1
|
Zhan Y, Cai DC, Liu Y, Song F, Shan F, Song P, Chen G, Zhang Y, Wang H, Shi Y. Altered metabolism in right basal ganglia associated with asymptomatic neurocognitive impairment in HIV-infected individuals. Heliyon 2024; 10:e23342. [PMID: 38169709 PMCID: PMC10758793 DOI: 10.1016/j.heliyon.2023.e23342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/02/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background Only few studies have focused on the metabolite differences between asymptomatic neurocognitive impairment (ANI) and cognitively normal people living with HIV (PLWH). The current study aims to examine whether brain metabolisms in basal ganglia (BG) by magnetic resonance spectroscopy (MRS) were potential to discriminate ANI from cognitively normal PLWH. Methods According to neuropsychological (NP) test, 80 PLWH (37.4 ± 10.2 years) were divided into ANI group (HIV-ANI, n = 31) and NP normal group (HIV-normal, n = 49). Brain metabolisms by MRS from right BG were compared between groups, including N-acetylaspartate and N-acetyl aspartylglutamate (tNAA), creatine and phosphocreatine (tCr), and choline-containing compounds (tCho). A total value of three metabolites were introduced. All brain metabolisms were evaluated as its percentage of total. Furthermore, correlations between MRS and NP and clinical measures were evaluated. A logistic regression model was applied, and the AUC values for the model and the continuous factors were compared using receiver operating curve (ROC) analysis. Results Compared to HIV-normal group, tNAA/total was lower and tCr/total was higher in the HIV-ANI group (P < 0.05). Both tNAA/total and tCr/total values were correlated with NP score (P < 0.05), especially in verbal fluency, speed of information processing, learning, and recall (P < 0.05). The logistic model included BG-tCr/total, current CD4 and infection years of PLWH. The AUC value for the BG-tCr/total was 0.696 and was not significantly lower than that for logistic model (P < 0.01). Conclusion The altered brain metabolites in the right BG were found in the ANI group compared to PLWH with normal cognition, and further associated with NP deficits. The current findings indicated that brain metabolites assessed by MRS has the potential to discriminate ANI from cognitively normal PLWH.
Collapse
Affiliation(s)
- Yi Zhan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pengrui Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochao Chen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yijun Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Williams SR, Robertson FC, Wedderburn CJ, Ringshaw JE, Bradford L, Nyakonda CN, Hoffman N, Joshi SH, Zar HJ, Stein DJ, Donald KA. 1H-MRS neurometabolite profiles and motor development in school-aged children who are HIV-exposed uninfected: a birth cohort study. Front Neurosci 2023; 17:1251575. [PMID: 37901429 PMCID: PMC10600451 DOI: 10.3389/fnins.2023.1251575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Alterations in regional neurometabolite levels as well as impaired neurodevelopmental outcomes have previously been observed in children who are HIV-exposed uninfected (CHEU). However, little is known about how neurometabolite profiles may relate to their developmental impairment. This study aimed to compare neurometabolite concentrations in school-aged CHEU and children who are HIV-unexposed (CHU) and to explore associations of neurometabolite profiles with functional neurodevelopment in the context of perinatal HIV exposure. Methods We used 3 T single voxel proton magnetic resonance spectroscopy (1H-MRS) to quantify absolute and relative neurometabolites in the parietal gray and parietal white matter in school-aged CHEU and aged- and community-matched CHU. Functional neurodevelopmental outcomes were assessed using the early learning outcome measure (ELOM) tool at 6 years of age. Results Our study included 152 school-aged children (50% males), 110 CHEU and 42 CHU, with an average age of 74 months at the neuroimaging visit. In an adjusted multiple linear regression analysis, significantly lower glutamate (Glu) concentrations were found in CHEU as compared to CHU in the parietal gray matter (absolute Glu, p = 0.046; Glu/total creatine (Cr+PCr) ratios, p = 0.035) and lower total choline to creatine ratios (GPC+PCh/Cr+PCr) in the parietal white matter (p = 0.039). Using factor analysis and adjusted logistic regression analysis, a parietal gray matter Glu and myo-inositol (Ins) dominated factor was associated with HIV exposure status in both unadjusted (OR 0.55, 95% CI 0.17-0.45, p = 0.013) and adjusted analyses (OR 0.59, 95% CI 0.35-0.94, p = 0.031). With Ins as one of the dominating metabolites, this neurometabolic factor was similar to that found at the age of two years. Furthermore, this factor was also found to be correlated with ELOM scores of gross motor development in CHEU (Pearson's r = -0.48, p = 0.044). In addition, in CHEU, there was a significant association between Ins/Cr+PCr ratios in the parietal white matter and ELOM scores of fine motor coordination and visual motor integration in CHEU (Pearson's r = 0.51, p = 0.032). Conclusion Reduced Glu concentrations in the parietal gray matter may suggest regional alterations in excitatory glutamatergic transmission pathways in the context of perinatal HIV and/or antiretroviral therapy (ART) exposure, while reduced Cho ratios in the parietal white matter suggest regional myelin loss. Identified associations between neurometabolite profiles and gross and fine motor developmental outcomes in CHEU are suggestive of a neurometabolic mechanism that may underlie impaired motor neurodevelopmental outcomes observed in CHEU.
Collapse
Affiliation(s)
- Simone R. Williams
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C. Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Catherine J. Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jessica E. Ringshaw
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Layla Bradford
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Charmaine N. Nyakonda
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Shantanu H. Joshi
- Departments of Neurology and Bioengineering, UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J. Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Prisciandaro JJ, Zöllner HJ, Murali-Manohar S, Oeltzschner G, Edden RAE. More than one-half of the variance in in vivo proton MR spectroscopy metabolite estimates is common to all metabolites. NMR IN BIOMEDICINE 2023; 36:e4907. [PMID: 36651918 PMCID: PMC10272046 DOI: 10.1002/nbm.4907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 05/12/2023]
Abstract
The present study characterized associations among brain metabolite levels, applying bivariate and multivariate (i.e., factor analysis) statistical methods to total creatine (tCr)-referenced estimates of the major Point RESolved Spectroscopy (PRESS) proton MR spectroscopy (1 H-MRS) metabolites (i.e., total NAA/tCr, total choline/tCr, myo-inositol/tCr, glutamate + glutamine/tCr) acquired at 3 T from medial parietal lobe in a large (n = 299), well-characterized international cohort of healthy volunteers. Results supported the hypothesis that 1 H-MRS-measured metabolite estimates are moderately intercorrelated (Mr = 0.42, SDr = 0.11, ps < 0.001), with more than one-half (i.e., 57%) of the total variability in metabolite estimates explained by a single common factor. Older age was significantly associated with lower levels of the identified common metabolite variance (CMV) factor (β = -0.09, p = 0.048), despite not being associated with levels of any individual metabolite. Holding CMV factor levels constant, females had significantly lower levels of total choline (i.e., unique metabolite variance; β = -0.19, p < 0.001), mirroring significant bivariate correlations between sex and total choline reported previously. Supplementary analysis of water-referenced metabolite estimates (i.e., including tCr/water) demonstrated lower, although still substantial, intercorrelations among metabolites, with 37% of total metabolite variance explained by a single common factor. If replicated, these results would suggest that applied 1 H-MRS researchers shift their analytical framework from examining bivariate associations between individual metabolites and specialty-dependent (e.g., clinical, research) variables of interest (e.g., using t-tests) to examining multivariable (i.e., covariate) associations between multiple metabolites and specialty-dependent variables of interest (e.g., using multiple regression).
Collapse
Affiliation(s)
- James J. Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Bertran-Cobo C, Wedderburn CJ, Robertson FC, Subramoney S, Narr KL, Joshi SH, Roos A, Rehman AM, Hoffman N, Zar HJ, Stein DJ, Donald KA. A Neurometabolic Pattern of Elevated Myo-Inositol in Children Who Are HIV-Exposed and Uninfected: A South African Birth Cohort Study. Front Immunol 2022; 13:800273. [PMID: 35419007 PMCID: PMC8995436 DOI: 10.3389/fimmu.2022.800273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Exposure to maternal HIV in pregnancy may be a risk factor for impaired child neurodevelopment during the first years of life. Altered neurometabolites have been associated with HIV exposure in older children and may help explain the mechanisms underlying this risk. For the first time, we explored neurometabolic profiles of children who are HIV-exposed and uninfected (CHEU) compared to children who are HIV-unexposed (CHU) at 2-3 years of age. Methods The South African Drakenstein Child Health Study enrolled women during pregnancy and is following mother-child pairs through childhood. MRI scans were acquired on a sub-group of children at 2-3 years. We used single voxel magnetic resonance spectroscopy to measure brain metabolite ratios to total creatine in the parietal grey matter, and left and right parietal white matter of 83 children (36 CHEU; 47 CHU). Using factor analysis, we explored brain metabolite patterns in predefined parietal voxels in these groups using logistic regression models. Differences in relative concentrations of individual metabolites (n-acetyl-aspartate, myo-inositol, total choline, and glutamate) to total creatine between CHEU and CHU groups were also examined. Results Factor analysis revealed four different metabolite patterns, each one characterized by covarying ratios of a single metabolite in parietal grey and white matter. The cross-regional pattern dominated by myo-inositol, a marker for glial reactivity and inflammation, was associated with HIV exposure status (OR 1.63; 95% CI 1.11-2.50) which held after adjusting for child age, sex, and maternal alcohol use during pregnancy (OR 1.59; 95% CI 1.07 -2.47). Additionally, higher relative concentrations of myo-inositol to total creatine were found in left and right parietal white matter of CHEU compared to CHU (p=0.025 and p=0.001 respectively). Discussion Increased ratios of myo-inositol to total creatine in parietal brain regions at age 2-3 years in CHEU are suggestive of early and ongoing neuroinflammatory processes. Altered relative concentrations of neurometabolites were found predominantly in the white matter, which is sensitive to neuroinflammation, and may contribute to developmental risk in this population. Future work on the trajectory of myo-inositol over time in CHEU, alongside markers of neurocognitive development, and the potential for specific neurodevelopmental interventions will be useful.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Research Master Brain and Cognitive Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Catherine J Wedderburn
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Frances C Robertson
- Department of Human Biology, University of Cape Town, Cape Town, South Africa.,Cape Universities Body Imaging Centre (CUBIC), Cape Town, South Africa
| | - Sivenesi Subramoney
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantanu H Joshi
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Annerine Roos
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Cape Town, South Africa
| | - Andrea M Rehman
- MRC International Statistics & Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten A Donald
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa.,Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Morgello S, Buyukturkoglu K, Murray J, Veenstra M, Berman JW, Byrd D, Inglese M. MR spectroscopy and diffusion imaging in people with human immunodeficiency virus: Relationships to clinical and immunologic findings. J Neuroimaging 2022; 32:158-170. [PMID: 34520593 PMCID: PMC8752497 DOI: 10.1111/jon.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Departments of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Mike Veenstra
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Joan W. Berman
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Desiree Byrd
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Department of Psychology, Queens College and the Graduate Center, City University of New York, Queens, New York
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
MRS suggests multi-regional inflammation and white matter axonal damage at 11 years following perinatal HIV infection. NEUROIMAGE-CLINICAL 2020; 28:102505. [PMID: 33395994 PMCID: PMC7721646 DOI: 10.1016/j.nicl.2020.102505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The neurological changes in children living with perinatal HIV (PHIV) on antiretroviral therapy (ART) can be studied at a metabolic level through proton magnetic resonance spectroscopy. While previous studies in children have largely focused on individual metabolite changes, investigating patterns within and across regions of interest can aid in identifying metabolic markers of HIV infection. In this study 76 children with PHIV from the Children with HIV Early AntiRetroviral (CHER) trial, 30 children who were HIV-exposed-uninfected (HEU) and 30 children who were HIV-unexposed (HU), were scanned at the age of 11.6 (sd = 0.3) years using a 3 T Skyra scanner. Metabolite concentrations were quantified within the basal ganglia (BG), midfrontal gray matter (MFGM) and peritrigonal white matter (PWM), comparing levels between HIV status groups using linear regression. Factor analysis and logistic regression were performed to identify metabolic patterns characteristic of HIV infection within and across the regions of interest. In the BG region we observed restored metabolic activity in children with PHIV and children who were HEU, despite differences being previously observed at younger ages, suggesting that treatment may effectively reduce the effects of HIV infection and exposure. Elevated MFGM choline levels in children with PHIV are indicative of inflammation. Further, we observed reduced N-acetyl-aspartate (NAA) in the PWM of children with PHIV and children who were HEU, indicating possible axonal damage. Lower levels of PWM creatine in children with PHIV suggest that this may not be a valid reference metabolite in HIV studies. Finally, factor scores for a cross-regional inflammatory factor and a PWM axonal factor, driven by PWM NAA and creatine levels, distinguished children with PHIV from children without HIV (HEU and HU) at 11 years. Therefore, the effects of perinatal HIV infection and exposure continue to be seen at 11 years despite early treatment.
