1
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
2
|
Witt ST, Brown A, Gravelsins L, Engström M, Classon E, Lykke N, Åvall-Lundqvist E, Theodorsson E, Ernerudh J, Kjölhede P, Einstein G. Gray matter volume in women with the BRCA mutation with and without ovarian removal: evidence for increased risk of late-life Alzheimer's disease or dementia. Menopause 2024; 31:608-616. [PMID: 38688467 DOI: 10.1097/gme.0000000000002361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Ovarian removal prior to spontaneous/natural menopause (SM) is associated with increased risk of late life dementias including Alzheimer's disease. This increased risk may be related to the sudden and early loss of endogenous estradiol. Women with breast cancer gene mutations (BRCAm) are counseled to undergo oophorectomy prior to SM to significantly reduce their risk of developing breast, ovarian, and cervical cancers. There is limited evidence of the neurological effects of ovarian removal prior to the age of SM showing women without the BRCAm had cortical thinning in medial temporal lobe structures. A second study in women with BRCAm and bilateral salpingo-oophorectomy (BSO) noted changes in cognition. METHODS The present, cross-sectional study examined whole-brain differences in gray matter (GM) volume using high-resolution, quantitative magnetic resonance imaging in women with BRCAm and intact ovaries (BRCA-preBSO [study cohort with BRCA mutation prior to oophorectomy]; n = 9) and after surgery with (BSO + estradiol-based therapy [ERT]; n = 10) and without (BSO; n = 10) postsurgical estradiol hormone therapy compared with age-matched women (age-matched controls; n = 10) with their ovaries. RESULTS The BRCA-preBSO and BSO groups showed significantly lower GM volume in the left medial temporal and frontal lobe structures. BSO + ERT exhibited few areas of lower GM volume compared with age-matched controls. Novel to this study, we also observed that all three BRCAm groups exhibited significantly higher GM volume compared with age-matched controls, suggesting continued plasticity. CONCLUSIONS The present study provides evidence, through lower GM volume, to support both the possibility that the BRCAm, alone, and early life BSO may play a role in increasing the risk for late-life dementia. At least for BRCAm with BSO, postsurgical ERT seems to ameliorate GM losses.
Collapse
Affiliation(s)
| | - Alana Brown
- Psychology, University of Toronto, Toronto, ON, Canada
| | | | | | - Elisabet Classon
- Department of Acute Internal Medicine and Geriatrics, and Department of Health, Medicine and Caring Sciences, Division of Prevention, Rehabilitation and Community Medicine, Linköping University, Linköping, Sweden
| | - Nina Lykke
- Thematic Studies, Linköping University, Sweden
| | - Elisabeth Åvall-Lundqvist
- Department of Oncology in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Preben Kjölhede
- Department of Obstetrics and Gynecology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
3
|
Mielke MM, Frank RD, Christenson LR, Reid RI, Fields JA, Knyazhanskaya ZE, Kara F, Vemuri P, Rocca WA, Kantarci K. Premenopausal bilateral oophorectomy and brain white matter brain integrity in later-life. Alzheimers Dement 2024; 20:5054-5061. [PMID: 38899634 PMCID: PMC11247692 DOI: 10.1002/alz.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Premenopausal bilateral oophorectomy (PBO) is associated with later-life cognition, but the underlying brain changes remain unclear. We assessed the impact of PBO and PBO age on white matter integrity. METHODS Female participants with regional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA) and mean diffusivity (MD) were included (22 with PBO < 40 years; 43 with PBO 40-45 years; 39 with PBO 46-49 years; 907 referents without PBO < 50 years). Linear regression models adjusted for age and apolipoprotein E (APOE) genotype. RESULTS Females with PBO < 40 years, compared to referents, had lower FA and higher MD in the anterior corona radiata, genu of the corpus collosum, inferior fronto-occipital fasciculus, superior occipital, and superior temporal white matter. Females who underwent PBO between 45 and 49 also had some changes in white matter integrity. DISCUSSION Females who underwent PBO < 40 years had reduced white matter integrity across multiple regions in later-life. These results are important for females considering PBO for noncancerous conditions. HIGHLIGHTS Females with premenopausal bilateral oophorectomy (PBO) < 40 years had lower FA versus referents. Females with PBO < 40 years had higher MD in many regions versus referents. Adjusting for estrogen replacement therapy use did not attenuate results. Females with PBO 45-49 years also had some white matter changes versus referents.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ryan D. Frank
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | - Julie A. Fields
- Division of Neurocognitive DisordersDepartment of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | | | - Firat Kara
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Walter A. Rocca
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Women's Health Research CenterMayo ClinicRochesterMinnesotaUSA
| | - Kejal Kantarci
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
- Women's Health Research CenterMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Soldevila-Domenech N, Fagundo B, Cuenca-Royo A, Forcano L, Gomis-González M, Boronat A, Pastor A, Castañer O, Zomeño MD, Goday A, Dierssen M, Baghizadeh Hosseini K, Ros E, Corella D, Martínez-González MÁ, Salas-Salvadó J, Fernández-Aranda F, Fitó M, de la Torre R. Relationship between sex, APOE genotype, endocannabinoids and cognitive change in older adults with metabolic syndrome during a 3-year Mediterranean diet intervention. Nutr J 2024; 23:61. [PMID: 38862960 PMCID: PMC11167771 DOI: 10.1186/s12937-024-00966-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The Mediterranean diet (MedDiet) has demonstrated efficacy in preventing age-related cognitive decline and modulating plasma concentrations of endocannabinoids (eCBs) and N-acylethanolamines (NAEs, or eCB-like compounds), which are lipid mediators involved in multiple neurological disorders and metabolic processes. Hypothesizing that eCBs and NAEs will be biomarkers of a MedDiet intervention and will be related to the cognitive response, we investigated this relationship according to sex and apolipoprotein E (APOE) genotype, which may affect eCBs and cognitive performance. METHODS This was a prospective cohort study of 102 participants (53.9% women, 18.8% APOE-ɛ4 carriers, aged 65.6 ± 4.5 years) from the PREDIMED-Plus-Cognition substudy, who were recruited at the Hospital del Mar Research Institute (Barcelona). All of them presented metabolic syndrome plus overweight/obesity (inclusion criteria of the PREDIMED-Plus) and normal cognitive performance at baseline (inclusion criteria of this substudy). A comprehensive battery of neuropsychological tests was administered at baseline and after 1 and 3 years. Plasma concentrations of eCBs and NAEs, including 2-arachidonoylglycerol (2-AG), anandamide (AEA), oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and N-docosahexaenoylethanolamine (DHEA), were also monitored. Baseline cognition, cognitive changes, and the association between eCBs/NAEs and cognition were evaluated according to gender (crude models), sex (adjusted models), and APOE genotype. RESULTS At baseline, men had better executive function and global cognition than women (the effect size of gender differences was - 0.49, p = 0.015; and - 0.42, p = 0.036); however, these differences became nonsignificant in models of sex differences. After 3 years of MedDiet intervention, participants exhibited modest improvements in memory and global cognition. However, greater memory changes were observed in men than in women (Cohen's d of 0.40 vs. 0.25; p = 0.017). In men and APOE-ε4 carriers, 2-AG concentrations were inversely associated with baseline cognition and cognitive changes, while in women, cognitive changes were positively linked to changes in DHEA and the DHEA/AEA ratio. In men, changes in the OEA/AEA and OEA/PEA ratios were positively associated with cognitive changes. CONCLUSIONS The MedDiet improved participants' cognitive performance but the effect size was small and negatively influenced by female sex. Changes in 2-AG, DHEA, the OEA/AEA, the OEA/PEA and the DHEA/AEA ratios were associated with cognitive changes in a sex- and APOE-dependent fashion. These results support the modulation of the endocannabinoid system as a potential therapeutic approach to prevent cognitive decline in at-risk populations. TRIAL REGISTRATION ISRCTN89898870.
