1
|
Kim Y, McInnes J, Kim J, Liang YHW, Veeraragavan S, Garza AR, Belfort BDW, Arenkiel B, Samaco R, Zoghbi HY. Olfactory deficit and gastrointestinal dysfunction precede motor abnormalities in alpha-Synuclein G51D knock-in mice. Proc Natl Acad Sci U S A 2024; 121:e2406479121. [PMID: 39284050 PMCID: PMC11441490 DOI: 10.1073/pnas.2406479121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/09/2024] [Indexed: 10/02/2024] Open
Abstract
Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.
Collapse
Affiliation(s)
- YoungDoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Joseph McInnes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Yan Hong Wei Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Surabi Veeraragavan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Alexandra Rae Garza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin David Webst Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Rodney Samaco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX77030
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX77030
- Department of Neurology, Baylor College of Medicine, Houston, TX77030
- HHMI, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
2
|
Al-Musawi I, Dennis BH, Clowry GJ, LeBeau FEN. Evidence for prodromal changes in neuronal excitability and neuroinflammation in the hippocampus in young alpha-synuclein (A30P) transgenic mice. FRONTIERS IN DEMENTIA 2024; 3:1404841. [PMID: 39081599 PMCID: PMC11285622 DOI: 10.3389/frdem.2024.1404841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 08/02/2024]
Abstract
Introduction Neuronal hyperexcitability and neuroinflammation are thought to occur at early stages in a range of neurodegenerative diseases. Neuroinflammation, notably activation of microglia, has been identified as a potential prodromal marker of dementia with Lewy bodies (DLB). Using a transgenic mouse model of DLB that over-expresses human mutant (A30P) alpha-synuclein (hα-syn) we have investigated whether early neuroinflammation is evident in the hippocampus in young pre-symptomatic animals. Methods Previous studies have shown early hyperexcitability in the hippocampal CA3 region in male A30P mice at 2-4 months of age, therefore, in the current study we have immunostained this region for markers of neuronal activity (c-Fos), reactive astrocytes (glial fibrillary acidic protein, GFAP), microglia (ionizing calcium binding adapter protein 1, Iba-1) and reactive microglia (inducible nitric oxide synthase, iNOS). Results We found an interesting biphasic change in the expression of c-Fos in A30P mice with high expression at 1 month, consistent with early onset of hyperexcitability, but lower expression from 2-4 months in male A30P mice compared to wild-type (WT) controls, possibly indicating chronic hyperexcitability. Neuroinflammation was indicated by significant increases in the % area of GFAP and the number of Iba-1+ cells that expressed iNOS immunoreactivity in the CA3 region in 2-4 months A30P male mice compared to WT controls. A similar increase in % area of GFAP was observed in female A30P mice, however, the Iba-1 count was not different between female WT and A30P mice. In WT mice aged 2-4 months only 4.6% of Iba-1+ cells co-expressed iNOS. In contrast, in age matched A30P mice 87% of cells co-expressed Iba-1 and iNOS. Although there was no difference in GFAP immunoreactivity at 1 month, Iba-1/iNOS co-expression was also increased in a cohort of 1 month old A30P mice. Discussion Abnormal hα-syn expression in A30P mice caused early changes in network excitability, as indicated by c-Fos expression, and neuroinflammation which might contribute to disease progression.
Collapse
Affiliation(s)
| | | | | | - Fiona E. N. LeBeau
- Biosciences Institute and Centre for Transformative Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Abioye A, Akintade D, Mitchell J, Olorode S, Adejare A. Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics. Pharmaceutics 2024; 16:609. [PMID: 38794271 PMCID: PMC11124533 DOI: 10.3390/pharmaceutics16050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson's disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain's microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future.
Collapse
Affiliation(s)
- Amos Abioye
- College of Pharmacy and Health Sciences, Belmont University, Nashville, TN 37212, USA
| | - Damilare Akintade
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - James Mitchell
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Simisade Olorode
- Department of Biomedical Sciences, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK; (D.A.); (J.M.); (S.O.)
