1
|
El Otmani H, Tesson C, Brice A, Lesage S. A PARK7 Mutation-Induced Early-Onset Parkinson's Disease in a Moroccan Family: Expanding the Geographic Spectrum. Mov Disord Clin Pract 2025. [PMID: 39846782 DOI: 10.1002/mdc3.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and nonmotor symptoms, with a significant genetic component. Early-onset Parkinson's disease (EOPD), manifesting before age 45, is often linked to mutations in genes such as PARK2, PINK1, and PARK7, the latter coding for the protein DJ-1. OBJECTIVE We present the first reported cases of EOPD carrying a previously undescribed homozygous PARK7 mutation, p.Thr110Pro. METHODS Whole exom sequencing was performed on two inbred Moroccan siblings with early-onset Parkinson's disease (EOPD). Detailed clinical assessments, including neurological evaluations and cognitive testing, were conducted to understand the clinical presentation of the patients. Genetic analysis was also carried out to examine their genetic background. Therapeutic responses to treatments were monitored to assess the effectiveness of management strategies. RESULTS The sequencing revealed that both siblings carried the homozygous PARK7 mutation, p.Thr110Pro. Both siblings presented with typical EOPD features, including motor and non-motor symptoms. The patients both presented with cognitive impairment, with the male sibling exhibiting more pronounced symptoms. He also developed compulsive behaviors, which underscore the varied clinical presentations and therapeutic responses associated with this genetic variant. CONCLUSION This case study expands the genetic and geographic diversity of PD presentations, highlighting cognitive and behavioral challenges and variable therapeutic outcomes. It underscores the necessity for genetic screening and individualized management strategies for patients with PD.
Collapse
Affiliation(s)
- Hicham El Otmani
- Department of Neurology and Neurophysiology, Laboratory of Medical Genetics and Molecular Pathology and Laboratory of Cellular and Molecular Inflammatory, Degenerative and Oncologic Pathophysiology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Neurology and Neurophysiology, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Christelle Tesson
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, INSERM, CNRS, Paris, France
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, INSERM, CNRS, Paris, France
- Département de Génétique, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Hôpital de la Salpêtrière, INSERM, CNRS, Paris, France
| |
Collapse
|
2
|
Sojdeh S, Safarkhani M, Daneshgar H, Aldhaher A, Heidari G, Nazarzadeh Zare E, Iravani S, Zarrabi A, Rabiee N. Promising breakthroughs in amyotrophic lateral sclerosis treatment through nanotechnology's unexplored frontier. Eur J Med Chem 2025; 282:117080. [PMID: 39577228 DOI: 10.1016/j.ejmech.2024.117080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
This review explores the transformative potential of nanotechnology in the treatment and diagnosis of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder characterized by motor neuron degeneration, muscle weakness, and eventual paralysis. Nanotechnology offers innovative solutions across various domains, including targeted drug delivery, neuroprotection, gene therapy and editing, biomarker detection, advanced imaging techniques, and tissue engineering. By enhancing the precision and efficacy of therapeutic interventions, nanotechnology facilitates key advancements such as crossing the blood-brain barrier, targeting specific cell types, achieving sustained therapeutic release, and enabling combination therapies tailored to the complex pathophysiology of ALS. Despite its immense promise, the clinical translation of these approaches faces challenges, including potential cytotoxicity, biocompatibility, and regulatory compliance, which must be addressed through rigorous research and testing. This review emphasizes the application of nanotechnology in targeted drug delivery and gene therapy/editing for ALS, drawing on the author's prior work with various nanotechnological platforms to illustrate strategies for overcoming similar obstacles in drug and gene delivery. By bridging the gap between cutting-edge technology and clinical application, this article aims to highlight the vital role of nanotechnology in shaping the future of ALS treatment.
Collapse
Affiliation(s)
- Soheil Sojdeh
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano-Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hossein Daneshgar
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, P. O. Box 19839-63113, Tehran, Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Golnaz Heidari
- School of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North, 4410, New Zealand
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.
| |
Collapse
|
3
|
Cox OH, Seifuddin F, Guo J, Pirooznia M, Boersma GJ, Wang J, Tamashiro KL, Lee RS. Implementation of the Methyl-Seq platform to identify tissue- and sex-specific DNA methylation differences in the rat epigenome. Epigenetics 2024; 19:2393945. [PMID: 39306700 PMCID: PMC11418217 DOI: 10.1080/15592294.2024.2393945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Epigenomic annotations for the rat lag far behind those of human and mouse, despite the rat's immense utility in pharmacological and behavioral studies and the need to understand their epigenetic mechanisms. We have designed a targeted-enrichment method followed by next-generation sequencing (Methyl-Seq) to identify DNA methylation (DNAm) signatures across the rat genome. The design reflected an attempt to create a more comprehensive investigation of the rat epigenome, as it included promoters, CpG islands, and island shores of all RefSeq genes. In this study, we implemented the rat Methyl-Seq platform and tested its ability to distinguish differentially methylated regions (DMRs) among three different tissue types, three distinct brain regions, and, in the hippocampus, between males and females. These comparisons yielded DNAm differences of differing magnitudes, many of which were independently validated by bisulfite pyrosequencing, including autosomal regions that were predicted to show the least degree of difference in DNAm between males and females. Quantitative reverse transcription PCR revealed that most genes associated with the DMRs showed tissue-, brain region-, and sex-specific differences in expression. In particular, we found evidence for sex-specific DNAm and expression differences at Tubb6, Lrrn2, Tex26, and Sox5l1, all of which play important roles in neurodevelopment and have been implicated in studies examining sex differences. Our results demonstrate the utility of the rat Methyl-Seq platform and suggest the presence of DNAm differences between the male and female hippocampus. The rat Methyl-Seq has the potential to provide epigenomic insights into pharmacological and behavioral studies performed in the rat.
Collapse
Affiliation(s)
- Olivia H. Cox
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Fayaz Seifuddin
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jeffrey Guo
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mehdi Pirooznia
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gretha J. Boersma
- GGZ Drenthe Mental Health Institute, Department of Forensic Psychiatry, Assen, The Netherlands
| | - Josh Wang
- Agilent Technologies, Inc., Santa Clara, USA
| | - Kellie L.K. Tamashiro
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Richard S. Lee
- Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
4
|
Yuan D, Jiang S, Xu R. Clinical features and progress in diagnosis and treatment of amyotrophic lateral sclerosis. Ann Med 2024; 56:2399962. [PMID: 39624969 PMCID: PMC11616751 DOI: 10.1080/07853890.2024.2399962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 12/06/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the central nervous system. Despite a large number of studies, the current prognosis of ALS is still not ideal. This article briefly describes the clinical features including epidemiology, genetic structure and clinical manifestations, as well as the progress of new diagnostic criteria and treatment of ALS. Meanwhile, we also discussed further both developments and improvements to enhance understanding and accelerating the introduction of the effective treatments of ALS.
Collapse
Affiliation(s)
- Dongxiang Yuan
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People’s Hospital; The Clinical College of Nanchang Medical College; The First Affiliated Hospital of Nanchang Medical College; Xiangya Hospital of Center South University, Jiangxi Hospital; National Regional Center for Neurological Disease, Honggutan District, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Kuwako KI, Suzuki S. Diverse Roles of the LINC Complex in Cellular Function and Disease in the Nervous System. Int J Mol Sci 2024; 25:11525. [PMID: 39519078 PMCID: PMC11545860 DOI: 10.3390/ijms252111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, which spans the nuclear envelope, physically connects nuclear components to the cytoskeleton and plays a pivotal role in various cellular processes, including nuclear positioning, cell migration, and chromosomal configuration. Studies have revealed that the LINC complex is essential for different aspects of the nervous system, particularly during development. The significance of the LINC complex in neural lineage cells is further corroborated by the fact that mutations in genes associated with the LINC complex have been implicated in several neurological diseases, including neurodegenerative and psychiatric disorders. In this review, we aimed to summarize the expanding knowledge of LINC complex-related neuronal functions and associated neurological diseases.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | | |
Collapse
|
6
|
Hutchings AJ, Hambrecht B, Veh A, Giridhar NJ, Zare A, Angerer C, Ohnesorge T, Schenke M, Selvaraj BT, Chandran S, Sterneckert J, Petri S, Seeger B, Briese M, Stigloher C, Bischler T, Hermann A, Damme M, Sendtner M, Lüningschrör P. Plekhg5 controls the unconventional secretion of Sod1 by presynaptic secretory autophagy. Nat Commun 2024; 15:8622. [PMID: 39366938 PMCID: PMC11452647 DOI: 10.1038/s41467-024-52875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Increasing evidence suggests an essential function for autophagy in unconventional protein secretion (UPS). However, despite its relevance for the secretion of aggregate-prone proteins, the mechanisms of secretory autophagy in neurons have remained elusive. Here we show that the lower motoneuron disease-associated guanine exchange factor Plekhg5 drives the UPS of Sod1. Mechanistically, Sod1 is sequestered into autophagosomal carriers, which subsequently fuse with secretory lysosomal-related organelles (LROs). Exocytosis of LROs to release Sod1 into the extracellular milieu requires the activation of the small GTPase Rab26 by Plekhg5. Deletion of Plekhg5 in mice leads to the accumulation of Sod1 in LROs at swollen presynaptic sites. A reduced secretion of toxic ALS-linked SOD1G93A following deletion of Plekhg5 in SOD1G93A mice accelerated disease onset while prolonging survival due to an attenuated microglia activation. Using human iPSC-derived motoneurons we show that reduced levels of PLEKHG5 cause an impaired secretion of ALS-linked SOD1. Our findings highlight an unexpected pathophysiological mechanism that converges two motoneuron disease-associated proteins into a common pathway.
