1
|
Wu Y, Zhong J, Wang J, Li H, Chen X, Xia X, Zhou J. Cinnamaldehyde protects SH-SY5Y cells against advanced glycation end-products induced ectopic cell cycle re-entry. J Pharmacol Sci 2024; 156:1-8. [PMID: 39068030 DOI: 10.1016/j.jphs.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.
Collapse
Affiliation(s)
- Yijing Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jing Zhong
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jiaqi Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Hemei Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiuting Chen
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xing Xia
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Jinling Zhou
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Key Laboratory of TCM Neuro-metabolism and Immunopharmacology of Guangxi Education Department, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
2
|
Montero-Martin N, Girón MD, Vílchez JD, Salto R. Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells. Int J Mol Sci 2024; 25:9150. [PMID: 39273113 PMCID: PMC11394838 DOI: 10.3390/ijms25179150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.
Collapse
Affiliation(s)
- Nora Montero-Martin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - María D Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| |
Collapse
|
3
|
Campolim CM, Schimenes BC, Veras MM, Kim YB, Prada PO. Air pollution accelerates the development of obesity and Alzheimer's disease: the role of leptin and inflammation - a mini-review. Front Immunol 2024; 15:1401800. [PMID: 38933275 PMCID: PMC11199417 DOI: 10.3389/fimmu.2024.1401800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution is an urgent concern linked to numerous health problems in low- and middle-income countries, where 92% of air pollution-related deaths occur. Particulate matter 2.5 (PM2.5) is the most harmful component of air pollutants, increasing inflammation and changing gut microbiota, favoring obesity, type 2 diabetes, and Alzheimer's Disease (AD). PM2.5 contains lipopolysaccharides (LPS), which can activate the Toll-like receptor 4 (TLR4) signaling pathway. This pathway can lead to the release of pro-inflammatory markers, including interleukins, and suppressor of cytokine signaling-3 (SOCS3), which inhibits leptin action, a hormone that keeps the energy homeostasis. Leptin plays a role in preventing amyloid plaque deposition and hyperphosphorylation of tau-protein (p-tau), mechanisms involved in the neurodegeneration in AD. Approximately 50 million people worldwide are affected by dementia, with a significant proportion living in low-and middle-income countries. This number is expected to triple by 2050. This mini-review focuses on the potential impact of PM2.5 exposure on the TLR4 signaling pathway, its contribution to leptin resistance, and dysbiosis that exacerbates the link between obesity and AD.
Collapse
Affiliation(s)
- Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | | | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology LIM05, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Campinas, SP, Brazil
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
4
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|
5
|
Shome A, Chahat, Chawla V, Chawla PA. Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson's Disease: An Overview. Curr Med Chem 2024; 31:6251-6271. [PMID: 37702172 DOI: 10.2174/0929867331666230913100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties. In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.
Collapse
Affiliation(s)
- Abhimannu Shome
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
6
|
Piccirillo S, Preziuso A, Cerqueni G, Serfilippi T, Terenzi V, Vinciguerra A, Amoroso S, Lariccia V, Magi S. A strategic tool to improve the study of molecular determinants of Alzheimer's disease: The role of glyceraldehyde. Biochem Pharmacol 2023; 218:115869. [PMID: 37871878 DOI: 10.1016/j.bcp.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.
Collapse
Affiliation(s)
- Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandra Preziuso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Giorgia Cerqueni
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Tiziano Serfilippi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Valentina Terenzi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126 Ancona, Italy.
| |
Collapse
|
7
|
Li F, Wang X, Shi J, Wu S, Xing W, He Y. Anti-inflammatory effect of dental pulp stem cells. Front Immunol 2023; 14:1284868. [PMID: 38077342 PMCID: PMC10701738 DOI: 10.3389/fimmu.2023.1284868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative medicine tool with strong immunomodulatory capabilities. The excessive inflammatory response involves a variety of immune cells, cytokines, and has a considerable impact on tissue regeneration. The use of DPSCs for controlling inflammation for the purpose of treating inflammation-related diseases and autoimmune disorders such as supraspinal nerve inflammation, inflammation of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is likely to be safer and more regenerative than traditional medicines. The mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs is relatively complex, and it may be that they themselves or some of the substances they secrete regulate a variety of immune cells through inflammatory immune-related signaling pathways. Most of the current studies are still at the laboratory cellular level and animal model level, and it is believed that through the efforts of more researchers, DPSCs/SHED are expected to be transformed into excellent drugs for the clinical treatment of related diseases.
Collapse
Affiliation(s)
- FenYao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - XinXin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Shi
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - ShuTing Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - WenBo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Tamburini B, Badami GD, La Manna MP, Shekarkar Azgomi M, Caccamo N, Dieli F. Emerging Roles of Cells and Molecules of Innate Immunity in Alzheimer's Disease. Int J Mol Sci 2023; 24:11922. [PMID: 37569296 PMCID: PMC10418700 DOI: 10.3390/ijms241511922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The inflammatory response that marks Alzheimer's disease (neuroinflammation) is considered a double-edged sword. Microglia have been shown to play a protective role at the beginning of the disease. Still, persistent harmful stimuli further activate microglia, inducing an exacerbating inflammatory process which impairs β-amyloid peptide clearance capability and leads to neurotoxicity and neurodegeneration. Moreover, microglia also appear to be closely involved in the spread of tau pathology. Soluble TREM2 also represents a crucial player in the neuroinflammatory processes. Elevated levels of TREM2 in cerebrospinal fluid have been associated with increased amyloid plaque burden, neurodegeneration, and cognitive decline in individuals with Alzheimer's disease. Understanding the intricate relationship between innate immunity and Alzheimer's disease will be a promising strategy for future advancements in diagnosis and new therapeutic interventions targeting innate immunity, by modulating its activity. Still, additional and more robust studies are needed to translate these findings into effective treatments. In this review, we focus on the role of cells (microglia, astrocytes, and oligodendrocytes) and molecules (TREM2, tau, and β-amyloid) of the innate immune system in the pathogenesis of Alzheimer's disease and their possible exploitation as disease biomarkers and targets of therapeutical approaches.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Giusto Davide Badami
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (G.D.B.); (M.P.L.M.); (M.S.A.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
| |
Collapse
|
9
|
Li Z, Han Y, Ji Y, Sun K, Chen Y, Hu K. The effect of a-Lipoic acid (ALA) on oxidative stress, inflammation, and apoptosis in high glucose-induced human corneal epithelial cells. Graefes Arch Clin Exp Ophthalmol 2023; 261:735-748. [PMID: 36058948 PMCID: PMC9988813 DOI: 10.1007/s00417-022-05784-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Oxidative stress and inflammation had been proved to play important role in the progression of diabetic keratopathy (DK). The excessive accumulation of AGEs and their bond to AGE receptor (RAGE) in corneas that cause the formation of oxygen radicals and the release of inflammatory cytokines, induce cell apoptosis. Our current study was aimed to evaluate the effect of ALA on AGEs accumulation as well as to study the molecular mechanism of ALA against AGE-RAGE axis mediated oxidative stress, apoptosis, and inflammation in HG-induced HCECs, so as to provide cytological basis for the treatment of DK. METHODS HCECs were cultured in a variety concentration of glucose medium (5.5, 10, 25, 30, 40, and 50 mM) for 48 h. The cell proliferation was evaluated by CCK-8 assay. Apoptosis was investigated with the Annexin V- fluorescein isothiocyanate (V-FITC)/PI kit, while, the apoptotic cells were determined by flow cytometer and TUNEL cells apoptosis Kit. According to the results of cell proliferation and cell apoptosis, 25 mM glucose medium was used in the following HG experiment. The effect of ALA on HG-induced HCECs was evaluated. The HCECs were treated with 5.5 mM glucose (normal glucose group, NG group), 5.5 mM glucose + 22.5 mM mannitol (osmotic pressure control group, OP group), 25 mM glucose (high glucose group, HG group) and 25 mM glucose + ALA (HG + ALA group) for 24 and 48 h. The accumulation of intracellular AGEs was detected by ELISA kit. The RAGE, catalase (CAT), superoxide dismutase 2 (SOD2), cleaved cysteine-aspartic acid protease-3 (Cleaved caspase-3), Toll-like receptors 4 (TLR4), Nod-like receptor protein 3 (NLRP3) inflammasome, interleukin 1 beta (IL-1 ß), and interleukin 18 (IL-18) were quantified by RT-PCR, Western blotting, and Immunofluorescence, respectively. Reactive oxygen species (ROS) production was evaluated by fluorescence microscope and fluorescence microplate reader. RESULTS When the glucose medium was higher than 25 mM, cell proliferation was significantly inhibited and apoptosis ratio was increased (P < 0.001). In HG environment, ALA treatment alleviated the inhibition of HCECs in a dose-dependent manner, 25 μM ALA was the minimum effective dose. ALA could significantly reduce the intracellular accumulation of AGEs (P < 0.001), activate protein and genes expression of CAT and SOD2 (P < 0.001), and therefore inhibited ROS-induced oxidative stress and cells apoptosis. Besides, ALA could effectively down-regulate the protein and gene level of RAGE, TLR4, NLRP3, IL-1B, IL-18 (P < 0.05), and therefore alleviated AGEs-RAGE-TLR4-NLRP3 pathway-induced inflammation in HG-induced HCECs. CONCLUSION Our study indicated that ALA could be a desired treatment for DK due to its potential capacity of reducing accumulation of advanced glycation end products (AGEs) and down-regulating AGE-RAGE axis-mediated oxidative stress, cell apoptosis, and inflammation in high glucose (HG)-induced human corneal epithelial cells (HCECs), which may provide cytological basis for therapeutic targets that are ultimately of clinical benefit.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yu Han
- Department of Ophthalmology, The People’s Hospital of Leshan, Leshan, Sichuan Province China
| | - Yan Ji
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Kexin Sun
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Yanyi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Ke Hu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
- Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
López-Grueso MJ, Padilla CA, Bárcena JA, Requejo-Aguilar R. Deficiency of Parkinson's Related Protein DJ-1 Alters Cdk5 Signalling and Induces Neuronal Death by Aberrant Cell Cycle Re-entry. Cell Mol Neurobiol 2023; 43:757-769. [PMID: 35182267 PMCID: PMC9958167 DOI: 10.1007/s10571-022-01206-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
DJ-1 is a multifunctional protein involved in Parkinson disease (PD) that can act as antioxidant, molecular chaperone, protease, glyoxalase, and transcriptional regulator. However, the exact mechanism by which DJ-1 dysfunction contributes to development of Parkinson's disease remains elusive. Here, using a comparative proteomic analysis between wild-type cortical neurons and neurons lacking DJ-1 (data available via ProteomeXchange, identifier PXD029351), we show that this protein is involved in cell cycle checkpoints disruption. We detect increased amount of p-tau and α-synuclein proteins, altered phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signalling pathways, and deregulation of cyclin-dependent kinase 5 (Cdk5). Cdk5 is normally involved in dendritic growth, axon formation, and the establishment of synapses, but can also contribute to cell cycle progression in pathological conditions. In addition, we observed a decrease in proteasomal activity, probably due to tau phosphorylation that can also lead to activation of mitogenic signalling pathways. Taken together, our findings indicate, for the first time, that aborted cell cycle re-entry could be at the onset of DJ-1-associated PD. Therefore, new approaches targeting cell cycle re-entry can be envisaged to improve current therapeutic strategies.