Collapse
|
7
|
Popov M, Molsberry SA, Lecci F, Junker B, Kingsley LA, Levine A, Martin E, Miller E, Munro CA, Ragin A, Seaberg E, Sacktor N, Becker JT. Brain structural correlates of trajectories to cognitive impairment in men with and without HIV disease. Brain Imaging Behav 2020; 14:821-829. [PMID: 30623289 PMCID: PMC6616021 DOI: 10.1007/s11682-018-0026-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are distinct trajectories to cognitive impairment among participants in the Multicenter AIDS Cohort Study (MACS). Here we analyzed the relationship between regional brain volumes and the individual trajectories to impairment in a subsample (n = 302) of the cohort. 302 (167 HIV-infected; mean age = 55.7 yrs.; mean education: 16.2 yrs.) of the men enrolled in the MACS MRI study contributed data to this analysis. We used voxel-based morphometry (VBM) to segment the brain images to analyze gray and white matter volume at the voxel-level. A Mixed Membership Trajectory Model had previously identified three distinct profiles, and each study participant had a membership weight for each of these three trajectories. We estimated VBM model parameters for 100 imputations, manually performed the post-hoc contrasts, and pooled the results. We examined the associations between brain volume at the voxel level and the MMTM membership weights for two profiles: one considered "unhealthy" and the other considered "Premature aging." The unhealthy profile was linked to the volume of the posterior cingulate gyrus/precuneus, the inferior frontal cortex, and the insula, whereas the premature aging profile was independently associated with the integrity of a portion of the precuneus. Trajectories to cognitive impairment are the result, in part, of atrophy in cortical regions linked to normal and pathological aging. These data suggest the possibility of predicting cognitive morbidity based on patterns of CNS atrophy.
Collapse
Affiliation(s)
- Mikhail Popov
- Department of Psychiatry, University of Pittsburgh, Suite 830, 3501 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Wikimedia Foundation, San Francisco, CA, USA
| | - Samantha A Molsberry
- Department of Psychiatry, University of Pittsburgh, Suite 830, 3501 Forbes Avenue, Pittsburgh, PA, 15213, USA
- Population Health Sciences, Harvard University, Cambridge, MA, USA
| | - Fabrizio Lecci
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
- Uber, New York, NY, USA
| | - Brian Junker
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lawrence A Kingsley
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew Levine
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Eileen Martin
- Department of Psychiatry, Rush Medical School, Chicago, IL, USA
| | - Eric Miller
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
| | - Cynthia A Munro
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann Ragin
- Department of Radiology, Northwestern University, Evanston, IL, USA
| | - Eric Seaberg
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ned Sacktor
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James T Becker
- Department of Psychiatry, University of Pittsburgh, Suite 830, 3501 Forbes Avenue, Pittsburgh, PA, 15213, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Polyanskiy DA, Kalinin VV. [Characteristics of psychopathological symptomatology in HIV-infection schizophrenic patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:11-14. [PMID: 28617372 DOI: 10.17116/jnevro20171174111-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the psychopathological structure of psychotic syndromes in HIV-infected schizophrenic patients and in patients without HIV infection. MATERIAL AND METHODS Forty HIV-infected patients, 23 women and 17 men, with confirmed diagnosis of schizophrenia were included in the study. The control group consisted of 40 patients without HIV infection, 23 women (48%) and 17 men (52%). The psychopathological state in all patients was assessed with the PANSS. Flow cytometry was used to measure immunological parameters in HIV-infected patients. Data analysis included principal component analysis. RESULTS AND CONCLUSION There were independent positive, negative and affective symptoms in the structure of syndromes of schizophrenic patients without HIV. The structure of syndromes in HIV-infected schizophrenic patients included cognitive deficit as well.
Collapse
Affiliation(s)
- D A Polyanskiy
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - V V Kalinin
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Alakkas A, Ellis RJ, Watson CWM, Umlauf A, Heaton RK, Letendre S, Collier A, Marra C, Clifford DB, Gelman B, Sacktor N, Morgello S, Simpson D, McCutchan JA, Kallianpur A, Gianella S, Marcotte T, Grant I, Fennema-Notestine C. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol 2019; 25:32-41. [PMID: 30291567 PMCID: PMC6416232 DOI: 10.1007/s13365-018-0682-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
HIV-associated neurocognitive disorders (HANDs) persist even with virologic suppression on combination antiretroviral therapy (cART), and the underlying pathophysiological mechanisms are not well understood. We performed structural magnetic resonance imaging and MR spectroscopy (MRS) in HIV+ individuals without major neurocognitive comorbidities. Study participants were classified as neurocognitively unimpaired (NU), asymptomatic (ANI), mild neurocognitive disorder (MND), or HIV-associated dementia (HAD). Using structural MRI, we measured volumes of cortical and subcortical gray matter and total and abnormal white matter (aWM). Using single-voxel MRS, we estimated metabolites in frontal gray matter (FGM) and frontal white matter (FWM) and basal ganglia (BG) regions. Adjusted odds ratios were used to compare HAND to NU. Among 253 participants, 40% met HAND criteria (21% ANI, 15% MND, and 4% HAD). Higher risk of HAND was associated with more aWM. Both HAD and MND also had smaller gray and white matter volumes than NU. Among individuals with undetectable plasma HIV RNA, structural volumetric findings were similar to the overall sample. MND had lower FWM creatine and higher FGM choline relative to NU, whereas HAD and ANI had lower BG N-acetyl aspartate relative to NU. In the virologically suppressed subgroup, however, ANI and MND had higher FGM choline compared to NU. Overall, HAND showed specific alterations (more aWM and inflammation; less gray matter volume and lower NAA). Some MR measures differentiated less severe subtypes of HAND from HAD. These MR alterations may represent legacy effects or accumulating changes, possibly related to medical comorbidities, antiretroviral therapy, or chronic effects of HIV brain infection.
Collapse
Affiliation(s)
| | - Ronald J Ellis
- University of California at San Diego, La Jolla, CA, USA
| | | | - Anya Umlauf
- University of California at San Diego, La Jolla, CA, USA
| | | | - Scott Letendre
- University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | - Ned Sacktor
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Asha Kallianpur
- Cleveland Clinic and Lerner Research Institute, Cleveland, OH, USA
| | - Sara Gianella
- University of California at San Diego, La Jolla, CA, USA
| | | | - Igor Grant
- University of California at San Diego, La Jolla, CA, USA
| | | |
Collapse
|
10
|
Neural response to working memory demand predicts neurocognitive deficits in HIV. J Neurovirol 2017; 24:291-304. [PMID: 29280107 DOI: 10.1007/s13365-017-0607-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023]
Abstract
Human immunodeficiency virus (HIV) continues to have adverse effects on cognition and the brain in many infected people, despite a reduced incidence of HIV-associated dementia with combined antiretroviral therapy (cART). Working memory is often affected, along with attention, executive control, and cognitive processing speed. Verbal working memory (VWM) requires the interaction of each of the cognitive component processes along with a phonological loop for verbal repetition and rehearsal. HIV-related functional brain response abnormalities during VWM are evident in functional MRI (fMRI), though the neural substrate underlying these neurocognitive deficits is not well understood. The current study addressed this by comparing 24 HIV+ to 27 demographically matched HIV-seronegative (HIV-) adults with respect to fMRI activation on a VWM paradigm (n-back) relative to performance on two standardized tests of executive control, attention and processing speed (Stroop and Trail Making A-B). As expected, the HIV+ group had deficits on these neurocognitive tests compared to HIV- controls, and also differed in neural response on fMRI relative to neuropsychological performance. Reduced activation in VWM task-related brain regions on the 2-back was associated with Stroop interference deficits in HIV+ but not with either Trail Making A or B performance. Activation of the posterior cingulate cortex (PCC) of the default mode network during rest was associated with Hopkins Verbal Learning Test-2 (HVLT-2) learning in HIV+. These effects were not observed in the HIV- controls. Reduced dynamic range of neural response was also evident in HIV+ adults when activation on the 2-back condition was compared to the extent of activation of the default mode network during periods of rest. Neural dynamic range was associated with both Stroop and HVLT-2 performance. These findings provide evidence that HIV-associated alterations in neural activation induced by VWM demands and during rest differentially predict executive-attention and verbal learning deficits. That the Stroop, but not Trail Making was associated with VWM activation suggests that attentional regulation difficulties in suppressing interference and/or conflict regulation are a component of working memory deficits in HIV+ adults. Alterations in neural dynamic range may be a useful index of the impact of HIV on functional brain response and as a fMRI metric in predicting cognitive outcomes.