Collapse
Affiliation(s)
- Amy-Jayne Hutchings
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bita Hambrecht
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Neha Jadhav Giridhar
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christina Angerer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorben Ohnesorge
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maren Schenke
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, USA
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080, Würzburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section Albrecht-Kossel, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Thumbadoo KM, Dieriks BV, Murray HC, Swanson MEV, Yoo JH, Mehrabi NF, Turner C, Dragunow M, Faull RLM, Curtis MA, Siddique T, Shaw CE, Newell KL, Henden L, Williams KL, Nicholson GA, Scotter EL. Hippocampal aggregation signatures of pathogenic UBQLN2 in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2024; 147:3547-3561. [PMID: 38703371 PMCID: PMC11449146 DOI: 10.1093/brain/awae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Collapse
Affiliation(s)
- Kyrah M Thumbadoo
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Ji Hun Yoo
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Teepu Siddique
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher E Shaw
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Northcott Neuroscience Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Concord, New South Wales 2139, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales 2050, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
He S, He XX, Yang HQ, Zhang JW, Chen S. Two new cases with the UBQLN2 gene mutation in Han Chinese. Neurol Sci 2024; 45:5047-5051. [PMID: 38943019 DOI: 10.1007/s10072-024-07674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Variations in the UBQLN2 gene are associated with a group of diseases with X-linked dominant inheritance and clinical phenotypes of amyotrophic lateral sclerosis (ALS) and/or frontal temporal lobe dementia (FTD). Cases with UBQLN2 variations have been rarely reported worldwide. The reported cases exhibit strong clinical heterogeneity. Here, we report two adult-onset cases with UBQLN2 variations in Han Chinese. Whole exome sequencing revealed the hemizygous P506S (c.1516C > T) and the heterozygous P509S variation (c.1525C > T), both of which were located within the hotspot mutation region. The patient with the P506S variation was a 24-year-old male. The clinical feature was spastic paraplegia without lower motor neuron damage. The patient's mother was an asymptomatic heterozygote carrier with skewed X-chromosome inactivation. The patient with the P509S variation was a 63-year-old female. Clinical features included ALS and parkinsonism. 18F-fluorodopa PET-CT revealed presynaptic dopaminergic deficits in bilateral posterior putamen. These cases further highlight the clinical heterogeneity of UBQLN2 cases.
Collapse
Affiliation(s)
- Shuang He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Xin-Xin He
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Hong-Qi Yang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Jie-Wen Zhang
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China.
| | - Shuai Chen
- Department of Neurology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China.
| |
Collapse
|
9
|
Wang S, Jiang Q, Zheng X, Wei Q, Lin J, Yang T, Xiao Y, Li C, Shang H. Genotype-phenotype correlation of SQSTM1 variants in patients with amyotrophic lateral sclerosis. J Med Genet 2024; 61:966-972. [PMID: 39122262 DOI: 10.1136/jmg-2023-109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Several variants of sequestosome 1 (SQSTM1) were screened in patients with amyotrophic lateral sclerosis (ALS), while the pathogenicity and genotype-phenotype correlation remains unclear. METHODS We screened variants of SQSTM1 gene in 2011 Chinese patients with ALS and performed a burden analysis focusing on the rare variants. Furthermore, we conducted a comprehensive analysis of patients with variants of SQSTM1 gene in patients with ALS from our cohort and published studies. RESULTS In our cohort, we identified 32 patients with 25 different SQSTM1 variants with a mutant frequency of 1.6%. Notably, 26% (5/19) of the patients with ALS with SQSTM1 variant in our cohort had comorbid cognitive impairment and 43% (3/7) of them had behavioural variant frontotemporal dementia (FTD). Our meta-analysis found a total frequency of SQSTM1 variants in 7183 patients with ALS was 2.4%; burden analysis indicated that patients with ALS had enrichment of ultra-rare (minor allele frequency<0.01%) probably pathogenic variants in SQSTM1. Most variants were missense variants and distributed in various domains of p62 protein, some of which might be related to comorbidities of Paget's disease of bone and FTD. CONCLUSION Our study established the largest cohort of patients with ALS with SQSTM1 variants, expanded the mutation spectrum and investigated the genotype-phenotype correlations of SQSTM1 variants.
Collapse
Affiliation(s)
- Shichan Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Zheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Kekenadze M, Rocca C, Turchetti V, Nagy S, Kvirkvelia N, Vashadze S, Kvaratskhelia E, Beridze M, Kaiyrzhanov R, Houlden H. Analysis of C9orf72 repeat expansions in Georgian patients with Amyotrophic lateral sclerosis (ALS). F1000Res 2024; 12:1113. [PMID: 38464738 PMCID: PMC10924727 DOI: 10.12688/f1000research.138436.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder that affects the upper and lower motor neurons. Several genetic risk factors have been identified in the past decade with a hexanucleotide repeat expansion in the C9orf72 gene being the most significant. However, the presence of C9orf72 repeat expansion has not been examined in the Transcaucasian region, therefore we aimed to analyse its frequency in Georgian patients with ALS. Methods We included 64 self-reported Georgian patients with ALS from different parts of the country, fulfilling the Gold Coast criteria. To investigate the presence of an expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene, we performed Repeat-Primed PCR (RP-PCR). Results In total, 62 sporadic and two familial ALS cases were identified. Patients were aged 26 to 84 years with a mean age of 58.3 years at disease onset. Bulbar onset was observed in 21.88%, upper limb onset in 34.38%, and lower limb onset in 43.75% of the patients. Frontotemporal dementia (FTD) fulfilling the Strong criteria was diagnosed in seven patients (10.94%). C9orf72 repeat expansion was detected in only one case using RP-PCR; the patient had a family history of dementia. Conclusions Our results indicate that C9orf72 hexanucleotide expansion does not belong to the major genetic risk factor of ALS in Georgian patients. Further genetic studies in a bigger study population are needed to reveal the genetic causes of ALS in the Transcaucasian population.
Collapse
Affiliation(s)
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Sara Nagy
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Basel-Stadt, Switzerland
| | | | | | | | - Maia Beridze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| |
Collapse
|
11
|
Salemi M, Mandarà LGM, Salluzzo MG, Schillaci FA, Castiglione R, Cordella A, Iorio R, Perrotta CS, Ferri R, Romano C. NGS study in a sicilian case series with a genetic diagnosis for Gerstmann-Sträussler-Scheinker syndrome (PRNP, p.P102L). Mol Biol Rep 2023; 50:9715-9720. [PMID: 37812352 DOI: 10.1007/s11033-023-08764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Gerstmann Sträussler Scheinker (GSS) is an inherited, invariably fatal prion disease. Like other human prion diseases, GSS is caused by missense mutations in the prion protein (PrP) gene (PRNP), and by the formation and overtime accumulation of the misfolded, pathogenic scrapie PrP (PrPSc). The first mutation identified in the PRNP gene, and the one blamed as the main cause of the disease, is c.C305T:p.P102L. METHODS AND RESULTS The Sanger sequencing method was performed on the PRNP gene for the detection of c.C305T:p.P102L mutations in a cohort of 10 subjects; moreover, a study was carried out, using Next Generation Sequencing (NGS), by sequencing a group of genes related to amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), movement disorders and dementia which show a phenotypic profile similar to that of GSS. The results obtained from the study using NGS indicate the potential role of other genetic variants which could contribute to the various GSS phenotypes. CONCLUSIONS In conclusion, we highlight the large clinical variability in subjects presenting with GSS and p.P102L, as well as the hypothesis that the mutation in PrP codon 102 alone is not sufficient to trigger the cardinal clinical signs of the disease; furthermore, we do not exclude the possibility that further genetic variants play a decisive role in the aspects of the various phenotypes with which GSS manifests itself.
Collapse
Affiliation(s)
| | - Luana G M Mandarà
- U.O.S. Medical Genetics, Maria Paternò Arezzo Hospital, Ragusa, RG, Italy
| | | | | | - Roberto Castiglione
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angela Cordella
- Genomix4Life Srl, Baronissi, SA, Italy
- Genome Research Center for Health-CRGS, Baronissi, SA, Italy
| | - Roberta Iorio
- Genomix4Life Srl, Baronissi, SA, Italy
- Genome Research Center for Health-CRGS, Baronissi, SA, Italy
| | | | | | - Corrado Romano
- Oasi Research Institute-IRCCS, Troina, EN, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
13
|
Analysis of SOD1 and C9orf72 mutations in patients with amyotrophic lateral sclerosis in Antioquia, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:623-632. [PMID: 36511680 DOI: 10.7705/biomedica.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis is a neurodegenerative disease with a possible multifactorial origin characterized by the progressive degeneration of motor neurons. There is a relatively high prevalence of this disease in Antioquia; however, there is no published genetic study to date in Colombia. Despite its unknown etiopathogenesis, more genetic risk factors possibly involved in the development of this disease are constantly found. OBJETIVES To evaluate G93A and D90A mutations in SOD1 gene and a short tandem repeat in C9orf72 within a cohort of amyotrophic lateral sclerosis patients from Antioquia, Colombia. Materials y methods: Thirty-four patients previously diagnosed with amyotrophic lateral sclerosis were included in the study. Peripheral blood samples were used for DNA extraction and genotyping. RESULTS No mutations were found in SOD1 (G93A and D90A) in any of the patients, while C9orf72 exhibited an allele with a statistically significant high prevalence in the study sample (8 hexanucleotide repeats of CAGCAG). CONCLUSIONS These results suggest an association between this short tandem repeat (STR) in C9orf72 and the presence of amyotrophic lateral sclerosis in the studied population. However, this association should be established in a larger sample size and with controls from the same population. In addition, there also seems to be a genetic anticipation effect for the disease regarding this locus, since patients with this genotype present an earlier onset.
Collapse
|
14
|
Monsalve CAJ, Fornari LHT, Júnior NDS, Nakata DT, Neto EGDC, Rotta FT, Rieder CRDM. Characterization of the nigroestriatal system in a sample of patients with amyotrophic lateral sclerosis. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:806-811. [PMID: 36252589 PMCID: PMC9703885 DOI: 10.1055/s-0042-1755282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Background The coexistence of amyotrophic lateral sclerosis (ALS) with clinical forms of Parkinson disease (PD), although uncommon, is found to a greater degree than one would expect by chance. The pathological mechanisms of ALS and PD are still not fully understood, and the coexistence of these two diseases suggests that they could share mechanisms in common.
Objective Here we present a sample of patients with clinically definitive or probable ALS who were evaluated with single-photon emission computed tomography SPECT/TRODAT and compared with non-ALS controls.
Methods Patients with clinically definite or probable ALS were assessed with the amyotrophic lateral sclerosis functional rating scale (ALSFRS) to define severity and had their demographic data collected. The TRODAT results of patients with ALS were compared with those of patients with a diagnosis of PD with less than 10 years of duration, and with patients with a diagnosis of others movement disorders not associated with neurodegenerative diseases.
Results A total of 75% of patients with ALS had TRODAT results below the levels considered normal; that was also true for 25% of the patients in the control group without neurodegenerative disease, and for 100% of the patients in the PD group. A statistically significant difference was found between patients with ALS and the control group without neurodegenerative disease in the TRODAT values < 0.05.
Conclusions Our study fits with the neuropathological and functional evidence that demonstrates the existence of nigrostriatal dysfunction in patients with ALS. Further research to better understand the role of these changes in the pathophysiological process of ALS needs to be performed.