Collapse
Affiliation(s)
- María José López-Grueso
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain
| | - Carmen Alicia Padilla
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - José Antonio Bárcena
- grid.411901.c0000 0001 2183 9102Department of Biochemistry and Molecular Biology, University of Córdoba, 14071 Córdoba, Spain ,grid.428865.50000 0004 0445 6160Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Córdoba, 14071, Córdoba, Spain. .,Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain.
| |
Collapse
|
11
|
Zhang X, Meng Y, Zhang W, Shi L, Liu X, Zhang L, Liu Q. Diagnostic Values of Advanced Glycation End Products and Homocysteine in Patients with Alzheimer's Disease and Sarcopenia. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8949048. [PMID: 36118832 PMCID: PMC9481380 DOI: 10.1155/2022/8949048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
This study is aimed at exploring the diagnostic value of advanced glycation end products (AGEs) and homocysteine (Hcy) in Alzheimer's disease (AD) complicated with sarcopenia (SP) and to analyze the risk factors related to AD complicated with SP. A total of 168 patients admitted to our hospital from November 2019 to December 2021 were enrolled. Patients were divided into the NC (no SP and AD) group with 29 cases, the AD group with 39 cases, the AD+SP group with 35 cases, and the SP group with 65 cases. The general information, Mini-Mental State Examination (MMSE) scores, and serum levels of AGEs and Hcy among the four groups were compared. Unordered logistic regression was used to analyze the influencing factors of SP patients complicated with dementia. The AGE level was higher in the AD or AD+SP group than the NC or SP group (P < 0.05). There was no significant difference between the SP group and the NC group or between the AD group and the AD+SP group (P > 0.05). The Hcy level was higher in the SP or AD group than the NC group (P < 0.05). There were no significant differences between the AD group and NC group or between the SP group and AD+SP group (P > 0.05). The ROC curve of serum AGEs and Hcy for the diagnosis of AD showed that the area under curve (AUC) was 0.887, P < 0.05 (95% CI: 0.821-0.954, sensitivity: 80.95%, specificity: 73.81%) and 0.7423, P < 0.05 (95% CI: 0.6382-0.8465, sensitivity: 60.42%, specificity: 57.59%), respectively. The ROC curve of serum AGEs and Hcy for the diagnosis of SP showed that the AUC was 0.5533, P > 0.05 (95% CI: 0.4294-0.6771) and 0.8744, P < 0.05 (95% CI: 0.8006-0.9483). Age (P < 0.001), depression (P = 0.001), malnutrition (P = 0.002), and BMI (P < 0.001) were independent influencing factors of SP complicated with AD in elderly inpatients. In conclusion, combined serum AGEs and Hcy had a good diagnostic value for AD combined with SP, which may be helpful for early detection of patient condition.
Collapse
Affiliation(s)
- Xuelian Zhang
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Yunxia Meng
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Weiwei Zhang
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Luhang Shi
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Xia Liu
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Lijuan Zhang
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| | - Qiaoling Liu
- Geriatrics Department, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nangjing Medical University, Jiangsu 222002, Jiangsu, China
| |
Collapse
|
12
|
Sajad M, Kumar R, Thakur SC. History in Perspective: The Prime Pathological Players and Role of Phytochemicals in Alzheimer’s Disease. IBRO Neurosci Rep 2022; 12:377-389. [PMID: 35586776 PMCID: PMC9108734 DOI: 10.1016/j.ibneur.2022.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease is a steadily progressive, irreversible neurological disorder that is most frequently categorized under the umbrella term "neurodegeneration". Several attempts are underway to clarify the pathogenic mechanisms, identify the aetiologies, and determine a pathway by which the therapeutic steps can be implemented. Oxidative stress is one of the pathogenic processes, which is commonly believed to be associated with neurodegenerative diseases. Accumulation of extracellular amyloid-β protein (Aβ), hyperphosphorylation of tau, initiation of neurometabolic reactions characterized by the loss of neuronal function and synaptic failure, and decreased or lost learning capability and memory function are the most central neuropathological characteristics of AD. According to the amyloid cascade hypothesis, the enhanced deposition of Aβ deposits and neurofibrillary tangles due to hyperphosphorylation of Tau activates the cascade reactions in the brain. These reactions affect the synaptic activity and activation of microglia, which results in neuroinflammation due to enhanced immune function. Plant-based phytochemicals have also been used long ago against several diseases. Phytoconstituents play a significant neuroprotective property by preventing the pathophysiology of the disease. In this review, we have discussed the formation and crosstalk between amyloid and tau pathologies as well as the effect of neuroinflammation on the progression of AD. We have specifically focused on the formation of NFT, β-amyloids, inflammation, and pathophysiology of AD and the role of phytochemicals in the prevention of AD. AD is an insidious, slowly progressive, and neurodegenerative disorder. Common symptoms are memory loss, difficulty in recalling, and understanding. β-amyloids and Neurofibrillary tangles are the main factors in AD pathogenesis. Activated microglia and oxidative stress have different effects on AD progression. Phytochemicals show a key role against AD by inhibiting several pathways.
Collapse
|
13
|
A Study of the Protective Effect of Bushen Huoxue Prescription on Cerebral Microvascular Endothelia Based on Proteomics and Bioinformatics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2545074. [PMID: 35035499 PMCID: PMC8758271 DOI: 10.1155/2022/2545074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022]
Abstract
Diabetic cognitive dysfunction is a serious complication of type 2 diabetes mellitus (T2DM), which can cause neurological and microvascular damage in the brain. At present, there is no effective treatment for this complication. Bushen Huoxue prescription (BSHX) is a newly formulated compound Chinese medicine containing 7 components. Previous research indicated that BSHX was neuroprotective against advanced glycosylation end product (AGE)-induced PC12 cell insult; however, the effect of BSHX on AGE-induced cerebral microvascular endothelia injury has not been studied. In the current research, we investigated the protective effects of BSHX on AGE-induced injury in bEnd.3 cells. Our findings revealed that BSHX could effectively protect bEnd.3 cells from apoptosis. Moreover, we analyzed the network regulation effect of BSHX on AGE-induced bEnd.3 cells injury at the proteomic level. The LC-MS/MS-based shotgun proteomics analysis showed BSHX negatively regulated multiple AGE-elicited proteins. Bioinformatics analysis revealed these differential proteins were involved in multiple processes, such as Foxo signaling pathway. Further molecular biology analysis confirmed that BSHX could downregulate the expression of FoxO1/3 protein and inhibit its nuclear transfer and inhibit the expression of downstream apoptotic protein Bim and the activation of caspase, so as to play a protective role in AGE-induced bEnd.3 injury. Taken together, these findings demonstrated the role of BSHX in the management of diabetic cerebral microangiopathy and provide some insights into the proteomics-guided pharmacological mechanism study of traditional Chinese Medicine.
