1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: conversation between the brain and the gut. Neurosci Biobehav Rev 2024:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. This interplay provides a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Ma LY, Jia B, Geng H, Liang J, Huo L. Poly(rC)-binding protein 1 alleviates neurotoxicity in 6-OHDA-induced SH-SY5Y cells and modulates glial cells in neuroinflammation. Brain Res 2024; 1832:148863. [PMID: 38492841 DOI: 10.1016/j.brainres.2024.148863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons and neuroinflammation. Previous research has identified the involvement of Poly (rC)-binding protein 1 (PCBP1) in certain degenerative diseases; however, its specific mechanisms in PD remain incompletely understood. METHODS In this study, 6-OHDA-induced neurotoxicity in the cell lines SH-SY5Y, BV-2 and HA, was used to evaluate the protective effects of PCBP1. We assessed alterations in BDNF levels in SY5Y cells, changes in GDNF expression in glial cells, as well as variations in HSP70 and NF-κB activation. Additionally, glial cells were used as the in vitro model for neuroinflammation mechanisms. RESULTS The results indicate that the overexpression of PCBP1 significantly enhances cell growth compared to the control plasmid pEGFP/N1 group. Overexpression of PCBP1 leads to a substantial reduction in early apoptosis rates in SH-SY5Y, HA, and BV-2 cells, with statistically significant differences (p < 0.05). Furthermore, the overexpression of PCBP1 in cells results in a marked increase in the expression of HSP70, GDNF, and BDNF, while reducing NF-κB expression. Additionally, in SH-SY5Y, HA, and BV-2 cells overexpressing PCBP1, there is a decrease in the inflammatory factor IL-6 compared to the control plasmid pEGFP/N1 group, while BV-2 cells exhibit a significant increase in the anti-inflammatory factor IL-10. CONCLUSION Our findings suggest that PCBP1 plays a substantial role in promoting cell growth and modulating the balance of neuroprotective and inflammatory factors. These results offer valuable insights into the potential therapeutic utility of PCBP1 in mitigating neuroinflammation and enhancing neuronal survival in PD.
Collapse
Affiliation(s)
- Ling-Yun Ma
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Bingbing Jia
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China; Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing 100045, China
| | - Haoming Geng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lirong Huo
- Central Laboratory, Department of Neurology, Fuxing Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
3
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
4
|
Bentea E, De Pauw L, Verbruggen L, Winfrey LC, Deneyer L, Moore C, Albertini G, Sato H, Van Eeckhaut A, Meshul CK, Massie A. Aged xCT-Deficient Mice Are Less Susceptible for Lactacystin-, but Not 1-Methyl-4-Phenyl-1,2,3,6- Tetrahydropyridine-, Induced Degeneration of the Nigrostriatal Pathway. Front Cell Neurosci 2022; 15:796635. [PMID: 34975413 PMCID: PMC8718610 DOI: 10.3389/fncel.2021.796635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
The astrocytic cystine/glutamate antiporter system x c - (with xCT as the specific subunit) imports cystine in exchange for glutamate and has been shown to interact with multiple pathways in the brain that are dysregulated in age-related neurological disorders, including glutamate homeostasis, redox balance, and neuroinflammation. In the current study, we investigated the effect of genetic xCT deletion on lactacystin (LAC)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of the nigrostriatal pathway, as models for Parkinson's disease (PD). Dopaminergic neurons of adult xCT knock-out mice (xCT-/-) demonstrated an equal susceptibility to intranigral injection of the proteasome inhibitor LAC, as their wild-type (xCT+/+) littermates. Contrary to adult mice, aged xCT-/- mice showed a significant decrease in LAC-induced degeneration of nigral dopaminergic neurons, depletion of striatal dopamine (DA) and neuroinflammatory reaction, compared to age-matched xCT+/+ littermates. Given this age-related protection, we further investigated the sensitivity of aged xCT-/- mice to chronic and progressive MPTP treatment. However, in accordance with our previous observations in adult mice (Bentea et al., 2015a), xCT deletion did not confer protection against MPTP-induced nigrostriatal degeneration in aged mice. We observed an increased loss of nigral dopaminergic neurons, but equal striatal DA denervation, in MPTP-treated aged xCT-/- mice when compared to age-matched xCT+/+ littermates. To conclude, we reveal age-related protection against proteasome inhibition-induced nigrostriatal degeneration in xCT-/- mice, while xCT deletion failed to protect nigral dopaminergic neurons of aged mice against MPTP-induced toxicity. Our findings thereby provide new insights into the role of system x c - in mechanisms of dopaminergic cell loss and its interaction with aging.
