1
|
Kim HW, Lee S, Yang JH, Moon Y, Lee J, Moon WJ. Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study. Korean J Radiol 2023; 24:1131-1141. [PMID: 37899522 PMCID: PMC10613848 DOI: 10.3348/kjr.2023.0490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. MATERIALS AND METHODS This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). RESULTS Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. CONCLUSION Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.
Collapse
Affiliation(s)
- Hyeong Woo Kim
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Subin Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Yang
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Trouche SG, Boutajangout A, Asuni A, Fontés P, Sigurdsson EM, Verdier JM, Mestre-Francés N. Amyloid-β targeting immunisation in aged non-human primate (Microcebus murinus). Brain Behav Immun 2023; 109:63-77. [PMID: 36592872 PMCID: PMC10023341 DOI: 10.1016/j.bbi.2022.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
Non-human primates have an important translational value given their close phylogenetic relationship to humans. Studies in these animals remain essential for evaluating efficacy and safety of new therapeutic approaches, particularly in aging primates that display Alzheimer's disease (AD) -like pathology. With the objective to improve amyloid-β (Aβ) targeting immunotherapy, we investigated the safety and efficacy of an active immunisation with an Aβ derivative, K6Aβ1-30-NH2, in old non-human primates. Thirty-two aged (4-10 year-old) mouse lemurs were enrolled in the study, and received up to four subcutaneous injections of the vaccine in alum adjuvant or adjuvant alone. Even though antibody titres to Aβ were not high, pathological examination of the mouse lemur brains showed a significant reduction in intraneuronal Aβ that was associated with reduced microgliosis, and the vaccination did not lead to microhemorrhages. Moreover, a subtle cognitive improvement was observed in the vaccinated primates, which was probably linked to Aβ clearance. This Aβ derivative vaccine appeared to be safe as a prophylactic measure based on the brain analyses and because it did not appear to have detrimental effects on the general health of these old animals.
Collapse
Affiliation(s)
- Stéphanie G Trouche
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Allal Boutajangout
- Departments of Neurology, and Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States.
| | - Ayodeji Asuni
- Department of Psychiatry, New York University Grossman School of Medicine, New York, United States.
| | | | - Einar M Sigurdsson
- Departments of Neuroscience and Physiology, and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, United States.
| | - Jean-Michel Verdier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| | - Nadine Mestre-Francés
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France; PSL Research University, Paris, France.
| |
Collapse
|
3
|
Zheng H, Yuan Y, Zhang Z, Zhang J. Analysis of Risk Factors for Cerebral Microbleeds and the Relationship between Cerebral Microbleeds and Cognitive Impairment. Brain Sci 2022; 12:brainsci12111445. [PMID: 36358371 PMCID: PMC9688341 DOI: 10.3390/brainsci12111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Cerebral microbleeds (CMBs) are attracting increasing attention. Nevertheless, the risk factors for CMBs remain poorly identified, and the relationship between CMBs and cognitive impairment is still up for debate; (2) Objective: The present study analyzed the risk factors for CMBs and probed into the potential correlations between the presence, number, and location of CMBs and cognition; (3) Methods: This study enrolled 406 subjects who underwent both brain 3.0-T magnetic resonance imaging scans and cognitive testing. Spearman correlation was used to assess the relationship between the number of CMBs and cognition. Multiple linear regression was utilized to analyze the relationship between the regions of CMBs and each cognitive domain; (4) Results: Multivariate logistic regression analysis results showed that age (odds ratio (OR) = 1.045, 95% confidence interval (95%CI; 1.009, 1.082)), smoking (OR = 3.604, 95%CI (1.995, 6.509)), hypertension (OR = 3.607, 95%CI (2.204, 5.901)), total cholesterol (OR = 0.611, 95%CI (0.467, 0.799)), and Amyloid-β1-42 (Aβ1-42) (OR = 1.028, 95%CI (1.018, 1.037)) were the influencing factors of CMBs. Education years (OR = 0.959, 95%CI (0.930, 0.988)), white matter lesions (OR = 2.687, 95%CI (1.782, 4.051)), and CMBs (OR = 21.246, 95%CI (5.728, 21.576)) were the risk factors for cognitive impairment. Hypertension increased the probability of deep CMBs (OR = 12.54, 95%CI (2.21, 71.28)), while Aβ1-42 elevated the probability of lobar CMBs (OR = 1.02, 95%CI (1.00, 1.03)). There was a linear correlation between the number of CMBs and Montreal Cognitive Assessment scores (r = −0.756, p < 0.001). However, CMBs in each region were not related to specific cognitive domains (p > 0.05), except CMBs in the mixed group that were negatively correlated with attention (OR = −0.669, 95%CI (−0.034, −5.270)); (5) Conclusions: Taken together, serum Aβ1-42 levels are related to the presence of CMBs. Cognitive impairment is correlated with the number of CMBs rather than their region. These findings suggest that CMBs play a role in cognitive impairment and that CMBs mark the presence of diffuse vascular injury and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Huiwen Zheng