Collapse
|
14
|
Ponomareva EV, Krinsky SA, Gavrilova SI. [Prognosis of amnestic mild cognitive impairment: clinical and immunological correlations]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:16-22. [PMID: 34870909 DOI: 10.17116/jnevro202112110216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To determine the long-term (three-year) prognosis of the cognitive deficits progression in elderly people with amnestic mild cognitive impairment (aMCI) based on the analysis of the initial clinical and immunological parameters. MATERIAL AND METHODS This study is based on a clinical and follow-up study of 252 outpatients with aMCI, who were observed in the Federal State Budgetary Scientific Institution «Mental Health Research Center» from 2018 to 2020. The psychometric assessment complex included the following scales and tests: MMSE, MoCA, The 10 words test, BNT, David Wechsler's Scale, subtest 6, CDT, Memory test of 5 geometric shapes, BVRT Test, DRS - Mattis Dementia Rating Scale: Verbal fluency, DRS - Mattis Dementia Rating Scale, The Munsterberg Test. As part of the study, the level of cytokines (TNF-a, IL-1, IL-6, IL-8, IL-10) in the blood serum was determined in all patients by enzyme immunoassay (ELISA), using diagnostic kits manufactured by Cytokine LLC. RESULTS In patients with a progression of aMCI syndrome, an increase in proinflammatory cytokines IL-1, IL-6, IL-8, TNF-α is initially detected, which may reflect the level of systemic inflammation or functional insufficiency of anti-inflammatory mechanisms. In turn, the group with a subsequent improvement in cognitive functioning, on the contrary, is distinguished by an initially increased level of the anti-inflammatory interleukin system (IL-10). CONCLUSION We provide new data on the presence of systemic inflammation and immune disturbances and their association with clinical course of disease in the majority of elderly patients with aMCI. CONCLUSION Signs of a chronic low-level systemic inflammatory response in patients with aMCI is the unfavorable prognosis criterion: in such patients, cognitive deficit significantly progresses or dementia due to Alzheimer disease develops within three years.
Collapse
|
15
|
Chakraborty A, Sami SA, Marma KKS. A comprehensive review on RAGE-facilitated pathological pathways connecting Alzheimer’s disease, diabetes mellitus, and cardiovascular diseases. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alzheimer’s disease (AD), cardiovascular disease (CVD), and diabetes are some of the most common causes of morbidity and mortality among the aging populations and cause a heavy burden on the worldwide healthcare system. In this review, we briefly highlighted cellular inflammation-based pathways of diabetes mellitus and CVD through receptor for advanced glycation end products AGEs or RAGE leading to Alzheimer’s disease and interrelation between these vascular and metabolic disorders. The articles were retrieved from Google Scholar, Science Direct, and PubMed databases using the following terms: Alzheimer’s; AGEs; RAGE; RAGE in Alzheimer’s; AGEs in Alzheimer’s; RAGE in diabetes; RAGE related pathways of CVD; RAGE in hypertension; RAGE and RAS system; RAGE and oxidative stress.
Main body of the abstract
AD is a neurodegenerative disease characterized by cognitive dysfunction and neuronal cell death. Vascular complications like hypertension, coronary artery disease, and atherosclerosis as well as metabolic syndromes like obesity and diabetes are related to the pathophysiology of AD. RAGE plays significant role in the onset and progression of AD. Amyloid plaques and neurofibrillary tangles (NFT) are two main markers of AD that regulates via RAGE and other RAGE/ligands interactions which also induces oxidative stress and a cascade of other cellular inflammation pathways leading to AD. Though AD and diabetes are two different disorders but may be inter-linked by AGEs and RAGE. In long-term hyperglycemia, upregulated AGEs interacts with RAGE and produces reactive oxygen species which induces further inflammation and vascular complications. Aging, hypercholesterolemia, atherosclerosis, hypertension, obesity, and inflammation are some of the main risk factors for both diabetes and dementia. Chronic hypertension and coronary artery disease disrupt the functions of the blood-brain barrier and are responsible for the accumulation of senile plaques and NFTs.
Short conclusion
RAGE plays a role in the etiology of Aβ and tau hyperphosphorylation, both of which contribute to cognitive impairment. So far, targeting RAGE may provide a potential sight to develop therapies against some metabolic disorders.
Collapse
|
16
|
Monterey MD, Wei H, Wu X, Wu JQ. The Many Faces of Astrocytes in Alzheimer's Disease. Front Neurol 2021; 12:619626. [PMID: 34531807 PMCID: PMC8438135 DOI: 10.3389/fneur.2021.619626] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/20/2021] [Indexed: 01/11/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and is the most common cause of dementia in an aging population. The majority of research effort has focused on the role of neurons in neurodegeneration and current therapies have limited ability to slow disease progression. Recently more attention has been given to the role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes have both advantageous and adverse effects during neurodegeneration. The ability to isolate and depict astrocyte phenotype has been challenging. However, with the recent development of single-cell sequencing technologies researchers are provided with the resource to delineate specific biomarkers associated with reactive astrocytes in AD. In this review, we will focus on the role of astrocytes in normal conditions and the pathological development of AD. We will further review recent developments in the understanding of astrocyte heterogeneity and associated biomarkers. A better understanding of astrocyte contributions and phenotypic changes in AD can ultimately lead to more effective therapeutic targets.
Collapse
Affiliation(s)
- Michael D Monterey
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
17
|
Babusikova E, Dobrota D, Turner AJ, Nalivaeva NN. Effect of Global Brain Ischemia on Amyloid Precursor Protein Metabolism and Expression of Amyloid-Degrading Enzymes in Rat Cortex: Role in Pathogenesis of Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:680-692. [PMID: 34225591 DOI: 10.1134/s0006297921060067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of Alzheimer's disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic amyloid species and brain damage. The effects of global 15-min ischemia and 120-min reperfusion on the levels of expression of the amyloid precursor protein (APP) and its processing were investigated in the brain cortex (Cx) of male Wistar rats. Additionally, the levels of expression of the amyloid-degrading enzymes neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), and insulin-degrading enzyme (IDE), as well as of some markers of oxidative damage were assessed. It was shown that the APP mRNA and protein levels in the rat Cx were significantly increased after the ischemic insult. Protein levels of the soluble APP fragments, especially of sAPPβ produced by β-secretase, (BACE-1) and the levels of BACE-1 mRNA and protein expression itself were also increased after ischemia. The protein levels of APP and BACE-1 in the Cx returned to the control values after 120-min reperfusion. The levels of NEP and ECE-1 mRNA also decreased after ischemia, which correlated with the decreased protein levels of these enzymes. However, we have not observed any changes in the protein levels of insulin-degrading enzyme. Contents of the markers of oxidative damage (di-tyrosine and lysine conjugates with lipid peroxidation products) were also increased after ischemia. The obtained data suggest that ischemia shifts APP processing towards the amyloidogenic β-secretase pathway and accumulation of the neurotoxic Aβ peptide as well as triggers oxidative stress in the cells. These results are discussed in the context of the role of stress and ischemia in initiation and progression of AD.
Collapse
Affiliation(s)
- Eva Babusikova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Dusan Dobrota
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Medical Biochemistry, Martin, 036 01, Slovakia.
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Natalia N Nalivaeva
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom. .,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| |
Collapse
|
18
|
Sambon M, Wins P, Bettendorff L. Neuroprotective Effects of Thiamine and Precursors with Higher Bioavailability: Focus on Benfotiamine and Dibenzoylthiamine. Int J Mol Sci 2021; 22:ijms22115418. [PMID: 34063830 PMCID: PMC8196556 DOI: 10.3390/ijms22115418] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Thiamine (vitamin B1) is essential for brain function because of the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. In order to compensate thiamine deficiency, several thiamine precursors with higher bioavailability were developed since the 1950s. Among these, the thioester benfotiamine (BFT) has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. BFT has no adverse effects and improves cognitive outcome in patients with mild Alzheimer’s disease (AD). Recent in vitro studies show that another thiamine thioester, dibenzoylthiamine (DBT) is even more efficient that BFT, especially with respect to its anti-inflammatory potency. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified metabolites in particular open thiazole ring derivatives. The identification of the active neuroprotective derivatives and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental and psychiatric conditions.