Collapse
Grants
- FI_B2021/00104 Agència de Gestió d'Ajuts Universitaris i de Recerca
- PROMETEO/2017/017; Grant FEA/SEA 2017 for Primary Care Research Generalitat Valenciana
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- PI13/00233, PI13/00728, PI13/01123, PI13/00462, PI16/00533, PI16/00366, PI16/01094, PI16/00501, PI17/01167, PI19/00017, PI19/00781, PI19/01032, PI19/00576 Instituto de Salud Carlos III
- Advanced Research Grant 2014-2019; agreement #340918 HORIZON EUROPE European Research Council
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- SLT006/17/00246, SLT002/16/00045 and SLT006/17/00077 Departament de Salut, Generalitat de Catalunya
- 2013ACUP00194 'la Caixa' Foundation
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- Eat2beNICE/ H2020-SFS-2016-2; Ref 728018; and PRIME/ H2020-SC1-BHC-2018-2020; Ref: 847879 H2020 European Institute of Innovation and Technology
- 2017 SGR 138 Generalitat de Catalunya
- ‘la Caixa’ Foundation
Collapse
Affiliation(s)
- Natalia Soldevila-Domenech
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Beatriz Fagundo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Department of Physiotherapy, Fundació Universitària del Bages (FUB), Manresa, 08042, Spain
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Laura Forcano
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Maria Gomis-González
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Antoni Pastor
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Olga Castañer
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Maria Dolores Zomeño
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- School of Health Sciences, Blanquerna-Ramon Llull University, Barcelona, 08022, Spain
| | - Albert Goday
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
- Endocrinology Service, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Khashayar Baghizadeh Hosseini
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
- Cardiovascular risk, Nutrition and Aging, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, 08036, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Unitat de Nutrició Humana, Reus, Spain
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Fernando Fernández-Aranda
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Clinical Psychology Unit, University Hospital of Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute (HMRI), Barcelona, 08003, Spain
| | - Rafael de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Neurosciences Research Program, Hospital del Mar Research Institute (HMRI), Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
5
|
Rocca WA, Kantarci K, Faubion SS. Risks and benefits of hormone therapy after menopause for cognitive decline and dementia: A conceptual review. Maturitas 2024; 184:108003. [PMID: 38649310 PMCID: PMC11095817 DOI: 10.1016/j.maturitas.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE The effects on the brain of hormone therapy after the onset of menopause remain uncertain. The effects may be beneficial, neutral, or harmful. We provide a conceptual review of the evidence. METHODS We 1) provide a brief history of the evidence, 2) discuss some of the interpretations of the evidence, 3) discuss the importance of age at menopause, type of menopause, and presence of vasomotor symptoms, and 4) provide some clinical recommendations. RESULTS The evidence and the beliefs about hormone therapy and dementia have changed over the last 30 years or more. Five recent observation studies suggested that hormone therapy is associated with an increased risk of dementia, and the association appears not to change with the timing of initiation of therapy. These harmful associations may be explained by a causal effect of hormone therapy on the brain or by several confounding mechanisms. We suggest that the use of hormone therapy should be customized for different subgroups of women. It may be important to subgroup women based on age at onset of menopause, type of menopause, and presence or absence of vasomotor symptoms. In addition, the effects may vary by type, dose, route, and duration of administration of estrogens and by the concurrent use of progestogens. DISCUSSION The relation of hormone therapy with the risk of dementia is complex. Hormone therapy may have beneficial, neutral, or harmful effects on the brain. Hormone therapy should be guided by the clinical characteristics of the women being treated.
Collapse
Affiliation(s)
- Walter A Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Women's Health Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| | - Kejal Kantarci
- Women's Health Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States; Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55902, United States.
| | - Stephanie S Faubion
- Division of General Internal Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, United States; Center for Women's Health, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
6
|
Wood Alexander M, Wu CY, Coughlan GT, Puri T, Buckley RF, Palta P, Swardfager W, Masellis M, Galea LAM, Einstein G, Black SE, Rabin JS. Associations Between Age at Menopause, Vascular Risk, and 3-Year Cognitive Change in the Canadian Longitudinal Study on Aging. Neurology 2024; 102:e209298. [PMID: 38569140 DOI: 10.1212/wnl.0000000000209298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Mounting evidence supports sex differences in Alzheimer disease (AD) risk. Vascular and hormonal factors may together contribute to AD risk in female adults. We investigated whether age at menopause, vascular risk, and history of hormone therapy (HT) containing estrogens together influence cognition over a 3-year follow-up period. We hypothesized that earlier menopause and elevated vascular risk would have a synergistic association with lower cognitive scores at follow-up and that HT containing estrogens would attenuate this synergistic association to preserve cognition. METHODS We used data from postmenopausal female participants and age-matched male participants in the Canadian Longitudinal Study on Aging. Vascular risk was calculated using a summary score of elevated blood pressure, antihypertensive medications, elevated low-density lipoprotein cholesterol, diabetes, smoking, and obesity. Cognition was measured with a global cognitive composite at baseline and 3-year follow-up. Linear models tested independent and interactive associations of age at menopause, vascular risk, and HT history with cognition at 3-year follow-up, adjusting for baseline cognition, baseline age, years of education, and test language (English/French). RESULTS We included 8,360 postmenopausal female participants (mean age at baseline = 65.0 ± 8.53 years, mean age at menopause = 50.1 ± 4.62 years) and 8,360 age-matched male participants for comparison. There was an interaction between age at menopause and vascular risk, such that earlier menopause and higher vascular risk were synergistically associated with lower cognitive scores at follow-up (β = 0.013, 95% CI 0.001-0.025, p = 0.03). In stratified analyses, vascular risk was associated with lower cognitive scores in female participants with earlier menopause (menopausal ages 35-48 years; β = -0.044, 95% CI -0.066 to -0.022, p < 0.001), but not average (ages 49-52 years; β = -0.007, 95% CI -0.027 to 0.012, p = 0.46) or later menopause (ages 53-65 years; β = 0.003, 95% CI -0.020 to 0.025, p = 0.82). The negative association of vascular risk with cognition in female participants with earlier menopause was stronger than the equivalent association in age-matched male participants. HT history did not further modify the synergistic association of age at menopause and vascular risk with follow-up cognition (β = -0.005, 95% CI -0.032 to 0.021, p = 0.69). DISCUSSION Endocrine and vascular processes may synergistically contribute to increased risk of cognitive decline in female adults. These findings have implications for the development of sex-specific dementia prevention strategies.