- Department of Rehabilitation, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yong Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
- Correspondence:
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jing Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
4
|
Alisch JSR, Kiely M, Triebswetter C, Alsameen MH, Gong Z, Khattar N, Egan JM, Bouhrara M. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. [PMID: 34603011 PMCID: PMC8485051 DOI: 10.3389/fnagi.2021.734992] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited. In this cross-sectional study, we investigated age and sex differences in the CP structure and function using advanced quantitative magnetic resonance imaging methodology in a large cohort (n = 155) of cognitively unimpaired individuals over a wide age range between 21 and 94 years. Our analysis included volumetric measurements, relaxometry measures (T 1 and T 2), diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) and mean diffusivity (MD), as well as measures of cerebral blood flow (CBF). Our results revealed that CP volume was increasing with advancing age. We conjecture that this novel observation is likely attributed to alterations in the CP microstructure or function as well as to ventriculomegaly. Indeed, we also found that CBF was lower with advanced age, while, consistent with previous studies, T 1, T 2 and MD were higher, and FA was lower with advanced age. We attribute these functional and microstructural differences to a deteriorated CP structural integrity with aging. Furthermore, our relaxometry and DTI measures were found to be associated with differences in blood perfusion revealing lower microstructural integrity with lower CBF. Finally, in agreement with literature, sex-related differences in MD and CBF were statistically significant. This work lays the foundation for ongoing investigation of the involvement of CP in neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
5
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
6
|
Pifferi F, Epelbaum J, Aujard F. Strengths and Weaknesses of the Gray Mouse Lemur ( Microcebus murinus) as a Model for the Behavioral and Psychological Symptoms and Neuropsychiatric Symptoms of Dementia. Front Pharmacol 2019; 10:1291. [PMID: 31736761 PMCID: PMC6833941 DOI: 10.3389/fphar.2019.01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023] Open
Abstract
To face the load of the prevalence of Alzheimer’s disease in the aging population, there is an urgent need to develop more translatable animal models with similarities to humans in both the symptomatology and physiopathology of dementia. Due to their close evolutionary similarity to humans, non-human primates (NHPs) are of primary interest. Of the NHPs, to date, the gray mouse lemur (Microcebus murinus) has shown promising evidence of its translatability to humans. The present review reports the known advantages and limitations of using this species at all levels of investigation in the context of neuropsychiatric conditions. In this easily bred Malagasy primate with a relatively short life span (approximately 12 years), age-related cognitive decline, amyloid angiopathy, and risk factors (i.e., glucoregulatory imbalance) are congruent with those observed in humans. More specifically, analogous behavioral and psychological symptoms and neuropsychiatric symptoms of dementia (BPSD/NPS) to those in humans can be found in the aging mouse lemur. Aged mouse lemurs show typical age-related alterations of locomotor activity daily rhythms such as decreased rhythm amplitude, increased fragmentation, and increased activity during the resting-sleeping phase of the day and desynchronization with the light-dark cycle. In addition, sleep deprivation successfully induces cognitive deficits in adult mouse lemurs, and the effectiveness of approved cognitive enhancers such as acetylcholinesterase inhibitors or N-methyl-D-aspartate antagonists is demonstrated in sleep–deprived animals. This result supports the translational potential of this animal model, especially for unraveling the mechanisms underlying dementia and for developing novel therapeutics to prevent age-associated cognitive decline. In conclusion, actual knowledge of BPSD/NPS-like symptoms of age-related cognitive deficits in the gray mouse lemur and the recent demonstration of the similarity of these symptoms with those seen in humans offer promising new ways of investigating both the prevention and treatment of pathological aging.