Collapse
Affiliation(s)
| | | | - Neivo da Silva Júnior
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Departamento de Medicina Nuclear, Porto Alegre, RS, Brasil
| | - Douglas Tomio Nakata
- Universidade Federal de Ciências da Saúde de Porto Alegre, Faculdade de Medicina, Porto Alegre, RS, Brasil
| | | | - Francisco Tellechea Rotta
- Neurologista e Clínica Neurofisiologista, Intercoastal Medical Group, Sarasota, Flórida, Estados Unidos
| | - Carlos Roberto de Mello Rieder
- Irmandade Santa Casa de Misericórdia de Porto Alegre, Departamento de Neurologia, Porto Alegre, RS, Brasil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Faculdade de Medicina, Porto Alegre, RS, Brasil
| |
Collapse
|
15
|
Laaksovirta H, Launes J, Jansson L, Traynor BJ, Kaivola K, Tienari PJ. ALS in Finland. Neurol Genet 2022; 8:e665. [PMID: 35295181 PMCID: PMC8922337 DOI: 10.1212/nxg.0000000000000665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives To analyze the frequencies of major genetic variants and the clinical features in Finnish patients with amyotrophic lateral sclerosis (ALS) with or without the C9orf72 hexanucleotide repeat expansion. Methods A cohort of patients with motor neuron disease was recruited between 1993 and 2020 at the Helsinki University Hospital and 2 second-degree outpatient clinics in Helsinki. Finnish ancestry patients with ALS fulfilled the diagnosis according to the revised El Escorial criteria and the Awaji-criteria. Two categories of familial ALS (FALS) were used. A patient was defined FALS-A if at least 1 first- or second-degree family member had ALS, and FALS-NP, if family members had additional neurologic or psychiatric endophenotypes. Results Of the 815 patients, 25% had FALS-A and 45% FALS-NP. C9orf72 expansion (C9pos) was found in 256 (31%) of all patients, in 58% of FALS-A category, in 48% of FALS-NP category, and in 23 or 17% of sporadic cases using the FALS-A or FALS-NP definition. C9pos or SOD1 p.D91A homozygosity was found in 328 (40%) of the 815 patients. We compared demographic and clinical characteristics between C9pos and patients with unknown cause of ALS (Unk). We found that the age at onset was significantly earlier and survival markedly shorter in the C9pos vs Unk patients with ALS. The shortest survival was found in bulbar-onset male C9pos patients, whereas the longest survival was found in Unk limb-onset males. Older age at onset associated consistently with shorter survival in C9pos and Unk patients in both limb-onset and bulbar-onset groups. There were no significant differences in the frequencies of bulbar-onset and limb-onset patients in C9pos and Unk groups. ALS-frontotemporal dementia (FTD) was more common in C9pos (17%) than in Unk (4%) patients, and of all patients with ALS-FTD, 70% were C9pos. Discussion These results provide further evidence for the short survival of C9orf72-associated ALS. A prominent role of the C9orf72 and SOD1 variants was found in the Finnish population. An unusually high frequency of C9pos was also found among patients with sporadic ALS. The enrichment of these 2 variants likely contributes to the high incidence of ALS in Finland.
Collapse
|
16
|
Nel M, Mahungu AC, Monnakgotla N, Botha GR, Mulder NJ, Wu G, Rampersaud E, van Blitterswijk M, Wuu J, Cooley A, Myers J, Rademakers R, Taylor JP, Benatar M, Heckmann JM. Revealing the Mutational Spectrum in Southern Africans With Amyotrophic Lateral Sclerosis. Neurol Genet 2022; 8:e654. [PMID: 35047667 PMCID: PMC8756565 DOI: 10.1212/nxg.0000000000000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022]
Abstract
Background and Objectives To perform the first screen of 44 amyotrophic lateral sclerosis (ALS) genes in a cohort of African genetic ancestry individuals with ALS using whole-genome sequencing (WGS) data. Methods One hundred three consecutive cases with probable/definite ALS (using the revised El Escorial criteria), and self-categorized as African genetic ancestry, underwent WGS using various Illumina platforms. As population controls, 238 samples from various African WGS data sets were included. Our analysis was restricted to 44 ALS genes, which were curated for rare sequence variants and classified according to the American College of Medical Genetics guidelines as likely benign, uncertain significance, likely pathogenic, or pathogenic variants. Results Thirteen percent of 103 ALS cases harbored pathogenic variants; 5 different SOD1 variants (N87S, G94D, I114T, L145S, and L145F) in 5 individuals (5%, 1 familial case), pathogenic C9orf72 repeat expansions in 7 individuals (7%, 1 familial case) and a likely pathogenic ANXA11 (G38R) variant in 1 individual. Thirty individuals (29%) harbored ≥1 variant of uncertain significance; 10 of these variants had limited pathogenic evidence, although this was insufficient to permit confident classification as pathogenic. Discussion Our findings show that known ALS genes can be expected to identify a genetic cause of disease in >11% of sporadic ALS cases of African genetic ancestry. Similar to European cohorts, the 2 most frequent genes harboring pathogenic variants in this population group are C9orf72 and SOD1.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Amokelani C Mahungu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Nomakhosazana Monnakgotla
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Gerrit R Botha
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Nicola J Mulder
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Gang Wu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Evadnie Rampersaud
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Marka van Blitterswijk
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Joanne Wuu
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Anne Cooley
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Jason Myers
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Rosa Rademakers
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - J Paul Taylor
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Michael Benatar
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| | - Jeannine M Heckmann
- Neurology Research Group (M.N., A.C.M., N.M., J.M.H.), Neuroscience Institute, University of Cape Town; Computational Biology Division (M.N., A.C.M., N.M., G.R.B., N.J.M.), Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa; Center for Applied Bioinformatics (G.W., E.R., J.M.), St. Jude Children's Research Hospital, Memphis, TN; Department of Neuroscience (M.v.B.), Mayo Clinic, Jacksonville, FL; Department of Neurology (J.W., A.C., M.B.), University of Miami, FL; Center for Molecular Neurology (R.R.), University of Antwerp, Belguim; Department of Cell and Molecular Biology (J.P.T.), St. Jude Children's Research Hospital, Memphis, TN; and Neurology (J.M.H.), Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
17
|
Lei M, Wang P, Li H, Liu X, Shu J, Zhang Q, Cai C, Li D, Zhang Y. Case Report: Recurrent Hemiplegic Migraine Attacks Accompanied by Intractable Hypomagnesemia Due to a de novo TRPM7 Gene Variant. Front Pediatr 2022; 10:880242. [PMID: 35712613 PMCID: PMC9194527 DOI: 10.3389/fped.2022.880242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a ubiquitously expressed chanzyme comprised of a divalent cation channel permeable to calcium and magnesium and a cytosolic serine-threonine α-kinase domain. TRPM7 has a crucial role in magnesium ion homeostasis and anoxic neuronal death, which was identified as a potential non-glutamate target for hypoxic-ischemic neuronal injury. TRPM7 is implicated in ischemic stroke and hypomagnesemia in many studies, but it has not been associated with disease in the OMIM database. No clinical cases between TRPM7 gene variants and hypomagnesemia have been reported, so far. One patient with recurrent hemiplegic migraine attacks accompanied by intractable hypomagnesemia was followed up at Tianjin Children's Hospital from 2018 to 2021. We systematically summarized and analyzed the clinical manifestations, imaging features, and serum magnesium changes of the patient. Genetic analysis was performed by whole-exome sequencing and Sanger sequencing to infer the etiology of hemiplegic migraine attacks and hypomagnesemia in this patient. Gene sequencing revealed a novel heterozygous variant of the TRPM7 gene (c.2998A>G, p. Met1000Val), which has not been reported previously; this is also a de novo variant that is not inherited from his parents. We described a novel variant p. Met1000Val (c.2998A>G) located in the transmembrane region of TRPM7 protein, which is possibly crucial for the normal function of the ion channel. Our study expands the variation spectrum of the TRPM7 gene, highlights the importance of molecular genetic evaluation in patients with TRPM7 gene deficiency, and demonstrates the causal relationship between TRPM7 gene variants and disease manifestations.
Collapse
Affiliation(s)
- Meifang Lei
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Ping Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Hong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojun Liu
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Qianqian Zhang
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.,Department of Neurosurgery, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Dong Li
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
18
|
Liu W, Li X, Sun Y, Yu X, Wang Y, Liu N, Deng M. Genotype-phenotype correlations in a chinese population with familial amyotrophic lateral sclerosis. Neurol Res 2021; 44:206-216. [PMID: 34431456 DOI: 10.1080/01616412.2021.1968706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: This study aimed to determine the distribution of the most commonly mutated genes (SOD1, TARDBP, FUS/TLS, and C9ORF72) associated with familial amyotrophic lateral sclerosis (FALS) and the association between genotype and phenotype in 242 Chinese patients.Methods: A total of 58 families were screened for ALS-associated mutations in SOD1,TARDBP, FUS, and C9ORF72 hexanucleotide repeat expansion. These mutations were analyzed to evaluate the relationship between genotype and phenotype in Chinese FALS patients.Results: Partial clinical data were obtained for 242 relatives of the 58 analyzed families, with a male-to-female ratio of 1.2:1 and a mean age of disease onset of 45.9±12.0 (13-80) years. 26 mutations associated with pathogenesis were identified in 32 probands from 58 different families. Mutations in SOD1, FUS, TARDBP, and C9ORF72 accounted for 32.8%, 12.1%, 8.6%, and 1.7% of FALS, respectively. FALS patients showed longer survival times; however, bulbar-onset ALS and the male-to-female ratio for them were lower than those reported previously. The site of onset, age of onset, and lifespan differed in FALS patients with SOD1, TARDBP, and FUS mutations.Discussion: In this study, patients with SOD1 mutations exhibited heterogeneous survival times that showed a bimodal distribution, while patients with FUS mutations showed rapid disease progression. Our results showed the relative contributions of the different types of mutations associated with ALS and provided phenotype-genotype correlations with clinical features in Chinese patients.
