1
|
Beheshti I, Potvin O, Dadar M, Duchesne S. Cerebrovascular lesion loads and accelerated brain aging: insights into the cognitive spectrum. FRONTIERS IN DEMENTIA 2024; 3:1380015. [PMID: 39081605 PMCID: PMC11285662 DOI: 10.3389/frdem.2024.1380015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
Introduction White matter hyperintensities (WMHs) and cerebral microbleeds are widespread among aging population and linked with cognitive deficits in mild cognitive impairment (MCI), vascular MCI (V-MCI), and Alzheimer's disease without (AD) or with a vascular component (V-AD). In this study, we aimed to investigate the association between brain age, which reflects global brain health, and cerebrovascular lesion load in the context of pathological aging in diverse forms of clinically-defined neurodegenerative conditions. Methods We computed brain-predicted age difference (brain-PAD: predicted brain age minus chronological age) in the Comprehensive Assessment of Neurodegeneration and Dementia cohort of the Canadian Consortium on Neurodegeneration in Aging including 70 cognitively intact elderly (CIE), 173 MCI, 88 V-MCI, 50 AD, and 47 V-AD using T1-weighted magnetic resonance imaging (MRI) scans. We used a well-established automated methodology that leveraged fluid attenuated inversion recovery MRIs for precise quantification of WMH burden. Additionally, cerebral microbleeds were detected utilizing a validated segmentation tool based on the ResNet50 network, utilizing routine T1-weighted, T2-weighted, and T2* MRI scans. Results The mean brain-PAD in the CIE cohort was around zero, whereas the four categories showed a significantly higher mean brain-PAD compared to CIE, except MCI group. A notable association trend between brain-PAD and WMH loads was observed in aging and across the spectrum of cognitive impairment due to AD, but not between brain-PAD and microbleed loads. Discussion WMHs were associated with faster brain aging and should be considered as a risk factor which imperils brain health in aging and exacerbate brain abnormalities in the context of neurodegeneration of presumed AD origin. Our findings underscore the significance of novel research endeavors aimed at elucidating the etiology, prevention, and treatment of WMH in the area of brain aging.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Olivier Potvin
- Centre de recherche CERVO, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, QC, Canada
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, QC, Canada
- Département de Radiologie et de Médecine Nucléaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Wang M, Wei M, Wang L, Song J, Rominger A, Shi K, Jiang J. Tau Protein Accumulation Trajectory-Based Brain Age Prediction in the Alzheimer's Disease Continuum. Brain Sci 2024; 14:575. [PMID: 38928575 PMCID: PMC11201453 DOI: 10.3390/brainsci14060575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Clinical cognitive advancement within the Alzheimer's disease (AD) continuum is intimately connected with sustained accumulation of tau protein pathology. The biological brain age and its gap show great potential for pathological risk and disease severity. In the present study, we applied multivariable linear support vector regression to train a normative brain age prediction model using tau brain images. We further assessed the predicted biological brain age and its gap for patients within the AD continuum. In the AD continuum, evaluated pathologic tau binding was found in the inferior temporal, parietal-temporal junction, precuneus/posterior cingulate, dorsal frontal, occipital, and inferior-medial temporal cortices. The biological brain age gaps of patients within the AD continuum were notably higher than those of the normal controls (p < 0.0001). Significant positive correlations were observed between the brain age gap and global tau protein accumulation levels for mild cognitive impairment (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and AD continuum (r = 0.797, p < 0.001). The pathologic tau-based age gap was significantly linked to neuropsychological scores. The proposed pathologic tau-based biological brain age model could track the tau protein accumulation trajectory of cognitive impairment and further provide a comprehensive quantification index for the tau accumulation risk.
Collapse
Affiliation(s)
- Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Min Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing 100053, China
| | - Luyao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Computer Aided Medical Procedures, School of Computation, Information and Technology, Technical University of Munich, 85748 Munich, Germany
| | - Jiehui Jiang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Paliwal V, Das K, Doesburg SM, Medvedev G, Xi P, Ribary U, Pachori RB, Vakorin VA. Classifying Routine Clinical Electroencephalograms With Multivariate Iterative Filtering and Convolutional Neural Networks. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2038-2048. [PMID: 38768007 DOI: 10.1109/tnsre.2024.3403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.