Collapse
Affiliation(s)
- Eduard Bentea
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lise Verbruggen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lila C Winfrey
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States
| | - Lauren Deneyer
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cynthia Moore
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States
| | - Giulia Albertini
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata, Japan
| | - Ann Van Eeckhaut
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles K Meshul
- Neurocytology Laboratory, Veterans Affairs Medical Center, Research Services, Portland, OR, United States.,Department of Behavioral Neuroscience and Pathology, Oregon Health and Science University, Portland, OR, United States
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Nakajima S, Saeki N, Tamano H, Nishio R, Katahira M, Takeuchi A, Takeda A. Age-related vulnerability to nigral dopaminergic degeneration in rats via Zn 2+-permeable GluR2-lacking AMPA receptor activation. Neurotoxicology 2021; 83:69-76. [PMID: 33400970 DOI: 10.1016/j.neuro.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/18/2022]
Abstract
On the basis of the evidence that extracellular Zn2+ influx induced with AMPA causes Parkinson's syndrome in rats that apomorphine-induced movement disorder emerges, here we used a low dose of AMPA, which does not increase intracellular Zn2+ level in the substantia nigra pars compacta (SNpc) of young adult rats, and tested whether intracellular Zn2+ dysregulation induced with AMPA is accelerated in the SNpc of aged rats, resulting in age-related vulnerability to Parkinson's syndrome. When AMPA (1 mM) was injected at the rate of 0.05 μl/min for 20 min into the SNpc, intracellular Zn2+ level was increased in the SNpc of aged rats followed by increase in turning behavior in response to apomorphine and nigral dopaminergic degeneration. In contrast, young adult rats do not show movement disorder and nigral dopaminergic degeneration, in addition to no increase in intracellular Zn2+. In aged rats, movement disorder and nigral dopaminergic degeneration were rescued by co-injection of either extracellular (CaEDTA) or intracellular (ZnAF-2DA) Zn2+ chelators. 1-Naphthyl acetyl spermine (NASPM), a selective blocker of Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptors blocked increase in intracellular Zn2+ in the SNpc of aged rats followed by rescuing nigral dopaminergic degeneration. The present study indicates that intracellular Zn2+ dysregulation is accelerated by Ca2+- and Zn2+-permeable GluR2-lacking AMPA receptor activation in the SNpc of aged rats, resulting in age-related vulnerability to Parkinson's syndrome.
Collapse
Affiliation(s)
- Satoko Nakajima
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Nana Saeki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Ryusuke Nishio
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Misa Katahira
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Azusa Takeuchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
6
|
Castelli V, Benedetti E, Antonosante A, Catanesi M, Pitari G, Ippoliti R, Cimini A, d'Angelo M. Neuronal Cells Rearrangement During Aging and Neurodegenerative Disease: Metabolism, Oxidative Stress and Organelles Dynamic. Front Mol Neurosci 2019; 12:132. [PMID: 31191244 PMCID: PMC6546816 DOI: 10.3389/fnmol.2019.00132] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Brain cells normally respond adaptively to oxidative stress or bioenergetic challenges, resulting from ongoing activity in neuronal circuits. During aging and in neurodegenerative disorders, these mechanisms are compromised. In fact, neurons show unique age-related changes in functions and metabolism, resulting in greater susceptibility to insults and disease. Aging affects the nervous system as well as other organs. More precisely, as the nervous system ages, neuron metabolism may change, inducing glucose hypometabolism, impaired transport of critical substrates underlying metabolism, alterations in calcium signaling, and mitochondrial dysfunction. Moreover, in neuronal aging, an accumulation of impaired and aggregated proteins in the cytoplasm and in mitochondria is observed, as the result of oxidative stress: reduced antioxidant defenses and/or increase of reactive oxygen species (ROS). These changes lead to greater vulnerability of neurons in various regions of the brain and increased susceptibility to several diseases. Specifically, the first part of the review article will focus on the major neuronal cells’ rearrangements during aging in response to changes in metabolism and oxidative stress, while the second part will cover the neurodegenerative disease areas in detail.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, United States