Collapse
Affiliation(s)
- WenChao Liu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoGang Li
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - XiaoTong Yu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Na Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Min Deng
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Biallelic SYNE2 Missense Mutations Leading to Nesprin-2 Giant Hypo-Expression Are Associated with Intellectual Disability and Autism. Genes (Basel) 2021; 12:genes12091294. [PMID: 34573277 PMCID: PMC8470961 DOI: 10.3390/genes12091294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurological and developmental disabilities characterised by clinical and genetic heterogeneity. The current study aimed to expand ASD genotyping by investigating potential associations with SYNE2 mutations. Specifically, the disease-causing variants of SYNE2 in 410 trios manifesting neurodevelopmental disorders using whole-exome sequencing were explored. The consequences of the identified variants were studied at the transcript level using quantitative polymerase chain reaction (qPCR). For validation, immunofluorescence and immunoblotting were performed to analyse mutational effects at the protein level. The compound heterozygous variants of SYNE2 (NM_182914.3:c.2483T>G; p.(Val828Gly) and NM_182914.3:c.2362G>A; p.(Glu788Lys)) were identified in a 4.5-year-old male, clinically diagnosed with autism spectrum disorder, developmental delay and intellectual disability. Both variants reside within the nesprin-2 giant spectrin repeat (SR5) domain and are predicted to be highly damaging using in silico tools. Specifically, a significant reduction of nesprin-2 giant protein levels is revealed in patient cells. SYNE2 transcription and the nuclear envelope localisation of the mutant proteins was however unaffected as compared to parental control cells. Collectively, these data provide novel insights into the cardinal role of the nesprin-2 giant in neurodevelopment and suggest that the biallelic hypomorphic SYNE2 mutations may be a new cause of intellectual disability and ASD.
Collapse
|
20
|
Kolbaşı EN, Açıkbaş E, Akşimşek GP, Aslan GK, Kıyan E. Validity and reliability of the Turkish version of "the Dyspnea-ALS-Scale (DALS-15)". Neurol Sci 2021; 43:1823-1829. [PMID: 34387755 DOI: 10.1007/s10072-021-05516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to investigate the validity and reliability of the Turkish version of The Dyspnea-ALS-Scale (DALS-15). METHODS Forward translation, back translation, and cross-cultural adaptation were used to ensure the equivalency of translated version of the scale. Then, patients with amyotrophic lateral sclerosis (ALS) who have dyspnea or orthopnea that develops with effort or at rest were evaluated using DALS-15 via online surveys. The respiratory subscale of ALS Functional Rating Scale-Revised (ALSFRS-R) and Modified Borg Dyspnea Scale (MBDS) was used to investigate the construct validity of the Turkish DALS-15. Reliability was assessed with Cronbach's α and inter-item correlation matrix (internal consistency). RESULTS We have included 52 ALS patients in the study. Findings showed that Turkish version of DALS-15 was highly correlated with respiratory subscale of ALSFRS-R (r = - 0.668; p = < 0.0001) and MBDS (for upright position: r = 0.728; p = < 0.0001 and for supine: r = 0.78; p = < 0.0001). The scale did not show any ceiling or floor effect. Also, DALS-15 had a high level of Cronbach's α (0.95) and internal consistency (ICC: 0.949; 95%CI: 0.92-0.96). Test-re-test reliability of the questionnaire was (ICC: 0.909; 95% CI: 0.81-0.95). The standard error of measurement value was 2.76, whereas the minimal detectable change score was 7.66 points for the translated version of the scale. CONCLUSIONS The Turkish version of DALS-15 possesses strong psychometric properties with excellent validity and reliability. It is shown to be useful for online self-assessment, outside of the clinical settings, especially in hard times such as a pandemic.
Collapse
Affiliation(s)
- Esma Nur Kolbaşı
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul, Turkey.,Division of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ece Açıkbaş
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Gamze Polen Akşimşek
- Department of Physiotherapy and Rehabilitation, Institute of Graduate Studies, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Gökşen Kuran Aslan
- Division of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul University-Cerrahpaşa, Istanbul, Turkey. .,Istanbul Üniversitesi - Cerrahpaşa, Sağlık Bilimleri Fakültesi, Fizyoterapi ve Rehabilitasyon Bölümü, Büyükçekmece Yerleşkesi Alkent 2000 Mah. Yiğittürk Cad. No:5/9/1, Büyükçekmece/İstanbul, Türkiye.
| | - Esen Kıyan
- Department of Pulmonary Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
21
|
Edgar S, Ellis M, Abdul-Aziz NA, Goh KJ, Shahrizaila N, Kennerson ML, Ahmad-Annuar A. Mutation analysis of SOD1, C9orf72, TARDBP and FUS genes in ethnically-diverse Malaysian patients with amyotrophic lateral sclerosis (ALS). Neurobiol Aging 2021; 108:200-206. [PMID: 34404558 DOI: 10.1016/j.neurobiolaging.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
Recent studies have identified SOD1, FUS, TARDBP and C9orf72 as major ALS-related genes in both European and Asian populations. However, significant differences exist in the mutation frequencies of these genes between various ancestral backgrounds. This study aims to identify the frequency of mutations in the common causative ALS genes in a multi-ethnic Malaysian cohort. We screened 101 Malaysian ALS patients including 3 familial and 98 sporadic cases for mutations in the coding regions of SOD1, FUS, and TARDBP by Sanger sequencing. The C9orf72 hexanucleotide repeat expansion was screened using the repeat-primed polymerase chain reaction assay. Mutations were found in 5.9% (6 of 101) of patients including 3.0% (3 of 101) of patients with the previously reported SOD1 missense mutations (p.V48A and p.N87S) and 3.0% (3 of 101) of patients with the C9orf72 repeat expansion. No mutations were found in the FUS and TARDBP genes. This study is the first to report the mutation frequency in an ethnically diverse Malaysian ALS population and warrants further investigation to reveal novel genes and disease pathways.
Collapse
Affiliation(s)
- Suzanna Edgar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Melina Ellis
- Northcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Nur Adilah Abdul-Aziz
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean-Jin Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nortina Shahrizaila
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia.
| | - Azlina Ahmad-Annuar
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Charoniti E, Papastefanopoulou V, Florou-Hatziyiannidou C, Koros C, Stanitsa E, Papatriantafyllou JD, Papageorgiou SG, Kroupis C. TARDBP p.I383V, a recurrent alteration in Greek FTD patients. J Neurol Sci 2021; 428:117566. [PMID: 34271284 DOI: 10.1016/j.jns.2021.117566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND A significant proportion of FTD (Frontotemporal Degeneration) cases can be attributed to mutations in major genes such as GRN, MAPT and C9orf72. Our previous report on a Greek FTD cohort revealed the presence of the single nucleotide polymorphism (SNP) p.I383V (rs80356740) in the TARDBP gene in three unrelated patients. Our objective was to develop a novel, fast and accurate method for the detection of this particular SNP and evaluate the assay in a larger cohort. METHODS AND RESULTS A real-time qPCR-melting curve analysis method was developed, validated and tested in 142 FTD patients and 111 healthy control subjects. The SNP was detected in another two patients raising its yield in FTD patients to 3.5% (5 out of 142 patients) while one in 111 healthy controls was found to be a carrier. However, its frequency in the general population has been reported extremely low in international SNP databases (0.002%). CONCLUSION This fact along with the indicated pathogenicity of this SNP in some bioinformatics tools, suggest that TARDBP p.I383V is recurrent and likely pathogenic for the Greek FTD population. Our high-throughput method could be used for genotyping in other larger patient cohorts and in other populations. Additionally, functional in vitro studies are required for the final adjudication of this TARDBP alteration as a pathogenic alteration.
Collapse
Affiliation(s)
- Eirini Charoniti
- Department of Clinical Biochemistry and Molecular Diagnostics, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Vasiliki Papastefanopoulou
- Department of Clinical Biochemistry and Molecular Diagnostics, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Chryseis Florou-Hatziyiannidou
- Department of Clinical Biochemistry and Molecular Diagnostics, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Christos Koros
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Evangelia Stanitsa
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - John D Papatriantafyllou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Third Age "IASIS", Athens and Memory Clinic, Medical Center of Athens, Greece
| | - Sokratis G Papageorgiou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Christos Kroupis
- Department of Clinical Biochemistry and Molecular Diagnostics, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
23
|
Villar-Quiles RN, Le VT, Leonard-Louis S, Trang NT, Huong NT, Laddada L, Francou B, Maisonobe T, Azzedine H, Stojkovic T. Leukoencephalopathy and conduction blocks in PLEKHG5-associated intermediate CMT disease. Neuromuscul Disord 2021; 31:756-764. [PMID: 34244018 DOI: 10.1016/j.nmd.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023]
Abstract
Biallelic variants in PLEKHG5 have been reported so far associated with different clinical phenotypes including Lower motor neuron disease (LMND) [also known as distal hereditary motor neuropathies (dHMN or HMN) or distal spinal muscular atrophy (DSMA4)] and intermediate Charcot-Marie-Tooth disease (CMT). We report four patients from two families presenting with intermediate CMT and atypical clinical and para-clinical findings. Patients presented with predominant distal weakness with none or mild sensory involvement and remain ambulant at last examination (22-36 years). Nerve conduction studies revealed, in all patients, intermediate motor nerve conduction velocities, reduced sensory amplitudes and multiple conduction blocks in upper limbs, outside of typical nerve compression sites. CK levels were strikingly elevated (1611-3867 U/L). CSF protein content was mildly elevated in two patients. Diffuse bilateral white matter lesions were detected in one patient. Genetic analysis revealed three novel frameshift variants c.1835_1860del and c.2308del (family 1) and c.104del (family 2). PLEKHG5-associated disease ranges from pure motor phenotypes with predominantly proximal involvement to intermediate CMT with predominant distal motor involvement and mild sensory symptoms. Leukoencephalopathy, elevated CK levels and the presence of conduction blocks associated with intermediate velocities in NCS are part of the phenotype and may arise suspicion of the disease, thus avoiding misdiagnosis and unnecessary therapeutics in these patients.