Collapse
|
19
|
Krynskiy SA, Malashenkova IK, Ogurtsov DP, Khailov NA, Chekulaeva EI, Shipulina OY, Ponomareva EV, Gavrilova SI, Didkovsky NA, Velichkovsky BM. [Herpesvirus infections and immunological disturbances in patients with different stages of Alzheimer's disease]. Vopr Virusol 2021; 66:129-139. [PMID: 33993683 DOI: 10.36233/0507-4088-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a multifactorial disease that leads to a progressive memory loss, visualspatial impairments, emotional and personality changes. As its earliest pre-dementia clinical stage, amnestic mild cognitive impairment syndrome (aMCI) is currently considered. Neuroinflammation plays a role in the development and progression of aMCI and the initial stage of AD, which can be supported by immunological disorders of a systemic character. Study of factors, including infections, influencing immune disorders and systemic inflammatory response in patients with aMCI, is of great importance.The aim of this study was to obtain new data on the possible role of herpesvirus infections in the development and progression of aMCI. MATERIAL AND METHODS 100 patients with aMCI diagnosis, 45 patients with AD, 40 people from the control group were enrolled into the study. The frequency of DNA detection of herpesviruses (Epstein-Barr virus (EBV), human herpesviruses (HHV) type 6 and 7, cytomegalovirus (CMV)), the levels of viral load and the serological markers of herpesvirus infections (IgG to HHV-1, IgG to CMV) were determined. Immunological studies included an assessment of the level of the main pro-inflammatory and anti-inflammatory cytokines, and indicators of humoral and cellular immunity. RESULTS The study found an increased detection rate of EBV in saliva and a higher level of EBV DNA in saliva in aMCI and AD than in the control group. A relationship between the presence of active EBV infection and changes in immunological parameters in patients with aMCI were found. It was also discovered that the level of IgG antibodies to CMV is associated with the stage of AD. DISCUSSION The results indicate a possible role of EBV- and CMV-induced infections in the development of immunological changes which are typical for mild cognitive impairment and in the progression of AD. CONCLUSION The obtained data can be important for prognostic methods addressing AD development, including its pre-dementia stage, and for new approaches to individualized treatment and prevention.
Collapse
Affiliation(s)
| | - I K Malashenkova
- NRC «Kurchatov Institute»; FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | - D P Ogurtsov
- NRC «Kurchatov Institute»; FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | | | | | - O Y Shipulina
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | | | | | - N A Didkovsky
- FSBI «Federal Scientific and Clinical Center for Physico-Chemical Medicine of the Federal Medical and Biological Agency»
| | | |
Collapse
|
20
|
Müller L, Power Guerra N, Stenzel J, Rühlmann C, Lindner T, Krause BJ, Vollmar B, Teipel S, Kuhla A. Long-Term Caloric Restriction Attenuates β-Amyloid Neuropathology and Is Accompanied by Autophagy in APPswe/PS1delta9 Mice. Nutrients 2021; 13:nu13030985. [PMID: 33803798 PMCID: PMC8003277 DOI: 10.3390/nu13030985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Caloric restriction (CR) slows the aging process, extends lifespan, and exerts neuroprotective effects. It is widely accepted that CR attenuates β-amyloid (Aβ) neuropathology in models of Alzheimer's disease (AD) by so-far unknown mechanisms. One promising process induced by CR is autophagy, which is known to degrade aggregated proteins such as amyloids. In addition, autophagy positively regulates glucose uptake and may improve cerebral hypometabolism-a hallmark of AD-and, consequently, neural activity. To evaluate this hypothesis, APPswe/PS1delta9 (tg) mice and their littermates (wild-type, wt) underwent CR for either 16 or 68 weeks. Whereas short-term CR for 16 weeks revealed no noteworthy changes of AD phenotype in tg mice, long-term CR for 68 weeks showed beneficial effects. Thus, cerebral glucose metabolism and neuronal integrity were markedly increased upon 68 weeks CR in tg mice, indicated by an elevated hippocampal fluorodeoxyglucose [18F] ([18F]FDG) uptake and increased N-acetylaspartate-to-creatine ratio using positron emission tomography/computer tomography (PET/CT) imaging and magnet resonance spectroscopy (MRS). Improved neuronal activity and integrity resulted in a better cognitive performance within the Morris Water Maze. Moreover, CR for 68 weeks caused a significant increase of LC3BII and p62 protein expression, showing enhanced autophagy. Additionally, a significant decrease of Aβ plaques in tg mice in the hippocampus was observed, accompanied by reduced microgliosis as indicated by significantly decreased numbers of iba1-positive cells. In summary, long-term CR revealed an overall neuroprotective effect in tg mice. Further, this study shows, for the first time, that CR-induced autophagy in tg mice accompanies the observed attenuation of Aβ pathology.
Collapse
Affiliation(s)
- Luisa Müller
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (L.M.); (N.P.G.); (C.R.); (B.V.)
- Department of Psychosomatic Medicine and Psychotherapy, University of Rostock, 18147 Rostock, Germany;
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, 18147 Rostock, Germany
| | - Nicole Power Guerra
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (L.M.); (N.P.G.); (C.R.); (B.V.)
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany; (J.S.); (T.L.); (B.J.K.)
| | - Claire Rühlmann
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (L.M.); (N.P.G.); (C.R.); (B.V.)
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany; (J.S.); (T.L.); (B.J.K.)
| | - Bernd J. Krause
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany; (J.S.); (T.L.); (B.J.K.)
- Department of Nuclear Medicine, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (L.M.); (N.P.G.); (C.R.); (B.V.)
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 18057 Rostock, Germany; (J.S.); (T.L.); (B.J.K.)
| | - Stefan Teipel
- Department of Psychosomatic Medicine and Psychotherapy, University of Rostock, 18147 Rostock, Germany;
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE)–Rostock/Greifswald, 18147 Rostock and 17489 Greifswald, Germany
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany; (L.M.); (N.P.G.); (C.R.); (B.V.)
- Centre for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-494-2503
| |
Collapse
|
21
|
Chambers A, Bury JJ, Minett T, Richardson CD, Brayne C, Ince PG, Shaw PJ, Garwood CJ, Heath PR, Simpson JE, Matthews FE, Wharton SB. Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort. J Neuropathol Exp Neurol 2021; 79:950-958. [PMID: 32766675 DOI: 10.1093/jnen/nlaa064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a risk factor for dementia, and nonenzymatic glycosylation of macromolecules results in formation of advanced glycation end-products (AGEs). We determined the variation in AGE formation in brains from the Cognitive Function and Ageing Study population-representative neuropathology cohort. AGEs were measured on temporal neocortex by enzyme-linked immunosorbent assay (ELISA) and cell-type specific expression on neurons, astrocytes and endothelium was detected by immunohistochemistry and assessed semiquantitatively. Fifteen percent of the cohort had self-reported diabetes, which was not significantly associated with dementia status at death or neuropathology measures. AGEs were expressed on neurons, astrocytes and endothelium and overall expression showed a positively skewed distribution in the population. AGE measures were not significantly associated with dementia. AGE measured by ELISA increased with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurofibrillary tangle score (p = 0.03) and Thal Aβ phase (p = 0.04), while AGE expression on neurons (and astrocytes), detected immunohistochemically, increased with increasing Braak tangle stage (p < 0.001), CERAD tangle score (p = 0.002), and neuritic plaques (p = 0.01). Measures of AGE did not show significant associations with cerebral amyloid angiopathy, microinfarcts or neuroinflammation. In conclusion, AGE expression increases with Alzheimer's neuropathology, particular later stages but is not independently associated with dementia. AGE formation is likely to be important for impaired brain cell function in aging and Alzheimer's.
Collapse
Affiliation(s)
- Annabelle Chambers
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Joanna J Bury
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thais Minett
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Connor D Richardson
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Albashari A, He Y, Zhang Y, Ali J, Lin F, Zheng Z, Zhang K, Cao Y, Xu C, Luo L, Wang J, Ye Q. Thermosensitive bFGF-Modified Hydrogel with Dental Pulp Stem Cells on Neuroinflammation of Spinal Cord Injury. ACS OMEGA 2020; 5:16064-16075. [PMID: 32656428 PMCID: PMC7346236 DOI: 10.1021/acsomega.0c01379] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/10/2020] [Indexed: 05/02/2023]
Abstract
Acute spinal cord injury (SCI) induces severe neuroinflammation, which increases intermediary filaments and neurodegeneration. Previous studies have shown that a basic fibroblast growth factor (bFGF) and dental pulp stem cells (DPSCs) contribute to a protective effect on injured neuronal cells, but the mechanism of SCI repair is still unclear. In this study, in situ heparin (HeP) hydrogel injection containing bFGF and DPSCs (HeP-bFGF-DPSCs), as well as in vitro studies of bFGF and DPSCs, proved an effective control over inflammation. The in vivo application of HeP-bFGF-DPSCs regulated inflammatory reactions and accelerated the nerve regeneration through microtubule stabilization and tissue vasculature. Our mechanistic investigation also showed that bFGF-DPSCs treatment inhibited microglia/macrophage proliferation and activation. Furthermore, HeP-bFGF-DPSCs prevented microglia/macrophage activation and reduced proinflammatory cytokine release. In this paper, we discovered that bFGF and DPSCs worked together to attenuate tissue inflammation of the injured spinal cord, resulting in a superior nerve repair. Our results indicated that a thermosensitive hydrogel delivering bFGF and DPSCs could serve as a promising treatment option for spinal cord injuries.