Collapse
Affiliation(s)
- Madeline Wood Alexander
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Che-Yuan Wu
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Gillian T Coughlan
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Tanvi Puri
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Rachel F Buckley
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Priya Palta
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Walter Swardfager
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Mario Masellis
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Liisa A M Galea
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Gillian Einstein
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Sandra E Black
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Jennifer S Rabin
- From the Hurvitz Brain Sciences Program (M.W.A., C.-Y.W., W.S., M.M., S.E.B., J.S.R.), Sunnybrook Research Institute; Rehabilitation Sciences Institute (M.W.A., J.S.R.), Department of Pharmacology & Toxicology (C.-Y.W., W.S.), University of Toronto, Ontario, Canada; Department of Neurology (G.T.C., R.F.B.), Massachusetts General Hospital, Harvard Medical School, Boston; Department of Psychology (T.P.), University of British Columbia, Vancouver, Canada; Center for Alzheimer Research and Treatment (CART) (R.F.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Melbourne School of Psychological Sciences (R.F.B.), University of Melbourne, Parkville, Victoria, Australia; Department of Neurology (P.P.), University of North Carolina at Chapel Hill School of Medicine; Division of Neurology (M.M., S.E.B., J.S.R.), Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto; Campbell Family Mental Health Research Institute (L.A.M.G.), The Centre for Addition and Mental Health; Department of Psychiatry (L.A.M.G.), Temerty Faculty of Medicine, Dalla Lana School of Public Health (G.E.), and Department of Psychology (G.E.), University of Toronto; Rotman Research Institute (G.E.), Baycrest Hospital; and Harquail Centre for Neuromodulation (J.S.R.), Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Butler T, Tey SR, Galvin JE, Perry G, Bowen RL, Atwood CS. Endocrine Dyscrasia in the Etiology and Therapy of Alzheimer's Disease. J Alzheimers Dis 2024; 101:705-713. [PMID: 39240636 DOI: 10.3233/jad-240334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The increase in the incidence of dementia over the last century correlates strongly with the increases in post-reproductive lifespan during this time. As post-reproductive lifespan continues to increase it is likely that the incidence of dementia will also increase unless therapies are developed to prevent, slow or cure dementia. A growing body of evidence implicates age-related endocrine dyscrasia and the length of time that the brain is subjected to this endocrine dyscrasia, as a key causal event leading to the cognitive decline associated with aging and Alzheimer's disease (AD), the major form of dementia in our society. In particular, the elevations in circulating gonadotropins, resulting from the loss of gonadal sex hormone production with menopause and andropause, appear central to the development of AD neuropathology and cognitive decline. This is supported by numerous cell biology, preclinical animal, and epidemiological studies, as well as human clinical studies where suppression of circulating luteinizing hormone and/or follicle-stimulating hormone with either gonadotropin-releasing hormone analogues, or via physiological hormone replacement therapy, has been demonstrated to halt or significantly slow cognitive decline in those with AD. This review provides an overview of past and present studies demonstrating the importance of hypothalamic-pituitary-gonadal hormone balance for normal cognitive functioning, and how targeting age-related endocrine dyscrasia with hormone rebalancing strategies provides an alternative treatment route for those with AD.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sin-Ruow Tey
- JangoBio, LLC, Division of Cell Biology, Fitchburg, WI, USA
| | - James E Galvin
- Departments of Neurology and Psychiatry, Comprehensive Center for Brain Health, University of Miami, Miller School of Medicine, Boca Raton, FL, USA
| | - George Perry
- Department of Neuroscience, Development and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Craig S Atwood
- Geriatric Research, Education and Clinical Center, Veterans Administration Hospital and Department of Medicine, University of Wisconsin, Madison, WI, USA
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
8
|
Ramachandra A, Thomas EHX, Vincent AJ, Hickey M, Warren N, Kulkarni J, Forrest LE, Bojadzieva J, Campbell A, Gurvich C. Subjective cognitive changes following premenopausal risk-reducing bilateral salpingo-oophorectomy. Climacteric 2023; 26:625-631. [PMID: 37751773 DOI: 10.1080/13697137.2023.2256659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Women at high risk of ovarian cancer are commonly advised to undergo risk-reducing bilateral salpingo-oophorectomy (BSO) prior to natural menopause. Cognitive symptoms during natural menopause transition are frequently reported; however, very few studies have examined cognitive changes following surgical menopause. To address this gap, we explored the cognitive experiences of women within 24 months post BSO. METHODS This observational cross-sectional sub-study is part of a larger project, the Early Menopause and Cognition Study (EM-COG). We investigated perceived cognitive experiences in Australian women (n = 16) who underwent risk-reducing BSO using qualitative interviews. Thematic analysis was undertaken to identify key themes. RESULTS Fifteen out of 16 participants (93.75%) reported changes to cognition within 24 months post BSO. The key cognitive symptoms reported were brain fog, memory and retrieval difficulties, slower processing speed as well as attention difficulties. Five participants (31.3%) experienced negative mood symptoms post BSO. CONCLUSION Findings from this study suggest that women experience subjective cognitive changes within 24 months post BSO. This period could be a vulnerable time for women's cognitive health. While these findings need to be confirmed by a large prospective study, our research indicates that psychoeducation and awareness will be helpful in managing cognitive symptoms after surgical menopause.