Collapse
|
11
|
O'Connor EE, Zeffiro TA, Zeffiro TA. Brain Structural Changes following HIV Infection: Meta-Analysis. AJNR Am J Neuroradiol 2017; 39:54-62. [PMID: 29097412 DOI: 10.3174/ajnr.a5432] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Numerous studies have used structural neuroimaging to measure HIV effects on brain macroarchitecture. While many have reported changes in total brain volume, gray matter volume, white matter volume, CSF volume, and basal ganglia volume following HIV infection, quantitative inconsistencies observed across studies are large. PURPOSE Our aim was to evaluate the consistency and temporal stability of serostatus effects on a range of structural neuroimaging measures. DATA SOURCES PubMed, reference lists, and corresponding authors. STUDY SELECTION The meta-analysis included 19 cross-sectional studies reporting HIV effects on cortical and subcortical volume from 1993 to 2016. DATA ANALYSIS Random-effects meta-analysis was used to estimate individual study standardized mean differences and study heterogeneity. Meta-regression was used to examine the effects of the study publication year. DATA SYNTHESIS Meta-analysis revealed standardized mean differences related to the serostatus of -0.65 (P = .002) for total brain volume, -0.28 for gray matter volume (P = .008), -0.24 (P = .076) for white matter volume, and 0.56 (P = .001) for CSF volume. Basal ganglia volume differences related to serostatus were not significant. Nevertheless, estimates of between-study heterogeneity suggested that much of the observed variance was between studies. Publication year was associated with recent reductions in many neurostructural effects. LIMITATIONS Many studies pooled participants with varying durations of treatment, disease, and comorbidities. Image-acquisition methods changed with time. CONCLUSIONS While published studies of HIV effects on brain structure had substantial variations that are likely to result from changes in HIV treatment practice during the study period, quantitative neurostructural measures can reliably detect the effects of HIV infection during treatment, serving as reliable biomarkers.
Collapse
Affiliation(s)
- E E O'Connor
- From the Department of Radiology (E.E.O.), University of Maryland Medical System, Baltimore, Maryland
| | - Timothy A Zeffiro
- Neurometrika (Timothy A. Zeffiro, Thomas A. Zeffiro), Potomac, Maryland
| | - Thomas A Zeffiro
- Neurometrika (Timothy A. Zeffiro, Thomas A. Zeffiro), Potomac, Maryland
| |
Collapse
|
12
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
13
|
Gougeon ML, Poirier-Beaudouin B, Durant J, Lebrun-Frenay C, Saïdi H, Seffer V, Ticchioni M, Chanalet S, Carsenti H, Harvey-Langton A, Laffon M, Cottalorda J, Pradier C, Dellamonica P, Vassallo M. HMGB1/anti-HMGB1 antibodies define a molecular signature of early stages of HIV-Associated Neurocognitive Isorders (HAND). Heliyon 2017; 3:e00245. [PMID: 28224137 PMCID: PMC5310155 DOI: 10.1016/j.heliyon.2017.e00245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/04/2017] [Accepted: 02/02/2017] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HAND) persist in the post-HAART era, characterized by asymptomatic neurocognitive impairment (ANI) and mild neurocognitive disorders (MND). High mobility group box 1 (HMGB1) is a non-histone chromosomal protein widely expressed in the nucleus of all eukaryotic cells, including brain cells, which acts as a potent proinflammatory cytokine when actively secreted from immune cells. Recent reports suggested that HMGB1 acts on microglial cells to promote neuroinflammation. In this study, our aim was to determine whether HMGB1 is involved in HAND, but also to identify early new markers of neurological impairment in HIV-infected patients. METHODS CSF and serum were collected from 103 HIV-1-infected patients enrolled in Neuradapt, a prospective study of the prevalence of HAND in HIV-1 infected patients at Nice University Hospital. Stored fluids were assessed for immunological, virological, and brain metabolite parameters. In addition to HIV RNA and DNA measurements, expression of T-cell surface markers of activation (CD38 and HLA-DR) was analyzed on whole blood. Concentration of 27 cytokines and chemokines was measured using multiplex bead assays on serum and CSF. Concentration of HMGB1 and anti-HMGB1 IgG autoantibodies were also measured on the same samples. Changes in cerebral metabolites N-acetyl aspartate (NAA), Choline (Cho) and creatinine (Cr) were assessed by magnetic resonance microscopy (MRS). RESULTS Clinical, virological and immunological characteristics were comparable between HAND (n = 30) and no HAND (n = 73) patients, except the absolute numbers of CD8+ T cells, which were higher in patients with HAND. Among the 29 molecules tested, only 4 of them were significantly upregulated in the CSF from HAND patients as compared to healthy donors i.e. HMGB1, anti-HMGB1 IgG antibodies, IP-10 and MCP1. CSF HMGB1 levels were positively correlated with HIV-1 DNA in aviremic HAND patients, suggesting a positive impact of HMGB1 on HIV reservoirs. Moreover, in contrast to NAA/Cr and Cho/NAA ratios, circulating anti-HMGB1 IgG antibody levels could discriminate patients with no HAND from patients with no HAND and a single deficit (average ROC-AUC = 0.744, p = 0.03 for viremic patients), thus enabling the identification of a very early stage of neurocognitive impairment. CONCLUSION We report that brain injury in chronically HIV-infected patients on stable HAART is strongly associated with persistent CNS inflammation, which is correlated with increased levels of HMGB1 and anti-HMGB1 IgG in the CSF. Moreover, we identified circulating anti-HMGB1 IgG as a very early biomarker of neurological impairment in patients without HAND. These results might have important implication for the identification of patients who are at high risk of developing neurological disorders.
Collapse
Affiliation(s)
- Marie-Lise Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Béatrice Poirier-Beaudouin
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Jacques Durant
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | | | - Héla Saïdi
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Valérie Seffer
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| | - Michel Ticchioni
- University of Nice, L'Archet Hospital, Immunology Laboratory Unit, Nice, France
| | - Stephane Chanalet
- University of Nice, Pasteur Hospital, Department of Radiology, Nice, France
| | - Helene Carsenti
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | | | - Muriel Laffon
- University of Nice, Pasteur Hospital, Department of Neurology, Nice, France
| | | | - Christian Pradier
- University of Nice, Department of Public Health, L'Archet Hospital, Nice, France
| | - Pierre Dellamonica
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France
| | - Matteo Vassallo
- University of Nice, L'Archet Hospital, Department of Infectious Diseases, Nice, France; Cannes General Hospital, Department of Internal Medicine, Cannes, France
| |
Collapse
|
14
|
HIV-associated CD4+/CD8+ depletion in infancy is associated with neurometabolic reductions in the basal ganglia at age 5 years despite early antiretroviral therapy. AIDS 2016; 30:1353-62. [PMID: 26959509 DOI: 10.1097/qad.0000000000001082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Investigating consequences of early or late antiretroviral therapy (ART) initiation in infancy on young brain development using magnetic resonance spectroscopy. DESIGN Most pediatric HIV/ART-related neurological studies are from neuropsychological/clinical perspectives. Magnetic resonance spectroscopy can elucidate the mechanisms underpinning neurocognitive outcomes by quantifying the brain's chemical condition through localized metabolism to provide insights into health and development. METHODS Basal ganglia metabolite concentrations were assessed in thirty-eight 5-year-old HIV-infected children previously participating in a randomized trial comparing early limited ART to deferred continuous ART, as well as 15 uninfected controls (12 HIV exposed). Metabolite levels were compared between 26 infected children who initiated ART at/before 12 weeks and 12 who initiated afterward, and were correlated with clinical HIV and treatment-related measures. RESULTS HIV-infected children initiating ART after 12 weeks had lower creatine, choline and glutamate (P < 0.05) than those initiating ART at/before 12 weeks. The CD4/CD8 ratio at baseline correlated with N-acetyl-aspartate (r = 0.56, P = 0.003) and choline (r = 0.36, P = 0.03) at 5 years, irrespective of treatment regimen and ART interruption. In comparison with uninfected controls, 80% of whom were HIV-exposed in utero, children on early treatment had higher N-acetyl-aspartate (P = 0.006) and choline (P = 0.03). CONCLUSIONS Despite early ART (<12 weeks), low baseline CD4/CD8 predicts brain metabolite levels in later childhood. Also, HIV exposure and antiretroviral exposure for preventing vertical HIV transmission may hinder metabolite health, but needs further investigation.
Collapse
|
15
|
Tivarus ME, Pester B, Schmidt C, Lehmann T, Zhu T, Zhong J, Leistritz L, Schifitto G. Are Structural Changes Induced by Lithium in the HIV Brain Accompanied by Changes in Functional Connectivity? PLoS One 2015; 10:e0139118. [PMID: 26436895 PMCID: PMC4593570 DOI: 10.1371/journal.pone.0139118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/09/2015] [Indexed: 01/12/2023] Open
Abstract
Lithium therapy has been shown to affect imaging measures of brain function and microstructure in human immunodeficiency virus (HIV)-infected subjects with cognitive impairment. The aim of this proof-of-concept study was to explore whether changes in brain microstructure also entail changes in functional connectivity. Functional MRI data of seven cognitively impaired HIV infected individuals enrolled in an open-label lithium study were included in the connectivity analysis. Seven regions of interest (ROI) were defined based on previously observed lithium induced microstructural changes measured by Diffusion Tensor Imaging. Generalized partial directed coherence (gPDC), based on time-variant multivariate autoregressive models, was used to quantify the degree of connectivity between the selected ROIs. Statistical analyses using a linear mixed model showed significant differences in the average node strength between pre and post lithium therapy conditions. Specifically, we found that lithium treatment in this population induced changes suggestive of increased strength in functional connectivity. Therefore, by exploiting the information about the strength of functional interactions provided by gPDC we can quantify the connectivity changes observed in relation to a given intervention. Furthermore, in conditions where the intervention is associated with clinical changes, we suggest that this methodology could enable an interpretation of such changes in the context of disease or treatment induced modulations in functional networks.
Collapse
Affiliation(s)
- Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Britta Pester
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christoph Schmidt
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tong Zhu
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianhui Zhong
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lutz Leistritz
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- * E-mail:
| | - Giovanni Schifitto
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Rochester Medical Center, Rochester New York, United States of America
| |
Collapse
|
16
|
Plasma and Cerebrospinal Fluid Biomarkers Predict Cerebral Injury in HIV-Infected Individuals on Stable Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2015; 69:29-35. [PMID: 25622053 DOI: 10.1097/qai.0000000000000532] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES HIV-associated brain injury persists despite combination antiretroviral therapy, but contributing factors remain poorly understood. We postulated that inflammation-associated biomarkers will be associated with cerebral injury on proton magnetic resonance spectroscopy in chronically HIV-infected subjects. METHODS Five biomarkers were measured in 197 HIV-infected subjects: soluble CD14, MCP-1, IP-10, MIP-1β, and fractalkine. Levels of N-acetyl aspartate (NAA), Choline (Cho), Myoinositol (MI), Glutamate + Glutamine (Glx), and Creatine (Cr) were acquired in the midfrontal cortex (MFC), frontal white matter, and basal ganglia (BG). Predictive models were built through linear regression, and the best models were chosen using the Akaike Information Criterion. RESULTS Increases in plasma or CSF MCP-1 were associated with lower NAA/Cr in the MFC and BG, whereas metabolite changes in the frontal white matter for NAA/Cr, GlxCr, and Cho/Cr were explained almost exclusively by a single factor, sCD14. Plasma and CSF levels of this factor were also significantly associated with Glx/Cr in MFC and BG. Higher CSF FKN was associated with higher NAA/Cr in BG. Best predictors for higher Cho/Cr in BG and MFC were CSF sCD14 and CSF MIP-1β. Plasma and CSF IP-10 were only associated with Cho/Cr in MFC. Of the 3 models that simultaneously accounted for both plasma and CSF, there were more associations between CSF biomarkers and magnetic resonance spectroscopy metabolites. CONCLUSIONS Markers of inflammation and immune activation, in particular MCP-1 and sCD14, predominantly reflecting CNS sources, contribute to the persistence of brain injury in a metabolite and region-dependent manner in chronically HIV-infected patients on stable combination antiretroviral therapy.