Collapse
Affiliation(s)
- Abdullkhaleg Albashari
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Yan He
- Laboratory
for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
- School of
Dentistry, The University of Queensland, 288 Herston Road, Brisbane, QLD 4006, Australia
| | - Yanni Zhang
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Jihea Ali
- College
of Life and Environmental Science, Wenzhou
University, Wenzhou, Zhejiang 325035, China
| | - Feiou Lin
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Zengming Zheng
- The
Second Affiliated Hospital and Yuying Children’s Hospital of
Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Keke Zhang
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Yanfan Cao
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Chun Xu
- School of
Dentistry, The University of Queensland, 288 Herston Road, Brisbane, QLD 4006, Australia
| | - Lihua Luo
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
| | - Jianming Wang
- Laboratory
for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, China
| | - Qingsong Ye
- School
and Hospital of Stomatology, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, China
- Centre
of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- School of
Dentistry, The University of Queensland, 288 Herston Road, Brisbane, QLD 4006, Australia
| |
Collapse
|
23
|
Fan X, Sell DR, Hao C, Liu S, Wang B, Wesson DW, Siedlak S, Zhu X, Kavanagh TJ, Harrison FE, Monnier VM. Vitamin C is a source of oxoaldehyde and glycative stress in age-related cataract and neurodegenerative diseases. Aging Cell 2020; 19:e13176. [PMID: 32567221 PMCID: PMC7418511 DOI: 10.1111/acel.13176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/03/2022] Open
Abstract
Oxoaldehyde stress has recently emerged as a major source of tissue damage in aging and age-related diseases. The prevailing mechanism involves methylglyoxal production during glycolysis and modification of arginine residues through the formation of methylglyoxal hydroimidazolones (MG-H1). We now tested the hypothesis that oxidation of vitamin C (ascorbic acid or ASA) contributes to this damage when the homeostatic redox balance is disrupted especially in ASA-rich tissues such as the eye lens and brain. MG-H1 measured by liquid chromatography mass spectrometry is several fold increased in the lens and brain from transgenic mice expressing human vitamin C transporter 2 (hSVCT2). Similarly, MG-H1 levels are increased two- to fourfold in hippocampus extracts from individuals with Alzheimer's disease (AD), and significantly higher levels are present in sarkosyl-insoluble tissue fractions from AD brain proteins than in the soluble fractions. Moreover, immunostaining with antibodies against methylglyoxal hydroimidazolones reveals similar increase in substantia nigra neurons from individuals with Parkinson's disease. Results from an in vitro incubation experiment suggest that accumulated catalytic metal ions in the hippocampus during aging could readily accelerate ASA oxidation and such acceleration was significantly enhanced in AD. Modeling studies and intraventricular injection of 13 C-labeled ASA revealed that ASA backbone carbons 4-6 are incorporated into MG-H1 both in vitro and in vivo, likely via a glyceraldehyde precursor. We propose that drugs that prevent oxoaldehyde stress or excessive ASA oxidation may protect against age-related cataract and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xingjun Fan
- Department of Cellular Biology and AnatomyMedical College of Georgia at Augusta UniversityAugustaGeorgia
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - David R. Sell
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Caili Hao
- Department of Cellular Biology and AnatomyMedical College of Georgia at Augusta UniversityAugustaGeorgia
| | | | - Benlian Wang
- Center for ProteomicsCase Western Reserve UniversityClevelandOhioUSA
| | - Daniel W. Wesson
- NeurosciencesCase Western Reserve UniversityClevelandOhioUSA
- Present address:
Department of Pharmacology & TherapeuticsUniversity of FloridaGainesvilleFloridaUSA
| | - Sandra Siedlak
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Xiongwei Zhu
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Fiona E. Harrison
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Vincent M. Monnier
- Department of PathologyCase Western Reserve UniversityClevelandOhioUSA
- BiochemistryCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
24
|
A New Italian Purple Corn Variety (Moradyn) Byproduct Extract: Antiglycative and Hypoglycemic In Vitro Activities and Preliminary Bioaccessibility Studies. Molecules 2020; 25:molecules25081958. [PMID: 32340142 PMCID: PMC7221992 DOI: 10.3390/molecules25081958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
The reuse of byproducts from agricultural and food industries represents the key factor in a circular economy, whose interest has grown in the last two decades. Thus, the extraction of bioactives from agro-industrial byproducts is a potential source of valuable molecules. The aim of this work was to investigate the in vitro capacity of byproducts from a new Italian corn variety, named Moradyn, to inhibit the accumulation of advanced glycation end products (AGEs) involved in several chronic age-related disorders. In addition, the hypoglycemic effect of Moradyn was tested by in vitro enzymatic systems. A Moradyn phytocomplex and its purified anthocyanin fraction were able to inhibit fructosamine formation and exhibited antiglycative properties when tested using BSA-sugars and BSA-methylglyoxal assays. These properties could be attributed to the polyphenols, mainly anthocyanins and flavonols, detected by RP-HPLC-DAD-ESI-MSn. Finally, a Moradyn phytocomplex was submitted to a simulated in vitro digestion process to study its bioaccessibility. Moradyn could be considered as a promising food ingredient in the context of typical type 2 diabetes risk factors and the study will continue in the optimization of the ideal formulation to preserve its bioactivities from digestion.
Collapse
|
25
|
Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease. Acta Neuropathol Commun 2019; 7:169. [PMID: 31694701 PMCID: PMC6836495 DOI: 10.1186/s40478-019-0795-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Collapse
|
26
|
Hajizadeh-Sharafabad F, Sahebkar A, Zabetian-Targhi F, Maleki V. The impact of resveratrol on toxicity and related complications of advanced glycation end products: A systematic review. Biofactors 2019; 45:651-665. [PMID: 31185146 DOI: 10.1002/biof.1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) promotes the generation of free radicals, which leads to chronic oxidative stress predisposing to chronic oxidative stress, inflammation, and related diseases. This systematic review aimed to determine the effect of resveratrol (RSV) on AGE-induced toxicity and its deleterious consequences. A comprehensive search was performed through literature were published until December 2018 using relevant keywords. The databases that were used for the search were PubMed, Scopus, Embase, ProQuest, and Google Scholar. A total of 29 eligible studies were found and included in the review for the analysis. Except one, all studies showed suppressing effects for RSV on the production of AGEs or receptor for advanced glycation end products (RAGE) and its detrimental consequences including oxidative stress, inflammatory response, cellular immune reactions, insulin response, and atherosclerosis. RSV exerts its effects through influencing RAGE, nuclear factor kappa B (NF-κB), peroxisome proliferator-activated receptor (PPAR) γ, and transforming growth factor (TGF)-β activities. This review suggests that RSV has got potential to decrease AGEs toxicity and inhibit the AGE-induced complications. More clinical trials are suggested to evaluate the beneficial effect of RSV on AGEs in chronic metabolic diseases.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antioxidants/pharmacology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Gene Expression Regulation
- Glycation End Products, Advanced/antagonists & inhibitors
- Glycation End Products, Advanced/genetics
- Glycation End Products, Advanced/metabolism
- Glycation End Products, Advanced/toxicity
- Humans
- Inflammation
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oxidative Stress
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Pyruvaldehyde/metabolism
- Resveratrol/pharmacology
- Signal Transduction
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateme Zabetian-Targhi
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Gong RZ, Wang YH, Gao K, Zhang L, Liu C, Wang ZS, Wang YF, Sun YS. Quantification of Furosine (Nε-(2-Furoylmethyl)-l-lysine) in Different Parts of Velvet Antler with Various Processing Methods and Factors Affecting Its Formation. Molecules 2019; 24:molecules24071255. [PMID: 30935092 PMCID: PMC6479359 DOI: 10.3390/molecules24071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022] Open
Abstract
Furosine (Nε-(2-furoylmethyl)-l-lysine) is formed during the early stages of the Maillard reaction from a lysine Amadori compound and is frequently used as a marker of reaction progress. Furosine is toxic, with significant effects on animal livers, kidneys, and other organs. However, reports on the formation of furosine in processed velvet antler are scarce. In this study, we have quantified the furosine content in processed velvet antler by using UPLC-MS/MS. The furosine contents of velvet antler after freeze-drying, boiling, and processing without and with blood were 148.51–193.93, 168.10–241.22, 60.29–80.33, and 115.18–138.99 mg/kg protein, respectively. The factors affecting furosine formation in processed velvet antler, including reducing sugars, proteins, amino acids, and process temperature, are discussed herein. Proteins, amino acids, and reducing sugars are substrates for the Maillard reaction and most significantly influence the furosine content in the processed velvet antler. High temperatures induce the production of furosine in boiled velvet antler but not in the freeze-dried samples, whereas more furosine is produced in velvet antler processed with blood, which is rich in proteins, amino acids, and reducing sugars, than in the samples processed without blood. Finally, wax slices rich in proteins, amino acids, and reducing sugars produced more furosine than the other parts of the velvet antler. These data provide a reference for guiding the production of low-furosine velvet antler and can be used to estimate the consumer intake of furosine from processed velvet antler.