Collapse
|
4
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI preprocessing improves generalizability of deep brain age prediction models. Comput Biol Med 2024; 173:108320. [PMID: 38531250 DOI: 10.1016/j.compbiomed.2024.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI), representing a straightforward diagnostic biomarker of brain aging and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results across studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and evaluation protocols used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models from recent literature. Four preprocessing pipelines, which differed in terms of registration transform, grayscale correction, and software implementation, were evaluated. The results showed that the choice of software or preprocessing steps could significantly affect the prediction error, with a maximum increase of 0.75 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, using affine rather than rigid registration to brain atlas statistically significantly improved MAE. Models trained on 3D images with isotropic 1mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Our findings indicate that extensive T1w preprocessing improves MAE, especially when predicting on a new dataset. This runs counter to prevailing research literature, which suggests that models trained on minimally preprocessed T1w scans are better suited for age predictions on MRIs from unseen scanners. We demonstrate that, irrespective of the model or T1w preprocessing used during training, applying some form of offset correction is essential to enable the model's performance to generalize effectively on datasets from unseen sites, regardless of whether they have undergone the same or different T1w preprocessing as the training set.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia.
| |
Collapse
|
5
|
Habich A, Oltra J, Schwarz CG, Przybelski SA, Oppedal K, Inguanzo A, Blanc F, Lemstra AW, Hort J, Westman E, Segura B, Junque C, Lowe VJ, Boeve BF, Aarsland D, Dierks T, Kantarci K, Ferreira D. Grey matter networks in women and men with dementia with Lewy bodies. NPJ Parkinsons Dis 2024; 10:84. [PMID: 38615089 PMCID: PMC11016082 DOI: 10.1038/s41531-024-00702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Sex differences permeate many aspects of dementia with Lewy bodies (DLB), yet sex differences in patterns of neurodegeneration in DLB remain largely unexplored. Here, we test whether grey matter networks differ between sexes in DLB and compare these findings to sex differences in healthy controls. In this cross-sectional study, we analysed clinical and neuroimaging data of patients with DLB and cognitively healthy controls matched for age and sex. Grey matter networks were constructed by pairwise correlations between 58 regional volumes after correction for age, intracranial volume, and centre. Network properties were compared between sexes and diagnostic groups. Additional analyses were conducted on w-scored data to identify DLB-specific sex differences. Data from 119 (68.7 ± 8.4 years) men and 45 women (69.9 ± 9.1 years) with DLB, and 164 healthy controls were included in this study. Networks of men had a lower nodal strength compared to women. In comparison to healthy women, the grey matter networks of healthy men showed a higher global efficiency, modularity, and fewer modules. None of the network measures showed significant sex differences in DLB. Comparing DLB patients with healthy controls revealed global differences in women and more local differences in men. Modular analyses showed a more distinct demarcation between cortical and subcortical regions in men compared with women. While topologies of grey matter networks differed between sexes in healthy controls, those sex differences were diluted in DLB patients. These findings suggest a disease-driven convergence of neurodegenerative patterns in women and men with DLB, which may inform precision medicine in DLB.
Collapse
Grants
- R01 AG041851 NIA NIH HHS
- C06 RR018898 NCRR NIH HHS
- P50 AG016574 NIA NIH HHS
- R01 AG040042 NIA NIH HHS
- R01 NS080820 NINDS NIH HHS
- R37 AG011378 NIA NIH HHS
- U01 NS100620 NINDS NIH HHS
- U01 AG006786 NIA NIH HHS
- ALF Medicine, Demensfonden, Center for Innovative Medicine (CIMED), Swedish Research Council (VR)
- Demensfonden, Foundation for Geriatric Diseases at Karolinska Institutet, Loo och Hans Osterman Stiftelse, Stiftelsen för Gamla Tjänarinnor, Stohnes Stiftelsen, KI Travel grants
- 2018 fellowship from the Spanish Ministry of Science, Innovation and Universities; and co-financed by the European Social Fund (PRE2018-086675)
- Stohnes Stiftelsen, Loo och Hans Osterman Stiftelse
- project nr. LX22NPO5107 (MEYS): Financed by EU – Next Generation EU
- Swedish Research Council (VR), Swedish Foundation for Strategic Research (SSF), Center for Innovative Medicine (CIMED), King Gustaf V:s and Queen Victorias Foundation, Hjärnfonden, Alzheimerfonden, Parkinsonfonden,
- Spanish Ministry of Economy and Competitiveness (MINECO PID2020-114640GB-I00/AEI/10.13039/501100011033) Generalitat de Catalunya (SGR 2021SGR00801) María de Maeztu Unit of Excellence (Institute of Neurosciences, University of Barcelona) CEX2021-001159-M, Ministry of Science and Innovation.