Collapse
Affiliation(s)
- A Ramachandra
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - E H X Thomas
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A J Vincent
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC, Australia
| | - M Hickey
- Women's Gynaecology Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - N Warren
- School of Social Sciences, Monash University, Melbourne, VIC, Australia
| | - J Kulkarni
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - L E Forrest
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - J Bojadzieva
- Clinical Genetics Unit, Austin Health, Melbourne, VIC, Australia
| | - A Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC, Australia
| | - C Gurvich
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Brown A, Gervais NJ, Rieck J, Almey A, Gravelsins L, Reuben R, Karkaby L, Rajah MN, Grady C, Einstein G. Women's Brain Health: Midlife Ovarian Removal Affects Associative Memory. Mol Neurobiol 2023; 60:6145-6159. [PMID: 37423941 PMCID: PMC10533588 DOI: 10.1007/s12035-023-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Women with early bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) have greater Alzheimer's disease (AD) risk than women in spontaneous/natural menopause (SM), but early biomarkers of this risk are not well-characterized. Considering associative memory deficits may presage preclinical AD, we wondered if one of the earliest changes might be in associative memory and whether younger women with BSO had changes similar to those observed in SM. Women with BSO (with and without 17β-estradiol replacement therapy (ERT)), their age-matched premenopausal controls (AMC), and older women in SM completed a functional magnetic resonance imaging face-name associative memory task shown to predict early AD. Brain activation during encoding was compared between groups: AMC (n=25), BSO no ERT (BSO; n=15), BSO+ERT (n=16), and SM without hormone therapy (n=16). Region-of-interest analyses revealed AMC did not contribute to functional group differences. BSO+ERT had higher hippocampal activation than BSO and SM. This hippocampal activation correlated positively with urinary metabolite levels of 17β-estradiol. Multivariate partial least squares analyses showed BSO+ERT had a different network-level activation pattern than BSO and SM. Thus, despite being approximately 10 years younger, women with BSO without ERT had similar brain function to those with SM, suggesting early 17β-estradiol loss may lead to an altered functional brain phenotype which could influence late-life AD risk, making face-name encoding a potential biomarker for midlife women with increased AD risk. Despite similarities in activation, BSO and SM groups showed opposite within-hippocampus connectivity, suggesting menopause type is an important consideration when assessing brain function.
Collapse
Affiliation(s)
- Alana Brown
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Nicole J Gervais
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Jenny Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Anne Almey
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura Gravelsins
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Rebekah Reuben
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laurice Karkaby
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - M Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, H4H 1R3, Canada
| | - Cheryl Grady
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Gillian Einstein
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
10
|
Gervais NJ, Gravelsins L, Brown A, Reuben R, Perovic M, Karkaby L, Nicoll G, Laird K, Ramana S, Bernardini MQ, Jacobson M, Velsher L, Foulkes W, Rajah MN, Olsen RK, Grady C, Einstein G. Disturbed sleep is associated with reduced verbal episodic memory and entorhinal cortex volume in younger middle-aged women with risk-reducing early ovarian removal. Front Endocrinol (Lausanne) 2023; 14:1265470. [PMID: 37859979 PMCID: PMC10584319 DOI: 10.3389/fendo.2023.1265470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Women with early ovarian removal (<48 years) have an elevated risk for both late-life Alzheimer's disease (AD) and insomnia, a modifiable risk factor. In early midlife, they also show reduced verbal episodic memory and hippocampal volume. Whether these reductions correlate with a sleep phenotype consistent with insomnia risk remains unexplored. Methods We recruited thirty-one younger middleaged women with risk-reducing early bilateral salpingo-oophorectomy (BSO), fifteen of whom were taking estradiol-based hormone replacement therapy (BSO+ERT) and sixteen who were not (BSO). Fourteen age-matched premenopausal (AMC) and seventeen spontaneously peri-postmenopausal (SM) women who were ~10y older and not taking ERT were also enrolled. Overnight polysomnography recordings were collected at participants' home across multiple nights (M=2.38 SEM=0.19), along with subjective sleep quality and hot flash ratings. In addition to group comparisons on sleep measures, associations with verbal episodic memory and medial temporal lobe volume were assessed. Results Increased sleep latency and decreased sleep efficiency were observed on polysomnography recordings of those not taking ERT, consistent with insomnia symptoms. This phenotype was also observed in the older women in SM, implicating ovarian hormone loss. Further, sleep latency was associated with more forgetting on the paragraph recall task, previously shown to be altered in women with early BSO. Both increased sleep latency and reduced sleep efficiency were associated with smaller anterolateral entorhinal cortex volume. Discussion Together, these findings confirm an association between ovarian hormone loss and insomnia symptoms, and importantly, identify an younger onset age in women with early ovarian removal, which may contribute to poorer cognitive and brain outcomes in these women.
Collapse
Affiliation(s)
- Nicole J. Gervais
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Alana Brown
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Rebekah Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Mateja Perovic
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Laurice Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gina Nicoll
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Kazakao Laird
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Marcus Q. Bernardini
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michelle Jacobson
- Cancer Clinical Research Unit, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lea Velsher
- Genetics Program, North York General Hospital, Toronto, ON, Canada
| | - William Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - M. Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, QC, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Cheryl Grady
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
| |
Collapse
|
11
|
Terra L, Lee Meeuw Kjoe PR, Agelink van Rentergem JA, Beekman MJ, Heemskerk-Gerritsen BAM, van Beurden M, Roeters van Lennep JE, van Doorn HC, de Hullu JA, Mourits MJE, van Dorst EBL, Mom CH, Slangen BFM, Gaarenstroom KN, van der Kolk LE, Collée JM, Wevers MR, Ausems MGEM, van Engelen K, van de Beek I, Berger LPV, van Asperen CJ, Gomez Garcia EB, Maas AHEM, Hooning MJ, van der Wall E, van Leeuwen FE, Schagen SB. Long-term effects of premenopausal risk-reducing salpingo-oophorectomy on cognition in women with high familial risk of ovarian cancer: A cross-sectional study. BJOG 2023; 130:968-977. [PMID: 36715559 DOI: 10.1111/1471-0528.17415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To examine the effect of a premenopausal risk-reducing salpingo-oophorectomy (RRSO) in women at increased risk of ovarian cancer on objective and subjective cognition at least 10 years after RRSO. DESIGN A cross-sectional study with prospective follow-up, nested in a nationwide cohort. SETTING Multicentre in the Netherlands. POPULATION OR SAMPLE 641 women (66% BRCA1/2 pathogenic variant carriers) who underwent either a premenopausal RRSO ≤ age 45 (n = 436) or a postmenopausal RRSO ≥ age 54 (n = 205). All participants were older than 55 years at recruitment. METHODS Participants completed an online cognitive test battery and a questionnaire on subjective cognition. We used multivariable regression analyses, adjusting for age, education, breast cancer, hormone replacement therapy, cardiovascular risk factors and depression. MAIN OUTCOME MEASURES The influence of RRSO on objective and subjective cognition of women with a premenopausal RRSO compared with women with a postmenopausal RRSO. RESULTS After adjustment, women with a premenopausal RRSO (mean time since RRSO 18.2 years) performed similarly on objective cognitive tests compared with women with a postmenopausal RRSO (mean time since RRSO 11.9 years). However, they more frequently reported problems with reasoning (odds ratio [OR] 1.8, 95% confidence interval [95% CI] 1.1-3.1) and multitasking (OR 1.9, 95% CI 1.1-3.4) than women with a postmenopausal RRSO. This difference between groups disappeared in an analysis restricted to women of comparable ages (60-70 years). CONCLUSIONS Reassuringly, approximately 18 years after RRSO, we found no association between premenopausal RRSO and objective cognition.
