology, Graduate School of Medicine
| | - Takahiro Chihara
- Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Miura
- Genetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Takeshi Iwatsubo
- From the Departments of Neuropathology, Graduate School of Medicine, .,Neuropathology and Neuroscience, and
| |
Collapse
|
43
|
Riva N, Agosta F, Lunetta C, Filippi M, Quattrini A. Recent advances in amyotrophic lateral sclerosis. J Neurol 2016; 263:1241-54. [PMID: 27025851 PMCID: PMC4893385 DOI: 10.1007/s00415-016-8091-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 02/12/2016] [Indexed: 10/28/2022]
Abstract
ALS is a relentlessly progressive and fatal disease, with no curative therapies available to date. Symptomatic and palliative care, provided in a multidisciplinary context, still remains the cornerstone of ALS management. However, our understanding of the molecular mechanisms underlying the disease has advanced greatly over the past years, giving new hope for the development of novel diagnostic and therapeutic approaches. Here, we have reviewed the most recent studies that have contributed to improving both clinical management and our understanding of ALS pathogenesis.
Collapse
Affiliation(s)
- Nilo Riva
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy.
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Niguarda Ca Granda Hospital, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, INSPE and Division of Neuroscience, Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina 48, 20132, Milan, Italy
| |
Collapse
|
44
|
Alsultan AA, Waller R, Heath PR, Kirby J. The genetics of amyotrophic lateral sclerosis: current insights. Degener Neurol Neuromuscul Dis 2016; 6:49-64. [PMID: 30050368 PMCID: PMC6053097 DOI: 10.2147/dnnd.s84956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that results in loss of the upper and lower motor neurons from motor cortex, brainstem, and spinal cord. While the majority of cases are sporadic, approximately 10% show familial inheritance. ALS is usually inherited in an autosomal dominant manner, although autosomal recessive and X-linked inheritance do occur. To date, 24 of the genes at 26 loci have been identified; these include loci linked to ALS and to frontotemporal dementia-ALS, where family pedigrees contain individuals with frontotemporal dementia with/without ALS. The most commonly established genetic causes of familial ALS (FALS) to date are the presence of a hexanucleotide repeat expansion in the C9ORF72 gene (39.3% FALS) and mutation of SOD1, TARDBP, and FUS, with frequencies of 12%-23.5%, 5%, and 4.1%, respectively. However, with the increasing use of next-generation sequencing of small family pedigrees, this has led to an increasing number of genes being associated with ALS. This review provides a comprehensive review on the genetics of ALS and an update of the pathogenic mechanisms associated with these genes. Commonly implicated pathways have been established, including RNA processing, the protein degradation pathways of autophagy and ubiquitin-proteasome system, as well as protein trafficking and cytoskeletal function. Elucidating the role genetics plays in both FALS and sporadic ALS is essential for understanding the subsequent cellular dysregulation that leads to motor neuron loss, in order to develop future effective therapeutic strategies.
Collapse
Affiliation(s)
- Afnan A Alsultan
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK,
| |
Collapse
|
45
|
Li HF, Wu ZY. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl Neurodegener 2016; 5:3. [PMID: 26843957 PMCID: PMC4738789 DOI: 10.1186/s40035-016-0050-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive neuronal loss and degeneration of upper motor neuron (UMN) and lower motor neuron (LMN). The clinical presentations of ALS are heterogeneous and there is no single test or procedure to establish the diagnosis of ALS. Most cases are diagnosed based on symptoms, physical signs, progression, EMG, and tests to exclude the overlapping conditions. Familial ALS represents about 5 ~ 10 % of ALS cases, whereas the vast majority of patients are sporadic. To date, more than 20 causative genes have been identified in hereditary ALS. Detecting the pathogenic mutations or risk variants for each ALS individual is challenging. However, ALS patients carrying some specific mutations or variant may exhibit subtly distinct clinical features. Unraveling the respective genotype-phenotype correlation has important implications for the genetic explanations. In this review, we will delineate the clinical features of ALS, outline the major ALS-related genes, and summarize the possible genotype-phenotype correlations of ALS.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009 China
| |
Collapse
|
46
|
Del Poggetto E, Bemporad F, Tatini F, Chiti F. Mutations of Profilin-1 Associated with Amyotrophic Lateral Sclerosis Promote Aggregation Due to Structural Changes of Its Native State. ACS Chem Biol 2015; 10:2553-63. [PMID: 26226631 DOI: 10.1021/acschembio.5b00598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The PFN1 gene, coding for profilin-1, has recently been associated with familial amyotrophic lateral sclerosis (fALS), as three mutations, namely C71G, M114T, and G118V, have been found in patients with familial forms of the disease and another, E117G, has been proposed to be a moderate risk factor for disease onset. In this work, we have purified the four profilin-1 variants along with the wild-type protein. The resulting aggregates appear to be fibrillar, to have a weak binding to ThT, and to possess a significant amount of intermolecular β-sheet structure. Using ThT fluorescence assays, far-UV circular dichroism, and dynamic light scattering, we found that all four variants have an aggregation propensity higher than that of the wild-type counterpart. In particular, the C71G mutation was found to induce the most dramatic change in aggregation, followed by the G118V and M114T substitutions and then the E117G mutation. Such a propensity was found not to strictly correlate with the conformational stability in this group of profilin-1 variants, determined using both urea-induced denaturation at equilibrium and folding/unfolding kinetics. However, it correlated with structural changes of the folded states, as monitored with far-UV circular dichroism, intrinsic fluorescence spectroscopy, ANS binding, acrylamide quenching, and dynamic light scattering. Overall, the results suggest that all four mutations increase the tendency of profilin-1 to aggregate and that such aggregation behavior is largely determined by the mutation-induced structural changes occurring in the folded state of the protein.