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Abruzzo, Italy
| |
Collapse
|
7
|
Impact of Auditory Integration Therapy (AIT) on the Plasma Levels of Human Glial Cell Line-Derived Neurotrophic Factor (GDNF) in Autism Spectrum Disorder. J Mol Neurosci 2019; 68:688-695. [PMID: 31073917 DOI: 10.1007/s12031-019-01332-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
Neurotrophic factors, including the glial cell line-derived neurotrophic factor (GDNF), are of importance for synaptic plasticity regulation, intended as the synapses' ability to strengthen or weaken their responses to differences in neuronal activity. Such plasticity is essential for sensory processing, which has been shown to be impaired in autism spectrum disorder (ASD). This study is the first to investigate the impact of auditory integration therapy (AIT) of sensory processing abnormalities in autism on plasma GDNF levels. Fifteen ASD children, aged between 5 and 12 years, were enrolled and underwent the present research study. AIT was performed throughout 10 days with a 30-min session twice a day. Before and after AIT, Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma GDNF levels were assayed by an EIA test. A substantial decline in autistic behavior was observed after AIT in the scaling parameters used. Median plasma GDNF level was 52.142 pg/ml before AIT. This level greatly increased immediately after AIT to 242.05 pg/ml (P < 0.001). The levels were depressed to 154.00 pg/ml and 125.594 pg/ml 1 month and 3 months later, respectively, but they were still significantly higher compared with the levels before the treatment (P = 0.001, P = 0.01, respectively). There was an improvement in the measures of autism severity as an effect of AIT which induced the up-regulation of GDNF in plasma. Further research, on a large scale, is needed to evaluate if the cognitive improvement of ASD children after AIT is related or not connected to the up-regulation of GDNF.
Collapse
|
8
|
Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson's disease. Brain Stimul 2017; 10:1045-1054. [PMID: 28918943 PMCID: PMC5675746 DOI: 10.1016/j.brs.2017.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/15/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive, neurodegenerative disorder with no disease-modifying therapies, and symptomatic treatments are often limited by debilitating side effects. In PD, locus coeruleus noradrenergic (LC-NE) neurons degenerate prior to substantia nigra dopaminergic (SN-DA) neurons. Vagus nerve stimulation (VNS) activates LC neurons, and decreases pro-inflammatory markers, allowing improvement of LC targets, making it a potential PD therapeutic. OBJECTIVE To assess therapeutic potential of VNS in a PD model. METHODS To mimic the progression of PD degeneration, rats received a systemic injection of noradrenergic neurotoxin DSP-4, followed one week later by bilateral intrastriatal injection of dopaminergic neurotoxin 6-hydroxydopamine. At this time, a subset of rats also had vagus cuffs implanted. After eleven days, rats received a precise VNS regimen twice a day for ten days, and locomotion was measured during each afternoon session. Immediately following final stimulation, rats were euthanized, and left dorsal striatum, bilateral SN and LC were sectioned for immunohistochemical detection of monoaminergic neurons (tyrosine hydroxylase, TH), α-synuclein, astrocytes (GFAP) and microglia (Iba-1). RESULTS VNS significantly increased locomotion of lesioned rats. VNS also resulted in increased expression of TH in striatum, SN, and LC; decreased SN α-synuclein expression; and decreased expression of glial markers in the SN and LC of lesioned rats. Additionally, saline-treated rats after VNS, had higher LC TH and lower SN Iba-1. CONCLUSIONS Our findings of increased locomotion, beneficial effects on LC-NE and SN-DA neurons, decreased α-synuclein density in SN TH-positive neurons, and neuroinflammation suggest VNS has potential as a novel PD therapeutic.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA
| | - Kristi L Helke
- Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA; Dept of Pathology, Medical University of South Carolina, 165 Ashley Ave, Children's Hospital 309, MSC 908, Charleston, SC 29425, USA
| | - Rebecca A Gregory
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA; Dept of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA
| | - Monika Gooz
- Dept of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St, DDB 507, MSC 139, Charleston, SC 29425, USA
| | - Vanessa K Hinson
- Dept of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, CSB 309, MSC 606, Charleston, SC 29425, USA
| | - Heather A Boger
- Dept of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB403, MSC510, Charleston, SC 29425, USA.