Collapse
Affiliation(s)
- Lara Terra
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philippe R Lee Meeuw Kjoe
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Maarten J Beekman
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marc van Beurden
- Department of Gynaecological Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Helena C van Doorn
- Department for Gynaecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Joanna A de Hullu
- Department for Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marian J E Mourits
- Department for Gynaecologic Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Eleonora B L van Dorst
- Department of Gynaecologic Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Constantijne H Mom
- Department of Gynaecological Oncology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Brigitte F M Slangen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Katja N Gaarenstroom
- Department of Obstetrics and Gynaecology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marijke R Wevers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaartje van Engelen
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Irma van de Beek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieke P V Berger
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Christi J van Asperen
- Department for Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Encarna B Gomez Garcia
- Department for Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Angela H E M Maas
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Flora E van Leeuwen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Calvo N, Einstein G. Steroid hormones: risk and resilience in women's Alzheimer disease. Front Aging Neurosci 2023; 15:1159435. [PMID: 37396653 PMCID: PMC10313425 DOI: 10.3389/fnagi.2023.1159435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
More women have Alzheimer disease (AD) than men, but the reasons for this phenomenon are still unknown. Including women in clinical research and studying their biology is key to understand not just their increased risk but also their resilience against the disease. In this sense, women are more affected by AD than men, but their reserve or resilience mechanisms might delay symptom onset. The aim of this review was to explore what is known about mechanisms underlying women's risk and resilience in AD and identify emerging themes in this area that merit further research. We conducted a review of studies analyzing molecular mechanisms that may induce neuroplasticity in women, as well as cognitive and brain reserve. We also analyzed how the loss of steroid hormones in aging may be linked to AD. We included empirical studies with human and animal models, literature reviews as well as meta-analyses. Our search identified the importance of 17-b-estradiol (E2) as a mechanism driving cognitive and brain reserve in women. More broadly, our analysis revealed the following emerging perspectives: (1) the importance of steroid hormones and their effects on both neurons and glia for the study of risk and resilience in AD, (2) E2's crucial role in women's brain reserve, (3) women's verbal memory advantage as a cognitive reserve factor, and (4) E2's potential role in linguistic experiences such as multilingualism and hearing loss. Future directions for research include analyzing the reserve mechanisms of steroid hormones on neuronal and glial plasticity, as well as identifying the links between steroid hormone loss in aging and risk for AD.
Collapse
Affiliation(s)
- Noelia Calvo
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Women’s College Research Institute, Toronto, ON, Canada
- Centre for Life Course and Aging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Sochocka M, Karska J, Pszczołowska M, Ochnik M, Fułek M, Fułek K, Kurpas D, Chojdak-Łukasiewicz J, Rosner-Tenerowicz A, Leszek J. Cognitive Decline in Early and Premature Menopause. Int J Mol Sci 2023; 24:6566. [PMID: 37047549 PMCID: PMC10095144 DOI: 10.3390/ijms24076566] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Early and premature menopause, or premature ovarian insufficiency (POI), affects 1% of women under the age of 40 years. This paper reviews the main aspects of early and premature menopause and their impact on cognitive decline. Based on the literature, cognitive complaints are more common near menopause: a phase marked by a decrease in hormone levels, especially estrogen. A premature reduction in estrogen puts women at a higher risk for cardiovascular disease, parkinsonism, depression, osteoporosis, hypertension, weight gain, midlife diabetes, as well as cognitive disorders and dementia, such as Alzheimer's disease (AD). Experimental and epidemiological studies suggest that female sex hormones have long-lasting neuroprotective and anti-aging properties. Estrogens seem to prevent cognitive disorders arising from a cholinergic deficit in women and female animals in middle age premature menopause that affects the central nervous system (CNS) directly and indirectly, both transiently and in the long term, leads to cognitive impairment or even dementia, mainly due to the decrease in estrogen levels and comorbidity with cardiovascular risk factors, autoimmune diseases, and aging. Menopausal hormone therapy from menopause to the age of 60 years may provide a "window of opportunity" to reduce the risk of mild cognitive impairment (MCI) and AD in later life. Women with earlier menopause should be taken care of by various specialists such as gynecologists, endocrinologists, neurologists, and psychiatrists in order to maintain their mental health at the highest possible level.
Collapse
Affiliation(s)
- Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | | | - Michał Ochnik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Michał Fułek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | | | - Anna Rosner-Tenerowicz
- 2nd Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|
14
|
Mielke MM, Aggarwal NT, Vila‐Castelar C, Agarwal P, Arenaza‐Urquijo EM, Brett B, Brugulat‐Serrat A, DuBose LE, Eikelboom WS, Flatt J, Foldi NS, Franzen S, Gilsanz P, Li W, McManus AJ, van Lent DM, Milani SA, Shaaban CE, Stites SD, Sundermann E, Suryadevara V, Trani J, Turner AD, Vonk JMJ, Quiroz YT, Babulal GM. Consideration of sex and gender in Alzheimer's disease and related disorders from a global perspective. Alzheimers Dement 2022; 18:2707-2724. [PMID: 35394117 PMCID: PMC9547039 DOI: 10.1002/alz.12662] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 01/31/2023]
Abstract
Sex or gender differences in the risk of Alzheimer's disease and related dementias (ADRD) differ by world region, suggesting that there are potentially modifiable risk factors for intervention. However, few epidemiological or clinical ADRD studies examine sex differences; even fewer evaluate gender in the context of ADRD risk. The goals of this perspective are to: (1) provide definitions of gender, biologic sex, and sexual orientation. and the limitations of examining these as binary variables; (2) provide an overview of what is known with regard to sex and gender differences in the risk, prevention, and diagnosis of ADRD; and (3) discuss these sex and gender differences from a global, worldwide perspective. Identifying drivers of sex and gender differences in ADRD throughout the world is a first step in developing interventions unique to each geographical and sociocultural area to reduce these inequities and to ultimately reduce global ADRD risk. HIGHLIGHTS: The burden of dementia is unevenly distributed geographically and by sex and gender. Scientific advances in genetics and biomarkers challenge beliefs that sex is binary. Discrimination against women and sex and gender minority (SGM) populations contributes to cognitive decline. Sociocultural factors lead to gender inequities in Alzheimer's disease and related dementias (ADRD) worldwide.