- National Institutes of Health (U01-NS100620; P50-AG016574)
- Western Norway Regional Health Authority
- National Institutes of Health (U01-NS100620; R01-AG040042)
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Javier Oltra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | - Ketil Oppedal
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - Anna Inguanzo
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Frédéric Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
- ICube Laboratory and Federation de Medecine Translationnelle de Strasbourg (FMTS), University of Strasbourg and French National Centre for Scientific Research (CNRS), Team Imagerie Multimodale Integrative en Sante (IMIS)/ICONE, Strasbourg, France
| | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Motol University Hospital, Prague, Czech Republic
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain.
| |
Collapse
|
6
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Beheshti I, Booth S, Ko JH. Differences in brain aging between sexes in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:35. [PMID: 38355735 PMCID: PMC10866976 DOI: 10.1038/s41531-024-00646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is linked to faster brain aging. Male sex is associated with higher prevalence, severe symptoms, and a faster progression rate in PD. There remains a significant gap in understanding the function of sex in the process of brain aging in PD. The structural T1-weighted MRI-driven brain-predicted age difference (i.e., Brain-PAD: the actual age subtracted from the brain-predicted age) was computed in a group of 373 people with PD (mean age ± SD: 61.37 ± 9.81, age range: 33-85, 34% female) from the Parkinson's Progression Marker Initiative database using a robust brain-age estimation framework that was trained on 949 healthy subjects. Linear regression models were used to investigate the association between Brain-PAD and clinical variables in PD, stratified by sex. Males with Parkinson's disease (PD-M) exhibited a significantly higher mean Brain-PAD than their female counterparts (PD-F) (t(256) = 2.50, p = 0.012). In the propensity score-matched PD-M group (PD-M*), Brain-PAD was found to be associated with a decline in general cognition, a worse degree of sleep behavior disorder, reduced visuospatial acuity, and caudate atrophy. Conversely, no significant links were observed between these factors and Brain-PAD in the PD-F group. Having 'older' looking brains in PD-M than PD-F supports the idea that sex plays a vital function in PD, such that the PD mechanism may be different in males and females. This study has the potential to broaden our understanding of dissimilarities in brain aging between sexes in the context of PD.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
| | - Samuel Booth
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
- Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada.
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Millar PR, Gordon BA, Wisch JK, Schultz SA, Benzinger TL, Cruchaga C, Hassenstab JJ, Ibanez L, Karch C, Llibre-Guerra JJ, Morris JC, Perrin RJ, Supnet-Bell C, Xiong C, Allegri RF, Berman SB, Chhatwal JP, Chrem Mendez PA, Day GS, Hofmann A, Ikeuchi T, Jucker M, Lee JH, Levin J, Lopera F, Niimi Y, Sánchez-González VJ, Schofield PR, Sosa-Ortiz AL, Vöglein J, Bateman RJ, Ances BM, McDade EM. Advanced structural brain aging in preclinical autosomal dominant Alzheimer disease. Mol Neurodegener 2023; 18:98. [PMID: 38111006 PMCID: PMC10729487 DOI: 10.1186/s13024-023-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND "Brain-predicted age" estimates biological age from complex, nonlinear features in neuroimaging scans. The brain age gap (BAG) between predicted and chronological age is elevated in sporadic Alzheimer disease (AD), but is underexplored in autosomal dominant AD (ADAD), in which AD progression is highly predictable with minimal confounding age-related co-pathology. METHODS We modeled BAG in 257 deeply-phenotyped ADAD mutation-carriers and 179 non-carriers from the Dominantly Inherited Alzheimer Network using minimally-processed structural MRI scans. We then tested whether BAG differed as a function of mutation and cognitive status, or estimated years until symptom onset, and whether it was associated with established markers of amyloid (PiB PET, CSF amyloid-β-42/40), phosphorylated tau (CSF and plasma pTau-181), neurodegeneration (CSF and plasma neurofilament-light-chain [NfL]), and cognition (global neuropsychological composite and CDR-sum of boxes). We compared BAG to other MRI measures, and examined heterogeneity in BAG as a function of ADAD mutation variants, APOE ε4 carrier status, sex, and education. RESULTS Advanced brain aging was observed in mutation-carriers approximately 7 years before expected symptom onset, in line with other established structural indicators of atrophy. BAG was moderately associated with amyloid PET and strongly associated with pTau-181, NfL, and cognition in mutation-carriers. Mutation variants, sex, and years of education contributed to variability in BAG. CONCLUSIONS We extend prior work using BAG from sporadic AD to ADAD, noting consistent results. BAG associates well with markers of pTau, neurodegeneration, and cognition, but to a lesser extent, amyloid, in ADAD. BAG may capture similar signal to established MRI measures. However, BAG offers unique benefits in simplicity of data processing and interpretation. Thus, results in this unique ADAD cohort with few age-related confounds suggest that brain aging attributable to AD neuropathology can be accurately quantified from minimally-processed MRI.