Collapse
Affiliation(s)
- Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| | - Jacques Epelbaum
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France.,Unité Mixte de Recherche en Santé 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Fabienne Aujard
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Evolution, Brunoy, France
| |
Collapse
|
7
|
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. Int J Mol Sci 2019; 20:E5090. [PMID: 31615073 PMCID: PMC6834216 DOI: 10.3390/ijms20205090] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.
Collapse
Affiliation(s)
- Sudip Dhakal
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Naufal Kushairi
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chia Wei Phan
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
8
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Hubert V, Chauveau F, Dumot C, Ong E, Berner LP, Canet-Soulas E, Ghersi-Egea JF, Wiart M. Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Front Mol Neurosci 2019; 12:34. [PMID: 30809124 PMCID: PMC6379459 DOI: 10.3389/fnmol.2019.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022] Open
Abstract
The choroid plexuses (ChPs) perform indispensable functions for the development, maintenance and functioning of the brain. Although they have gained considerable interest in the last years, their involvement in brain disorders is still largely unknown, notably because their deep location inside the brain hampers non-invasive investigations. Imaging tools have become instrumental to the diagnosis and pathophysiological study of neurological and neuropsychiatric diseases. This review summarizes the knowledge that has been gathered from the clinical imaging of ChPs in health and brain disorders not related to ChP pathologies. Results are discussed in the light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging studies of ChPs have used disease-free human subjects to demonstrate the value of different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism, inflammation), sometimes combined with the study of normal aging. Although very few studies have actually tested the value of ChP imaging biomarkers in patients with brain disorders, these pioneer studies identified ChP changes that are promising data for a better understanding and follow-up of diseases such as schizophrenia, epilepsy and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained limited to pre-clinical studies so far but has the potential to be translated in patients for example using MRI coupled with the injection of iron oxide nanoparticles. Future investigations should aim at confirming and extending these findings and at developing translational molecular imaging tools for bridging the gap between basic molecular and cellular neuroscience and clinical research.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Fabien Chauveau
- CNRS UMR5292, INSERM U1028, BIORAN Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Lyon, France
| | - Chloé Dumot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | - Elodie Ong
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | | | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Ghersi-Egea
- CNRS UMR5292, INSERM U1028, Fluid Team and BIP Facility, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Wiart
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,CNRS, Lyon, France
| |
Collapse
|
10
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
11
|
Everett J, Collingwood JF, Tjendana-Tjhin V, Brooks J, Lermyte F, Plascencia-Villa G, Hands-Portman I, Dobson J, Perry G, Telling ND. Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects. NANOSCALE 2018; 10:11782-11796. [PMID: 29688240 PMCID: PMC6034173 DOI: 10.1039/c7nr06794a] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/19/2018] [Indexed: 05/11/2023]
Abstract
Altered metabolism of biometals in the brain is a key feature of Alzheimer's disease, and biometal interactions with amyloid-β are linked to amyloid plaque formation. Iron-rich aggregates, including evidence for the mixed-valence iron oxide magnetite, are associated with amyloid plaques. To test the hypothesis that increased chemical reduction of iron, as observed in vitro in the presence of aggregating amyloid-β, may occur at sites of amyloid plaque formation in the human brain, the nanoscale distribution and physicochemical states of biometals, particularly iron, were characterised in isolated amyloid plaque cores from human Alzheimer's disease cases using synchrotron X-ray spectromicroscopy. In situ X-ray magnetic circular dichroism revealed the presence of magnetite: a finding supported by ptychographic observation of an iron oxide crystal with the morphology of biogenic magnetite. The exceptional sensitivity and specificity of X-ray spectromicroscopy, combining chemical and magnetic probes, allowed enhanced differentiation of the iron oxides phases present. This facilitated the discovery and speciation of ferrous-rich phases and lower oxidation state phases resembling zero-valent iron as well as magnetite. Sequestered calcium was discovered in two distinct mineral forms suggesting a dynamic process of amyloid plaque calcification in vivo. The range of iron oxidation states present and the direct observation of biogenic magnetite provide unparalleled support for the hypothesis that chemical reduction of iron arises in conjunction with the formation of amyloid plaques. These new findings raise challenging questions about the relative impacts of amyloid-β aggregation, plaque formation, and disrupted metal homeostasis on the oxidative burden observed in Alzheimer's disease.