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA;
| |
Collapse
|
4
|
Wiseman JA, Murray HC, Faull RLMF, Dragunow M, Turner CP, Dieriks BV, Curtis MA. Aggregate-prone brain regions in Parkinson's disease are rich in unique N-terminus α-synuclein conformers with high proteolysis susceptibility. NPJ Parkinsons Dis 2024; 10:1. [PMID: 38167744 PMCID: PMC10762179 DOI: 10.1038/s41531-023-00614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In Parkinson's disease (PD), and other α-synucleinopathies, α-synuclein (α-Syn) aggregates form a myriad of conformational and truncational variants. Most antibodies used to detect and quantify α-Syn in the human brain target epitopes within the C-terminus (residues 96-140) of the 140 amino acid protein and may fail to capture the diversity of α-Syn variants present in PD. We sought to investigate the heterogeneity of α-Syn conformations and aggregation states in the PD human brain by labelling with multiple antibodies that detect epitopes along the entire length of α-Syn. We used multiplex immunohistochemistry to simultaneously immunolabel tissue sections with antibodies mapping the three structural domains of α-Syn. Discrete epitope-specific immunoreactivities were visualised and quantified in the olfactory bulb, medulla, substantia nigra, hippocampus, entorhinal cortex, middle temporal gyrus, and middle frontal gyrus of ten PD cases, and the middle temporal gyrus of 23 PD, and 24 neurologically normal cases. Distinct Lewy neurite and Lewy body aggregate morphologies were detected across all interrogated regions/cases. Lewy neurites were the most prominent in the olfactory bulb and hippocampus, while the substantia nigra, medulla and cortical regions showed a mixture of Lewy neurites and Lewy bodies. Importantly, unique N-terminus immunoreactivity revealed previously uncharacterised populations of (1) perinuclear, (2) glial (microglial and astrocytic), and (3) neuronal lysosomal α-Syn aggregates. These epitope-specific N-terminus immunoreactive aggregate populations were susceptible to proteolysis via time-dependent proteinase K digestion, suggesting a less stable oligomeric aggregation state. Our identification of unique N-terminus immunoreactive α-Syn aggregates adds to the emerging paradigm that α-Syn pathology is more abundant and complex in human brains with PD than previously realised. Our findings highlight that labelling multiple regions of the α-Syn protein is necessary to investigate the full spectrum of α-Syn pathology and prompt further investigation into the functional role of these N-terminus polymorphs.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| | - Helen C Murray
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Richard L M F Faull
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
- Department of Pharmacology, University of Auckland, Auckland, 1023, New Zealand
| | - Clinton P Turner
- LabPlus, Department of Anatomical Pathology, Te Whatu Ora, Auckland, New Zealand
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
5
|
Trinh D, Israwi AR, Brar H, Villafuerte JEA, Laylo R, Patel H, Jafri S, Al Halabi L, Sinnathurai S, Reehal K, Shi A, Gnanamanogaran V, Garabedian N, Pham I, Thrasher D, Monnier PP, Volpicelli-Daley LA, Nash JE. Parkinson's disease pathology is directly correlated to SIRT3 in human subjects and animal models: Implications for AAV.SIRT3-myc as a disease-modifying therapy. Neurobiol Dis 2023; 187:106287. [PMID: 37704058 DOI: 10.1016/j.nbd.2023.106287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023] Open
Abstract
In Parkinson's disease (PD), post-mortem studies in affected brain regions have demonstrated a decline in mitochondrial number and function. This combined with many studies in cell and animal models suggest that mitochondrial dysfunction is central to PD pathology. We and others have shown that the mitochondrial protein deacetylase, SIRT3, has neurorestorative effects in PD models. In this study, to determine whether there is a link between PD pathology and SIRT3, we analysed SIRT3 levels in human subjects with PD, and compared to age-matched controls. In the SNc of PD subjects, SIRT3 was reduced by 56.8 ± 15.5% compared to control, regardless of age (p < 0.05, R = 0.6539). Given that age is the primary risk factor for PD, this finding suggests that reduced SIRT3 may contribute to PD pathology. Next, we measured whether there was a correlation between α-synuclein and SIRT3. In a parallel study, we assessed the disease-modifying potential of SIRT3 over-expression in a seeding model of α-synuclein. In PFF rats, infusion of rAAV1.SIRT3-myc reduced abundance of α-synuclein inclusions by 30.1 ± 18.5%. This was not observed when deacetylation deficient SIRT3H248Y was transduced, demonstrating the importance of SIRT3 deacetylation in reducing α-synuclein aggregation. These studies confirm that there is a clear difference in SIRT3 levels in subjects with PD compared to age-matched controls, suggesting a link between SIRT3 and the progression of PD. We also demonstrate that over-expression of SIRT3 reduces α-synuclein aggregation, further validating AAV.SIRT3-myc as a potential disease-modifying solution for PD.