Collapse
Affiliation(s)
- Peter R Millar
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Julie K Wisch
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephanie A Schultz
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Tammie Ls Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- NeuroGenomics & Informatics Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Celeste Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | | | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Chengjie Xiong
- Department of Biostatistics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Anna Hofmann
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Yoshiki Niimi
- Unit for Early and Exploratory Clinical Development, The University of Tokyo Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Victor J Sánchez-González
- Departamento de Clínicas, CUALTOS, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, México
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ana Luisa Sosa-Ortiz
- Instituto Nacional de Neurologia y Neurocirugía MVS, CDMX, Ciudad de México, Mexico
| | - Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric M McDade
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
9
|
Valdes-Hernandez PA, Laffitte Nodarse C, Cole JH, Cruz-Almeida Y. Feasibility of brain age predictions from clinical T1-weighted MRIs. Brain Res Bull 2023; 205:110811. [PMID: 37952679 DOI: 10.1016/j.brainresbull.2023.110811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
An individual's brain predicted age minus chronological age (brain-PAD) obtained from MRIs could become a biomarker of disease in research studies. However, brain age reports from clinical MRIs are scant despite the rich clinical information hospitals provide. Since clinical MRI protocols are meant for specific clinical purposes, performance of brain age predictions on clinical data need to be tested. We explored the feasibility of using DeepBrainNet, a deep network previously trained on research-oriented MRIs, to predict the brain ages of 840 patients who visited 15 facilities of a health system in Florida. Anticipating a strong prediction bias in our clinical sample, we characterized it to propose a covariate model in group-level regressions of brain-PAD (recommended to avoid Type I, II errors), and tested its generalizability, a requirement for meaningful brain age predictions in new single clinical cases. The best bias-related covariate model was scanner-independent and linear in age, while the best method to estimate bias-free brain ages was the inverse of a scanner-independent and quadratic in brain age function. We demonstrated the feasibility to detect sex-related differences in brain-PAD using group-level regression accounting for the selected covariate model. These differences were preserved after bias correction. The Mean-Average Error (MAE) of the predictions in independent data was ∼8 years, 2-3 years greater than reports for research-oriented MRIs using DeepBrainNet, whereas an R2 (assuming no bias) was 0.33 and 0.76 for the uncorrected and corrected brain ages, respectively. DeepBrainNet on clinical populations seems feasible, but more accurate algorithms or transfer-learning retraining is needed.
Collapse
Affiliation(s)
- Pedro A Valdes-Hernandez
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - Chavier Laffitte Nodarse
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK; Dementia Research Centre, Queen Square Institute of Neurology, University College London, UK
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, USA; Pain Research and Intervention Center of Excellence, University of Florida, USA; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, USA; Department of Neuroscience, College of Medicine, University of Florida, USA.
| |
Collapse
|
10
|
Lamontagne-Caron R, Desrosiers P, Potvin O, Doyon N, Duchesne S. Predicting cognitive decline in a low-dimensional representation of brain morphology. Sci Rep 2023; 13:16793. [PMID: 37798311 PMCID: PMC10556003 DOI: 10.1038/s41598-023-43063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Identifying early signs of neurodegeneration due to Alzheimer's disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18-100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer's Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ([Formula: see text]), one year apart. The first embedding's principal axis was shown to be positively associated ([Formula: see text]) with participants' age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
Collapse
Affiliation(s)
- Rémi Lamontagne-Caron
- Département de médecine, Université Laval, Quebec, QC, G1V 0A6, Canada.
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada.
| | - Patrick Desrosiers
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | - Nicolas Doyon
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de mathématiques et de statistique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Département de radiologie et médecine nucléaire, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
11
|
Beheshti I. Cocaine Destroys Gray Matter Brain Cells and Accelerates Brain Aging. BIOLOGY 2023; 12:752. [PMID: 37237564 PMCID: PMC10215125 DOI: 10.3390/biology12050752] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Introduction: Cocaine use disorder (CUD) is a substance use disorder characterized by a strong desire to obtain, consume, and misuse cocaine. Little is known about how cocaine affects the structure of the brain. In this study, we first investigated the anatomical brain changes in individuals with CUD compared to their matched healthy controls, and then explored whether these anatomical brain abnormalities contribute to considerably accelerated brain aging among this population. Methods: At the first stage, we used anatomical magnetic resonance imaging (MRI) data, voxel-based morphometry (VBM), and deformation-based morphometry techniques to uncover the morphological and macroscopic anatomical brain changes in 74 CUD patients compared to 62 age- and sex-matched healthy controls (HCs) obtained from the SUDMEX CONN dataset, the Mexican MRI dataset