Collapse
Affiliation(s)
- Rui-Ze Gong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yan-Hua Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Kun Gao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- College of Chinese Material Medicine, Jilin Agricultural University, Changchun 130118, China.
| | - Lei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Chang Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Ze-Shuai Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yu-Fang Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| | - Yin-Shi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
28
|
Redness generation via Maillard reactions of whey protein isolate (WPI) and ascorbic acid (vitamin C) in spray-dried powders. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Pluta R, Ułamek-Kozioł M. Lymphocytes, Platelets, Erythrocytes, and Exosomes as Possible Biomarkers for Alzheimer’s Disease Clinical Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:71-82. [DOI: 10.1007/978-3-030-05542-4_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Foroumandi E, Alizadeh M, Kheirouri S. Age-dependent Changes in Plasma Amino Acids Contribute to Alterations in Glycoxidation Products. J Med Biochem 2018; 37:426-433. [PMID: 30584401 PMCID: PMC6298480 DOI: 10.1515/jomb-2017-0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glycative stress is involved in the pathogenesis of various degenerative disorders. This study sought to determine the effect of age-related changes in amino acids on serum levels of pentosidine and carboxymethyl-lysine (CML) in healthy individuals. METHODS The subjects were 78 healthy individuals categorized into three age groups. The ages of the groups were as follows: 26 young adults (20-30 y, 25.2±3.03), 26 middle-aged adults (35-50 y, 39.46±6.97) and 26 older adults (60 y or older, 69.80±10.01). Serum levels of pentosidine and CML were measured by ELISA and levels of plasma amino acids were determined using HPLC. RESULTS Serum levels of pentosidine and CML in the youngest group were higher than in the oldest group (p=0.026, 0.029, respectively). There was a positive correlation between the serum levels of pentosidine and CML and the levels of plasmaTyrosine (p=0.032, r=0.211 and p=0.037, r=0.224), Valine (p=0.037, r=0.224 and p=0.021, r=0.247) and Isoleucine (p=0.041, r=0.203 and p=0.021, r=0.247), respectively. Serum levels of pentosidine and CML may be modulated by the plasma levels of selected amino acids. CONCLUSIONS Better understanding of the role of these selective amino acids might provide new perception of how glycation pathways may be altered and pave the way for new therapeutic principles.
Collapse
Affiliation(s)
- Elaheh Foroumandi
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond) 2018; 15:72. [PMID: 30337945 PMCID: PMC6180645 DOI: 10.1186/s12986-018-0306-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Advanced glycation end products (AGEs), a group of compounds that are formed by non-enzymatic reactions between carbonyl groups of reducing sugars and free amino groups of proteins, lipids or nucleic acids, can be obtained exogenously from diet or formed endogenously within the body. AGEs accumulate intracellularly and extracellularly in all tissues and body fluids and can cross-link with other proteins and thus affect their normal functions. Furthermore, AGEs can interact with specific cell surface receptors and hence alter cell intracellular signaling, gene expression, the production of reactive oxygen species and the activation of several inflammatory pathways. High levels of AGEs in diet as well as in tissues and the circulation are pathogenic to a wide range of diseases. With respect to mobility, AGEs accumulate in bones, joints and skeletal muscles, playing important roles in the development of osteoporosis, osteoarthritis, and sarcopenia with aging. This report covered the related pathological mechanisms and the potential pharmaceutical and dietary intervention strategies in reducing systemic AGEs. More prospective studies are needed to determine whether elevated serum AGEs and/or skin autofluorescence predict a decline in measures of mobility. In addition, human intervention studies are required to investigate the beneficial effects of exogenous AGEs inhibitors on mobility outcomes.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cuihong Bu
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| |
Collapse
|
32
|
Pinkas A, Lee KH, Chen P, Aschner M. A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotox Res 2018; 35:19-28. [PMID: 29869225 DOI: 10.1007/s12640-018-9918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
The receptor for advanced glycation products (RAGE) is a cell surface, multi-ligand receptor belonging to the immunoglobulin superfamily; this receptor is implicated in a variety of maladies, via inflammatory pathways and induction of oxidative stress. Currently, RAGE is being studied using a limited number of mammalian in vivo, and some complementary in vitro, models. Here, we present a Caenorhabditis elegans model for the study of RAGE-related pathology: a transgenic strain, expressing RAGE in all neurons, was generated and subsequently tested behaviorally, developmentally, and morphologically. In addition to RAGE expression being associated with a significantly shorter lifespan, the following behavioral observations were made when RAGE-expressing worms were compared to the wild type: RAGE-expressing worms showed an impaired dopaminergic system, evaluated by measuring the fluorescent signal of GFP tagging; these worms exhibited decreased locomotion-both general and following ethanol exposure-as measured by counting body bends in adult worms; RAGE expression was also associated with impaired recovery of quiescence and pharyngeal pumping secondary to heat shock, as a significantly smaller fraction of RAGE-expressing worms engaged in these behaviors in the 2 h immediately following the heat shock. Finally, significant developmental differences were also found between the two strains: RAGE expression leads to a significantly smaller fraction of hatched eggs 24 h after laying and also to a significantly slower developmental speed overall. As evidence for the role of RAGE in a variety of neuropathologies accumulates, the use of this novel and expedient model should facilitate the elucidation of relevant underlying mechanisms and also the development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| | - Kun He Lee
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Pan Chen
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| |
Collapse
|
33
|
Heidari S, Mehri S, Shariaty V, Hosseinzadeh H. Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y). J Pharmacopuncture 2018; 21:18-25. [PMID: 30151301 PMCID: PMC6054079 DOI: 10.3831/kpi.2018.21.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
Objective D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods Pretreated cells with crocin (25–500 μM, 24 h) were exposed to D-gal (25–400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated β-galactosidase staining assay (SA-β-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results The findings of our study showed that treatment of cells with D-gal (25–400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from 100 ± 8% in control group to 132 ± 22% in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of 100 μM, 200 μM and 500 μM increased and ROS production decreased at concentrations of 200 and 500 μM to 111.5 ± 6% and 108 ± 5%, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pretreatment of SHSY-5Y cells with crocin (500 μM) before adding D-gal significantly reduced aging marker and CML formation. Conclusion Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti-aging effects through inhibition of AGEs and ROS production.
Collapse
Affiliation(s)
- Somaye Heidari
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| | - Vahidesadat Shariaty
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I. R. Iran
| |
Collapse
|
34
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075 10.12075/j.issn.1004-4051.2018.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 06/29/2024] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer's disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
35
|
Bai B. U1 snRNP Alteration and Neuronal Cell Cycle Reentry in Alzheimer Disease. Front Aging Neurosci 2018; 10:75. [PMID: 29628886 PMCID: PMC5876301 DOI: 10.3389/fnagi.2018.00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrancy of U1 small nuclear ribonucleoprotein (snRNP) complex and RNA splicing has been demonstrated in Alzheimer’s disease (AD). Importantly, the U1 proteopathy is AD-specific, widespread and early-occurring, thus providing a very unique clue to the AD pathogenesis. The prominent feature of U1 histopathology is its nuclear depletion and redistribution in the neuronal cytoplasm. According to the preliminary data, the initial U1 cytoplasmic distribution pattern is similar to the subcellular translocation of the spliceosome in cells undergoing mitosis. This implies that the U1 mislocalization might reflect the neuronal cell cycle-reentry (CCR) which has been extensively evidenced in AD brains. The CCR phenomenon explains the major molecular and cellular events in AD brains, such as Tau and amyloid precursor protein (APP) phosphorylation, and the possible neuronal death through mitotic catastrophe (MC). Furthermore, the CCR might be mechanistically linked to inflammation, a critical factor in the AD etiology according to the genetic evidence. Therefore, the discovery of U1 aberrancy might strengthen the involvement of CCR in the AD neuronal degeneration.
Collapse
Affiliation(s)
- Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| |
Collapse
|
36
|
Kempf SJ, Janik D, Barjaktarovic Z, Braga-Tanaka I, Tanaka S, Neff F, Saran A, Larsen MR, Tapio S. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model. Oncotarget 2018; 7:71817-71832. [PMID: 27708245 PMCID: PMC5342125 DOI: 10.18632/oncotarget.12376] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022] Open
Abstract
Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer´s. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumulative doses of 0.3 Gy and 6.0 Gy, respectively. ApoE deficient mutant C57Bl/6 mouse was used as an Alzheimer´s model. Using mass spectrometry, a marked alteration in the phosphoproteome was found at both dose rates. The radiation-induced changes in the phosphoproteome were associated with the control of synaptic plasticity, calcium-dependent signalling and brain metabolism. An inhibition of CREB signalling was found at both dose rates whereas Rac1-Cofilin signalling was found activated only at the lower dose rate. Similarly, the reduction in the number of activated microglia in the molecular layer of hippocampus that paralleled with reduced levels of TNFα expression and lipid peroxidation was significant only at the lower dose rate. Adult neurogenesis, investigated by Ki67, GFAP and NeuN staining, and cell death (activated caspase-3) were not influenced at any dose or dose rate. This study shows that several molecular targets induced by chronic low-dose-rate radiation overlap with those of Alzheimer´s pathology. It may suggest that ionising radiation functions as a contributing risk factor to this neurodegenerative disease.