Collapse
Affiliation(s)
- Edoardo Del Poggetto
- Department
of Biomedical Experimental and Clinical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, I-50134, Florence, Italy
| | - Francesco Bemporad
- Department
of Biomedical Experimental and Clinical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, I-50134, Florence, Italy
| | - Francesca Tatini
- Institute
of Applied Physics Nello Carrara, National Research Council, Via
Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Fabrizio Chiti
- Department
of Biomedical Experimental and Clinical Sciences, Section of Biochemistry, University of Florence, Viale Morgagni 50, I-50134, Florence, Italy
| |
Collapse
|
47
|
Freischmidt A, Schöpflin M, Feiler MS, Fleck AK, Ludolph AC, Weishaupt JH. Profilin 1 with the amyotrophic lateral sclerosis associated mutation T109M displays unaltered actin binding and does not affect the actin cytoskeleton. BMC Neurosci 2015; 16:77. [PMID: 26572741 PMCID: PMC4647582 DOI: 10.1186/s12868-015-0214-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022] Open
Abstract
Background The recent identification of several mutations in PFN1, a protein involved in actin dynamics, strengthens the hypothesis that pathology of amyotrophic lateral sclerosis is linked to cytoskeletal defects. Impaired actin binding is a common denominator of several PFN1 mutations associated with amyotrophic lateral sclerosis, although further mechanisms may also contribute to the death of motor neurons. In this study we examine the actin binding properties of PFN1 carrying the causal T109M mutation and its effects on the actin cytoskeleton. Methods Actin binding of PFN1 T109M was examined by co-immunoprecipitation experiments, a split luciferase complementation assay and a pulldown assay with recombinant PFN1. The actin cytoskeleton was investigated by fluorescence microscopy and by ultracentrifuge separation of globular and filamentous actin fractions followed by Western blotting. Results Using different technical approaches we show that PFN1 T109M displays unaltered actin binding. Furthermore we show that the actin cytoskeleton is not affected by PFN1 carrying the T109M mutation. Conclusion Our data suggest that actin independent mechanisms contribute to the pathogenicity of PFN1 T109M and possibly other PFN1 mutations.
Collapse
Affiliation(s)
- Axel Freischmidt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Marcel Schöpflin
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Marisa S Feiler
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Ann-Katrin Fleck
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
48
|
|
49
|
Brettle M, Suchowerska AK, Chua SW, Ittner LM, Fath T. Amyotrophic lateral sclerosis-associated mutant profilin 1 increases dendritic arborisation and spine formation in primary hippocampal neurons. Neurosci Lett 2015; 609:223-8. [PMID: 26499959 DOI: 10.1016/j.neulet.2015.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease and familial ALS accounts for 10% of cases. The identification of familial ALS mutations in the actin-binding protein profilin 1 directly implicates actin dynamics and regulation in the pathogenesis of ALS. The mechanism by which these mutations cause ALS is unknown. In this study we show that expression of the ALS-associated actin-binding deficient mutant of PFN1 (PFN1(C71G)) results in increased dendritic arborisation and spine formation, and cytoplasmic inclusions in cultured mouse hippocampal neurons.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Australia
| | - Alexandra K Suchowerska
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Australia
| | - Sook W Chua
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Australia
| | - Lars M Ittner
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Australia.
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Australia.
| |
Collapse
|
50
|
DeLoach A, Cozart M, Kiaei A, Kiaei M. A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov 2015; 10:1099-118. [PMID: 26307158 DOI: 10.1517/17460441.2015.1067197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery for amyotrophic lateral sclerosis (ALS) has experienced a surge in clinical studies and remarkable preclinical milestones utilizing a variety of mutant superoxide dismutase 1 model systems. Of the drugs that were tested and showed positive preclinical effects, none demonstrated therapeutic benefits to ALS patients in clinical settings. AREAS COVERED This review discusses the advances made in drug discovery for ALS and highlights why drug development is proving to be so difficult. It also discusses how a closer look at both preclinical and clinical studies could uncover the reasons why these preclinical successes have yet to result in the availability of an effective drug for clinical use. EXPERT OPINION Valuable lessons from the numerous preclinical and clinical studies supply the biggest advantage in the monumental task of finding a cure for ALS. Obviously, a single design type for ALS clinical trials has not yielded success. The authors suggest a two-pronged approach that may prove essential to achieve clinical efficacy in the identification of novel targets and preclinical testing in multiple models to identify biomarkers that can function in diagnostic, predictive and prognostic roles, and changes to clinical trial design and patient recruitment criteria. The advancement of technology and invention of more powerful tools will further enhance the above. This will give rise to more sophisticated clinical trials with consideration of a range of criteria from: optimum dose, route of delivery, specific biomarkers, pharmacokinetics, pharmacodynamics and toxicology to biomarkers, timing for trial and patients' clinical status.
Collapse
Affiliation(s)
- Abigail DeLoach
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Michael Cozart
- b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA
| | - Arianna Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Mahmoud Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA.,b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA.,c 3 University of Arkansas for Medical Sciences, Department of Neurology , 4301 W. Markham St, 846, Little Rock, AR 72205 7199, USA
| |
Collapse
|