of patients with CUD. Then, we computed brain-predicted age difference (i.e., brain-PAD: the brain-predicted age minus the actual age) in CUD and HC groups using a robust brain age estimation framework. Using a multiple regression analysis, we also investigated the regional gray matter (GM) and white matter (WM) changes associated with the brain-PAD. Results: Using a whole-brain VBM analysis, we observed widespread gray matter atrophy in CUD patients located in the temporal lobe, frontal lobe, insula, middle frontal gyrus, superior frontal gyrus, rectal gyrus, and limbic lobe regions compared to the HCs. In contrast, we did not observe any swelling in the GM, changes in the WM, or local brain tissue atrophy or expansion between the CUD and HC groups. Furthermore, we found a significantly higher brain-PAD in CUD patients compared to matched HCs (mean difference = 2.62 years, Cohen's d = 0.54; t-test = 3.16, p = 0.002). The regression analysis showed significant negative changes in GM volume associated with brain-PAD in the CUD group, particularly in the limbic lobe, subcallosal gyrus, cingulate gyrus, and anterior cingulate regions. Discussion: The results of our investigation reveal that chronic cocaine use is linked to significant changes in gray matter, which hasten the process of structural brain aging in individuals who use the drug. These findings offer valuable insights into the impact of cocaine on the composition of the brain.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 3J7, Canada
| |
Collapse
|
12
|
Saravanan M, Xu R, Roby O, Wang Y, Zhu S, Lu A, Du J. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36892534 PMCID: PMC10010444 DOI: 10.1167/iovs.64.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose Visual physiology and various ocular diseases demonstrate sexual dimorphisms; however, how sex influences metabolism in different eye tissues remains undetermined. This study aims to address common and tissue-specific sex differences in metabolism in the retina, RPE, lens, and brain under fed and fasted conditions. Methods After ad libitum fed or being deprived of food for 18 hours, mouse eye tissues (retina, RPE/choroid, and lens), brain, and plasma were harvested for targeted metabolomics. The data were analyzed with both partial least squares-discriminant analysis and volcano plot analysis. Results Among 133 metabolites that cover major metabolic pathways, we found 9 to 45 metabolites that are sex different in different tissues under the fed state and 6 to 18 metabolites under the fasted state. Among these sex-different metabolites, 33 were changed in 2 or more tissues, and 64 were tissue specific. Pantothenic acid, hypotaurine, and 4-hydroxyproline were the top commonly changed metabolites. The lens and the retina had the most tissue-specific, sex-different metabolites enriched in the metabolism of amino acid, nucleotide, lipids, and tricarboxylic acid cycle. The lens and the brain had more similar sex-different metabolites than other ocular tissues. The female RPE and female brain were more sensitive to fasting with more decreased metabolites in amino acid metabolism, tricarboxylic acid cycles, and glycolysis. The plasma had the fewest sex-different metabolites, with very few overlapping changes with tissues. Conclusions Sex has a strong influence on eye and brain metabolism in tissue-specific and metabolic state-specific manners. Our findings may implicate the sexual dimorphisms in eye physiology and susceptibility to ocular diseases.
Collapse
Affiliation(s)
- Meghashri Saravanan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Olivia Roby
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Amy Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
13
|
Habich A, Oltra J, Schwarz CG, Przybelski SA, Oppedal K, Inguanzo A, Blanc F, Lemstra AW, Hort J, Westman E, Lowe VJ, Boeve BF, Dierks T, Aarsland D, Kantarci K, Ferreira D. Sex differences in grey matter networks in dementia with Lewy bodies. RESEARCH SQUARE 2023:rs.3.rs-2519935. [PMID: 36778448 PMCID: PMC9915801 DOI: 10.21203/rs.3.rs-2519935/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives Sex differences permeate many aspects of dementia with Lewy bodies (DLB), including epidemiology, pathogenesis, disease progression, and symptom manifestation. However, less is known about potential sex differences in patterns of neurodegeneration in DLB. Here, we test whether grey matter networks also differ between female and male DLB patients. To assess the specificity of these sex differences to DLB, we additionally investigate sex differences in healthy controls (HCs). Methods A total of 119 (68.7 ± 8.4 years) male and 45 female (69.9 ± 9.1 years) DLB patients from three European centres and the Mayo Clinic were included in this study. Additionally, we included 119 male and 45 female age-matched HCs from the Mayo Clinic. Grey matter volumes of 58 cortical, subcortical, cerebellar, and pontine brain regions derived from structural magnetic resonance images were corrected for age, intracranial volume, and centre. Sex-specific grey matter networks for DLB patients and HCs were constructed by correlating each pair of brain regions. Network properties of the correlation matrices were compared between sexes and groups. Additional analyses were conducted on W-scored data to identify DLB-specific findings. Results Networks of male HCs and male DLB patients were characterised by a lower nodal strength compared to their respective female counterparts. In comparison to female HCs, the grey matter networks of male HCs showed a higher global efficiency, modularity, and a lower number of modules. None of the global and nodal network measures showed significant sex differences in DLB. Conclusions The disappearance of sex differences in the structural grey matter networks of DLB patients compared to HCs may indicate a sex-dependent network vulnerability to the alpha-synuclein pathology in DLB. Future studies might investigate whether the differences in structural network measures are associated with differences in cognitive scores and clinical symptoms between the sexes.