Collapse
Affiliation(s)
- Stefan J Kempf
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dirk Janik
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Zarko Barjaktarovic
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | | | | | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l´Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
37
|
Levels of Proinflammatory Cytokines and Growth Factor VEGF in Patients with Alzheimer’s Disease and Mild Cognitive Impairment. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Pinkas A, Aschner M. AGEs/RAGE-Related Neurodegeneration: daf-16 as a Mediator, Insulin as an Ameliorant, and C. elegans as an Expedient Research Model. Chem Res Toxicol 2017; 30:38-42. [PMID: 27704837 DOI: 10.1021/acs.chemrestox.6b00264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advanced glycation end-products (AGEs) are nonenzymatically glycated proteins, lipids, and nucleic acids. These compounds both originate exogenously and are formed endogenously, and they are associated, along with one of their receptors (RAGE), with a variety of pathologies and neurodegeneration. Some of their deleterious effects include affecting insulin signaling and FOXO-related pathways in both receptor-dependent and -independent manners. A potential ameliorating agent for these effects is insulin, which is being studied in several in vivo and in vitro models; one of these models is C. elegans, whose maintenance, genetic malleability, and well-described longevity-related pathways make it an optimal complementary model for assessing these objectives. In the realm of neuroscience, this model is currently being used only for general assessment of neurodegeneration and shortened lifespan. We suggest that characterization of (a) the effects of AGEs/RAGE on specific neurotransmitter systems, (b) the role of the daf-2/daf-16 pathway in these neurodegenerative processes, and
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| | - Michael Aschner
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| |
Collapse
|
39
|
Surowka AD, Pilling M, Henderson A, Boutin H, Christie L, Szczerbowska-Boruchowska M, Gardner P. FTIR imaging of the molecular burden around Aβ deposits in an early-stage 3-Tg-APP-PSP1-TAU mouse model of Alzheimer's disease. Analyst 2017; 142:156-168. [DOI: 10.1039/c6an01797e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High spatial resolution FTIR imaging of early-stage 3-Tg-APP-PSP1-TAU mouse brain identifies molecular burden around Aβ deposits.
Collapse
Affiliation(s)
- Artur Dawid Surowka
- AGH University of Science and Technology
- Faculty of Physics and Applied Computer Science
- Krakow
- Poland
| | - Michael Pilling
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Alex Henderson
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| | - Herve Boutin
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | - Lidan Christie
- Wolfson Molecular Imaging Centre
- University of Manchester
- Manchester
- UK
| | | | - Peter Gardner
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- School of Chemical Engineering and Analytical Science
| |
Collapse
|
40
|
Pruzin JJ, Schneider JA, Capuano AW, Leurgans SE, Barnes LL, Ahima RS, Arnold SE, Bennett DA, Arvanitakis Z. Diabetes, Hemoglobin A1C, and Regional Alzheimer Disease and Infarct Pathology. Alzheimer Dis Assoc Disord 2017; 31:41-47. [PMID: 27755004 PMCID: PMC5321787 DOI: 10.1097/wad.0000000000000172] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined the relationship of diabetes and hemoglobin A1C (A1C) to 2 common causes of dementia. The study included 1228 subjects who underwent annual clinical evaluations and a brain autopsy at death, as part of a Rush longitudinal cohort study of aging. A total of 433 subjects had A1C data available. Neuropathologic evaluations documented the size and location of infarcts. Modified silver stain-based Alzheimer disease (AD) measures included global and regional scores. We used regression analyses to examine associations of diabetes and A1C with overall and regional neuropathology. Diabetes [odds ratio (OR)=0.94; 95% confidence interval (CI), 0.73-1.20) and A1C (OR=0.83; 95% CI, 0.62-1.10) were not associated with global AD pathology across the brain, nor with overall or individual measures of neuropathology in mesial temporal or neocortical regions separately (all P>0.05). Diabetes was associated with a higher odds of any infarct (OR=1.43; 95% CI, 1.07-1.90), and particularly with gross (OR=1.53; 95% CI, 1.14-2.06) but not microinfarcts (P=0.06), and subcortical (OR=1.79; 95% CI, 1.34-2.39) but not cortical infarcts (P=0.83). In summary, we found no relationship of diabetes or A1C with global or regional AD pathology, including in the mesial temporal lobe. Diabetes is associated with gross subcortical infarcts. Our results suggest that the diabetes-dementia link is based on subcortical vascular pathology and not on regional AD pathology.
Collapse
Affiliation(s)
- Jeremy J Pruzin
- *Rush Alzheimer's Disease Center Departments of †Neurological Sciences ‡Pathology §Behavioral Sciences, Rush University Medical Center, Chicago, IL ∥Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD ¶Department of Neurology, Harvard Medical School, Interdisciplinary Brain Center, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meng X, Chu G, Ye C, Tang H, Qiu P, Hu Y, Li M, Zhang C. Involvement of AMPK in regulating the degradation of MAD2B under high glucose in neuronal cells. J Cell Mol Med 2016; 21:1150-1158. [PMID: 27957796 PMCID: PMC5431170 DOI: 10.1111/jcmm.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/29/2022] Open
Abstract
Although our recent study has demonstrated that mitotic spindle assembly checkpoint protein (MAD2B) mediates high glucose‐induced neuronal apoptosis, the mechanisms for MAD2B degradation under hyperglycaemia have not yet been elucidated. In this study, we first found that the activation of adenosine 5′‐monophosphate (AMP)‐activated protein kinase (AMPK) was decreased in neurons, accompanied with the increased expression of MAD2B. Mechanistically, we demonstrated that activation of AMPK with its activators such as AICAR and metformin decreased the expression of MAD2B, indicating a role of AMPK in regulating the expression of MAD2B. Moreover, activation of AMPK prevented neuronal cells from high glucose‐induced injury as demonstrated by the reduced expression of cyclin B1 and percentage of apoptosis as detected by TUNEL. We further found that when total protein synthesis was suppressed by chlorhexidine, the degradation of MAD2B was slower in high glucose‐treated neurons and was mainly dependent on the ubiquitin–proteasome system. Finally, it was indicated that high glucose inhibited the ubiquitination of MAD2B, which could be reversed by activation of AMPK. Collectively, this study demonstrates that AMPK acts as a key regulator of MAD2B expression, suggesting that activation of AMPK signalling might be crucial for the treatment of high glucose‐induced neuronal injury.
Collapse
Affiliation(s)
- Xianfang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Guangpin Chu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Ye
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Qiu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Hu
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Hassanian SM, Ardeshirylajimi A, Dinarvand P, Rezaie AR. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β-catenin signaling in endothelial cells. J Thromb Haemost 2016; 14:2261-2273. [PMID: 27546592 PMCID: PMC5116009 DOI: 10.1111/jth.13477] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/09/2016] [Indexed: 02/04/2023]
Abstract
Essentials Polyphosphate (polyP) activates mTOR but its role in Wnt/β-catenin signaling is not known. PolyP-mediated cyclin D1 expression (β-catenin target gene) was monitored in endothelial cells. PolyP and boiled platelet-releasates induced the expression of cyclin D1 by similar mechanisms. PolyP establishes crosstalk between mTOR and Wnt/β-catenin signaling in endothelial cells. SUMMARY Background Inorganic polyphosphate (polyP) elicits intracellular signaling responses in endothelial cells through activation of mTOR complexes 1 and 2. Glycogen synthase kinase 3 (GSK-3) is known to be a negative regulator of mTOR and Wnt/β-catenin signaling pathways. Objective The objective of this study was to investigate the effect of polyP on the expression, degradation and subcellular localization of the Wnt/β-catenin target gene, cyclin D1, in endothelial cells. Methods Regulation of cyclin D1 expression, phosphorylation and subcellular localization by polyP or platelet releasates was monitored in the absence and presence of pharmacological inhibitors and/or siRNA for specific molecules of the upstream mTOR/Wnt/β-catenin signaling network by established methods. Results Both synthetic polyP and boiled-platelet releasates induced the phosphorylation-dependent inactivation of GSK-3, thereby increasing the expression and nuclear localization, but inhibiting the degradation of cyclin D1. Inhibitors of mTORC1 (PI3K, AKT, PLC, PKC), rapamycin and siRNA for raptor (mTORC1-specific component) and β-catenin, all inhibited polyP-mediated regulation of cyclin D1 expression, phosphorylation and subcellular localization in endothelial cells. The signaling effect of polyP was effectively inhibited by the recombinant extracellular domain of the receptor for advanced glycation end products (RAGE) and/or by the RAGE siRNA. Specific pharmacological inhibitors and siRNA knockdown of ERK1/2 and NF-κB pathways indicated that polyP-mediated cyclin D1 expression and nuclear localization are IKKɑ and ERK1/2 dependent, whereas its inhibitory effect on phosphorylation-dependent degradation of cyclin D1 is IKKβ-dependent. Conclusion We conclude that a RAGE-dependent polyP-mediated crosstalk between mTOR and the GSK-3/Wnt/β-catenin signaling network can modulate important physiological processes in endothelial cells.