Collapse
|
17
|
Anderson AM, Fennema-Notestine C, Umlauf A, Taylor MJ, Clifford DB, Marra CM, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Simpson DM, Morgello S, Grant I, Letendre SL. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease. J Neurovirol 2015; 21:559-67. [PMID: 26069183 DOI: 10.1007/s13365-015-0359-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/09/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) persist despite combination antiretroviral therapy (cART), supporting the need to better understand HIV neuropathogenesis. Magnetic resonance spectroscopy (MRS) of the brain has demonstrated abnormalities in HIV-infected individuals despite cART. We examined the associations between MRS metabolites and selected cerebrospinal fluid (CSF) biomarkers reflecting monocyte/macrophage activation and chemotaxis. A multicenter cross-sectional study involving five sites in the USA was conducted. The following CSF biomarkers were measured: soluble CD14 (sCD14), monocyte chemotactic protein-1 (MCP-1), interferon inducible protein 10 (IP-10), and stromal cell-derived growth factor 1 alpha (SDF-1α). The following MRS metabolites were measured from basal ganglia (BG), frontal white matter (FWM), and frontal gray matter (FGM): N-acetylaspartate (NAA), myo-inositol (MI), choline (Cho), and creatine (Cr). CSF biomarkers were compared to absolute MRS metabolites as well as metabolite/Cr ratios using linear regression. Eighty-three HIV-infected individuals were included, 78 % on cART and 37 % with HAND. The most robust positive correlations were between MCP-1 and Cho in BG (R (2) 0.179, p < 0.001) as well as MCP-1 and MI in FWM (R (2) 0.137, p = 0.002). Higher Cr levels in FWM were associated with MCP-1 (R (2) 0. 075, p = 0.01) and IP-10 (R (2) 0.106, p = 0.003). Comparing biomarkers to MRS metabolite/Cr ratios impacted some relationships, e.g., higher sCD14 levels were associated with lower Cho/Cr ratios in FGM (R (2) 0.224, p < 0.001), although higher MCP-1 levels remained associated with Cho/Cr in BG. These findings provide evidence that monocyte activation and chemotaxis continue to contribute to HIV-associated brain abnormalities in cART-treated individuals.
Collapse
Affiliation(s)
| | - Christine Fennema-Notestine
- University of California, San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA
| | - Anya Umlauf
- University of California, San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA
| | - Michael J Taylor
- University of California, San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA
| | - David B Clifford
- Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | | | | | - Benjamin B Gelman
- University of Texas Medical Branch, University of Texas System, Galveston, TX, USA
| | - Justin C McArthur
- John Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - J Allen McCutchan
- University of California, San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA
| | | | | | - Igor Grant
- University of California, San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA
| | - Scott L Letendre
- University of California, San Diego, La Jolla, CA, USA.
- HIV Neurobehavioral Research Center and Antiviral Research Center, University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA, 92103, USA.
| |
Collapse
|
18
|
Bade AN, Gorantla S, Dash PK, Makarov E, Sajja BR, Poluektova LY, Luo J, Gendelman HE, Boska MD, Liu Y. Manganese-Enhanced Magnetic Resonance Imaging Reflects Brain Pathology During Progressive HIV-1 Infection of Humanized Mice. Mol Neurobiol 2015; 53:3286-3297. [PMID: 26063593 DOI: 10.1007/s12035-015-9258-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Progressive human immunodeficiency viral (HIV) infection commonly leads to a constellation of cognitive, motor, and behavioral impairments. These are collectively termed HIV-associated neurocognitive disorders (HAND). While antiretroviral therapy (ART) reduces HAND severity, it does not affect disease prevalence. Despite decades of research, there remain no biomarkers for HAND and all potential comorbid conditions must first be excluded for a diagnosis to be made. To this end, we now report that manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) can reflect brain region-specific HIV-1-induced neuropathology in chronically virus-infected NOD/scid-IL-2Rγc(null) humanized mice. MEMRI diagnostics mirrors the abilities of Mn(2+) to enter and accumulate in affected neurons during disease. T1 relaxivity and its weighted signal intensity are proportional to Mn(2+) activities in neurons. In 16-week virus-infected humanized mice, altered MEMRI signal enhancement was easily observed in affected brain regions. These included, but were not limited to, the hippocampus, amygdala, thalamus, globus pallidus, caudoputamen, substantia nigra, and cerebellum. MEMRI signal was coordinated with levels of HIV-1 infection, neuroinflammation (astro- and micro-gliosis), and neuronal injury. MEMRI accurately demonstrates the complexities of HIV-1-associated neuropathology in rodents that reflects, in measure, the clinical manifestations of neuroAIDS as it is seen in a human host.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prasanta K Dash
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198-1045, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jiangtao Luo
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198-4375, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Michael D Boska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198-1045, USA
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198-1045, USA.
| |
Collapse
|
19
|
Watkins CC, Treisman GJ. Cognitive impairment in patients with AIDS - prevalence and severity. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2015; 7:35-47. [PMID: 25678819 PMCID: PMC4319681 DOI: 10.2147/hiv.s39665] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The advent of highly active antiretroviral therapy has prolonged the life expectancy of HIV patients and decreased the number of adults who progress to AIDS and HIV-associated dementia. However, neurocognitive deficits remain a pronounced consequence of HIV/AIDS. HIV-1 infection targets the central nervous system in subcortical brain areas and leads to high rates of delirium, depression, opportunistic central nervous system infections, and dementia. Long-term HIV replication in the brain occurs in astrocytes and microglia, allowing the virus to hide from antiviral medication and later compromise neuronal function. The associated cognitive disturbance is linked to both viral activity and inflammatory and other mediators from these immune cells that lead to the damage associated with HIV-associated neurocognitive disorders, a general term given for these disturbances. We review the severity and prevalence of the neuropsychiatric complications of HIV including delirium, neurobehavioral impairments (depression), minor cognitive-motor dysfunction, and HIV-associated dementia.
Collapse
Affiliation(s)
- Crystal C Watkins
- The Memory Center in Neuropsychiatry, Sheppard Pratt Health System, The Johns Hopkins University School of Medicine, Baltimore, MD, USA ; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Glenn J Treisman
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R, Price RW, Meyerhoff DJ, Spudich S. Cerebral metabolite changes prior to and after antiretroviral therapy in primary HIV infection. Neurology 2014; 83:1592-600. [PMID: 25261502 PMCID: PMC4223087 DOI: 10.1212/wnl.0000000000000932] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 06/16/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We examined the longitudinal effects of primary HIV infection (PHI) and responses to early antiretroviral therapy (ART) on the brain using high-field magnetic resonance spectroscopy (MRS). METHODS Cerebral metabolites were measured longitudinally with 4T proton MRS and assessed for ART effects in participants with PHI. Levels of glutamate (Glu), N-acetylaspartate (NAA), myo-inositol (MI), and choline-containing metabolites (Cho) were measured relative to creatine + phosphocreatine (Cr) in anterior cingulate, basal ganglia, frontal white matter, and parietal gray matter. RESULTS Fifty-three participants recruited at median 3.7 months post HIV transmission were followed a median 6.0 months. A total of 23 participants initiated ART during follow-up. Prior to ART, increases per month were observed in Cho/Cr (slope = 0.0012, p = 0.005) and MI/Cr (slope = 0.0041, p = 0.005) in frontal white matter as well as increases in MI/Cr (slope = 0.0041, p < 0.001) and NAA/Cr (slope = 0.0024, p = 0.030) in parietal gray matter. After initiation of ART, prior positive slopes were no longer significantly different from zero, while Glu/Cr in basal ganglia decreased (slope = -0.0038, p = 0.031). CONCLUSIONS Early in HIV infection, increases of Cho/Cr and MI/Cr in treatment-naive participants suggest progressive inflammation and gliosis in the frontal white matter and parietal gray matter, which is attenuated after initiation of ART. Elevated baseline Glu/Cr in basal ganglia may signal excitotoxicity; its subsequent stabilization and downward trajectory with ART may lend further support for early ART initiation.
Collapse
Affiliation(s)
- Andrew C Young
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Constantin T Yiannoutsos
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Manu Hegde
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Evelyn Lee
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Julia Peterson
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Rudy Walter
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Richard W Price
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Dieter J Meyerhoff
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco
| | - Serena Spudich
- From Yale University (A.C.Y., S.S.), New Haven, CT; Indiana University (C.T.Y.), Indianapolis; and the University of California (M.H., E.L., J.P., R.W., R.W.P., D.J.M.), San Francisco.
| |
Collapse
|
21
|
Spatola M, Du Pasquier RA. Immune system's role in viral encephalitis. Rev Neurol (Paris) 2014; 170:577-83. [PMID: 25189678 DOI: 10.1016/j.neurol.2014.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.
Collapse
Affiliation(s)
- M Spatola
- Service of Neurology, BH.10.131, Bugnon 44, 1010 Lausanne, Switzerland
| | - R A Du Pasquier
- Service of Neurology, BH.10.131, Bugnon 44, 1010 Lausanne, Switzerland; Laboratory of neuro-immunology, Centre of clinical neurosciences, Department of Clinical Neurosciences, University Hospital of Lausanne (CHUV), rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|
22
|
Cerebrospinal fluid metabolomics reveals altered waste clearance and accelerated aging in HIV patients with neurocognitive impairment. AIDS 2014; 28:1579-91. [PMID: 24752083 PMCID: PMC4086755 DOI: 10.1097/qad.0000000000000303] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms are unclear. Some features of HAND resemble those of age-associated cognitive decline in the absence of HIV, suggesting that overlapping mechanisms may contribute to neurocognitive impairment. Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46 HIV-positive patients and 54 HIV-negative controls). Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chromatography followed by mass spectrometry. Cytokine profiling was performed by Bioplex. Bioinformatic analyses were performed in Metaboanalyst and R. Results: Alterations in the CSF metabolome of HIV patients on ART mapped to pathways associated with neurotransmitter production, mitochondrial function, oxidative stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those altered with advanced age in HIV-negative controls, suggesting a pattern indicative of accelerated aging. Machine learning models identified neurotransmitters (glutamate, N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF metabolites correlated with worse neurocognitive test scores, plasma inflammatory biomarkers [interferon (IFN)-α, IFN-γ, interleukin (IL)-8, IL-1β, IL-6, IL-2Ra], and intrathecal IFN responses (IFN-γ and kynurenine : tryptophan ratio), suggesting inter-relationships between systemic and intrathecal inflammation and metabolic alterations in CSF. Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain waste disposal systems contribute to mechanisms involved in HAND that may be augmented with aging.