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Ketil Oppedal
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Anna Inguanzo
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Frédéric Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Jakub Hort
- Motol University Hospital, Prague, Czech Republic
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Nallapu BT, Petersen KK, Lipton RB, Grober E, Sperling RA, Ezzati A. Association of Alcohol Consumption with Cognition in Older Population: The A4 Study. J Alzheimers Dis 2023; 93:1381-1393. [PMID: 37182868 PMCID: PMC10392870 DOI: 10.3233/jad-221079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alcohol use disorders have been categorized as a 'strongly modifiable' risk factor for dementia. OBJECTIVE To investigate the cross-sectional association between alcohol consumption and cognition in older adults and if it is different across sexes or depends on amyloid-β (Aβ) accumulation in the brain. METHODS Cognitively unimpaired older adults (N = 4387) with objective and subjective cognitive assessments and amyloid positron emission tomography (PET) imaging were classified into four categories based on their average daily alcohol use. Multivariable linear regression was then used to test the main effects and interactions with sex and Aβ levels. RESULTS Individuals who reported no alcohol consumption had lower scores on the Preclinical Alzheimer Cognitive Composite (PACC) compared to those consuming one or two drinks/day. In sex-stratified analysis, the association between alcohol consumption and cognition was more prominent in females. Female participants who consumed two drinks/day had better performance on PACC and Cognitive Function Index (CFI) than those who reported no alcohol consumption. In an Aβ-stratified sample, the association between alcohol consumption and cognition was present only in the Aβ- subgroup. The interaction between Aβ status and alcohol consumption on cognition was not significant. CONCLUSION Low or moderate consumption of alcohol was associated with better objective cognitive performance and better subjective report of daily functioning in cognitively unimpaired individuals. The association was present only in Aβ- individuals, suggesting that the pathophysiologic mechanism underlying the effect of alcohol on cognition is independent of Aβ pathology. Further investigation is required with larger samples consuming three or more drinks/day.
Collapse
Affiliation(s)
- Bhargav T. Nallapu
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Kellen K. Petersen
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Richard B. Lipton
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Ellen Grober
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| | - Reisa A. Sperling
- Harvard Aging Brain Study, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ali Ezzati
- Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, New York City, NY, USA
| |
Collapse
|
15
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
16
|
Yue T, Tan H, Shi Y, Xu M, Luo S, Weng J, Xu S. Serum Metabolomic Profiling in Aging Mice Using Liquid Chromatography-Mass Spectrometry. Biomolecules 2022; 12:1594. [PMID: 36358944 PMCID: PMC9687663 DOI: 10.3390/biom12111594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The process of aging and metabolism are intricately linked, thus rendering the identification of reliable biomarkers related to metabolism crucial for delaying the aging process. However, research of reliable markers that reflect aging profiles based on machine learning is scarce. METHODS Serum samples were obtained from aged mice (18-month-old) and young mice (3-month-old). LC-MS was used to perform a comprehensive analysis of the serum metabolome and machine learning was used to screen potential aging-related biomarkers. RESULTS In total, aging mice were characterized by 54 different metabolites when compared to control mice with criteria: VIP ≥ 1, q-value < 0.05, and Fold-Change ≥ 1.2 or ≤0.83. These metabolites were mostly involved in fatty acid biosynthesis, cysteine and methionine metabolism, D-glutamine and D-glutamate metabolism, and the citrate cycle (TCA cycle). We merged the comprehensive analysis and four algorithms (LR, GNB, SVM, and RF) to screen aging-related biomarkers, leading to the recognition of oleic acid. In addition, five metabolites were identified as novel aging-related indicators, including oleic acid, citric acid, D-glutamine, trypophol, and L-methionine. CONCLUSIONS Changes in the metabolism of fatty acids and conjugates, organic acids, and amino acids were identified as metabolic dysregulation related to aging. This study revealed the metabolic profile of aging and provided insights into novel potential therapeutic targets for delaying the effects of aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianping Weng
- Correspondence: (J.W.); (S.X.); Tel.: +86-0551-63602683 (J.W.)
| | - Suowen Xu
- Correspondence: (J.W.); (S.X.); Tel.: +86-0551-63602683 (J.W.)