Collapse
Affiliation(s)
- Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Neelum T. Aggarwal
- Department of Neurological SciencesRush University Medical CenterChicagoIllinoisUSA
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Clara Vila‐Castelar
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
| | - Puja Agarwal
- Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Eider M. Arenaza‐Urquijo
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
| | - Benjamin Brett
- Department of NeurosurgeryMedical College of WisconsinWisconsinMilwaukeeUSA
| | - Anna Brugulat‐Serrat
- Barcelonaβeta Brain Research Center (BBRC)Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridSpain
- Atlantic Fellow for Equity in Brain HealthThe University of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lyndsey E. DuBose
- Department of Medicine, Division of GeriatricsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Willem S. Eikelboom
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jason Flatt
- Social and Behavioral Health Program, School of Public HealthUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Nancy S. Foldi
- Department of Psychology, Queens College and The Graduate CenterCity University of New YorkNew YorkUSA
- Department of PsychiatryNew York University Long Island School of MedicineNew YorkUSA
| | - Sanne Franzen
- Department of NeurologyErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Paola Gilsanz
- Kaiser Permanente Division of ResearchOaklandCaliforniaUSA
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Alison J. McManus
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Debora Melo van Lent
- UT Health San AntonioGlenn Biggs Institute for Alzheimer's and Neurodegenerative diseasesSan AntonioTexasUSA
- Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sadaf Arefi Milani
- Division of Geriatrics & Palliative Medicine, Department of Internal MedicineUniversity of Texas Medical BranchGalvestonTexasUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Shana D. Stites
- Department of PsychiatryPerlman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Erin Sundermann
- Department of PsychiatryUniversity of CaliforniaSan DiegoCaliforniaUSA
| | - Vidyani Suryadevara
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jean‐Francoise Trani
- Department of Public HealthWashington University in St. LouisSt. LouisMissouriUSA
| | - Arlener D. Turner
- Department of Psychiatry & Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jet M. J. Vonk
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Julius Center for Health Sciences and Primary CareDepartment of EpidemiologyUniversity Medical Center Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Yakeel T. Quiroz
- Department of Psychiatry, Harvard Medical SchoolMassachusetts General HospitalMassachusettsBostonUSA
- Grupo de Neurociencias de Antioquia of Universidad de AntioquiaMedellinColumbiaUSA
| | - Ganesh M. Babulal
- Department of NeurologyWashington University in St. LouisSt. LouisMississippiUSA
- Department of Clinical Research and LeadershipThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- Department of Psychology, Faculty of HumanitiesUniversity of JohannesburgJohannesburgSouth Africa
| | | |
Collapse
|
15
|
Peragine DE, Gervais NJ, Simeon-Spezzaferro C, Einstein G. A new angle on mental rotation ability in transgender men: Modulation by ovarian milieu. Psychoneuroendocrinology 2022; 141:105751. [PMID: 35398751 DOI: 10.1016/j.psyneuen.2022.105751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
Organizational/activational theory posits that transgender individuals should perform in the direction of their gender, not their sex, on cognitive tasks that show sex differences-the largest of which are observed on visuospatial tasks. Yet, tests of this hypothesis have been mixed for transgender men (TM). One possible reason is that performance shifts associated with the hormonal milieu at testing have not been fully considered in TM. Although "activating" influences, like gender-affirming hormone therapy (GAHT), are well-characterized in this population, endogenous ones, like ovarian cycling, have gone unaddressed. To provide a more complete picture of hormonal activation, we explored an influence of ovarian milieu on visuospatial performance of TM, and its potential contributions toward effects of sex and GAHT. We administered two male-favoring mental rotation tests (MRTs), and a sex-neutral control task to 22 TM naïve to GAHT (TM-), 29 TM receiving GAHT (TM+), and cisgender men (CM; n = 24) and women (CW; n = 43), testing cycling men (TM-) and women (CW) in either early follicular phase (Follicular) or midluteal phase (Luteal). On MRTs, performance of TM- varied across the menstrual cycle, and matched that of menstrual phase-matched CW. Additionally, cycling individuals in Follicular performed as strongly as TM+ and CM, all of whom performed above individuals in Luteal. Effects did not extend to a verbal control task, on which TM+ performed below others. Rather than conforming to static categories that suggest sex- or gender-typical organization of cognitive circuits, our findings support dynamic shifts in visuospatial ability of TM, and illustrate the need to consider activating effects of hormones beyond GAHT.
Collapse
Affiliation(s)
- Diana E Peragine
- Department of Psychology, University of Toronto, Toronto, M5S 3G3 Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto, M5S 3G3 Canada; Rotman Research Institute, Baycrest Hospital, Toronto, M6A 2E1 Canada
| | | | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto, M5S 3G3 Canada; Rotman Research Institute, Baycrest Hospital, Toronto, M6A 2E1 Canada; Women's College Research Institute, Women's College Hospital, Toronto, M5G 1N8 Canada; Tema Genus, Linköping University, Linköping SE-581 83, Sweden
| |
Collapse
|
16
|
Scene memory and hippocampal volume in middle-aged women with early hormone loss. Neurobiol Aging 2022; 117:97-106. [DOI: 10.1016/j.neurobiolaging.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
|
17
|
Abstract
Sex and gender differences are seen in cognitive disturbances in a variety of neurological and psychiatry diseases. Men are more likely to have cognitive symptoms in schizophrenia whereas women are more likely to have more severe cognitive symptoms with major depressive disorder and Alzheimer's disease. Thus, it is important to understand sex and gender differences in underlying cognitive abilities with and without disease. Sex differences are noted in performance across various cognitive domains - with males typically outperforming females in spatial tasks and females typically outperforming males in verbal tasks. Furthermore, there are striking sex differences in brain networks that are activated during cognitive tasks and in learning strategies. Although rarely studied, there are also sex differences in the trajectory of cognitive aging. It is important to pay attention to these sex differences as they inform researchers of potential differences in resilience to age-related cognitive decline and underlying mechanisms for both healthy and pathological cognitive aging, depending on sex. We review literature on the progressive neurodegenerative disorder, Alzheimer's disease, as an example of pathological cognitive aging in which human females show greater lifetime risk, neuropathology, and cognitive impairment, compared to human males. Not surprisingly, the relationships between sex and cognition, cognitive aging, and Alzheimer's disease are nuanced and multifaceted. As such, this chapter will end with a discussion of lifestyle factors, like education and diet, as modifiable factors that can alter cognitive aging by sex. Understanding how cognition changes across age and contributing factors, like sex differences, will be essential to improving care for older adults.