Collapse
Affiliation(s)
- James Everett
- Institute for Science and Technology in Medicine
, Thornburrow Drive
, Keele University
,
Staffordshire
, ST4 7QB
, UK
- Warwick Engineering in Biomedicine
, School of Engineering
, Library Road
, University of Warwick
,
Coventry
, CV4 7AL
, UK
.
| | - Joanna F. Collingwood
- Warwick Engineering in Biomedicine
, School of Engineering
, Library Road
, University of Warwick
,
Coventry
, CV4 7AL
, UK
.
- Department of Materials Science and Engineering
, University of Florida
,
Gainesville
, FL 32611
, USA
| | - Vindy Tjendana-Tjhin
- Warwick Engineering in Biomedicine
, School of Engineering
, Library Road
, University of Warwick
,
Coventry
, CV4 7AL
, UK
.
| | - Jake Brooks
- Warwick Engineering in Biomedicine
, School of Engineering
, Library Road
, University of Warwick
,
Coventry
, CV4 7AL
, UK
.
| | - Frederik Lermyte
- Warwick Engineering in Biomedicine
, School of Engineering
, Library Road
, University of Warwick
,
Coventry
, CV4 7AL
, UK
.
| | - Germán Plascencia-Villa
- Department of Physics and Astronomy. The University of Texas at San Antonio (UTSA)
,
San Antonio
, TX
78249
, USA
| | - Ian Hands-Portman
- School of Life Sciences
, Gibbet Hill Campus
, University of Warwick
,
Coventry
, CV4 7AL
, UK
| | - Jon Dobson
- Department of Materials Science and Engineering
, University of Florida
,
Gainesville
, FL 32611
, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
, Institute for Cell and Tissue Science & Engineering
, University of Florida
,
Gainesville
, FL 32611
, USA
| | - George Perry
- Department of Biology and UTSA Neurosciences Institute. The University of Texas at San Antonio (UTSA)
,
San Antonio
, TX
78249
, USA
| | - Neil D. Telling
- Institute for Science and Technology in Medicine
, Thornburrow Drive
, Keele University
,
Staffordshire
, ST4 7QB
, UK
| |
Collapse
|
12
|
Brothers HM, Gosztyla ML, Robinson SR. The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer's Disease. Front Aging Neurosci 2018; 10:118. [PMID: 29922148 PMCID: PMC5996906 DOI: 10.3389/fnagi.2018.00118] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Amyloid-ß (Aß) is best known as the misfolded peptide that is involved in the pathogenesis of Alzheimer's disease (AD), and it is currently the primary therapeutic target in attempts to arrest the course of this disease. This notoriety has overshadowed evidence that Aß serves several important physiological functions. Aß is present throughout the lifespan, it has been found in all vertebrates examined thus far, and its molecular sequence shows a high degree of conservation. These features are typical of a factor that contributes significantly to biological fitness, and this suggestion has been supported by evidence of functions that are beneficial for the brain. The putative roles of Aß include protecting the body from infections, repairing leaks in the blood-brain barrier, promoting recovery from injury, and regulating synaptic function. Evidence for these beneficial roles comes from in vitro and in vivo studies, which have shown that the cellular production of Aß rapidly increases in response to a physiological challenge and often diminishes upon recovery. These roles are further supported by the adverse outcomes of clinical trials that have attempted to deplete Aß in order to treat AD. We suggest that anti-Aß therapies will produce fewer adverse effects if the known triggers of Aß deposition (e.g., pathogens, hypertension, and diabetes) are addressed first.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, The Ohio State University Columbus, Columbus, OH, United States
| | - Maya L Gosztyla
- Department of Neuroscience, The Ohio State University Columbus, Columbus, OH, United States
| | - Stephen R Robinson
- Discipline of Psychology, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Drummond E, Wisniewski T. Alzheimer's disease: experimental models and reality. Acta Neuropathol 2017; 133:155-175. [PMID: 28025715 PMCID: PMC5253109 DOI: 10.1007/s00401-016-1662-x] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Experimental models of Alzheimer's disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review, we summarize the pathological features and limitations of the major experimental models of AD, including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models.