Collapse
Affiliation(s)
- Rocio-Nur Villar-Quiles
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France
| | - Van Thuy Le
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam
| | - Sarah Leonard-Louis
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France
| | - Nguyen Thi Trang
- Genetics department, Hanoi Medical University Hospital, Hanoi Medical University Hanoi, Viet Nam
| | - Nguyen Thi Huong
- Neurology department, Hanoi Medical University Hospital, Hanoi, Viet Nam; Vinmec International Hospital, Hanoi, Viet Nam
| | - Lilia Laddada
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France; Plateforme d'expertise maladies rares AP-HP. Université Paris-Saclay(,) Le Kremlin Bicêtre(,) France
| | - Bruno Francou
- Department of Molecular Genetics Pharmacogenomics and Hormonology, APHP, Bicêtre Hospital, Paris, France
| | - Thierry Maisonobe
- Department of Neurophysiology, APHP, Hôpital Pitié Salpêtrière, Paris, France
| | - Hamid Azzedine
- Department of Pathology and Neuropathology, AMC, Amsterdam, Netherlands
| | - Tanya Stojkovic
- Reference Center for Neuromuscular Disorders, APHP(,) Pitié-Salpêtrière Hospital, Paris, France; Centre de Recherche en Myologie, GH Pitié-Salpêtrière, Sorbonne Université-Inserm UMRS974, Paris(,) France.
| |
Collapse
|
24
|
Dominguez J, Yu JT, Tan YJ, Ng A, De Guzman MF, Natividad B, Daroy ML, Cano J, Yu J, Lian MM, Zeng L, Lim WK, Foo JN, Ng ASL. Novel Optineurin Frameshift Insertion in a Family With Frontotemporal Dementia and Parkinsonism Without Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:645913. [PMID: 34093394 PMCID: PMC8170397 DOI: 10.3389/fneur.2021.645913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a common cause of Young Onset Dementia and has diverse clinical manifestations involving behavior, executive function, language and motor function, including parkinsonism. Up to 50% of FTD patients report a positive family history, supporting a strong genetic basis, particularly in cases with both FTD and amyotrophic lateral sclerosis (FTD-ALS). Mutations in three genes are associated with the majority of familial FTD (fFTD) cases - microtubule associated protein tau gene (MAPT), granulin precursor (GRN), and hexanucleotide repeat expansions in chromosome 9 open reading frame 72- SMCR8complex subunit (C9orf72) while mutations in other genes such as optineurin (OPTN) have rarely been reported. Mutations in OPTN have been reported mostly in familial and sporadic cases of ALS, or in rare cases of FTD-ALS, but not in association with pure or predominant FTD and/or parkinsonian phenotype. Here, we report for the first time, a family from the Philippines with four members harboring a novel frameshift insertion at OPTN (Chr 10:13166090 G>GA) p.Lys328GluTer11, three of whom presented with FTD-related phenotypes. Additionally, one sibling heterozygous for the frameshift insertion had a predominantly parkinsonian phenotype resembling corticobasal syndrome, but it remains to be determined if this phenotype is related to the frameshift insertion. Notably, none of the affected members showed any evidence of motor neuron disease or ALS at the time of writing, both clinically and on electrophysiological testing, expanding the phenotypic spectrum of OPTN mutations. Close follow-up of mutation carriers for the development of new clinical features and wider investigation of additional family members with further genetic analyses will be conducted to investigate the possibility of other genetic modifiers in this family which could explain phenotypic heterogeneity.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Jeryl Tan Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Ma Fe De Guzman
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Boots Natividad
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Ma Luisa Daroy
- Research and Biotechnology Division, St Luke's Medical Centre, Quezon, Philippines
| | - Jemellee Cano
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Justine Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Michelle M Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.,Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
25
|
Chen Z, Maroofian R, Başak AN, Shingavi L, Karakaya M, Efthymiou S, Gustavsson EK, Meier L, Polavarapu K, Vengalil S, Preethish-Kumar V, Nandeesh BN, Gökçe Güneş N, Akan O, Candan F, Schrank B, Zuchner S, Murphy D, Kapoor M, Ryten M, Wirth B, Reilly MM, Nalini A, Houlden H, Sarraf P. Novel variants broaden the phenotypic spectrum of PLEKHG5-associated neuropathies. Eur J Neurol 2020; 28:1344-1355. [PMID: 33220101 DOI: 10.1111/ene.14649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Pathogenic variants in PLEKHG5 have been reported to date to be causative in three unrelated families with autosomal recessive intermediate Charcot-Marie-Tooth disease (CMT) and in one consanguineous family with spinal muscular atrophy (SMA). PLEKHG5 is known to be expressed in the human peripheral nervous system, and previous studies have shown its function in axon terminal autophagy of synaptic vesicles, lending support to its underlying pathogenetic mechanism. Despite this, there is limited knowledge of the clinical and genetic spectrum of disease. METHODS We leverage the diagnostic utility of exome and genome sequencing and describe novel biallelic variants in PLEKHG5 in 13 individuals from nine unrelated families originating from four different countries. We compare our phenotypic and genotypic findings with a comprehensive review of cases previously described in the literature. RESULTS We found that patients presented with variable disease severity at different ages of onset (8-25 years). In our cases, weakness usually started proximally, progressing distally, and can be associated with intermediate slow conduction velocities and minor clinical sensory involvement. We report three novel nonsense and four novel missense pathogenic variants associated with these PLEKHG5-associated neuropathies, which are phenotypically spinal muscular atrophy (SMA) or intermediate Charcot-Marie-Tooth disease. CONCLUSIONS PLEKHG5-associated neuropathies should be considered as an important differential in non-5q SMAs even in the presence of mild sensory impairment and a candidate causative gene for a wide range of hereditary neuropathies. We present this series of cases to further the understanding of the phenotypic and molecular spectrum of PLEKHG5-associated diseases.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK.,Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - A Nazlı Başak
- School of Medicine, Neurodegeneration Research Laboratory, KUTTAM-NDAL, Koç University, Istanbul, Turkey
| | - Leena Shingavi
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Emil K Gustavsson
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Leyla Meier
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Bevinahalli N Nandeesh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Nalan Gökçe Güneş
- Neurology Department, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Onur Akan
- Neurology Department, Okmeydanı Training and Research Hospital, Istanbul, Turkey
| | - Fatma Candan
- Neurology Department, Göztepe Training and Research Hospital, Medeniyet University, Istanbul, Turkey
| | - Bertold Schrank
- Department of Neurology, DKD Helios Kliniken, Wiesbaden, Germany
| | - Stephan Zuchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami Miler School of Medicine, Miami, Florida, USA
| | - David Murphy
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Mahima Kapoor
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Mina Ryten
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine and Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mary M Reilly
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, India
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, University College London, London, UK
| | - Payam Sarraf
- Department of Neuromuscular Diseases, Iranian Centre of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Gonzalez-Quereda L, Pagola I, Fuentes Prior P, Bernal S, Rodriguez MJ, Torné L, Salgado Garrido J, Gallano P, Jericó I. Novel PLEKHG5 mutations in a patient with childhood-onset lower motor neuron disease. Ann Clin Transl Neurol 2020; 8:294-299. [PMID: 33275839 PMCID: PMC7818229 DOI: 10.1002/acn3.51265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/05/2023] Open
Abstract
The PLEKHG5 gene encodes a protein that activates the nuclear factor kappa B (NFκB) signaling pathway. Mutations in this gene have been associated with distal spinal muscular atrophy IV and intermediate axonal neuropathy C, both with an autosomal recessive mode of inheritance. Two families with low motor neuron disease (LMND) caused by mutations in PLEKHG5 have been reported to date. We present a third LMND family, the first nonconsanguineous, due to two not previously reported PLEKHG5 mutations. Our results confirm and extend previous findings linking PLEKHG5 mutations to lower motor neuron diseases.
Collapse
Affiliation(s)
- Lidia Gonzalez-Quereda
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Inmaculada Pagola
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| | - Pablo Fuentes Prior
- Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, 08041, Spain
| | - Sara Bernal
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Jose Rodriguez
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain
| | - Laura Torné
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| | - Josefa Salgado Garrido
- Genomic Medicine, Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdisNa, Pamplona, 31008, Spain
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de Sant Pau, Barcelona, 08041, Spain.,U705 CIBERER, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Ivonne Jericó
- Neurology Department, Complejo Universitario de Navarra, IdisNa, Navarra, 31008, Spain
| |
Collapse
|
27
|
Kotan D, Özözen Ayas Z, Tunca C, Gungen BD, Akçimen F, Başak AN. Phenotypic and genotypic features of patients diagnosed with ALS in the city of Sakarya, Turkey. Acta Neurol Belg 2020; 120:1411-1418. [PMID: 32671691 DOI: 10.1007/s13760-020-01441-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease leading to motor neuron damage. In this study, the clinical, demographic, and genetic features of ALS patients in the city of Sakarya, Turkey, were investigated. Patients with an established diagnosis of ALS according to the Awaji criteria were included. Age, sex, age at onset of ALS, initial complaints, consanguineous marriage, and genetic features were retrospectively investigated. Conventional genetic analysis and NGS were used for molecular evaluation of patients. A total of 55 probands (10 familial, 45 sporadic) in whom ALS was suspected due to their phenotypic features were included. Thirty-two patients were male (58.2%), and 23 were female (41.8%); their mean ages were 62.65 ± 13 years. The mean age of onset for 37 familial patients from 10 families was 49.9 years. Two cases had juvenile-onset. Fourteen (25.5%) bulbar-onset versus 40 (72.7%) limb-onset patients were detected; one patient had both. Six (10.9%) patients showed marked frontotemporal dementia. Twenty-nine (52.7%) patients died during the follow-up period. Genetic analysis identified causative variants in eleven cases, carrying variants in six different ALS genes (C9orf72, SOD1, VCP, SPG11, TBK1, and SH3TC2). Genetic investigations have revealed more than 40 genes to be involved in the pathogenesis of ALS. Our relatively small study cohort restricted to one province of Turkey, however, prone to migration, consists of 10/55 familial ALS cases, which harbor two rare (SH3TC2-p.Met523Thr and TBK1-p.Glu643del) and two novel (SPG11-p.Lys656Valfs*11 and VCP-p.Arg191Pro) mutations contributing to the literature.
Collapse
Affiliation(s)
- Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | | | - Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| | | | - Fulya Akçimen
- Department of Molecular Biology and Genetics, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), KUTTAM, Koç University School of Medicine, İstanbul, Turkey
| |
Collapse
|
28
|
Wang F, Fu S, Lei J, Wu H, Shi S, Chen K, Hu J, Xu X. Identification of novel FUS and TARDBP gene mutations in Chinese amyotrophic lateral sclerosis patients with HRM analysis. Aging (Albany NY) 2020; 12:22859-22868. [PMID: 33159016 PMCID: PMC7746354 DOI: 10.18632/aging.103967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons. More than 30 genes have been linked to ALS to date, including FUS and TARDBP, which exhibit similar roles in RNA metabolism. This study explored the use of high-resolution melting (HRM) analysis to screen for FUS and TARDBP mutation hotspot regions in 146 Chinese ALS patients, which achieved 100% detection. Two FUS mutations were observed in two different familial ALS probands, a missense mutation (p.R521H) and a novel splicing mutation (c.1541+1G>A). Five TARDBP mutations were identified in six ALS patients, including a novel 3'UTR mutation (c.*731A>G) and four missense mutations (p.G294V, p.M337V, p.G348V, and p.I383V). We found that FUS mutations were present in 1.4% of Chinese ALS patients, whereas TARDBP mutations were responsible for 4.1% of Chinese ALS cases. Here, we describe the accuracy of using highly sensitive HRM analysis to identify two novel FUS and TARDBP mutations in Chinese sporadic and familial ALS cases. Our study contributes to the further understanding of the genetic and phenotypic diversity of ALS.