| |
Collapse
|
17
|
Sanford N, Ge R, Antoniades M, Modabbernia A, Haas SS, Whalley HC, Galea L, Popescu SG, Cole JH, Frangou S. Sex differences in predictors and regional patterns of brain age gap estimates. Hum Brain Mapp 2022; 43:4689-4698. [PMID: 35790053 PMCID: PMC9491279 DOI: 10.1002/hbm.25983] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-age-gap estimate (brainAGE) quantifies the difference between chronological age and age predicted by applying machine-learning models to neuroimaging data and is considered a biomarker of brain health. Understanding sex differences in brainAGE is a significant step toward precision medicine. Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were computed by applying machine learning algorithms to brain structural magnetic resonance imaging data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in the Human Connectome Project. Sex differences were determined in G-brainAGE and L-brainAGE. Random forest regression was used to determine sex-specific associations between G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and mental, physical, and cognitive functions. L-brainAGE showed sex-specific differences; in females, compared to males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cortex and insula. Although sex differences in G-brainAGE were minimal, associations between G-brainAGE and non-imaging measures differed between sexes with the exception of poor sleep quality, which was common to both. While univariate relationships were small, the most important predictor of higher G-brainAGE was self-identification as non-white in males and systolic blood pressure in females. The results demonstrate the value of applying sex-specific analyses and machine learning methods to advance our understanding of sex-related differences in factors that influence the rate of brain aging and provide a foundation for targeted interventions.
Collapse
Affiliation(s)
- Nicole Sanford
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ruiyang Ge
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Shalaila S. Haas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liisa Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - James H. Cole
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Dementia Research Centre, Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sophia Frangou
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
18
|
Angebrandt A, Abulseoud OA, Kisner M, Diazgranados N, Momenan R, Yang Y, Stein EA, Ross TJ. Dose-dependent relationship between social drinking and brain aging. Neurobiol Aging 2022; 111:71-81. [PMID: 34973470 PMCID: PMC8929531 DOI: 10.1016/j.neurobiolaging.2021.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Low-level alcohol consumption is commonly perceived as being inconsequential or even beneficial for overall health, with some reports suggesting that it may protect against dementia or cardiovascular risks. However, these potential benefits do not preclude the concurrent possibility of negative health outcomes related to alcohol consumption. To examine whether casual, non-heavy drinking is associated with premature brain aging, we utilized the Brain-Age Regression Analysis and Computational Utility Software package to predict brain age in a community sample of adults [n = 240, mean age 35.1 (±10.7) years, 48% male, 49% African American]. Accelerated brain aging was operationalized as the difference between predicted and chronological age ("brain age gap"). Multiple regression analysis revealed a significant association between previous 90-day alcohol consumption and brain age gap (β = 0.014, p = 0.023). We replicated these results in an independent cohort [n = 231 adults, mean age 34.3 (±11.1) years, 55% male, 28% African American: β = 0.014, p = 0.002]. Our results suggest that even low-level alcohol consumption is associated with premature brain aging. The clinical significance of these findings remains to be investigated.
Collapse
Affiliation(s)
- Alexanndra Angebrandt
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Osama A. Abulseoud
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA,Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA,Corresponding author at: Department of Psychiatry and Psychology, Mayo Clinic, 5777 E Mayo Blvd., Phoenix, AZ 85054, USA. Phone: 480-301-8297, Fax: 480-301-6258. (O.A. Abulseoud)
| | - Mallory Kisner
- Clinical NeuroImaging Research Core, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nancy Diazgranados
- Office of Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA,Corresponding author at: Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, 251 Bayview Blvd, Baltimore, MD 21244, USA. Phone 443-740-2645, Fax 443-740-2734. (T.J. Ross)
| |
Collapse
|
19
|
Beheshti I, Geddert N, Perron J, Gupta V, Albensi BC, Ko JH. Monitoring Alzheimer's Disease Progression in Mild Cognitive Impairment Stage Using Machine Learning-Based FDG-PET Classification Methods. J Alzheimers Dis 2022; 89:1493-1502. [PMID: 36057825 PMCID: PMC9661333 DOI: 10.3233/jad-220585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND We previously introduced a machine learning-based Alzheimer's Disease Designation (MAD) framework for identifying AD-related metabolic patterns among neurodegenerative subjects. OBJECTIVE We sought to assess the efficiency of our MAD framework for tracing the longitudinal brain metabolic changes in the prodromal stage of AD. METHODS MAD produces subject scores using five different machine-learning algorithms, which include a general linear model (GLM), two different approaches of scaled subprofile modeling, and two different approaches of a support vector machine. We used our pre-trained MAD framework, which was trained based on metabolic brain features of 94 patients with AD and 111 age-matched cognitively healthy (CH) individuals. The MAD framework was applied on longitudinal independent test sets including 54 CHs, 51 stable mild cognitive impairment (sMCI), and 39 prodromal AD (pAD) patients at the time of the clinical diagnosis of AD, and two years prior. RESULTS The GLM showed excellent performance with area under curve (AUC) of 0.96 in distinguishing sMCI from pAD patients at two years prior to the time of the clinical diagnosis of AD while other methods showed moderate performance (AUC: 0.7-0.8). Significant annual increment of MAD scores were identified using all five algorithms in pAD especially when it got closer to the time of diagnosis (p < 0.001), but not in sMCI. The increased MAD scores were also significantly associated with cognitive decline measured by Mini-Mental State Examination in pAD (q < 0.01). CONCLUSION These results suggest that MAD may be a relevant tool for monitoring disease progression in the prodromal stage of AD.