Collapse
|
18
|
Sex and Gender Science: The World Writes on the Body. Curr Top Behav Neurosci 2022; 62:3-25. [PMID: 35253110 DOI: 10.1007/7854_2022_304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Sex and Gender Science seeks to better acknowledge that the body cannot be removed from the world it inhabits. We believe that to best answer any neuroscience question, the biological and the social need to be addressed through both objective means to learn, "how it is like" and subjective means to learn, "what it is like." We call bringing the biological and social together, "Situated Neuroscience" and the mixing of approaches to do so, Very Mixed Methods. Taken together, they constitute an approach to Sex and Gender Science. In this chapter, we describe neural phenomena for which considering sex and gender together produces a fuller knowledge base: sleep, pain, memory, and concussion. For these brain phenomena examples, studying only quantitative measures does not reveal the full impact of these lived experiences on the brain but studying only the qualitative would not reveal how the brain responds. We discuss how Sex and Gender Science allows us to begin to bring together biology and its social context and acknowledge where context can contribute to resolving ignorance to offer more expansive, complementary, and interrelating pictures of an intricate neuro-landscape.
Collapse
|
19
|
Rocca WA, Lohse CM, Smith CY, Fields JA, Machulda MM, Mielke MM. Association of Premenopausal Bilateral Oophorectomy With Cognitive Performance and Risk of Mild Cognitive Impairment. JAMA Netw Open 2021; 4:e2131448. [PMID: 34762113 PMCID: PMC8586907 DOI: 10.1001/jamanetworkopen.2021.31448] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
IMPORTANCE The associations of bilateral oophorectomy among premenopausal women, age at oophorectomy, and use of estrogen therapy after oophorectomy with cognitive performance later in life remain controversial. OBJECTIVE To investigate whether women who underwent premenopausal bilateral oophorectomy were at increased risk of mild cognitive impairment (MCI) and experienced decreased global or domain-specific cognitive performance. DESIGN, SETTING, AND PARTICIPANTS This case-control study and cross-sectional study were made possible by combining data from the Mayo Clinic Study of Aging (MCSA) and the Rochester Epidemiology Project (REP) medical record-linkage system. The studies were conducted among a population-based sample in Olmsted County, Minnesota, consisting of 2732 women aged 50 to 89 years who participated in the MCSA study from 2004 to 2019 and underwent a clinical evaluation and comprehensive cognitive testing. Data were analyzed from January to May 2021. EXPOSURES Medical record documentation of bilateral oophorectomy abstracted from a medical record-linkage system (ie, REP). MAIN OUTCOMES AND MEASURES Odds of MCI and global or domain-specific z scores on cognitive tests were measured at the first MCSA visit. The median (IQR) lag time between bilateral oophorectomy performed before menopause and before age 50 years and cognitive evaluation was 30 (22-38) years. RESULTS Among 2732 women aged 50 to 89 years (median [IQR] age at evaluation, 74 [66-81] years) who participated in the MCSA, the case-control study included 283 women with MCI (10.4%) and 2449 women without cognitive impairment (89.6%). Bilateral oophorectomy before menopause and before age 46 years was associated with clinically diagnosed MCI (adjusted odds ratio [aOR], 2.21; 95% CI, 1.41-3.45; P < .001) compared with no bilateral oophorectomy. The presence of an association with MCI varied by surgical indication, with an association among 259 women with bilateral oophorectomy before menopause and before age 50 years for the indication of benign ovarian condition (aOR, 2.43; 95% CI, 1.36-4.33; P = .003) but not for cancer or no ovarian condition. The presence of an association did not vary by estrogen therapy after bilateral oophorectomy, with associations among women aged less than 46 years with estrogen therapy (aOR, 2.56; 95% CI, 1.24-5.31; P = .01) and without estrogen therapy (aOR, 2.05; 95% CI, 1.18-3.52; P = .01). The cross-sectional study included 625 women with a history of bilateral oophorectomy (median [IQR] age, 75 [70-82] years) and 2107 women without a history of bilateral oophorectomy (median [IQR] age, 73 [65-80] years). Premenopausal bilateral oophorectomy was performed before age 46 years among 161 women and was associated with decreased global cognition z score (β, -0.17; 95% CI, -0.32 to -0.03; P = .02), attention and executive domain z score (β, -0.21; 95% CI, -0.36 to -0.05; P = .009), and Short Test of Mental Status score (β, -0.51; 95% CI, -0.95 to -0.08; P = .02) compared with no bilateral oophorectomy. CONCLUSIONS AND RELEVANCE This study found that women who underwent bilateral oophorectomy before menopause had increased odds of MCI and poorer performance on cognitive tests approximately 30 years later compared with women who did not undergo bilateral oophorectomy.
Collapse
Affiliation(s)
- Walter A. Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Specialized Center of Research Excellence on Sex Differences, Mayo Clinic, Rochester, Minnesota
| | - Christine M. Lohse
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Carin Y. Smith
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Julie A. Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Michelle M. Mielke
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
- Mayo Clinic Specialized Center of Research Excellence on Sex Differences, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
20
|
Peterson A, Tom SE. A Lifecourse Perspective on Female Sex-Specific Risk Factors for Later Life Cognition. Curr Neurol Neurosci Rep 2021; 21:46. [PMID: 34227023 DOI: 10.1007/s11910-021-01133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The prevalence of Alzheimer's disease and related dementias is greater in women compared to men. We provide a review of female sex-specific risk factors across the lifecourse for cognition in older adulthood, highlighting areas that need further study. RECENT FINDINGS Pregnancy may affect late-life cognition, with adverse pregnancy outcomes associated with an increased risk of cognitive decline but parity providing a protective effect. Cumulative estrogen exposure, influenced by age of menarche, menopause, and exogenous estrogen use, may modify a woman's risk for dementia. Menopause transition-associated symptoms may impact cognitive health at the time of the symptoms, but long-term effects remain unknown. As compared to natural menopause, surgical menopause seems to increase the risk for cognitive impairment. Studies that have assessed the association between women's reproductive health and cognition have produced conflicting results. Future studies that address these inconsistencies among diverse populations are needed to better care for women throughout their lives.