Collapse
Affiliation(s)
- Feng Wang
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Shengyu Fu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiafan Lei
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Hongchen Wu
- Department of Neurology, Chunking General Hospital, Chongqing, China
| | - Shugui Shi
- Department of Neurology, Chunking General Hospital, Chongqing, China
| | - Kangning Chen
- Department of Neurology, First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, First Affiliated Hospital of Army Medical University, Army Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
29
|
Zheng T, Yang Y, Castañeda CA. Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem J 2020; 477:3471-3497. [PMID: 32965492 PMCID: PMC7737201 DOI: 10.1042/bcj20190497] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Cells rely on protein homeostasis to maintain proper biological functions. Dysregulation of protein homeostasis contributes to the pathogenesis of many neurodegenerative diseases and cancers. Ubiquilins (UBQLNs) are versatile proteins that engage with many components of protein quality control (PQC) machinery in cells. Disease-linked mutations of UBQLNs are most commonly associated with amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurodegenerative disorders. UBQLNs play well-established roles in PQC processes, including facilitating degradation of substrates through the ubiquitin-proteasome system (UPS), autophagy, and endoplasmic-reticulum-associated protein degradation (ERAD) pathways. In addition, UBQLNs engage with chaperones to sequester, degrade, or assist repair of misfolded client proteins. Furthermore, UBQLNs regulate DNA damage repair mechanisms, interact with RNA-binding proteins (RBPs), and engage with cytoskeletal elements to regulate cell differentiation and development. Important to the myriad functions of UBQLNs are its multidomain architecture and ability to self-associate. UBQLNs are linked to numerous types of cellular puncta, including stress-induced biomolecular condensates, autophagosomes, aggresomes, and aggregates. In this review, we focus on deciphering how UBQLNs function on a molecular level. We examine the properties of oligomerization-driven interactions among the structured and intrinsically disordered segments of UBQLNs. These interactions, together with the knowledge from studies of disease-linked mutations, provide significant insights to UBQLN structure, dynamics and function.
Collapse
Affiliation(s)
- Tongyin Zheng
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Yiran Yang
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Carlos A. Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
- Departments of Biology and Chemistry, Syracuse University, Syracuse, NY 13244, U.S.A
- Bioinspired Institute, and the Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, U.S.A
| |
Collapse
|
30
|
Naruse H, Ishiura H, Mitsui J, Takahashi Y, Matsukawa T, Toda T, Tsuji S. Juvenile amyotrophic lateral sclerosis with complex phenotypes associated with novel SYNE1 mutations. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:576-578. [PMID: 32870032 DOI: 10.1080/21678421.2020.1813312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutations in SYNE1 have been originally described to cause a slowly progressive, pure cerebellar ataxia (spinocerebellar ataxia, autosomal-recessive 8; SCAR8). Notably, recent studies revealed that affected patients with SYNE1-associated ataxia can present with complex phenotypes rather than pure cerebellar ataxia, including motor neuron and brainstem dysfunctions. We herein report a Japanese patient diagnosed with juvenile amyotrophic lateral sclerosis (ALS) with a complex phenotype, who carried compound heterozygous pathogenic variants in SYNE1. Of the variants, one was a novel frameshift variant and the other was a nonsense variant previously reported as pathogenic for SCAR8. The patient showed an early age at onset with a relatively slow but progressive course of ALS, accompanied by cognitive decline. Our findings suggest that the clinical spectrum of patients carrying pathogenic SYNE1 variants is broader than expected, and SYNE1 variants should be considered in patients diagnosed with juvenile ALS, even without prominent cerebellar ataxia.
Collapse
Affiliation(s)
- Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan, and
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
31
|
Yang L, Cheng Y, Jia X, Liu X, Li X, Zhang K, Shen D, Liu M, Guan Y, Liu Q, Cui L, Li X. Four novel optineurin mutations in patients with sporadic amyotrophic lateral sclerosis in Mainland China. Neurobiol Aging 2020; 97:149.e1-149.e8. [PMID: 32893042 DOI: 10.1016/j.neurobiolaging.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 01/12/2023]
Abstract
This study was to investigate the genetic contribution of optineurin (OPTN), a gene associated with primary open-angle glaucoma and amyotrophic lateral sclerosis (ALS), in Chinese patients with ALS. To gain additional insight into the spectrum and pathogenic relevance of this gene for ALS, we sequenced all the coding exons of OPTN and intron-exon boundaries in 398 patients with ALS [33 familial ALS (FALS), 365 unrelated sporadic ALS (SALS)] using next-generation sequencing. Six nonsynonymous variants were identified in 6 unrelated patients with SALS, in which one patient harbored 2 different OPTN variants and another carried an SETX mutation at the same time. Among those 6 variants, 4 were novel missense mutations: c.247C>T (p.R83C), c.676T>C (p.F226L), c.1699A>G (p.Y567A), and c.1713C>G (p.H571Q) (all heterozygous). The remaining 2 were already reported in previous studies. All 6 patients were spinal onset but showed differences in ALS subtypes as well as age of onset and disease progression. Taken together, we detected 4 novel missense OPTN mutations and 2 previously described mutations that might be causal for ALS, accounting for a mutant frequency of 1.10% (4/365) in patients with SALS after excluding 2 benign variants, and confirmed that OPTN mutations are common in Asian populations. In addition, our data suggested that variability in phenotype of the same mutation might partly be due to the oligogenic basis of ALS.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinmiao Jia
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xudong Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiuli Li
- Beijing San Valley Medical Laboratory Co, Ltd, Beijing, China
| | - Kang Zhang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuzhou Guan
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
32
|
Lüningschrör P, Slotta C, Heimann P, Briese M, Weikert UM, Massih B, Appenzeller S, Sendtner M, Kaltschmidt C, Kaltschmidt B. Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves. Front Cell Neurosci 2020; 14:185. [PMID: 32733205 PMCID: PMC7358705 DOI: 10.3389/fncel.2020.00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation and dysregulation of the immune system are hallmarks of several neurodegenerative diseases. An activated immune response is considered to be the cause of myelin breakdown in demyelinating disorders. In the peripheral nervous system (PNS), myelin can be degraded in an autophagy-dependent manner directly by Schwann cells or by macrophages, which are modulated by T-lymphocytes. Here, we show that the NF-κB activator Pleckstrin homology containing family member 5 (Plekhg5) is involved in the regulation of both Schwann cell autophagy and recruitment of T-lymphocytes in peripheral nerves during motoneuron disease. Plekhg5-deficient mice show defective axon/Schwann cell units characterized by myelin infoldings in peripheral nerves. Even at late stages, Plekhg5-deficient mice do not show any signs of demyelination and inflammation. Using RNAseq, we identified a transcriptional signature for an impaired immune response in sciatic nerves, which manifested in a reduced number of CD4+ and CD8+ T-cells. These findings identify Plekhg5 as a promising target to impede myelin breakdown in demyelinating PNS disorders.
Collapse
Affiliation(s)
- Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | - Peter Heimann
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ulrich M Weikert
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Bita Massih
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Silke Appenzeller
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
33
|
Tunca C, Şeker T, Akçimen F, Coşkun C, Bayraktar E, Palvadeau R, Zor S, Koçoğlu C, Kartal E, Şen NE, Hamzeiy H, Özoğuz Erimiş A, Norman U, Karakahya O, Olgun G, Akgün T, Durmuş H, Şahin E, Çakar A, Başar Gürsoy E, Babacan Yıldız G, İşak B, Uluç K, Hanağası H, Bilgiç B, Turgut N, Aysal F, Ertaş M, Boz C, Kotan D, İdrisoğlu H, Soysal A, Uzun Adatepe N, Akalın MA, Koç F, Tan E, Oflazer P, Deymeer F, Taştan Ö, Çiçek AE, Kavak E, Parman Y, Başak AN. Revisiting the complex architecture of ALS in Turkey: Expanding genotypes, shared phenotypes, molecular networks, and a public variant database. Hum Mutat 2020; 41:e7-e45. [PMID: 32579787 DOI: 10.1002/humu.24055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).
Collapse
Affiliation(s)
- Ceren Tunca
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Tuncay Şeker
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Fulya Akçimen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Cemre Coşkun
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Elif Bayraktar
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Robin Palvadeau
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Seyit Zor
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Ece Kartal
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Nesli Ece Şen
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Aslıhan Özoğuz Erimiş
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| | - Utku Norman
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Oğuzhan Karakahya
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Gülden Olgun
- Department of Computer Engineering, Bilkent University, Ankara, Turkey
| | - Tahsin Akgün
- Department of Anesthesiology and Reanimation, American Hospital, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Erdi Şahin
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Esra Başar Gürsoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Gülsen Babacan Yıldız
- Department of Neurology, Faculty of Medicine, Bezmialem Vakıf University, Istanbul, Turkey
| | - Barış İşak
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Kayıhan Uluç
- Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Haşmet Hanağası
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Nilda Turgut
- Department of Neurology, Namık Kemal University School of Medicine, Tekirdağ, Turkey
| | - Fikret Aysal
- Department of Neurology, Medipol University School of Medicine, Istanbul, Turkey
| | - Mustafa Ertaş
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Cavit Boz
- Department of Neurology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Dilcan Kotan
- Department of Neurology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Halil İdrisoğlu
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Aysun Soysal
- Department of Neurology, Bakırköy Research and Training Hospital for Neurologic and Psychiatric Diseases, Istanbul, Turkey
| | - Nurten Uzun Adatepe
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Ali Akalın
- Department of Neurology, Cerrahpaşa Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Filiz Koç
- Department of Neurology, Çukurova University Medical School, Adana, Turkey
| | - Ersin Tan
- Department of Neurology, Hacettepe University Medical School, Ankara, Turkey
| | - Piraye Oflazer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Feza Deymeer
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - Öznur Taştan
- Department of Computer Science and Engineering, Sabancı University, Istanbul, Turkey
| | - A Ercüment Çiçek
- Department of Computer Engineering, Bilkent University, Ankara, Turkey.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Erşen Kavak
- Genomize Inc., Boğaziçi University Technology Development Region, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical School, Istanbul University, Istanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey.,Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
| |
Collapse
|
34
|
Autophagy in motor neuron diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:157-202. [PMID: 32620242 DOI: 10.1016/bs.pmbts.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.