Collapse
Affiliation(s)
- Iman Beheshti
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
| | - Natasha Geddert
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
- St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Jarrad Perron
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Vinay Gupta
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Benedict C. Albensi
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Science Centre, Winnipeg, MB, Canada
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
20
|
Wang M, Ren Q, Shi Y, Shu H, Liu D, Gu L, Xie C, Zhang Z, Wu T, Wang Z. The effect of Alzheimer's disease risk factors on brain aging in normal Chineses: Cognitive aging and cognitive reserve. Neurosci Lett 2021; 771:136398. [PMID: 34923042 DOI: 10.1016/j.neulet.2021.136398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Aging has been recognized as a major driving force of the Alzheimer's disease's (AD) progression, however, the relationship between brain aging and AD is still unclear. There is also a lack of studies investigating the influence of AD risk factors on brain aging in cognitively normal people. Here, the "Brain Age Gap Estimation" (BrainAGE) framework was applied to investigate the effects of AD risk factors on individual brain aging. Across a total of 165 cognitively normal elderly subjects, although no significant difference was observed in the BrainAGE scores among the three groups, AD risk dose (i.e., the number of AD risk factors) is tend to associated with an increased BrainAGE scores (high-risk > middle risk > low risk). Female exhibited more advanced brain aging (P = 0.004), and higher education years were associated with preserved brain aging (P < 0.001). APOE-ɛ4 (P = 0.846) and family history (FH) of dementia (P = 0.209) did not increase BrainAGE scores. When comparing 52 aMCI patients with 38 cognitively normal controls from ADNI dataset, aMCI patients showed significantly increased BrainAGE scores. BrainAGE scores were negatively correlated with CSF Aβ42 levels in the aMCI group (r = -0.275, P = 0.048). With an accuracy of 68.9%, BrainAGE outperformed APOE-ɛ4 and hippocampus gray matter volume (GMV) in predicting aMCI. In conclusion, AD is independently associated with structural changes in the brain that reflect advanced aging. Potentially, BrainAGE combined with APOE-ɛ4 and hippocampus GMV could be used as a pre-screening tool in early-stage AD.
Collapse
Affiliation(s)
- Mengxue Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| | - Yachen Shi
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hao Shu
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Duan Liu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Lihua Gu
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Chunming Xie
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Zhijun Zhang
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China
| | - Tiange Wu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Zan Wang
- School of Medicine, Southeast University, Nanjing 210009, China; Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, China.
| | | |
Collapse
|
21
|
Beheshti I, Ganaie MA, Paliwal V, Rastogi A, Razzak I, Tanveer M. Predicting brain age using machine learning algorithms: A comprehensive evaluation. IEEE J Biomed Health Inform 2021; 26:1432-1440. [PMID: 34029201 DOI: 10.1109/jbhi.2021.3083187] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Machine learning (ML) algorithms play a vital role in brain age estimation frameworks. The impact of regression algorithms on prediction accuracy in the brain age estimation frameworks have not been comprehensively evaluated. Here, we sought to assess the efficiency of different regression algorithms on brain age estimation. To this end, we built a brain age estimation framework based on a large set of cognitively healthy (CH) individuals (N = 788) as a training set followed by different regression algorithms (18 different algorithms in total). We then quantified each regression-algorithm on independent test sets composed of 88 CH individuals, 70 mild cognitive impairment patients as well as 30 Alzheimers disease patients. The prediction accuracy in the independent test set (i.e., CH set) varied in regression algorithms (mean absolute error (MAE) from 4.63 to 7.14 yrs, R2 from 0.76 to 0.88). The highest and lowest prediction accuracies were achieved by Quadratic Support Vector Regression algorithm (MAE = 4.63 yrs, R2 = 0.88, 95% CI = [-1.26, 1.42]) and Binary Decision Tree algorithm (MAE = 7.14 yrs, R2 = 0.76, 95% CI = [-1.50, 2.62]), respectively. Our experimental results demonstrate that prediction accuracy in brain age frameworks is affected by regression algorithms, indicating that advanced machine learning algorithms can lead to more accurate brain age predictions in clinical settings.
Collapse
|