| |
Collapse
|
9
|
Gong AGW, Wang HY, Dong TTX, Tsim KWK, Zheng YZ. Danggui Buxue Tang, a simple Chinese formula containing Astragali Radix and Angelicae Sinensis Radix, stimulates the expressions of neurotrophic factors in cultured SH-SY5Y cells. Chin Med 2017; 12:24. [PMID: 28852418 PMCID: PMC5568261 DOI: 10.1186/s13020-017-0144-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/12/2017] [Indexed: 01/25/2023] Open
Abstract
Background Danggui Buxue Tang (DBT), a phytoestrogen-enriched Chinese herbal formula, serves as dietary supplement in stimulating the “Blood” functions of menopausal women. In traditional Chinese medicine (TCM) theory, “Blood” has a strong relationship with brain activities. Previous studies supported that some ingredients of DBT possessed neuronal beneficial functions. Therefore, the neurotrophic function and the mechanistic action of DBT were systematically evaluated in cultured human neuroblastoma SH-SY5Y cells. Methods The DBT-triggered protein expressions were analyzed by western blotting, while the transcriptional activities of promoters coding for related genes were revealed by luciferase assays. For mechanistic analysis of DBT, Erk1/2 and its inhibitor U0126 were analyzed. Results The application of DBT in cultured neuroblastoma cells showed the efficacies in: (1) up-regulation of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF); (2) activation of transcriptional activities of promoters coding for NGF, BDNF, GDNF; (3) activation of Erk1/2 and CREB; and (4) attenuation of the neurotrophic factor expression by the treatment of an Erk1/2 inhibitor. Conclusions Our study supports that MAPK/Erk pathway acts as fundamental role in monitoring DBT-induced expression of neurotrophic factors in cultured human neuroblastoma cell. These results shed light in developing the working mechanism of this ancient herbal decoction for its neuronal function. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0144-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy G W Gong
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000 China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huai Y Wang
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000 China
| | - Tina T X Dong
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000 China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl W K Tsim
- HKUST Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen, 518000 China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Y Z Zheng
- Department of Biology, Hanshan Normal University, Chaozhou, 521041 Guangdong China
| |
Collapse
|
10
|
Hascup KN, Lynn MK, Fitzgerald PJ, Randall S, Kopchick JJ, Boger HA, Bartke A, Hascup ER. Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging. J Gerontol A Biol Sci Med Sci 2017; 72:329-337. [PMID: 27208894 DOI: 10.1093/gerona/glw088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Growth hormone receptor knockout (GHR-KO) mice are long lived with improved health span, making this an excellent model system for understanding biochemical mechanisms important to cognitive reserve. The purpose of the present study was to elucidate differences in cognition and glutamatergic dynamics between aged (20- to 24-month-old) GHR-KO and littermate controls. Glutamate plays a critical role in hippocampal learning and memory and is implicated in several neurodegenerative disorders, including Alzheimer's disease. Spatial learning and memory were assessed using the Morris water maze (MWM), whereas independent dentate gyrus (DG), CA3, and CA1 basal glutamate, release, and uptake measurements were conducted in isoflurane anesthetized mice utilizing an enzyme-based microelectrode array (MEA) coupled with constant potential amperometry. These MEAs have high temporal and low spatial resolution while causing minimal damage to the surrounding parenchyma. Littermate controls performed worse on the memory portion of the MWM behavioral task and had elevated DG, CA3, and CA1 basal glutamate and stimulus-evoked release compared with age-matched GHR-KO mice. CA3 basal glutamate negatively correlated with MWM performance. These results support glutamatergic regulation in learning and memory and may have implications for therapeutic targets to delay the onset of, or reduce cognitive decline, in Alzheimer's disease.