Collapse
Affiliation(s)
- S M Hassanian
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - A Ardeshirylajimi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - P Dinarvand
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - A R Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
43
|
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev 2016; 160:1-18. [PMID: 27671971 DOI: 10.1016/j.mad.2016.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/30/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Vast evidence supports the view that glycation of proteins is one of the main factors contributing to aging and is an important element of etiopathology of age-related diseases, especially type 2 diabetes mellitus, cataract and neurodegenerative diseases. Counteracting glycation can therefore be a means of increasing both the lifespan and healthspan. In this review, accumulation of glycation products during aging is presented, pathophysiological effects of glycation are discussed and ways of attenuation of the effects of glycation are described, concentrating on prevention of glycation. The effects of glycation and glycation inhibitors on the course of selected age-related diseases, such as Alzheimer's disease, Parkinson's disease and cataract are also reviewed.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland.
| | - Grzegorz Bartosz
- Department of Biochemistry and Cell Biology, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza St. 4, 35-604 Rzeszów, Poland; Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
44
|
Wojsiat J, Laskowska-Kaszub K, Alquézar C, Białopiotrowicz E, Esteras N, Zdioruk M, Martin-Requero A, Wojda U. Familial Alzheimer's Disease Lymphocytes Respond Differently Than Sporadic Cells to Oxidative Stress: Upregulated p53-p21 Signaling Linked with Presenilin 1 Mutants. Mol Neurobiol 2016; 54:5683-5698. [PMID: 27644130 PMCID: PMC5533859 DOI: 10.1007/s12035-016-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.
Collapse
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Emilia Białopiotrowicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Noemi Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
45
|
Atwood CS, Bowen RL. A Unified Hypothesis of Early- and Late-Onset Alzheimer's Disease Pathogenesis. J Alzheimers Dis 2016; 47:33-47. [PMID: 26402752 DOI: 10.3233/jad-143210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes: neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-β deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AβPP, PSEN1, and PSEN2 that alter amyloid-β precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AβPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AβPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later: aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, USA.,School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | |
Collapse
|
46
|
Gallart-Palau X, Serra A, Sze SK. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 2016; 11:41. [PMID: 27216497 PMCID: PMC4877958 DOI: 10.1186/s13024-016-0108-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/16/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) act as key mediators of intercellular communication and are secreted and taken up by all cell types in the central nervous system (CNS). While detailed study of EV-based signaling is likely to significantly advance our understanding of human neurobiology, the technical challenges of isolating EVs from CNS tissues have limited their characterization using 'omics' technologies. We therefore developed a new Protein Organic Solvent Precipitation (PROSPR) method that can efficiently isolate the EV repertoire from human biological samples. RESULTS In the current report, we present a novel experimental workflow that outlines the process of sample extraction and enrichment of CNS-derived EVs using PROSPR. Subsequent LC-MS/MS-based proteomic profiling of EVs enriched from brain homogenates successfully identified 86 of the top 100 exosomal markers. Proteomic profiling of PROSPR-enriched CNS EVs indicated that > 75 % of the proteins identified matched previously reported exosomal and microvesicle cargoes, while also expanded the known human EV-associated proteome with 685 novel identifications. Similarly, lipidomic characterization of enriched CNS vesicles not only identified previously reported EV-specific lipid families (PS, SM, lysoPC, lysoPE) but also uncovered novel lipid isoforms not previously detected in human EVs. Finally, dedicated flow cytometry of PROSPR-CNS-EVs revealed that ~80 % of total microparticles observed were exosomes ranging in diameter from ≤100 nm to 300 nm. CONCLUSIONS These data demonstrate that the optimized use of PROSPR represents an easy-to-perform and inexpensive method of enriching EVs from human CNS tissues for detailed characterization by 'omics' technologies. We predict that widespread use of the methodology described herein will greatly accelerate the study of EVs biology in neuroscience.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Aida Serra
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Division of Chemical Biology & BioTechnology, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
47
|
Cai Z, Liu N, Wang C, Qin B, Zhou Y, Xiao M, Chang L, Yan LJ, Zhao B. Role of RAGE in Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:483-95. [PMID: 26175217 DOI: 10.1007/s10571-015-0233-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/29/2015] [Indexed: 01/11/2023]
Abstract
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer's disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE-Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China.
| | - Nannuan Liu
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Biyong Qin
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Yingjun Zhou
- Physical Examination Center, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Liying Chang
- Department of Neurology, Xiangyang Center Hospital, The First Affiliated Hospital, Hubei University of Arts and Science, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences,UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Bin Zhao
- Department of Neurology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524001, Guangdong Province, People's Republic of China
| |
Collapse
|
48
|
Pinkas A, Aschner M. Advanced Glycation End-Products and Their Receptors: Related Pathologies, Recent Therapeutic Strategies, and a Potential Model for Future Neurodegeneration Studies. Chem Res Toxicol 2016; 29:707-14. [PMID: 27054356 DOI: 10.1021/acs.chemrestox.6b00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advanced glycation end products (AGEs) are the result of a nonenzymatic reaction between sugars and proteins, lipids, or nucleic acids. AGEs are both consumed and endogenously formed; their accumulation is accelerated under hyperglycemic and oxidative stress conditions, and they are associated with the onset and complication of many diseases, such as cardiovascular diseases, diabetes, and Alzheimer's disease. AGEs exert their deleterious effects by either accumulating in the circulation and tissues or by receptor-mediated signal transduction. Several receptors bind AGEs: some are specific and contribute to clearance of AGEs, whereas others, like the RAGE receptor, are nonspecific, associated with inflammation and oxidative stress, and considered to be mediators of the aforementioned AGE-related diseases. Although several anti-AGE compounds have been studied, understanding the underlying mechanisms of RAGE and targeting it as a therapeutic strategy is becoming increasingly desirable. For achieving these goals efficiently and expeditiously, the C. elegans model has been suggested. This model is already used for studying several human diseases and, by expressing RAGE, could also be used to study RAGE-related pathways and pathologies to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| | - Michael Aschner
- Albert Einstein College of Medicine , Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, New York 10461, United States
| |
Collapse
|
49
|
Malashenkova IK, Hailov NA, Krynskiy SA, Ogurtsov DP, Kazanova GV, Velichkovckiy BB, Selezneva ND, Fedorova YB, Ponomareva EV, Kolyhalov IV, Gavrilova SI, Didkovsky NA. [Levels of proinflammatory cytokines and vascular endothelial growth factor in patients with Alzheimer's disease and mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:39-43. [PMID: 27070471 DOI: 10.17116/jnevro20161163139-43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE to evaluate the levels of cytokines (IFNα, IFNγ, IL-2, Il-4, IL-6, IL-8, IL-10, IL-12, IL-15), IL-1β receptor antagonist (IL-1RA), vascular endothelial growth factor (VEGF) and its antagonist, the soluble form of receptor 1 (sVEGFR1) in the blood serum of patients with Alzheimer's disease, with early onset (ADEO) and late onset (ADLO), and in patients with mild cognitive impairment (MCI). MATERIAL AND METHODS Levels of interleukins, IL-1RA, VEGF and sVEGFR1 were measured in 20 patients with AD and 11 patients with MCI using ELISA. These parameters were compared to the severity of cognitive impairment assessed by the performance on neurocognitive tests. RESULTS AND CONCLUSION The levels of key cytokines (IL-8, TNFα, IL-12), VEGF and sVEGFR1 as well as anti-inflammatory proteins were different in patients with ADEO, ADLO and MCI. These differences suggest the phenotypic and genotypic heterogeneity of the disease that demands further research.
Collapse
Affiliation(s)
| | - N A Hailov
- National Research Center 'Kurchatov Institute', Moscow
| | - S A Krynskiy
- National Research Center 'Kurchatov Institute', Moscow
| | - D P Ogurtsov
- Research Institute of physical-chemical medicine, Moscow
| | - G V Kazanova
- National Research Center 'Kurchatov Institute', Moscow
| | | | | | | | | | | | | | - N A Didkovsky
- Research Institute of physical-chemical medicine, Moscow
| |
Collapse
|
50
|
Wang ZX, Wan Y, Tan L, Liu J, Wang HF, Sun FR, Tan MS, Tan CC, Jiang T, Tan L, Yu JT. Genetic Association of HLA Gene Variants with MRI Brain Structure in Alzheimer’s Disease. Mol Neurobiol 2016; 54:3195-3204. [DOI: 10.1007/s12035-016-9889-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
|