Collapse
|
35
|
Li W, Liu Z, Sun W, Yuan Y, Hu Y, Ni J, Jiao B, Fang L, Li J, Shen L, Tang B, Wang J. Mutation analysis of GLT8D1 and ARPP21 genes in amyotrophic lateral sclerosis patients from mainland China. Neurobiol Aging 2020; 85:156.e1-156.e4. [PMID: 31653410 DOI: 10.1016/j.neurobiolaging.2019.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Variants in exon 4 of gene encoding GLT8D1 (glycosyltransferase 8 domain containing 1) gene have recently been suggested as a novel cause of amyotrophic lateral sclerosis (ALS). In addition, there is a synergism between GLT8D1 and ARPP21 (cAMP Regulated Phosphoprotein 21) variants for ALS. However, this observation has not been validated in other ALS cohorts. In this study, we analyzed the rare pathogenic variants in GLT8D1 and ARPP21 genes in a cohort of 512 ALS patients and 3210 healthy controls from mainland China. A total of 25 rare variants in ARPP21 were identified in the patients and controls, but we did not find rare variants in exon 4 of GLT8D1 in the patients. By using Fisher's exact test, we did not find significant association between ALS and GLT8D1 or ARPP21. Therefore, GLT8D1 and ARPP21 are not likely the causative genes for ALS in mainland China.
Collapse
Affiliation(s)
- Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Weining Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yiting Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jie Ni
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, People's Republic of China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, People's Republic of China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, People's Republic of China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, People's Republic of China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
36
|
Kacem I, Sghaier I, Bougatef S, Nasri A, Gargouri A, Ajroud-Driss S, Gouider R. Epidemiological and clinical features of amyotrophic lateral sclerosis in a Tunisian cohort. Amyotroph Lateral Scler Frontotemporal Degener 2019; 21:131-139. [DOI: 10.1080/21678421.2019.1704012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Imen Kacem
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| | - Ikram Sghaier
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
| | - Sabrine Bougatef
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| | - Amina Nasri
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| | - Amina Gargouri
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| | | | - Riadh Gouider
- Department of Neurology, LR18SP03, Razi Hospital, Tunis, Tunisia,
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia,
| |
Collapse
|
37
|
Feng SM, Che CH, Feng SY, Liu CY, Li LY, Li YX, Huang HP, Zou ZY. Novel mutation in optineurin causing aggressive ALS+/-frontotemporal dementia. Ann Clin Transl Neurol 2019; 6:2377-2383. [PMID: 31838784 PMCID: PMC6917321 DOI: 10.1002/acn3.50928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Mutations in optineurin (OPTN) have been identified in familial and sporadic amyotrophic lateral sclerosis (ALS). We screened a cohort of Chinese patients for mutations in optineurin. We also performed an extensive literatures review of all mutations in optineurin identified previously to detect genotype–phenotype associations. Methods All 16 exons of the OPTN gene in a cohort of 15 familial ALS indexes and 275 sporadic ALS patients of Chinese origin were sequenced by targeted next generation sequencing. Results Two known heterozygous missense mutations in the OPTN, c.1481T> G (p.L494W), and c.1546G> C (p.E516Q), as well as one novel heterozygous missense mutation c.1690G> C (p.D564H) were each detected in one sporadic ALS patient. The patient carrying the p.E516Q mutation developed clinical features of ALS‐frontotemporal dementia (FTD) and the patient carrying the p.D564H mutation showed a phenotype of ALS. They both had an aggressive course, with a survival of 18 and 14 months respectively. Literature review showed that the clinical phenotypes in OPTN mutated ALS were not homogeneous, although some individuals showed a relatively slow progression and a long duration, some mutations carriers developed an aggressive progression and a short survival. Interpretation OPTN mutations contribute to ALS in Chinese population and account for 0.8% of sporadic ALS patients and 1.5% of familial ALS in the pooled Chinese ALS cohorts. Mutations in optineurin can cause aggressive ALS+/−FTD.
Collapse
Affiliation(s)
- Shu-Man Feng
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Shu-Yan Feng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Liu-Yi Li
- Department of Neurophysiology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yuan-Xiao Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| |
Collapse
|
38
|
Yilmaz R, Müller K, Brenner D, Volk AE, Borck G, Hermann A, Meitinger T, Strom TM, Danzer KM, Ludolph AC, Andersen PM, Weishaupt JH. SQSTM1/p62 variants in 486 patients with familial ALS from Germany and Sweden. Neurobiol Aging 2019; 87:139.e9-139.e15. [PMID: 31859009 DOI: 10.1016/j.neurobiolaging.2019.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/12/2022]
Abstract
Several studies reported amyotrophic lateral sclerosis (ALS)-linked mutations in TBK1, OPTN, VCP, UBQLN2, and SQSTM1 genes encoding proteins involved in autophagy. SQSTM1 was originally identified by a candidate gene approach because it encodes p62, a multifunctional protein involved in protein degradation both through proteasomal regulation and autophagy. Both p62 and optineurin (encoded by OPTN) are direct interaction partners and substrates of TBK1, and these 3 proteins form the core of a genetic and functional network that may connect autophagy with ALS. Considering the molecular and conceptual relevance of the TBK1/OPTN/SQSTM1 "triangle," we here performed a targeted screen for SQSTM1 variants in 486 patients with familial ALS from Germany and Sweden by analyzing whole-exome sequencing data. We report 9 novel and 5 previously reported rare variants in SQSTM1 and discuss the current evidence for SQSTM1 as a primary disease gene for ALS. We conclude that the evidence for causality remains vague for SQSTM1 and is weaker than for the other autophagy genes, for example, TBK1 and OPTN.
Collapse
Affiliation(s)
- Rüstem Yilmaz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Kathrin Müller
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - Alexander E Volk
- Institute of Human Genetics, Ulm University, Ulm, Germany; Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Guntram Borck
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | | | | | - Peter M Andersen
- Department of Neurology, Ulm University, Ulm, Germany; Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
39
|
Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. ACTA ACUST UNITED AC 2019; 60:3625-3635. [DOI: 10.1167/iovs.19-27184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kseniia Chernyshova
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
40
|
Renaud L, Picher-Martel V, Codron P, Julien JP. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol Commun 2019; 7:103. [PMID: 31319884 PMCID: PMC6889556 DOI: 10.1186/s40478-019-0758-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ubiquilin-2 (UBQLN2) is a member of the ubiquilin family, actively implicated in the degradation of misfolded and redundant proteins through the ubiquitin-proteasome system and macroautophagy. UBQLN2 received much attention after the discovery of gene mutations in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The abnormal presence of positive UBQLN2 inclusion in the cytosol of degenerating motor neurons of familial and sporadic forms of ALS patients has been newly related to neurodegeneration. Only recently, data have emerged on its role in liquid-liquid phase separation, in stress granule development and in the formation of secondary amyloid structures. Furthermore, several animal models are available to investigate its involvement in TDP-43 pathology and neuroinflammation in ALS. This review addresses the molecular pathogenetic pathways involving UBQLN2 abnormalities which are converging toward defects in clearance mechanisms. UBQLN2.
Collapse
|
41
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
42
|
Erzurumluoglu E, Cilingir O, Ozbabalik Adapinar BD, Bilgic B, Kocagil S, Ozen H, Durak Aras B, Yenilmez C, Artan S. The association between repeat number in C9orf72 and phenotypic variability in Turkish patients with frontotemporal lobar degeneration. Neurobiol Aging 2019; 76:216.e1-216.e7. [DOI: 10.1016/j.neurobiolaging.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
43
|
Vildan C, Sule D, Turker B, Hilmi U, Sibel KB. Genetic alterations of C9orf72, SOD1, TARDBP, FUS, and UBQLN2 genes in patients with Amyotrophic Lateral Sclerosis. COGENT MEDICINE 2019. [DOI: 10.1080/2331205x.2019.1582400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Ciftci Vildan
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Darbas Sule
- Department of Medical Biology and Genetics, Akdeniz University, Antalya, Turkey
| | - Bilgen Turker
- Department of Nutrition and Dietetic, Namık Kemal University, Tekirdağ, Turkey
| | - Uysal Hilmi
- Department of Neurology, Akdeniz University, Antalya, Turkey
| | | |
Collapse
|
44
|
Ramos EM, Koros C, Dokuru DR, Van Berlo V, Kroupis C, Wojta K, Wang Q, Andronas N, Matsi S, Beratis IN, Huang AY, Lee SE, Bonakis A, Florou-Hatziyiannidou C, Fragkiadaki S, Kontaxopoulou D, Agiomyrgiannakis D, Kamtsadeli V, Tsinia N, Papastefanopoulou V, Stamelou M, Miller BL, Stefanis L, Papatriantafyllou JD, Papageorgiou SG, Coppola G. Frontotemporal dementia spectrum: first genetic screen in a Greek cohort. Neurobiol Aging 2019; 75:224.e1-224.e8. [PMID: 30528349 PMCID: PMC6553875 DOI: 10.1016/j.neurobiolaging.2018.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous group of neurodegenerative syndromes associated with several causative and susceptibility genes. Herein, we aimed to determine the incidence of the most common causative dementia genes in a cohort of 118 unrelated Greek FTD spectrum patients. We also screened for novel possible disease-associated variants in additional 21 genes associated with FTD or amyotrophic lateral sclerosis. Pathogenic or likely pathogenic variants were identified in 16 cases (13.6%). These included repeat expansions in C9orf72 and loss-of-function GRN variants, and likely pathogenic variants in TARDBP, MAPT, and PSEN1. We also identified 14 variants of unknown significance in other rarer FTD or amyotrophic lateral sclerosis genes that require further segregation and functional analysis. Our genetic screen revealed a high genetic burden in familial Greek FTD cases (30.4%), whereas only two of the sporadic cases (3.5%) carried a likely pathogenic variant. A substantial number of familial cases still remain without an obvious causal variant, suggesting the existence of other FTD genetic causes besides those currently screened in clinical routine.