Collapse
|
23
|
Harezlak J, Cohen R, Gongvatana A, Taylor M, Buchthal S, Schifitto G, Zhong J, Daar ES, Alger JR, Brown M, Singer EJ, Campbell TB, McMahon D, So YT, Yiannoutsos CT, Navia BA. Predictors of CNS injury as measured by proton magnetic resonance spectroscopy in the setting of chronic HIV infection and CART. J Neurovirol 2014; 20:294-303. [PMID: 24696364 DOI: 10.1007/s13365-014-0246-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 11/26/2022]
Abstract
The reasons for persistent brain dysfunction in chronically HIV-infected persons on stable combined antiretroviral therapies (CART) remain unclear. Host and viral factors along with their interactions were examined in 260 HIV-infected subjects who underwent magnetic resonance spectroscopy (MRS). Metabolite concentrations (NAA/Cr, Cho/Cr, MI/Cr, and Glx/Cr) were measured in the basal ganglia, the frontal white matter, and gray matter, and the best predictive models were selected using a bootstrap-enhanced Akaike information criterion (AIC). Depending on the metabolite and brain region, age, race, HIV RNA concentration, ADC stage, duration of HIV infection, nadir CD4, and/or their interactions were predictive of metabolite concentrations, particularly the basal ganglia NAA/Cr and the mid-frontal NAA/Cr and Glx/Cr, whereas current CD4 and the CPE index rarely or did not predict these changes. These results show for the first time that host and viral factors related to both current and past HIV status contribute to persisting cerebral metabolite abnormalities and provide a framework for further understanding neurological injury in the setting of chronic and stable disease.
Collapse
Affiliation(s)
- J Harezlak
- Indiana University Fairbanks School of Public Health, 410 W 10th St., Suite 3000, Indianapolis, IN, 46202, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu WE, Tal A, Zhang K, Babb JS, Ratai EM, González RG, Gonen O. Structure-specific glial response in a macaque model of neuroAIDS: multivoxel proton magnetic resonance spectroscopic imaging at 3 Tesla. AIDS 2013; 27:2519-28. [PMID: 23939235 DOI: 10.1097/01.aids.0000433244.32105.96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE As ~40% of persons with HIV also suffer neurocognitive decline, we sought to assess metabolic dysfunction in the brains of simian immunodeficiency virus (SIV)-infected rhesus macaques, an advanced animal model, in structures involved in cognitive function. We test the hypothesis that SIV-infection produces proton-magnetic resonance spectroscopic imaging (H-MRSI)-observed decline in the neuronal marker, N-acetylaspartate (NAA), and elevations in the glial marker, myo-inositol (mI), and associated creatine (Cr) and choline (Cho) in these structures. DESIGN Pre- and 4-6 weeks post-SIV infection (with CD8 T-lymphocyte depletion) was monitored with T2-weighted quantitative MRI and 16×16×4 multivoxel H-MRSI (TE/TR = 33/1400 ms) in the brains of five rhesus macaques. METHODS Exploiting the high-resolution H-MRSI grid, we obtained absolute, cerebrospinal fluid partial volume-corrected NAA, Cr, Cho and mI concentrations from centrum semiovale, caudate nucleus, putamen, thalamus and hippocampus regions. RESULTS Pre- to post-infection mean Cr increased in the thalamus: 7.2±0.4 to 8.0±0.8 mmol/l (+11%, P<0.05); mI increased in the centrum semiovale: 5.1±0.8 to 6.6±0.8 mmol/l, caudate: 5.7±0.7 to 7.3±0.5 mmol/l, thalamus: 6.8±0.8 to 8.5±0.8 mmol/l and hippocampus: 7.7±1.2 to 9.9±0.4 mmol/l (+29%, +27%, +24% and +29%, all P<0.05). NAA and Cho changes were not significant. CONCLUSION SIV-infection appears to cause brain injury indirectly, through glial activation, while the deep gray matter structures' neuronal cell bodies are relatively spared. Treatment regimens to reduce gliosis may, therefore, prevent neuronal damage and its associated neurocognitive impairment.
Collapse
|
25
|
Hua X, Boyle CP, Harezlak J, Tate DF, Yiannoutsos CT, Cohen R, Schifitto G, Gongvatana A, Zhong J, Zhu T, Taylor MJ, Campbell TB, Daar ES, Alger JR, Singer E, Buchthal S, Toga AW, Navia B, Thompson PM. Disrupted cerebral metabolite levels and lower nadir CD4 + counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatment. NEUROIMAGE-CLINICAL 2013; 3:132-42. [PMID: 24179857 PMCID: PMC3791291 DOI: 10.1016/j.nicl.2013.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 12/18/2022]
Abstract
Cognitive impairment and brain injury are common in people with HIV/AIDS, even when viral replication is effectively suppressed with combined antiretroviral therapies (cART). Metabolic and structural abnormalities may promote cognitive decline, but we know little about how these measures relate in people on stable cART. Here we used tensor-based morphometry (TBM) to reveal the 3D profile of regional brain volume variations in 210 HIV + patients scanned with whole-brain MRI at 1.5 T (mean age: 48.6 ± 8.4 years; all receiving cART). We identified brain regions where the degree of atrophy was related to HIV clinical measures and cerebral metabolite levels assessed with magnetic resonance spectroscopy (MRS). Regional brain volume reduction was linked to lower nadir CD4 + count, with a 1–2% white matter volume reduction for each 25-point reduction in nadir CD4 +. Even so, brain volume measured by TBM showed no detectable association with current CD4 + count, AIDS Dementia Complex (ADC) stage, HIV RNA load in plasma or cerebrospinal fluid (CSF), duration of HIV infection, antiretroviral CNS penetration-effectiveness (CPE) scores, or years on cART, after controlling for demographic factors, and for multiple comparisons. Elevated glutamate and glutamine (Glx) and lower N-acetylaspartate (NAA) in the frontal white matter, basal ganglia, and mid frontal cortex — were associated with lower white matter, putamen and thalamus volumes, and ventricular and CSF space expansion. Reductions in brain volumes in the setting of chronic and stable disease are strongly linked to a history of immunosuppression, suggesting that delays in initiating cART may result in imminent and irreversible brain damage. We mapped the 3D pattern of brain abnormalities in 210 HIV patients on stable cART. Brain atrophy was linked to MRS metabolite disturbances reflecting neuronal injury. Lower nadir CD4 + count was associated with greater white matter atrophy.
Collapse
Affiliation(s)
- Xue Hua
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wilson TW, Fox HS, Robertson KR, Sandkovsky U, O'Neill J, Heinrichs-Graham E, Knott NL, Swindells S. Abnormal MEG oscillatory activity during visual processing in the prefrontal cortices and frontal eye-fields of the aging HIV brain. PLoS One 2013; 8:e66241. [PMID: 23840428 DOI: 10.137/journal.pone.0066241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/03/2013] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation. METHODS High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming. RESULTS Uninfected controls had increased neuronal synchronization in the 6-12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions. CONCLUSIONS MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilson TW, Fox HS, Robertson KR, Sandkovsky U, O'Neill J, Heinrichs-Graham E, Knott NL, Swindells S. Abnormal MEG oscillatory activity during visual processing in the prefrontal cortices and frontal eye-fields of the aging HIV brain. PLoS One 2013. [PMID: 23840428 PMCID: PMC3688779 DOI: 10.1371/journal.pone.0066241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation. Methods High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming. Results Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions. Conclusions MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gongvatana A, Harezlak J, Buchthal S, Daar E, Schifitto G, Campbell T, Taylor M, Singer E, Algers J, Zhong J, Brown M, McMahon D, So YT, Mi D, Heaton R, Robertson K, Yiannoutsos C, Cohen RA, Navia B. Progressive cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol 2013; 19:209-18. [PMID: 23613008 DOI: 10.1007/s13365-013-0162-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/22/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
Emerging evidence suggests that CNS injury and neurocognitive impairment persist in the setting of chronic HIV infection and combination antiretroviral therapy (CART). Yet, whether neurological injury can progress in this setting remains uncertain. Magnetic resonance spectroscopy and neurocognitive and clinical assessments were performed over 2 years in 226 HIV-infected individuals on stable CART, including 138 individuals who were neurocognitively asymptomatic (NA). Concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol, and glutamate/glutamine (Glx) were measured in the midfrontal cortex (MFC), frontal white matter (FWM), and basal ganglia (BG). Longitudinal changes in metabolite levels were determined using linear mixed effect models, as were metabolite changes in relation to global neurocognitive function. HIV-infected subjects showed significant annual decreases in brain metabolite levels in all regions examined, including NAA (2.95 %) and Cho (2.61 %) in the FWM; NAA (1.89 %), Cr (1.84 %), Cho (2.19 %), and Glx (6.05 %) in the MFC; and Glx (2.80 %) in the BG. Similar metabolite decreases were observed in the NA and subclinically impaired subgroups, including subjects with virologic suppression in plasma and CSF. Neurocognitive decline was associated with longitudinal decreases in Glx in the FWM and the BG, and in NAA in the BG. Widespread progressive changes in the brain, including neuronal injury, occur in chronically HIV-infected persons despite stable antiretroviral treatment and virologic suppression and can lead to neurocognitive declines. The basis for these findings is poorly understood and warrants further study.
Collapse
|
29
|
Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, Walter R, Fuchs D, Brew BJ, Cinque P, Robertson K, Hagberg L, Zetterberg H, Gisslén M, Spudich S. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis 2013; 207:1703-12. [PMID: 23460748 DOI: 10.1093/infdis/jit088] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) and neuroimaging abnormalities demonstrate neuronal injury during chronic AIDS, but data on these biomarkers during primary human immunodeficiency virus (HIV) infection is limited. METHODS We compared CSF concentrations of neurofilament light chain, t-tau, p-tau, amyloid precursor proteins, and amyloid-beta 42 in 92 subjects with primary HIV infection and 25 controls. We examined relationships with disease progression and neuroinflammation, neuropsychological testing, and proton-magnetic resonance spectroscopy (MRS)-based metabolites. RESULTS Neurofilament light chain was elevated in primary HIV infection compared with controls (P = .0004) and correlated with CSF neopterin (r = 0.38; P = .0005), interferon gamma-induced protein 10 (r = 0.39; P = .002), white blood cells (r = 0.32; P = .004), protein (r = 0.59; P < .0001), and CSF/plasma albumin ratio (r = 0.60; P < .0001). Neurofilament light chain correlated with decreased N-acteylaspartate/creatine and glutamate/creatine in the anterior cingulate (r = -0.35, P = .02; r = -0.40, P = .009, respectively), frontal white matter (r = -0.43, P = .003; r = -0.30, P = .048, respectively), and parietal gray matter (r = -0.43, P = .003; r = -0.47, P = .001, respectively). Beta-amyloid was elevated in the primary infection group (P = .0005) and correlated with time infected (r = 0.34; P = .003). Neither marker correlated with neuropsychological abnormalities. T-tau and soluble amyloid precursor proteins did not differ between groups. CONCLUSIONS Elevated neurofilament light chain and its correlation with MRS-based metabolites suggest early neuronal injury in a subset of participants with primary HIV infection through mechanisms involving central nervous system inflammation.