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ahmad R Israwi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jose E A Villafuerte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ruella Laylo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Humaiyra Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sabika Jafri
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Shaumia Sinnathurai
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kiran Reehal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alyssa Shi
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Natalie Garabedian
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ivy Pham
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Drake Thrasher
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Philippe P Monnier
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Joanne E Nash
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Düchs M, Blazevic D, Rechtsteiner P, Kenny C, Lamla T, Low S, Savistchenko J, Neumann M, Melki R, Schönberger T, Stierstorfer B, Wyatt D, Igney F, Ciossek T. AAV-mediated expression of a new conformational anti-aggregated α-synuclein antibody prolongs survival in a genetic model of α-synucleinopathies. NPJ Parkinsons Dis 2023; 9:91. [PMID: 37322068 DOI: 10.1038/s41531-023-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Prion-like transmission of pathology in α-synucleinopathies like Parkinson's disease or multiple system atrophy is increasingly recognized as one potential mechanism to address disease progression. Active and passive immunotherapies targeting insoluble, aggregated α-synuclein are already being actively explored in the clinic with mixed outcomes so far. Here, we report the identification of 306C7B3, a highly selective, aggregate-specific α-synuclein antibody with picomolar affinity devoid of binding to the monomeric, physiologic protein. 306C7B3 binding is Ser129-phosphorylation independent and shows high affinity to several different aggregated α-synuclein polymorphs, increasing the likelihood that it can also bind to the pathological seeds assumed to drive disease progression in patients. In support of this, highly selective binding to pathological aggregates in postmortem brains of MSA patients was demonstrated, with no staining in samples from other human neurodegenerative diseases. To achieve CNS exposure of 306C7B3, an adeno-associated virus (AAV) based approach driving expression of the secreted antibody within the brain of (Thy-1)-[A30P]-hα-synuclein mice was used. Widespread central transduction after intrastriatal inoculation was ensured by using the AAV2HBKO serotype, with transduction being spread to areas far away from the inoculation site. Treatment of (Thy-1)-[A30P]-hα-synuclein mice at the age of 12 months demonstrated significantly increased survival, with 306C7B3 concentration reaching 3.9 nM in the cerebrospinal fluid. These results suggest that AAV-mediated expression of 306C7B3, targeting extracellular, presumably disease-propagating aggregates of α-synuclein, has great potential as a disease-modifying therapy for α-synucleinopathies as it ensures CNS exposure of the antibody, thereby mitigating the selective permeability of the blood-brain barrier.
Collapse
Affiliation(s)
- Matthias Düchs
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Dragica Blazevic
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | | | | | - Thorsten Lamla
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Sarah Low
- Boehringer Ingelheim USA, Ridgefield, CT, USA
| | | | - Manuela Neumann
- Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA, CNRS, Fontenay-aux-Roses, France
| | - Tanja Schönberger
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | | | - David Wyatt
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Frederik Igney
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany
| | - Thomas Ciossek
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.