Collapse
Affiliation(s)
- Kevin N Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield
| | - Mary K Lynn
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | - Patrick J Fitzgerald
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield
| | - Shari Randall
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield
| | - John J Kopchick
- Edison Biotechnology Institute, Department of Biomedical Sciences, Ohio University, Athens
| | - Heather A Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston.,Center on Aging, Medical University of South Carolina, Charleston
| | | | - Erin R Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
11
|
Stefani MA, Modkovski R, Hansel G, Zimmer ER, Kopczynski A, Muller AP, Strogulski NR, Rodolphi MS, Carteri RK, Schmidt AP, Oses JP, Smith DH, Portela LV. Elevated glutamate and lactate predict brain death after severe head trauma. Ann Clin Transl Neurol 2017; 4:392-402. [PMID: 28589166 PMCID: PMC5454398 DOI: 10.1002/acn3.416] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
Objective Clinical neurological assessment is challenging for severe traumatic brain injury (TBI) patients in the acute setting. Waves of neurochemical abnormalities that follow TBI may serve as fluid biomarkers of neurological status. We assessed the cerebrospinal fluid (CSF) levels of glutamate, lactate, BDNF, and GDNF, to identify potential prognostic biomarkers of neurological outcome. Methods This cross‐sectional study was carried out in a total of 20 consecutive patients (mean [SD] age, 29 [13] years; M/F, 9:1) with severe TBI Glasgow Coma Scale ≤ 8 and abnormal computed tomography scan on admission. Patients were submitted to ventricular drainage and had CSF collected between 2 and 4 h after hospital admission. Patients were then stratified according to two clinical outcomes: deterioration to brain death (nonsurvival, n = 6) or survival (survival, n = 14), within 3 days after hospital admission. CSF levels of brain‐derived substances were compared between nonsurvival and survival groups. Clinical and neurological parameters were also assessed. Results Glutamate and lactate are significantly increased in nonsurvival relative to survival patients. We tested the accuracy of both biomarkers to discriminate patient outcome. Setting a cutoff of >57.75, glutamate provides 80.0% of sensitivity and 84.62% of specificity (AUC: 0.8214, 95% CL: 54.55–98.08%; and a cutoff of >4.65, lactate has 100% of sensitivity and 85.71% of specificity (AUC: 0.8810, 95% CL: 54.55–98.08%). BDNF and GDNF did not discriminate poor outcome. Interpretation This early study suggests that glutamate and lactate concentrations at hospital admission accurately predict death within 3 days after severe TBI.
Collapse
Affiliation(s)
- Marco A Stefani
- Laboratory of Neuroanatomy Department of Morphological Sciences Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Rafael Modkovski
- Laboratory of Neuroanatomy Department of Morphological Sciences Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gisele Hansel
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Eduardo R Zimmer
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil.,Brain Institute of Rio Grande do Sul (BraIns) Pontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre RS Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Alexandre P Muller
- Laboratory of Exercise Biochemistry and Physiology University of Southern Santa Catarina (UNESC) Criciúma Santa Catarina Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Randhall K Carteri
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - André P Schmidt
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Jean P Oses
- Graduate Program in Health and Behavior Catholic University of Pelotas Pelotas RS Brazil
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Luis V Portela
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
12
|
Tsybko AS, Ilchibaeva TV, Popova NK. Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev Neurosci 2017; 28:219-233. [DOI: 10.1515/revneuro-2016-0063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
AbstractGlial cell line-derived neurotrophic factor (GDNF) is widely recognized as a survival factor for dopaminergic neurons, but GDNF has also been shown to promote development, differentiation, and protection of other central nervous system neurons and was thought to play an important role in various neuropsychiatric disorders. Severe mood disorders, such as primarily major depressive disorder and bipolar affective disorder, attract particular attention. These psychopathologies are characterized by structural alterations accompanied by the dysregulation of neuroprotective and neurotrophic signaling mechanisms required for the maturation, growth, and survival of neurons and glia. The main objective of this review is to summarize the recent findings and evaluate the potential role of GDNF in the pathogenesis and treatment of mood disorders. Specifically, it describes (1) the implication of GDNF in the mechanism of depression and in the effect of antidepressant drugs and mood stabilizers and (2) the interrelation between GDNF and brain neurotransmitters, playing a key role in the pathogenesis of depression. This review provides converging lines of evidence that (1) brain GDNF contributes to the mechanism underlying depressive disorders and the effect of antidepressants and mood stabilizers and (2) there is a cross-talk between GDNF and neurotransmitters representing a feedback system: GDNF-neurotransmitters and neurotransmitters-GDNF.