Collapse
Affiliation(s)
- Michael J Peluso
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sailasuta N, Ross W, Ananworanich J, Chalermchai T, DeGruttola V, Lerdlum S, Pothisri M, Busovaca E, Ratto-Kim S, Jagodzinski L, Spudich S, Michael N, Kim JH, Valcour V. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection. PLoS One 2012; 7:e49272. [PMID: 23229129 PMCID: PMC3500278 DOI: 10.1371/journal.pone.0049272] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Single voxel proton magnetic resonance spectroscopy (MRS) can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART). METHODS Brain metabolite levels of N-acetyl aspartate (NAA), choline (tCHO), creatine (CR), myoinositol (MI), and glutamate and glutamine (GLX) were measured in acute HIV subjects (n = 31) and compared to chronic HIV+individuals (n = 26) and HIV negative control subjects (n = 10) from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM), frontal white matter (FWM), occipital gray matter (OGM), and basal ganglia (BG). Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART. RESULTS After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection) compared to control (p = 0.0014), as well as chronic subjects (p = 0.0023). A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022) with tCHO/CR similar to control subjects at 6 months. INTERPRETATION We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.
Collapse
Affiliation(s)
- Napapon Sailasuta
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - William Ross
- Huntington Medical Research Institutes, Pasadena, California, United States of America
| | - Jintanat Ananworanich
- Southeast Asia Research Collaboration with Hawaii (SEARCH) - Thailand, Bangkok, Thailand
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Thep Chalermchai
- Southeast Asia Research Collaboration with Hawaii (SEARCH) - Thailand, Bangkok, Thailand
| | - Victor DeGruttola
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Sukalaya Lerdlum
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mantana Pothisri
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Edgar Busovaca
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
| | - Silvia Ratto-Kim
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Linda Jagodzinski
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nelson Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Victor Valcour
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, United States of America
- Division of Geriatric Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
31
|
Xue C. Cryptococcus and beyond--inositol utilization and its implications for the emergence of fungal virulence. PLoS Pathog 2012; 8:e1002869. [PMID: 23028304 PMCID: PMC3441655 DOI: 10.1371/journal.ppat.1002869] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Chaoyang Xue
- Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
32
|
Winston A, Duncombe C, Li PCK, Gill JM, Kerr SJ, Puls RL, Taylor-Robinson SD, Emery S, Cooper DA. Two patterns of cerebral metabolite abnormalities are detected on proton magnetic resonance spectroscopy in HIV-infected subjects commencing antiretroviral therapy. Neuroradiology 2012; 54:1331-9. [PMID: 22772471 DOI: 10.1007/s00234-012-1061-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Cerebral function impairment remains problematic in subjects with chronic human immunodeficiency virus (HIV) infection despite effective combination antiretroviral therapy (cART). Using cerebral proton magnetic resonance spectroscopy ((1)H MRS), we aimed to determine if abnormalities could be detected in neurologically asymptomatic HIV-infected subjects electively commencing cART. METHODS Therapy-naive, HIV-infected individuals and HIV-uninfected controls underwent (1)H MRS in several anatomical voxels including the mid-frontal grey matter (FGM) and right basal ganglia (RBG). Differences in cerebral metabolite ratios between groups and correlations between immune and virological status were assessed. RESULTS Forty-six subjects were recruited (26 HIV-infected and 20 control subjects). In the HIV-infected group, mean CD4+ count (SD, cells per microlitre) and plasma HIV RNA (SD, log10 copies per millilitre) were 192 (86) and 4.71 (0.64), respectively. Choline (Cho)/Creatine (Cr) and myoinositol (MI)/Cr ratios were significantly lower in the FGM in HIV-infected subjects compared to controls (0.67 (0.14) versus 0.88 (0.49), p = 0.036, and 0.94 (0.28) and 1.17 (0.26), p = 0.008, for Cho/Cr and MI/Cr, respectively) and Cho/Cr ratio associated with CD4+ lymphocyte count (p = 0.041). N-Acetyl-aspartate (NAA)/Cho ratio was significantly lower in the RBG in HIV-infected subjects compared to controls (2.27 (0.54) versus 2.63 (0.68), p = 0.002), and this was associated with greater plasma HIV RNA load (p = 0.014). CONCLUSIONS Two patterns of cerebral metabolite abnormalities were observed in HIV-infected subjects electively commencing cART. Greater inflammatory metabolite ratios (Cho/Cr and MI/Cr) associated with lower markers of peripheral immune markers (CD4+ lymphocyte count) in the FGM and lower neuronal metabolite ratios (NAA/Cho) associated with greater HIV viraemia in the RBG were present in HIV-infected subjects.
Collapse
Affiliation(s)
- Alan Winston
- St. Mary's Hospital, Imperial College London, Ground Floor, Clinical Trials, Winston Churchill Wing, Praed Street, London, W2 1NY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging 2011; 21:115-28. [PMID: 21613876 DOI: 10.1097/rmr.0b013e31821e568f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article presents background information related to methodology for estimating brain metabolite concentration from magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic imaging measurements of living human brain tissue. It reviews progress related to this methodology, with emphasis placed on progress reported during the past 10 years. It is written for a target audience composed of radiologists and magnetic resonance imaging technologists. It describes in general terms the relationship between MRS signal amplitude and concentration. It then presents an overview of the many practical problems associated with deriving concentration solely from absolute measured signal amplitudes and demonstrates how a various signal calibration approaches can be successfully used. The concept of integrated signal amplitude is presented with examples that are helpful for qualitative reading of MRS data as well as for understanding the methodology used for quantitative measurements. The problems associated with the accurate measurement of individual signal amplitudes in brain spectra having overlapping signals from other metabolites and overlapping nuisance signals from water and lipid are presented. Current approaches to obtaining accurate amplitude estimates with least-squares fitting software are summarized.
Collapse
|
34
|
Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 2011; 17:368-79. [PMID: 21556960 DOI: 10.1007/s13365-011-0033-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Recent reports suggest that a growing number of human immunodeficiency virus (HIV)-infected persons show signs of persistent cognitive impairment even in the context of combination antiretroviral therapies (cART). The basis for this finding remains poorly understood as there are only a limited number of studies examining the relationship between CNS injury, measures of disease severity, and cognitive function in the setting of stable disease. This study examined the effects of HIV infection on cerebral white matter using quantitative morphometry of the midsagittal corpus callosum (CC) in 216 chronically infected participants from the multisite HIV Neuroimaging Consortium study currently receiving cART and 139 controls. All participants underwent MRI assessment, and HIV-infected subjects also underwent measures of cognitive function and disease severity. The midsagittal slice of the CC was quantified using two semi-automated procedures. Group comparisons were accomplished using ANOVA, and the relationship between CC morphometry and clinical covariates (current CD4, nadir CD4, plasma and CSF HIV RNA, duration of HIV infection, age, and ADC stage) was assessed using linear regression models. HIV-infected patients showed significant reductions in both the area and linear widths for several regions of the CC. Significant relationships were found with ADC stage and nadir CD4 cell count, but no other clinical variables. Despite effective treatment, significant and possibly irreversible structural loss of the white matter persists in the setting of chronic HIV disease. A history of advanced immune suppression is a strong predictor of this complication and suggests that antiretroviral intervention at earlier stages of infection may be warranted.
Collapse
|
35
|
Clinical factors related to brain structure in HIV: the CHARTER study. J Neurovirol 2011; 17:248-57. [PMID: 21544705 DOI: 10.1007/s13365-011-0032-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/29/2011] [Indexed: 10/18/2022]
Abstract
Despite the widening use of combination antiretroviral therapy (ART), neurocognitive impairment remains common among HIV-infected (HIV+) individuals. Associations between HIV-related neuromedical variables and magnetic resonance imaging indices of brain structural integrity may provide insight into the neural bases for these symptoms. A diverse HIV+ sample (n = 251) was studied through the CNS HIV Antiretroviral Therapy Effects Research initiative. Multi-channel image analysis produced volumes of ventricular and sulcal cerebrospinal fluid (CSF), cortical and subcortical gray matter, total cerebral white matter, and abnormal white matter. Cross-sectional analyses employed a series of multiple linear regressions to model each structural volume as a function of severity of prior immunosuppression (CD4 nadir), current CD4 count, presence of detectable CSF HIV RNA, and presence of HCV antibodies; secondary analyses examined plasma HIV RNA, estimated duration of HIV infection, and cumulative exposure to ART. Lower CD4 nadir was related to most measures of the structural brain damage. Higher current CD4, unexpectedly, correlated with lower white and subcortical gray and increased CSF. Detectable CSF HIV RNA was related to less total white matter. HCV coinfection was associated with more abnormal white matter. Longer exposure to ART was associated with lower white matter and higher sulcal CSF. HIV neuromedical factors, including lower nadir, higher current CD4 levels, and detectable HIV RNA, were associated with white matter damage and variability in subcortical volumes. Brain structural integrity in HIV likely reflects dynamic effects of current immune status and HIV replication, superimposed on residual effects associated with severe prior immunosuppression.
Collapse
|
36
|
Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 2011; 25:625-33. [PMID: 21297425 DOI: 10.1097/qad.0b013e3283427da7] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether cognitive impairment and brain injury as measured by proton magnetic resonance spectroscopy (MRS) persist in the setting of HAART. DESIGN This study is an observational cohort study. METHODS MRS was performed in 268 patients: HIV-negative controls (N = 28), HIV-positive neuroasymptomatic individuals (N = 124), and individuals with AIDS dementia complex (ADC; N = 50) on stable antiretroviral therapy (ART) with a mean duration of infection of 12 years and CD4 cell count of 309 cells/μl. Four metabolites were measured over creatine: N-acetyl aspartate (NAA), marker of neuronal integrity; choline (Cho), myoinositol, markers of inflammation, and glutamate and glutamine (Glx) in the basal ganglia, frontal white matter (FWM), and mid-frontal cortex. Analyses included analysis of variance, analysis of covariance, linear, and nonparametric regression models. RESULTS Cognitive impairment was found in 48% of HIV-infected individuals. Both HIV-positive groups showed significant increases in myoinositol/creatine or Cho/creatine in all brain regions when compared to controls; a significant decrease in Glx/creatine in the FWM was observed in the neuroasymptomatic group; and only individuals with ADC showed a significant reduction in NAA/creatine, although a significant trend for decreasing NAA/creatine in the basal ganglia was found across the groups. Effects related to aging and duration of infection, but not central nervous system penetration effectiveness were observed. CONCLUSION Brain inflammatory changes remain ubiquitous among HIV-infected individuals, whereas neuronal injury occurs predominantly in those with cognitive impairment. Together these findings indicate that despite the widespread use of HAART, HIV-associated cognitive impairment and brain injury persist in the setting of chronic and stable disease.