Collapse
Affiliation(s)
- Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, NYU School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Penninkilampi R, Brothers HM, Eslick GD. Safety and Efficacy of Anti-Amyloid-β Immunotherapy in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Neuroimmune Pharmacol 2016; 12:194-203. [PMID: 28025724 DOI: 10.1007/s11481-016-9722-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Immunotherapeutics targeting amyloid-β (Aβ) have had mixed results in clinical trials. The present study aims to evaluate the safety and clinical efficacy of immunotherapeutic agents targeting Aβ in Alzheimer's disease. Randomised controlled trials of at least two weeks duration were included in the review. Fourteen randomised controlled trials (n = 5554) were identified in a systematic search of eight electronic databases. Upon pooling of data, there was no increased risk of any adverse event, serious adverse events, or death with the exception of a near fivefold increase in amyloid-related imaging abnormalities (ARIA; OR 4.79, 95% CI 1.24-18.55; p = 0.02). Of the cognitive indicators, the Mini-Mental State Examination (MMSE) showed a small statistically significant improvement (diff in means =0.44; p = 0.02), while the others (ADAS-cog, ADCS-ADL, and CDR-sb) showed no change. Therefore, immunotherapeutic agents have been relatively well tolerated, with some promise for cognitive improvements if the occurrence of ARIA can be mitigated.
Collapse
Affiliation(s)
- Ross Penninkilampi
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, P.O. Box 63, Nepean Hospital, Penrith, NSW, Australia
| | - Holly M Brothers
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Guy D Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, P.O. Box 63, Nepean Hospital, Penrith, NSW, Australia.
| |
Collapse
|
15
|
Arango-Lievano M, Giannoni P, Claeysen S, Marchi N, Jeanneteau F. Longitudinal In Vivo Imaging of the Cerebrovasculature: Relevance to CNS Diseases. J Vis Exp 2016. [PMID: 28060355 DOI: 10.3791/54796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Remodeling of the brain vasculature is a common trait of brain pathologies. In vivo imaging techniques are fundamental to detect cerebrovascular plasticity or damage occurring overtime and in relation to neuronal activity or blood flow. In vivo two-photon microscopy allows the study of the structural and functional plasticity of large cellular units in the living brain. In particular, the thinned-skull window preparation allows the visualization of cortical regions of interest (ROI) without inducing significant brain inflammation. Repetitive imaging sessions of cortical ROI are feasible, providing the characterization of disease hallmarks over time during the progression of numerous CNS diseases. This technique accessing the pial structures within 250 μm of the brain relies on the detection of fluorescent probes encoded by genetic cellular markers and/or vital dyes. The latter (e.g., fluorescent dextrans) are used to map the luminal compartment of cerebrovascular structures. Germane to the protocol described herein is the use of an in vivo marker of amyloid deposits, Methoxy-O4, to assess Alzheimer's disease (AD) progression. We also describe the post-acquisition image processing used to track vascular changes and amyloid depositions. While focusing presently on a model of AD, the described protocol is relevant to other CNS disorders where pathological cerebrovascular changes occur.