| |
Collapse
|
7
|
Martin-Lopez E, Vidyadhara DJ, Liberia T, Meller SJ, Harmon LE, Hsu RM, Spence N, Brennan B, Han K, Yücel B, Chandra SS, Greer CA. α-Synuclein Pathology and Reduced Neurogenesis in the Olfactory System Affect Olfaction in a Mouse Model of Parkinson's Disease. J Neurosci 2023; 43:1051-1071. [PMID: 36596700 PMCID: PMC9908323 DOI: 10.1523/jneurosci.1526-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by multiple symptoms including olfactory dysfunction, whose underlying mechanisms remain unclear. Here, we explored pathologic changes in the olfactory pathway of transgenic (Tg) mice of both sexes expressing the human A30P mutant α-synuclein (α-syn; α-syn-Tg mice) at 6-7 and 12-14 months of age, representing early and late-stages of motor progression, respectively. α-Syn-Tg mice at late stages exhibited olfactory behavioral deficits, which correlated with severe α-syn pathology in projection neurons (PNs) of the olfactory pathway. In parallel, olfactory bulb (OB) neurogenesis in α-syn-Tg mice was reduced in the OB granule cells at six to seven months and OB periglomerular cells at 12-14 months, respectively, both of which could contribute to olfactory dysfunction. Proteomic analyses showed a disruption in endocytic and exocytic pathways in the OB during the early stages which appeared exacerbated at the synaptic terminals when the mice developed olfactory deficits at 12-14 months. Our data suggest that (1) the α-syn-Tg mice recapitulate the olfactory functional deficits seen in PD; (2) olfactory structures exhibit spatiotemporal disparities for vulnerability to α-syn pathology; (3) α-syn pathology is restricted to projection neurons in the olfactory pathway; (4) neurogenesis in adult α-syn-Tg mice is reduced in the OB; and (5) synaptic endocytosis and exocytosis defects in the OB may further explain olfactory deficits.SIGNIFICANCE STATEMENT Olfactory dysfunction is a characteristic symptom of Parkinson's disease (PD). Using the human A30P mutant α-synuclein (α-syn)-expressing mouse model, we demonstrated the appearance of olfactory deficits at late stages of the disease, which was accompanied by the accumulation of α-syn pathology in projection neurons (PNs) of the olfactory system. This dysfunction included a reduction in olfactory bulb (OB) neurogenesis as well as changes in synaptic vesicular transport affecting synaptic function, both of which are likely contributing to olfactory behavioral deficits.
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Teresa Liberia
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sarah J Meller
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Leah E Harmon
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Ryan M Hsu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Natalie Spence
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Bowen Brennan
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Kimberly Han
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Betül Yücel
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Charles A Greer
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
8
|
Lashuel HA, Mahul-Mellier AL, Novello S, Hegde RN, Jasiqi Y, Altay MF, Donzelli S, DeGuire SM, Burai R, Magalhães P, Chiki A, Ricci J, Boussouf M, Sadek A, Stoops E, Iseli C, Guex N. Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. NPJ Parkinsons Dis 2022; 8:136. [PMID: 36266318 PMCID: PMC9584898 DOI: 10.1038/s41531-022-00388-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ritwik Burai
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Ricci
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Manel Boussouf
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ahmed Sadek
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
9
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
10
|
Leveraging the preformed fibril model to distinguish between alpha-synuclein inclusion- and nigrostriatal degeneration-associated immunogenicity. Neurobiol Dis 2022; 171:105804. [PMID: 35764290 PMCID: PMC9803935 DOI: 10.1016/j.nbd.2022.105804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 01/03/2023] Open
Abstract
Neuroinflammation has become a well-accepted pathologic hallmark of Parkinson's disease (PD). However, it remains unclear whether inflammation, triggered by α-syn aggregation and/or degeneration, contributes to the progression of the disease. Studies examining neuroinflammation in PD are unable to distinguish between Lewy body-associated inflammation and degeneration-associated inflammation, as both pathologies are present simultaneously. Intrastriatal and intranigral injections of alpha-synuclein (α-syn) preformed fibrils (PFFs) results in two distinct pathologic phases: Phase 1: The accumulation and peak formation of α-syn inclusions in nigrostriatal system and, Phase 2: Protracted dopaminergic neuron degeneration. In this review we summarize the current understanding of neuroinflammation in the α-syn PFF model, leveraging the distinct Phase 1 aggregation phase and Phase 2 degeneration phase to guide our interpretations. Studies consistently demonstrate an association between pathologic α-syn aggregation in the substantia nigra (SN) and activation of the innate immune system. Further, major histocompatibility complex-II (MHC-II) antigen presentation is proportionate to inclusion load. The α-syn aggregation phase is also associated with peripheral and adaptive immune cell infiltration to the SN. These findings suggest that α-syn like aggregates are immunogenic and thus have the potential to contribute to the degenerative process. Studies examining neuroinflammation during the neurodegenerative phase reveal elevated innate, adaptive, and peripheral immune cell markers, however limitations of single time point experimental design hinder interpretations as to whether this neuroinflammation preceded, or was triggered by, nigral degeneration. Longitudinal studies across both the aggregation and degeneration phases of the model suggest that microglial activation (MHC-II) is greater in magnitude during the aggregation phase that precedes degeneration. Overall, the consistency between neuroinflammatory markers in the parkinsonian brain and in the α-syn PFF model, combined with the distinct aggregation and degenerative phases, establishes the utility of this model platform to yield insights into pathologic events that contribute to neuroinflammation and disease progression in PD.
Collapse
|