Collapse
Affiliation(s)
- Anton S. Tsybko
- 1Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Lavrentyeva av. 10, Novosibirsk 630090, Russia
| | - Tatiana V. Ilchibaeva
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| | - Nina K. Popova
- 2Department of Behavioral Neurogenomics, The Federal Research Center the Institute of Cytology and Genetics SB RAS, Novosibirsk 633090, Russia
| |
Collapse
|
13
|
Spielman LJ, Gibson DL, Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur J Cell Biol 2017; 96:240-253. [PMID: 28336086 DOI: 10.1016/j.ejcb.2017.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/11/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
The incretin hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP) are primarily known for their metabolic function in the periphery. GLP-1 and GIP are secreted by intestinal endocrine cells in response to ingested nutrients. Both GLP-1 and GIP stimulate the production and release of insulin from pancreatic β cells as well as exhibit several growth-regulating effects on peripheral tissues. GLP-1 and GIP are also present in the brain, where they provide modulatory and anti-apoptotic signals to neurons. However, very limited information is available regarding the effects of these hormones on glia, the immune and supporting cells of the brain. Therefore, we set out to resolve whether primary human microglia and astrocytes, two subtypes of glial cells, express the GLP-1 receptor (GLP-1R) and GIP receptor (GIPR), which are necessary to detect and respond to GLP-1 and GIP, respectively. We further tested whether these hormones, similar to their effects on neuronal cells, have growth-regulating, antioxidant and anti-apoptotic effects on microglia. We show for the first time expression of the GLP-1R and the GIPR by primary human microglia and astrocytes. We demonstrate that GLP-1 and GIP reduce apoptotic death of murine BV-2 microglia through the binding and activation of the GLP-1R and GIPR, respectively, with subsequent activation of the protein kinase A (PKA) pathway. Moreover, we reveal that incretins upregulate BV-2 microglia expression of brain derived neurotrophic factor (BDNF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in a phosphoinositide 3-kinase (PI3K)- and PKA-dependent manner. We also show that incretins reduce oxidative stress in BV-2 microglia by inhibiting the accumulation of intracellular reactive oxygen species (ROS) and release of nitric oxide (NO), as well as by increasing the expression of the antioxidant glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1). We confirm these results by demonstrating that GLP-1 and GIP also inhibit apoptosis of primary murine microglia, and upregulate expression of BDNF by primary murine microglia. These results indicate that GLP-1 and GIP affect several critical homeostatic functions of microglia, and could therefore be tested as a novel therapeutic treatment option for brain disorders that are characterized by increased oxidative stress and microglial degeneration.
Collapse
Affiliation(s)
- Lindsay Joy Spielman
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Deanna Lynn Gibson
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, 3187 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
14
|
Wang F, Liu F, Liu H. Effect of exposure to staphylococcus aureus, particulate matter, and their combination on the neurobehavioral function of mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:175-181. [PMID: 27736713 DOI: 10.1016/j.etap.2016.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Neurotoxicity in Kunming mice caused by Staphylococcus aureus (S. aureus) and Particulate matter (PM) as individual matter and mixtures was studied in this paper. Male Kunming mice were instilled intratracheally with PM at doses of 0.2mg/mouse and S. aureus at doses of 5.08×106 CFU/mouse as individual matter and mixtures two times at 5-day intervals. Morris water maze (MWM) test was performed during the exposure experiment. One day following the exposure experiment, the expression of neurotrophins, neurotransmitters, cholinergic system enzymes, oxidative damage levels, and pro-inflammatory cytokines (TNF-α, IL-1β) in the brain of mice were determined. Combined treatment of PM and S. aureus led to significant increment of escape latency at day 6, 8, and 10. Oxidative stress levels, and pro-inflammatory cytokines were affected significantly by S. aureus and PM as individual matter and mixtures. Meanwhile, Glu contents were increased significantly in S. aureus group, ChAT levels were decreased significantly in PM group, combined treatment of PM and S. aureus led to significant concentration reduction of AChE. Treatment of S. aureus or PM- S. aureus combination also led to significant concentration reduction of BDNF. Results showed that combined treatment of PM and S. aureus induced damage on physique and motor function, as well as impairment on learning and memory capacity of mice. Oxidative damage, abnormal metabolism of neurotransmitters and cholinergic system enzymes, and the alternation of neurotrophins and pro-inflammatory cytokines expression might be the possible mechanisms for PM - S. aureus -induced neurotoxicity.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China.