Collapse
Affiliation(s)
| | - Patrizia Giannoni
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier
| | - Sylvie Claeysen
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier
| | - Nicola Marchi
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier;
| | - Freddy Jeanneteau
- Inserm, U1191, Institute of Functional Genomics; CNRS, UMR-5203; Université de Montpellier;
| |
Collapse
|
16
|
Kimbrough IF, Robel S, Roberson ED, Sontheimer H. Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain 2015; 138:3716-33. [PMID: 26598495 PMCID: PMC5006220 DOI: 10.1093/brain/awv327] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
Reduced cerebral blood flow impairs cognitive function and ultimately causes irreparable damage to brain tissue. The gliovascular unit, composed of neural and vascular cells, assures sufficient blood supply to active brain regions. Astrocytes, vascular smooth muscle cells, and pericytes are important players within the gliovascular unit modulating vessel diameters. While the importance of the gliovascular unit and the signals involved in regulating local blood flow to match neuronal activity is now well recognized, surprisingly little is known about this interface in disease. Alzheimer's disease is associated with reduced cerebral blood flow. Here, we studied how the gliovascular unit is affected in a mouse model of Alzheimer's disease, using a combination of ex vivo and in vivo imaging approaches. We specifically labelled vascular amyloid in living mice using the dye methoxy-XO4. We elicited vessel responses ex vivo using either pharmacological stimuli or cell-specific calcium uncaging in vascular smooth muscle cells or astrocytes. Multi-photon in vivo imaging through a cranial window allowed us to complement our ex vivo data in the presence of blood flow after label-free optical activation of vascular smooth muscle cells in the intact brain. We found that vascular amyloid deposits separated astrocyte end-feet from the endothelial vessel wall. High-resolution 3D images demonstrated that vascular amyloid developed in ring-like structures around the vessel circumference, essentially forming a rigid cast. Where vascular amyloid was present, stimulation of astrocytes or vascular smooth muscle cells via ex vivo Ca(2+) uncaging or in vivo optical activation produced only poor vascular responses. Strikingly, vessel segments that were unaffected by vascular amyloid responded to the same extent as vessels from age-matched control animals. We conclude that while astrocytes can still release vasoactive substances, vascular amyloid deposits render blood vessels rigid and reduce the dynamic range of affected vessel segments. These results demonstrate a mechanism that could account in part for the reduction in cerebral blood flow in patients with Alzheimer's disease.media-1vid110.1093/brain/awv327_video_abstractawv327_video_abstract.
Collapse
Affiliation(s)
- Ian F Kimbrough
- 1 Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA 2 Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefanie Robel
- 1 Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA 2 Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Erik D Roberson
- 1 Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA 3 Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA 4 Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harald Sontheimer
- 1 Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA 2 Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Peters DG, Connor JR, Meadowcroft MD. The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer's disease: Two sides of the same coin. Neurobiol Dis 2015; 81:49-65. [PMID: 26303889 DOI: 10.1016/j.nbd.2015.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/04/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
The dysregulation of iron metabolism in Alzheimer's disease is not accounted for in the current framework of the amyloid cascade hypothesis. Accumulating evidence suggests that impaired iron homeostasis is an early event in Alzheimer's disease progression. Iron dyshomeostasis leads to a loss of function in several enzymes requiring iron as a cofactor, the formation of toxic oxidative species, and the elevated production of beta-amyloid proteins. Several common genetic polymorphisms that cause increased iron levels and dyshomeostasis have been associated with Alzheimer's disease but the pathoetiology is not well understood. A full picture is necessary to explain how heterogeneous circumstances lead to iron loading and amyloid deposition. There is evidence to support a causative interplay between the concerted loss of iron homeostasis and amyloid plaque formation. We hypothesize that iron misregulation and beta-amyloid plaque pathology are synergistic in the process of neurodegeneration and ultimately cause a downward cascade of events that spiral into the manifestation of Alzheimer's disease. In this review, we amalgamate recent findings of brain iron metabolism in healthy versus Alzheimer's disease brains and consider unique mechanisms of iron transport in different brain cells as well as how disturbances in iron regulation lead to disease etiology and propagate Alzheimer's pathology.