Collapse
Affiliation(s)
- Eliana Marisa Ramos
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christos Koros
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Deepika Reddy Dokuru
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Victoria Van Berlo
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christos Kroupis
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Kevin Wojta
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Qing Wang
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nikolaos Andronas
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Stavroula Matsi
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Ion N Beratis
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Alden Y Huang
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Anastasios Bonakis
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Chryseis Florou-Hatziyiannidou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Stella Fragkiadaki
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Dionysia Kontaxopoulou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Agiomyrgiannakis
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Medical Center of Athens, Memory Disorders Clinic and Day Care Center for 3rd Age 'IASIS', Athens, Greece
| | - Vasiliki Kamtsadeli
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Medical Center of Athens, Memory Disorders Clinic and Day Care Center for 3rd Age 'IASIS', Athens, Greece
| | - Niki Tsinia
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Medical Center of Athens, Memory Disorders Clinic and Day Care Center for 3rd Age 'IASIS', Athens, Greece
| | - Vasiliki Papastefanopoulou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Department of Clinical Biochemistry, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Maria Stamelou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Parkinson's Disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Leonidas Stefanis
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; 1st Department of Neurology, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - John D Papatriantafyllou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece; Medical Center of Athens, Memory Disorders Clinic and Day Care Center for 3rd Age 'IASIS', Athens, Greece
| | - Sokratis G Papageorgiou
- Cognitive Disorders/Dementia Unit, 2nd Department of Neurology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
45
|
Mutation screening of SLC52A3, C19orf12, and TARDBP in Iranian ALS patients. Neurobiol Aging 2019; 75:225.e9-225.e14. [DOI: 10.1016/j.neurobiolaging.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
|
46
|
Peng Y, Ye W, Chen Z, Peng H, Wang P, Hou X, Wang C, Zhou X, Hou X, Li T, Qiu R, Hu Z, Tang B, Jiang H. Identifying SYNE1 Ataxia With Novel Mutations in a Chinese Population. Front Neurol 2018; 9:1111. [PMID: 30619065 PMCID: PMC6306413 DOI: 10.3389/fneur.2018.01111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Variants in SYNE1 have been widely reported in ataxia patients in Europe, with highly variable clinical phenotype. Until now, no mutation of SYNE1 ataxia has been reported among the Chinese population. Our aim was to screen for SYNE1 ataxia patients in China and extend the clinicogenetic spectrum. Methods: Variants in SYNE1 were detected by high-throughput sequencing on a cohort of 126 unrelated index patients with unexplained autosomal recessive or sporadic ataxia. Pathogenicity assessments of SYNE1 variants were interpreted according to the ACMG guidelines. Potential pathogenic variants were confirmed by Sanger sequencing. Clinical assessments were conducted by two experienced neurologists. Results: Two Chinese families with variable ataxia syndrome were identified (accounting for 1.6%; 2/126), separately caused by the novel homozygous SYNE1 mutation (NM_033071.3: c.21568C>T, p.Arg7190Ter), and compound heterozygous SYNE1 mutation (NM_033071.3: c.18684G>A, p.Trp6228Ter; c.17944C>T, p.Arg5982Ter), characterized by motor neuron impairment, mental retardation and arthrogryposis. Conclusions:SYNE1 ataxia exists in the Chinese population, as a rare form of autosomal recessive ataxia, with a complex phenotype. Our findings expanded the ethnic, phenotypic and genetic diversity of SYNE1 ataxia.
Collapse
Affiliation(s)
- Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Ye
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Puzhi Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Zhengmao Hu
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
47
|
Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genet 2018; 14:e1007682. [PMID: 30296255 PMCID: PMC6200258 DOI: 10.1371/journal.pgen.1007682] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022] Open
Abstract
Mutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models. In addition, overexpression may obscure the contribution of SOD1 loss of function in the degeneration of different neuronal populations. Here, we report the first single-copy, ALS knock-in models in C. elegans generated by transposon- or CRISPR/Cas9- mediated genome editing of the endogenous sod-1 gene. Introduction of ALS patient amino acid changes A4V, H71Y, L84V, G85R or G93A into the C. elegans sod-1 gene yielded single-copy/knock-in ALS SOD1 models. These differ from previously reported overexpression models in multiple assays. In single-copy/knock-in models, we observed differential impact of sod-1 ALS alleles on glutamatergic and cholinergic neurodegeneration. A4V, H71Y, G85R, and G93A animals showed increased SOD1 protein accumulation and oxidative stress induced degeneration, consistent with a toxic gain of function in cholinergic motor neurons. By contrast, H71Y, L84V, and G85R lead to glutamatergic neuron degeneration due to sod-1 loss of function after oxidative stress. However, dopaminergic and serotonergic neuronal populations were spared in single-copy ALS models, suggesting a neuronal-subtype specificity previously not reported in invertebrate ALS SOD1 models. Combined, these results suggest that knock-in models may reproduce the neurotransmitter-type specificity of ALS and that both SOD1 loss and gain of toxic function differentially contribute to ALS pathogenesis in different neuronal populations. In all SOD1 ALS patients, cholinergic spinal motor neurons degenerate, but degeneration of cortical glutamatergic neurons is less common. Despite decades of work, it remains unclear why some disease alleles (e.g. A4V) primarily affect cholinergic spinal neurons, while other alleles affect both cholinergic and glutamatergic neurons. New genome editing techniques allowed us to create the first C. elegans knock-in/single-copy models for SOD1 ALS by directly editing the C. elegans sod-1 gene to recreate SOD1 amino acid changes that cause ALS in patients. These new models are complementary to previously described overexpression models, which revealed mutant SOD1 toxic gain of function properties. By contrast, in the new C. elegans knock-in models, we find that both loss and gain of sod-1 function contribute to neurodegeneration. C. elegans cholinergic motor neuron loss is primarily driven by toxic gain of function, but glutamatergic neuron loss is primarily driven by loss of function. Only cholinergic and glutamatergic neurons degenerate in C. elegans knock-in models; dopaminergic, serotoninergic and GABAergic neurons do not. This pattern of neuronal loss is reminiscent of the pattern of neuronal loss seen in SOD1 ALS patients. Strikingly, in the C. elegans A4V model, only cholinergic neurons are lost. Our results suggest that an underlying premise of the ALS field–that identical pathological mechanisms lead to degeneration of cholinergic and glutamatergic neurons–should be reconsidered. Mechanisms that predominantly drive glutamatergic and cholinergic neuron degeneration in ALS may not be identical.
Collapse
|
48
|
Gromicho M, Pinto S, Gisca E, Pronto-Laborinho AC, Andersen PM, de Carvalho M. Frequency of C9orf72 hexanucleotide repeat expansion and SOD1 mutations in Portuguese patients with amyotrophic lateral sclerosis. Neurobiol Aging 2018; 70:325.e7-325.e15. [DOI: 10.1016/j.neurobiolaging.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/11/2022]
|
49
|
Gkazi SA, Troakes C, Topp S, Miller JW, Vance CA, Sreedharan J, Al-Chalabi A, Kirby J, Shaw PJ, Al-Sarraj S, King A, Smith BN, Shaw CE. Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiol Aging 2018; 73:229.e5-229.e9. [PMID: 30348461 DOI: 10.1016/j.neurobiolaging.2018.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/07/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Analysis of 226 exome-sequenced UK cases of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia identified 2 individuals who harbored a P497H and P506S UBQLN2 mutation, respectively (n = 0.9%). The P506S index case presented with behavioral variant frontotemporal dementia at the age of 54 years then progressed to ALS surviving 3 years. Three sons presented with (1) slowly progressive pure spastic paraplegia with an onset at 25 years and (2) ALS with disease onset of 25 years and survival of 2 years, and (3) ALS presenting symptoms at the age of 26 years, respectively. Analysis of postmortem tissue from the index case revealed frequent neuronal cytoplasmic UBQLN2-positive inclusions in the dentate gyrus and TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortex and granular cell layer of the dentate gyrus of the hippocampus. Furthermore, a comprehensive analysis of published UBQLN2 mutations demonstrated that only proline-rich domain mutations contribute to a significantly earlier age of onset in male patients (p = 0.0026).
Collapse
Affiliation(s)
- Soragia Athina Gkazi
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Claire Troakes
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Simon Topp
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Jack W Miller
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Caroline A Vance
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Jemeen Sreedharan
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Ammar Al-Chalabi
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Safa Al-Sarraj
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Andrew King
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Bradley N Smith
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London, UK.
| |
Collapse
|
50
|
Müller K, Brenner D, Weydt P, Meyer T, Grehl T, Petri S, Grosskreutz J, Schuster J, Volk AE, Borck G, Kubisch C, Klopstock T, Zeller D, Jablonka S, Sendtner M, Klebe S, Knehr A, Günther K, Weis J, Claeys KG, Schrank B, Sperfeld AD, Hübers A, Otto M, Dorst J, Meitinger T, Strom TM, Andersen PM, Ludolph AC, Weishaupt JH. Comprehensive analysis of the mutation spectrum in 301 German ALS families. J Neurol Neurosurg Psychiatry 2018; 89:817-827. [PMID: 29650794 DOI: 10.1136/jnnp-2017-317611] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/25/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Recent advances in amyotrophic lateral sclerosis (ALS) genetics have revealed that mutations in any of more than 25 genes can cause ALS, mostly as an autosomal-dominant Mendelian trait. Detailed knowledge about the genetic architecture of ALS in a specific population will be important for genetic counselling but also for genotype-specific therapeutic interventions. METHODS Here we combined fragment length analysis, repeat-primed PCR, Southern blotting, Sanger sequencing and whole exome sequencing to obtain a comprehensive profile of genetic variants in ALS disease genes in 301 German pedigrees with familial ALS. We report C9orf72 mutations as well as variants in consensus splice sites and non-synonymous variants in protein-coding regions of ALS genes. We furthermore estimate their pathogenicity by taking into account type and frequency of the respective variant as well as segregation within the families. RESULTS 49% of our German ALS families carried a likely pathogenic variant in at least one of the earlier identified ALS genes. In 45% of the ALS families, likely pathogenic variants were detected in C9orf72, SOD1, FUS, TARDBP or TBK1, whereas the relative contribution of the other ALS genes in this familial ALS cohort was 4%. We identified several previously unreported rare variants and demonstrated the absence of likely pathogenic variants in some of the recently described ALS disease genes. CONCLUSIONS We here present a comprehensive genetic characterisation of German familial ALS. The present findings are of importance for genetic counselling in clinical practice, for molecular research and for the design of diagnostic gene panels or genotype-specific therapeutic interventions in Europe.
Collapse
Affiliation(s)
| | - David Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - Patrick Weydt
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, Bonn University, Bonn, Germany
| | - Thomas Meyer
- Department of Neurology, Charité Hospital, Humboldt University, Berlin, Germany
| | - Torsten Grehl
- Department of Neurology, Alfried Krupp Hospital, Essen, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Alexander E Volk
- Institute of Human Genetics, Ulm University, Ulm, Germany.,Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Guntram Borck
- Institute of Human Genetics, Ulm University, Ulm, Germany
| | - Christian Kubisch
- Institute of Human Genetics, Ulm University, Ulm, Germany.,Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Stephan Klebe
- Department of Neurology, University of Würzburg, Würzburg, Germany.,Department of Neurology, University Duisburg-Essen, Essen, Germany
| | - Antje Knehr
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Berthold Schrank
- Department of Neurology, DKD HELIOS Klinik Wiesbaden, Wiesbaden, Germany
| | - Anne-Dorte Sperfeld
- Department of Neurology, Martin Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SNergy), Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SNergy), Munich, Germany
| | - Peter M Andersen
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|