| | - Fei Liu
- School of Biological Science, Luoyang Normal University, Luoyang 471022, China
| | - Haifang Liu
- School of Energy and Environment Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| |
Collapse
|
15
|
Farrand AQ, Gregory RA, Bäckman CM, Helke KL, Boger HA. Altered glutamate release in the dorsal striatum of the MitoPark mouse model of Parkinson's disease. Brain Res 2016; 1651:88-94. [PMID: 27659966 DOI: 10.1016/j.brainres.2016.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction has been implicated in the degeneration of dopamine (DA) neurons in Parkinson's disease (PD). In addition, animal models of PD utilizing neurotoxins, such as 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, have shown that these toxins disrupt mitochondrial respiration by targeting complex I of the electron transport chain, thereby impairing DA neurons in these models. A MitoPark mouse model was created to mimic the mitochondrial dysfunction observed in the DA system of PD patients. These mice display the same phenotypic characteristics as PD, including accelerated decline in motor function and DAergic systems with age. Previously, these mice have responded to L-Dopa treatment and develop L-Dopa induced dyskinesia (LID) as they age. A potential mechanism involved in the formation of LID is greater glutamate release into the dorsal striatum as a result of altered basal ganglia neurocircuitry due to reduced nigrostriatal DA neurotransmission. Therefore, the focus of this study was to assess various indicators of glutamate neurotransmission in the dorsal striatum of MitoPark mice at an age in which nigrostriatal DA has degenerated. At 28 weeks of age, MitoPark mice had, upon KCl stimulation, greater glutamate release in the dorsal striatum compared to control mice. In addition, uptake kinetics were slower in MitoPark mice. These findings were coupled with reduced expression of the glutamate re-uptake transporter, GLT-1, thus providing an environment suitable for glutamate excitotoxic events, leading to altered physiological function in these mice.
Collapse
Affiliation(s)
- Ariana Q Farrand
- Department of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC 29425, USA
| | - Rebecca A Gregory
- Department of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC 29425, USA; Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA
| | - Cristina M Bäckman
- Integrative Neuroscience Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, 114 Doughty St, STB 648, MSC 777, Charleston, SC 29425, USA
| | - Heather A Boger
- Department of Neuroscience and Center on Aging, Medical University of South Carolina, 173 Ashley Ave, BSB 403, MSC 510, Charleston, SC 29425, USA.
| |
Collapse
|
16
|
Arnold JC, Salvatore MF. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats. ACS Chem Neurosci 2016; 7:227-39. [PMID: 26599339 PMCID: PMC4926611 DOI: 10.1021/acschemneuro.5b00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise.
Collapse
Affiliation(s)
- Jennifer C. Arnold
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
| | - Michael F. Salvatore
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, United States
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
17
|
Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI. The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis 2015; 6:331-41. [PMID: 26425388 DOI: 10.14336/ad.2015.0825] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/25/2015] [Indexed: 12/21/2022] Open
Abstract
Aging is a normal physiological process accompanied by cognitive decline. This aging process has been the primary risk factor for development of aging-related diseases such as Alzheimer's disease (AD). Cognitive deficit is related to alterations of neurotrophic factors level such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF). These strong relationship between aging and AD is important to investigate the time which they overlap, as well as, the pathophysiological mechanism in each event. Considering that aging and AD are related to cognitive impairment, here we discuss the involving these neurotrophic factors in the aging process and AD.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michelle Lima Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra Ioppi Zugno
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|