Collapse
Affiliation(s)
- Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Neural and Behavioral Sciences, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA; Department of Radiology, The Center for NMR Research, The Pennsylvania State University, College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
18
|
Zhang Y, Yang HQ, Fang F, Song LL, Jiao YY, Wang H, Peng XL, Zheng YP, Wang J, He JS, Hung T. Single chain variable fragment against aβ expressed in baculovirus inhibits abeta fibril elongation and promotes its disaggregation. PLoS One 2015; 10:e0124736. [PMID: 25919299 PMCID: PMC4412524 DOI: 10.1371/journal.pone.0124736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of age-related dementia, and the most urgent problem is that it is currently incurable. Amyloid-β (Aβ) peptide is believed to play a major role in the pathogenesis of AD. We previously reported that an Aβ N-terminal amino acid targeting monoclonal antibody (MAb), A8, inhibits Aβ fibril formation and has potential as an immunotherapy for AD based on a mouse model. To further study the underlying mechanisms, we tested our hypothesis that the single chain fragment variable (scFv) without the Fc fragment is capable of regulating either Aβ aggregation or disaggregation in vitro. Here, a model of cell-free Aβ “on-pathway” aggregation was established and identified using PCR, Western blot, ELISA, transmission electron microscopy (TEM) and thioflavin T (ThT) binding analyses. His-tagged A8 scFvs was cloned and solubly expressed in baculovirus. Our data demonstrated that the Ni-NTA agarose affinity-purified A8 scFv inhibited the forward reaction of “on-pathway” aggregation and Aβ fibril maturation. The effect of A8 scFv on Aβ fibrillogenesis was markedly more significant when administered at the start of the Aβ folding reaction. Furthermore, the results also showed that pre-formed Aβ fibrils could be disaggregated via incubation with purified A8 scFv, which suggested that A8 scFv is involved in the reverse reaction of Aβ aggregation. Therefore, A8 scFv was capable of both inhibiting fibrillogenesis and disaggregating matured fibrils. Our present study provides valuable insight into the regulators of ultrastructural dynamics of cell-free “on-pathway” Aβ aggregation and will assist in the development of therapeutic strategies for AD.
Collapse
Affiliation(s)
- Ying Zhang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- * E-mail:
| | - Hai-Qiang Yang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fang Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lin-Lin Song
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yue-Ying Jiao
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - He Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jun Wang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Tao Hung
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
- Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
19
|
Verdier JM, Acquatella I, Lautier C, Devau G, Trouche S, Lasbleiz C, Mestre-Francés N. Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases. Front Neurosci 2015; 9:64. [PMID: 25788873 PMCID: PMC4349082 DOI: 10.3389/fnins.2015.00064] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
Abstract
Animal models are necessary tools for solving the most serious challenges facing medical research. In aging and neurodegenerative disease studies, rodents occupy a place of choice. However, the most challenging questions about longevity, the complexity and functioning of brain networks or social intelligence can almost only be investigated in nonhuman primates. Beside the fact that their brain structure is much closer to that of humans, they develop highly complex cognitive strategies and they are visually-oriented like humans. For these reasons, they deserve consideration, although their management and care are more complicated and the related costs much higher. Despite these caveats, considerable scientific advances have been possible using nonhuman primates. This review concisely summarizes their role in the study of aging and of the mechanisms involved in neurodegenerative disorders associated mainly with cognitive dysfunctions (Alzheimer's and prion diseases) or motor deficits (Parkinson's and related diseases).
Collapse
Affiliation(s)
- Jean-Michel Verdier
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Isabelle Acquatella
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Corinne Lautier
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Gina Devau
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Stéphanie Trouche
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Christelle Lasbleiz
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| | - Nadine Mestre-Francés
- Université de Montpellier Montpellier, France ; Institut National de la Santé et de la Recherche Médicale, U1198 Montpellier, France ; Ecole Pratique des Hautes Etudes Paris, France
| |
Collapse
|
20
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
21
|
Roy M, Cardoso C, Dorieux O, Malgorn C, Epelbaum S, Petit F, Kraska A, Brouillet E, Delatour B, Perret M, Aujard F, Dhenain M. Age-associated evolution of plasmatic amyloid in mouse lemur primates: relationship with intracellular amyloid deposition. Neurobiol Aging 2014; 36:149-56. [PMID: 25131002 DOI: 10.1016/j.neurobiolaging.2014.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/02/2014] [Accepted: 07/12/2014] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks, and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ, and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared with young ones. Histologic evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ.
Collapse
Affiliation(s)
- Maggie Roy
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France; Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cécile Cardoso
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France
| | - Olène Dorieux
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France; CNRS UMR 7179, MNHN, Brunoy, France
| | - Carole Malgorn
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France
| | - Stéphane Epelbaum
- Sorbonne Universités, Paris, France; UPMC Univ Paris 06 UMR S 1127, Paris, France; Inserm, U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France
| | - Fanny Petit
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France
| | - Audrey Kraska
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France
| | - Emmanuel Brouillet
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France
| | - Benoît Delatour
- Sorbonne Universités, Paris, France; UPMC Univ Paris 06 UMR S 1127, Paris, France; Inserm, U 1127, Paris, France; CNRS UMR 7225, Paris, France; ICM, Paris, France
| | | | | | - Marc Dhenain
- CEA, DSV, I2BM, MIRCen, URA CEA CNRS 2210, Fontenay aux Roses, France; CNRS, URA 2210, Fontenay aux Roses, France.