Collapse
|
37
|
Lentz MR, Degaonkar M, Mohamed MA, Kim H, Conant K, Halpern EF, Sacktor N, Barker PB, Pomper MG. Exploring the relationship of macrophage colony-stimulating factor levels on neuroaxonal metabolism and cognition during chronic human immunodeficiency virus infection. J Neurovirol 2011; 16:368-76. [PMID: 20839921 DOI: 10.3109/13550284.2010.513029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Macrophage colony-stimulating factor (M-CSF) promotes macrophage differentiation, increases susceptibility of macrophages to viral infection, and enhances human immunodeficiency virus (HIV) replication in infected macrophages. Given the current model of HIV neuropathogenesis, which involves monocyte trafficking into the central nervous system, immune factors linked with macrophage maturation and survival may be associated with cognitive decline (measured by neuropsychological z-score [NPZ-8] or Memorial Sloan-Kettering [MSK] score) and alterations in a marker of neuronal integrity, N-acetylaspartate (NAA). Fifty-four chronically infected HIV+ subjects underwent neuropsychological assessment, magnetic resonance spectroscopic imaging, and quantification of M-CSF in plasma and cerebrospinal fluid (CSF) at baseline. Thirty-nine of those subjects underwent further examination at 3 and 10 months after initiation of combination antiretroviral therapy (ART) regimens. Within 3 months of therapy use, CSF M-CSF and viral RNA levels were reduced, whereas NAA concentrations in many brain regions were increased. Neither baseline levels nor the change in M-CSF levels had the ability to predict changes in NAA levels observed after 10 months of combination ART use. At study entry those with the lowest M-CSF levels in the CSF had the least cognitive impairment (NPZ-8). Those who had higher baseline CSF M-CSF levels and exhibited larger decreases in M-CSF after therapy, tended to have greater cognitive improvement after 10 months. Increased prevalence of M-CSF in the setting of HIV infection could contribute to neuronal injury and may be predictive of cognitive impairment.
Collapse
Affiliation(s)
- Margaret R Lentz
- Department of Neuroradiology and the A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ, Marquie-Beck J, Navia B. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol 2011; 17:63-9. [PMID: 21246320 PMCID: PMC3032187 DOI: 10.1007/s13365-010-0013-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/14/2010] [Accepted: 11/24/2010] [Indexed: 12/01/2022]
Abstract
Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1β, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons.
Collapse
Affiliation(s)
- Scott L Letendre
- University of California, San Diego, 220 Dickinson Street, Suite A, San Diego, CA 92103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cohen RA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Tate D, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B. Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 2010. [DOI: 10.1007/bf03210849] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Cohen RA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Tate D, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B. Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 2010; 16:435-44. [PMID: 20961212 DOI: 10.3109/13550284.2010.520817] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cerebral metabolite disturbances occur among human immunodeficiency virus (HIV)-infected people, and are thought to reflect neuropathology, including proinflammatory processes, and neuronal loss. HIV-associated cortical atrophy continues to occur, though its basis is not well understood, and the relationship of cerebral metabolic disturbance to structural brain abnormalities in HIV has not been well delineated. We hypothesized that metabolite disturbances would be associated with reduced cortical and subcortical volumes. Cerebral volumes were measured in 67 HIV-infected people, including 10 people with mild dementia (acquired immunodeficiency syndrome [AIDS] dimentia complex [ADC] stage >1) via automated magnetic resonance imaging (MRI) segmentation. Magnetic resonance spectroscopy (MRS) was used to measure levels of cerebral metabolites N-acetylaspartate (NAA), myo-inositol (MI), choline-containing compounds (Cho), glutamate/glutamine (Glx), and creatine (Cr) from three brain regions (frontal gray matter, frontal white matter, basal ganglia). Analyses were conducted to examine the associations between MRS and cerebral volumetric measures using both absolute and relative metabolite concentrations. NAA in the mid-frontal gray matter was most consistently associated with cortical (global, frontal, and parietal), ventricular, and caudate volumes based on analysis of absolute metabolite levels, whereas temporal lobe volume was associated with basal ganglia NAA and Glx, and Cho concentrations in the frontal cortex and basal ganglia. Hippocampal volume was associated with frontal white matter NAA, whereas thalamic volume was associated with both frontal white matter NAA and basal ganglia Glx. Analyses of relative metabolite concentrations (referenced to Cr) yielded weaker effects, although more metabolites were retained as significant predictors in the models than the analysis of absolute concentrations. These findings demonstrate that reduced cortical and subcortical volumes, which have been previously found to be linked to HIV status and history, are also strongly associated with the degree of cerebral metabolite disturbance observed via MRS. Reduced cortical and hippocampal volumes were most strongly associated with decreased NAA, though reduced Glx also tended to be associated with reduced cortical and subcortical volumes (caudate and thalamus) as well, suggesting both neuronal and glial disturbances. Interestingly, metabolite-volumetric relationships were not limited to the cortical region from which MRS was measured, possibly reflecting shared pathophysiological processes. The relationships between Cho and volumetric measures suggest a complicated relationship possibly related to the effects of inflammatory processes on brain volume. The findings demonstrate the relationship between MRI-derived measures of cerebral metabolite disturbances and structural brain integrity, which has implication in understanding HIV-associated neuropathological mechanisms.
Collapse
Affiliation(s)
- Ronald A Cohen
- Department of Neuropsychology, The Miriam Hospital, Alpert School of Medicine, Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mohamed MA, Lentz MR, Lee V, Halpern EF, Sacktor N, Selnes O, Barker PB, Pomper MG. Factor analysis of proton MR spectroscopic imaging data in HIV infection: metabolite-derived factors help identify infection and dementia. Radiology 2010; 254:577-86. [PMID: 20093528 DOI: 10.1148/radiol.09081867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a relevant pathophysiologic model of human immunodeficiency virus (HIV)-associated dementia by studying regional variations in metabolite levels measured with magnetic resonance (MR) spectroscopic imaging and their relationship to immunologic measures and cognitive dysfunction. MATERIALS AND METHODS This was a HIPAA-compliant, institutional review board-approved study involving written informed consent. Distributions of N-acetylaspartate (NAA), choline (Cho), and creatine (Cr) concentrations in 94 subjects (20 seronegative controls and 74 HIV-positive subjects; 34 of the HIV-positive subjects having HIV-associated dementia; 63 men, 31 women; mean age, 40 years) were determined with proton (hydrogen 1 [(1)H]) MR spectroscopic imaging. HIV-positive subjects underwent neuropsychological testing and blood and cerebrospinal fluid (CSF) analysis. Factor analysis was utilized to determine associations between metabolites across regions. Analysis of variance and t tests were used to isolate differences between cohorts. RESULTS A "Cho factor" differentiated seronegative controls from HIV-infected cohorts, indicating elevated Cho levels across deep gray and white matter regions of HIV-positive individuals. An "NAA factor" differentiated those with dementia from those without and correlated best with psychomotor and executive function tests. A "Cr factor" indicated Cr elevations correlated with CSF monocyte chemoattractant protein-1 levels. NAA and Cr factor scores were strongly weighted to metabolite changes in white matter regions. CONCLUSION These results highlight the importance of white matter involvement in HIV-associated dementia and support the current pathogenesis model of glial cell proliferation in HIV infection, denoted by regional Cho elevations, and neuronal dysfunction and/or death, denoted by NAA decreases, associated with dementia. Factor analysis of MR spectroscopic imaging data is a useful method for determining regional metabolic variations in HIV infection and its neuropsychological correlates.
Collapse
Affiliation(s)
- Mona A Mohamed
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, 1550 Orleans St, 492 CRB II, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schifitto G, Yiannoutsos CT, Ernst T, Navia BA, Nath A, Sacktor N, Anderson C, Marra CM, Clifford DB. Selegiline and oxidative stress in HIV-associated cognitive impairment. Neurology 2009; 73:1975-81. [PMID: 19890073 DOI: 10.1212/wnl.0b013e3181c51a48] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To assess the effectiveness of the selegiline transdermal system (STS) in reversing HIV-induced metabolic brain injury (as measured by proton magnetic resonance spectroscopy [MRS]) and in decreasing oxidative stress, measured by CSF protein carbonyl concentration. METHODS Sixty-two subjects with HIV-associated cognitive impairment were coenrolled in a 24-week placebo-controlled study (AIDS Clinical Trial Group protocol A5090) and were randomly assigned to receive STS 3 mg/24 h, STS 6 mg/24 h, or matching placebo. Cognitive performance was evaluated using the neuropsychological z score (NPZ)-8 and NPZ-6, as well as cognitive domain scores. Subjects underwent proton MRS at study entry and weeks 12 and 24. CSF protein carbonyl was measured at baseline and week 24. RESULTS A slight increase in N-acetyl aspartate/creatine from baseline to week 24 was found in the basal ganglia (p = 0.023) and centrum semiovale (p = 0.072) of the placebo group compared with the STS groups; however, there were no significant changes when the absolute metabolite concentrations were analyzed. The levels of choline/creatine in the midfrontal cortex were also significantly higher during the week 12 visit in the combined STS groups. This persisted to the week 24 visit (p = 0.002). Evaluation of the change in NPZ-8, NPZ-6, and cognitive domain scores from baseline to weeks 12 and 24 revealed no significant differences between treatment arms. Protein carbonyl analysis revealed no significant changes among the groups. CONCLUSION In this 24-week study, the selegiline transdermal system (STS) had no effect on either magnetic resonance spectroscopy (MRS) metabolites or oxidative stress, as measured by CSF protein carbonyl concentration. The lack of effect on these biomarkers is also reflected in the lack of cognitive improvement in the STS groups compared to placebo. LEVEL OF EVIDENCE This study provides Class II evidence that STS had no effect on either MRS metabolites or oxidative stress, as measured by CSF protein carbonyl concentration over a period of 24 weeks.