Collapse
Affiliation(s)
- Amalia Peterson
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 622 W. 168th Street, New York, NY, 10032, USA.
| | - Sarah E Tom
- Department of Neurology, College of Physicians and Surgeons, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Do oral contraceptives affect young women's memory? Dopamine-dependent working memory is influenced by COMT genotype, but not time of pill ingestion. PLoS One 2021; 16:e0252807. [PMID: 34111174 PMCID: PMC8192013 DOI: 10.1371/journal.pone.0252807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background Despite the widespread use of oral contraceptives (OCs), and the well-documented influence of estrogens, notably 17β-estradiol (E2), on cognition, research relating OCs to working memory is limited and mixed. Two factors may contribute to these mixed findings: 1) pharmacokinetics of oral contraceptives, which drive fluctuations in synthetic hormone levels; and 2) genetic polymorphisms related to dopamine degradation and working memory, which interact with E2. This research investigated whether the pharmacokinetics of oral contraceptives, in concert with the single nucleotide polymorphism (Val158Met; rs4680) of the catechol-o-methyltransferase gene (COMT), influence working memory performance. Methods University-age women taking and not taking OCs were tested for working memory and genotyped for COMT. If they were not taking OCs (n = 62), sessions occurred in the early follicular (low E2) and late follicular (high E2) phase. If they were taking OCs (n = 52), sessions occurred 1–2 hours after (high ethinyl estradiol, EE) and ~24 hours after (low EE) pill ingestion. Working memory was tested using the N-back, AX-CPT, Digit Span, and Digit Ordering Tasks. Data were analyzed using multilevel models with estrogen condition, COMT, and group as predictors, controlling for mood and practice effects. Results For women taking OCs, time of pill ingestion did not influence performance. However, the subgroup with COMT val/val (low dopamine) were less accurate on 2-back lure trials than those with COMT met/met (high dopamine). For women not taking OCs, cycle phase moderated COMT’s influence on lure accuracy. When compared, women taking OCs had higher AX-CPT proactive control indices than those not taking OCs. Conclusion These findings suggest that oral contraceptives are not detrimental for young women’s working memory and that they may increase proactive control. The more pronounced effects of COMT in women taking OCs suggests that, in women taking OCs, suppressed endogenous E2–not fluctuating EE levels–may be more relevant for working memory. Future studies are needed to differentiate effects of endogenous versus synthetic estrogens on working memory.
Collapse
|
22
|
Kotsopoulos J, Kim SJ, Armel S, Bordeleau L, Foulkes WD, McKinnon W, Panchal S, Cohen SA, Sun S, Sun P, McKetton L, Troyer AK, Narod SA. An evaluation of memory and attention in BRCA mutation carriers using an online cognitive assessment tool. Cancer 2021; 127:3183-3193. [PMID: 34077552 DOI: 10.1002/cncr.33654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND The objective of this study was to evaluate the impact of various surgical, hormonal, and lifestyle factors on memory and attention in women with a BRCA1 or BRCA2 mutation. METHODS BRCA mutation carriers enrolled in a longitudinal study were invited to complete an online brain health assessment tool designed to screen for cognitive deficits. Four measures of memory and executive attention were assessed individually, and an overall score was compiled adjusting for age. Exposures, including preventive surgery, hormone use, and lifestyle factors, were captured by questionnaire. Performance on each of the 5 subtasks was analyzed according to various exposures. Analysis of covariance was used to compare overall scores. RESULTS In total, 880 women completed the online cognitive assessment. The average age of the participants was 54 years (range, 23-86 years). The mean overall test score was 54.4 (range, 0-93). The individual subtask scores declined with age at test completion (P < .0001) and increased with level of education (P ≤ .01). Women who underwent a preventive oophorectomy had a significantly higher overall score compared with women who did not undergo this surgery (55.5 vs 50.5; P = .01). Reconstructive breast surgery was also associated with a higher overall score (56.5 vs 52.3; P = .005). Chemotherapy and hormone-replacement therapy were not predictive of the overall score. CONCLUSIONS These findings are reassuring to high-risk women who undergo early surgical menopause for their cancer predisposition. Further studies are needed to evaluate cognitive function over time when memory deficits become more prevalent.
Collapse
Affiliation(s)
- Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Shana J Kim
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Susan Armel
- Division of Gynecologic Oncology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Louise Bordeleau
- Division of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - William D Foulkes
- Program in Cancer Genetics, Department of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Wendy McKinnon
- Familial Cancer Program, University of Vermont Medical Center, Burlington, Vermont
| | - Seema Panchal
- Marvelle Koffler Breast Center, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephanie A Cohen
- Cancer Genetics Risk Assessment Program, St Vincent Health, Indianapolis, Indiana
| | - Sophie Sun
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ping Sun
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | | | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Center for Geriatric Care, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Reuben R, Karkaby L, McNamee C, Phillips NA, Einstein G. Menopause and cognitive complaints: are ovarian hormones linked with subjective cognitive decline? Climacteric 2021; 24:321-332. [PMID: 33719785 DOI: 10.1080/13697137.2021.1892627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Subjective cognitive decline (SCD) and the loss of ovarian hormones after menopause have been independently linked to later-life Alzheimer's disease (AD). The objective of this review was to determine whether menopause and the loss of ovarian hormones contribute to cognitive complaints and SCD in women. This would suggest that SCD at the menopausal transition might be an important marker of eventual cognitive decline and AD. We conducted a literature search using PubMed, PsycINFO and Web of Science in July 2020. All English-language studies assessing SCD and cognitive complaints with respect to menopause and ovarian hormones were included. A total of 19 studies were included. Studies found that cognitive complaints increased across the menopause transition and were associated with reductions in attention, verbal and working memory, and medial temporal lobe volume. Women taking estrogen-decreasing treatments also had increased cognitive complaints and reduced working memory and executive function. The current literature provides impetus for further research on whether menopause and the loss of ovarian hormones are associated with cognitive complaints and SCD. Clinicians may take particular note of cognitive complaints after menopause or ovarian hormone loss, as they might presage future cognitive decline.
Collapse
Affiliation(s)
- R Reuben
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - L Karkaby
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden
| | - C McNamee
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - N A Phillips
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - G Einstein
- Department of Psychology, University of Toronto, Toronto, ON, Canada.,Tema Genus, Linköping University, Linköping, Sweden.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| |
Collapse
|