| |
Collapse
|
22
|
Sawiak SJ, Picq JL, Dhenain M. Voxel-based morphometry analyses of in vivo MRI in the aging mouse lemur primate. Front Aging Neurosci 2014; 6:82. [PMID: 24834052 PMCID: PMC4018531 DOI: 10.3389/fnagi.2014.00082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/16/2014] [Indexed: 11/23/2022] Open
Abstract
Cerebral atrophy is one of the most widely brain alterations associated to aging. A clear relationship has been established between age-associated cognitive impairments and cerebral atrophy. The mouse lemur (Microcebus murinus) is a small primate used as a model of age-related neurodegenerative processes. It is the first non-human primate in which cerebral atrophy has been correlated with cognitive deficits. Previous studies of cerebral atrophy in this model were based on time consuming manual delineation or measurement of selected brain regions from magnetic resonance images (MRI). These measures could not be used to analyse regions that cannot be easily outlined such as the nucleus basalis of Meynert or the subiculum. In humans, morphometric assessment of structural changes with age is generally performed with automated procedures such as voxel-based morphometry (VBM). The objective of our work was to perform user-independent assessment of age-related morphological changes in the whole brain of large mouse lemur populations thanks to VBM. The study was based on the SPMMouse toolbox of SPM 8 and involved thirty mouse lemurs aged from 1.9 to 11.3 years. The automatic method revealed for the first time atrophy in regions where manual delineation is prohibitive (nucleus basalis of Meynert, subiculum, prepiriform cortex, Brodmann areas 13–16, hypothalamus, putamen, thalamus, corpus callosum). Some of these regions are described as particularly sensitive to age-associated alterations in humans. The method revealed also age-associated atrophy in cortical regions (cingulate, occipital, parietal), nucleus septalis, and the caudate. Manual measures performed in some of these regions were in good agreement with results from automatic measures. The templates generated in this study as well as the toolbox for SPM8 can be downloaded. These tools will be valuable for future evaluation of various treatments that are tested to modulate cerebral aging in lemurs.
Collapse
Affiliation(s)
- Stephen J Sawiak
- Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital Cambridge, UK ; Behavioural and Clinical Neuroscience Institute, University of Cambridge Cambridge, UK
| | - Jean-Luc Picq
- EA, 2027: Laboratoire de Psychopathologie et de Neuropsychologie, Université Paris 8 St-Denis, France ; CEA, DSV, I2BM, MIRCen Fontenay-aux-Roses, France ; CNRS, URA 2210 Fontenay-aux-Roses, France
| | - Marc Dhenain
- CEA, DSV, I2BM, MIRCen Fontenay-aux-Roses, France ; CNRS, URA 2210 Fontenay-aux-Roses, France
| |
Collapse
|
23
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
24
|
Castillo-Carranza DL, Guerrero-Muñoz MJ, Kayed R. Immunotherapy for the treatment of Alzheimer's disease: amyloid-β or tau, which is the right target? Immunotargets Ther 2013; 3:19-28. [PMID: 27471697 PMCID: PMC4918231 DOI: 10.2147/itt.s40131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques composed mainly of amyloid-β (Aβ) protein. Overproduction or slow clearance of Aβ initiates a cascade of pathologic events that may lead to formation of neurofibrillary tangles, neuronal cell death, and dementia. Although immunotherapy in animal models has been demonstrated to be successful at removing plaques or prefibrillar forms of Aβ, clinical trials have yielded disappointing results. The lack of substantial cognitive improvement obtained by targeting Aβ raises the question of whether or not this is the correct target. Another important pathologic process in the AD brain is tau aggregation, which seems to become independent once initiated. Recent studies targeting tau in AD mouse models have displayed evidence of cognitive improvement, providing a novel therapeutic approach for the treatment of AD. In this review, we describe new advances in immunotherapy targeting Aβ peptide and tau protein, as well as future directions.
Collapse
Affiliation(s)
- Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marcos J Guerrero-Muñoz
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|