Collapse
|
43
|
Lentz MR, Kim WK, Lee V, Bazner S, Halpern EF, Venna N, Williams K, Rosenberg ES, González RG. Changes in MRS neuronal markers and T cell phenotypes observed during early HIV infection. Neurology 2009; 72:1465-72. [PMID: 19398702 DOI: 10.1212/wnl.0b013e3181a2e90a] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine if changes in brain metabolites are observed during early HIV infection and correlate these changes with immunologic alterations. METHODS Eight subjects with early HIV infection, 9 HIV-seronegative controls, and 10 chronically HIV-infected subjects without neurologic impairment underwent 1H magnetic resonance spectroscopy. Subjects with early stage infection were identified near the time of HIV seroconversion and imaged within 60 days of an evolving Western blot, while still having detectable plasma virus. Subjects had blood drawn for viral RNA and T cell quantification. RESULTS Both N-acetylaspartate (NAA) and Glx (glutamate + glutamine) were decreased in the frontal cortical gray matter of seropositive subjects. NAA levels were found to be decreased in the centrum semiovale white matter of chronically HIV-infected subjects, but not in those with early infection. Both HIV-infected cohorts demonstrated a lower number of CD4+ T lymphocytes and a higher number of CD8+ T lymphocytes in their blood. Lower NAA levels in the frontal cortex of subjects with early infection were associated with an expansion of CD8+ T cells, especially effector CD8+ T cells. CONCLUSIONS These results verify metabolism changes occurring in the brain early during HIV infection. Lower NAA and Glx levels in the cortical gray matter suggests that HIV causes neuronal dysfunction soon after infection, which correlates to the expansion of CD8+ T cells, specifically to an activated phenotype. Utilizing magnetic resonance spectroscopy to track NAA levels may provide important information on brain metabolic health while allowing better understanding of the virus-host interactions involved in CNS functional deficits.
Collapse
Affiliation(s)
- M R Lentz
- Harvard Medical School/Massachusetts General Hospital, Building 149, 13th Street, Rm 2301, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ratai EM, Pilkenton SJ, Greco JB, Lentz MR, Bombardier JP, Turk KW, He J, Joo CG, Lee V, Westmoreland S, Halpern E, Lackner AA, González RG. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain. BMC Neurosci 2009; 10:63. [PMID: 19545432 PMCID: PMC2711091 DOI: 10.1186/1471-2202-10-63] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo proton magnetic resonance spectroscopy (1H-MRS) studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. RESULTS Changes in the N-acetylaspartate (NAA), choline (Cho), myo-inositol (MI), creatine (Cr) and glutamine/glutamate (Glx) resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi). At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. CONCLUSION These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.
Collapse
Affiliation(s)
- Eva-Maria Ratai
- Neuroradiology Division, Department of Radiology and A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sailasuta N, Shriner K, Ross B. Evidence of reduced glutamate in the frontal lobe of HIV-seropositive patients. NMR IN BIOMEDICINE 2009; 22:326-331. [PMID: 18988228 DOI: 10.1002/nbm.1329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neurological complications associated with the acquired immunodeficiency syndrome, in particular, HIV-associated dementia, continue to plague those infected. We report our finding that the concentration of brain Glu is reduced in the frontal white matter region in this condition. In addition, our data appear to absolve highly active retroviral therapy (HAART) from blame, as drug-naïve patients were equally affected. Our findings suggest that Glu neurotransmission is abnormal and may be a key target for early interventions to reduce the later incidence of neurocognitive impairment and dementia among HIV-seropositive patients.
Collapse
|
46
|
Bruce-Keller AJ, Turchan-Cholewo J, Smart EJ, Geurin T, Chauhan A, Reid R, Xu R, Nath A, Knapp PE, Hauser KF. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 2009; 56:1414-27. [PMID: 18551626 DOI: 10.1002/glia.20708] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIV encephalitis (HIVE) is accompanied by brain inflammation, leukocyte infiltration, and glial activation, and HIV patients who abuse opiates are more likely to develop HIVE. To better understand how opiates could alter HIV-related brain inflammation, the expression of astrocyte (GFAP immunoreactivity) and macrophage/microglial (F4/80 or Mac1 immunoreactivity) markers in the striatum, and the percentage of 3-nitrotyrosine (3-NT) positive macrophages/microglia, was determined following a 2-day exposure to morphine (5 mg/kg/day via time-release, subcutaneous implant) and doxycycline in GFAP-driven, doxycycline-inducible HIV-1 Tat transgenic mice. Data show that both morphine and Tat induction via doxycycline increased astrocyte activation, with significant additive increases achieved with combined morphine and doxycycline exposure. By contrast, combined Tat induction and morphine exposure, but neither manipulation alone, significantly increased the proportion of macrophages/microglia present in the striatum of transgenic mice, although morphine exposure was necessary to elevate 3-NT co-detection in Mac1-positive macrophages/microglia. Finally, Tat induction increased the percentage of neurons expressing active caspase-3, and this was even more significantly elevated by co-administration of morphine. In spite of elevations in caspase-3, neuronal TUNEL reactivity was unchanged in all groups, even after 10 days of Tat induction. Importantly, co-administration of naltrexone completely antagonized the effects of morphine. These findings indicate that morphine rapidly and significantly increases the activation of astrocytes and macrophages/microglia in the brains of inducible Tat transgenic mice, supporting the theory that early inflammatory changes in glia could underlie the development of HIVE in opiate-abusing AIDS patients.
Collapse
|
47
|
Valcour V, Watters MR, Williams AE, Sacktor N, McMurtray A, Shikuma C. Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol 2008; 14:362-7. [PMID: 18989814 DOI: 10.1080/13550280802216494] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenotype of human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) in the developed world has changed with the broad institution of highly active antiretroviral therapy (HAART) and with aging of the HIV+ population. Extrapyramidal motor signs were a prominent feature of HAND as defined in the early stages of the epidemic but has not been reevaluated in the era of HAART. Moreover, the contribution of aging to extrapyramidal motor signs in the context of HIV remains undefined. We examined these questions among the 229 HIV+ participants in the Hawaii Aging with HIV Cohort compared to age-, gender-, and ethnicity-matched HIV-negative controls. Extrapyramidal motor signs were quantified using the motor exam of the Unified Parkinson's Disease Rating Scale (UPDRSmotor) and compared to concurrent neuropsychological and clinical cognitive diagnostic categorization. The mean UPDRSmotor score increased with older age (1.68 versus 3.35; P<.001) and with HIV status (1.18 versus 3.56; P<.001). Age group (P=.024), HIV status (P<.001), and the interaction between age and HIV (P=.026) were significantly associated with UPDRSmotor score. Among HIV+ patients, the mean UPDRSmotor score increased with worsening cognitive diagnostic category (P<.001) where it was 2.06 (2.31) in normal cognition (n=110), 3.21 (3.48) in minor cognitive motor disorder (MCMD) (n=84), and 5.72 (5.01) in HIV-associated dementia (HAD) (n=37). We conclude that extrapyramidal motor signs are increased in HIV in the era of HAART and that the impact of HIV on extrapyramidal motor signs is exacerbated by aging. These results highlight the importance of a careful neurological examination in the evaluation of HIV patients.
Collapse
Affiliation(s)
- Victor Valcour
- Hawaii AIDS Clinical Research Program, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lentz MR, Lee V, Westmoreland SV, Ratai EM, Halpern EF, González RG. Factor analysis reveals differences in brain metabolism in macaques with SIV/AIDS and those with SIV-induced encephalitis. NMR IN BIOMEDICINE 2008; 21:878-887. [PMID: 18574793 PMCID: PMC2562421 DOI: 10.1002/nbm.1276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MRS has often been used to study metabolic processes in the HIV-infected brain. However, it remains unclear how changes in individual metabolites are related to one another in this context of virus-induced central nervous system dysfunction. We used factor analysis (FA) to identify patterns of metabolite distributions from an MRS study of healthy macaques and those infected with simian immunodeficiency virus (SIV) which were moribund with AIDS. FA summarized the correlations from nine metabolites into three main factors. Factor 3 identified patterns that discern healthy animals from those with SIV/AIDS. Factor 2 was able to differentiate between animals that had encephalitis and those moribund with AIDS but lacking encephalitis. Specifically, Factor 2 was able to distinguish animals with moderate to severe encephalitis from animals with mild or no encephalitis as well as uninfected controls. FA not only confirmed the involvement of neuronal metabolites (N-acetylaspartate and glutamate) in disease severity, but also detected changes in creatine and myo-inositol that have not been observed in the SIV macaque model previously. These results suggest that the divergent pathways of N-acetylaspartate and creatine in this disease may enable the commonly reported ratio N-acetylaspartate/creatine to be a more sensitive marker of disease severity.
Collapse
Affiliation(s)
- Margaret R. Lentz
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Vallent Lee
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Eva-Maria Ratai
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Elkan F. Halpern
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - R. Gilberto González
- Department of Neuroradiology/A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
49
|
Paul RH, Ernst T, Brickman AM, Yiannoutsos CT, Tate DF, Cohen RA, Navia BA. Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsychol Soc 2008; 14:725-33. [PMID: 18764968 PMCID: PMC8092588 DOI: 10.1017/s1355617708080910] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, we examined the relationships among cognitive function, magnetic resonance spectroscopy (MRS) brain metabolite indices measured in the basal ganglia, and quantitative magnetic resonance imaging (MRI) of the caudate nucleus and the putamen in the earliest stages of HIV-related cognitive involvement. Participants included 22 HIV-positive individuals and 20 HIV-negative individuals. HIV-positive individuals performed significantly more poorly than the HIV-negative individuals on several cognitive measures. In addition, the choline/creatine ratio was significantly higher and the N-acetyl aspartate/choline ratio was significantly lower among HIV patients. The caudate and putamen sizes were smaller among HIV-positive patients compared with controls; however, the differences did not reach statistical significance. Correlation analyses revealed associations between cognitive function and select MRS indices. In addition, caudate size was significantly correlated with performances on higher-order thinking tests whereas putamen size was significantly correlated with performances on motor tests. The results suggest that MRS differences are more pronounced than area size differences between seropositive and seronegative individuals in mild stages of HIV-related cognitive impairment. However, basal ganglia size remains an important contributor to cognitive status in this population. Longitudinal studies are needed to determine the evolution of these imaging correlates of HIV-cognitive impairment in HIV.
Collapse
Affiliation(s)
- Robert H Paul
- Department of Psychology, Behavioral Neuroscience, University of Missouri, St. Louis, St. Louis, Missouri 63121-4400, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The purpose of this study was to explain relationships between neurological dysfunction, HIV serological status, and HIV risk behaviors that have not been well understood. A secondary analysis was conducted on data from 117 female prison inmates. Another 18 female inmates from the same prison were further evaluated with more specific neurological, neuropsychological, and HIV risk behavior Risk Assessment Battery (RAB) measures. Neurological function, defined by valid, reliable quantitative measures of cognition, behavior/mood, cranial nerves, motor, reflexes, and sensation, was significantly correlated with HIV RAB scores (.743, p = .006), and RAB scale scores (.824, p = .001) in HIV-negative, but not HIV-positive, inmates. Specifically, the reflex deficits subscale correlated with RAB scores (.779, p = .003) and RAB scale scores (.682, p = .015) in the HIV-negative group. These findings combined with subjects' histories suggest cerebral dysfunction possibly contributes to HIV risk behaviors in certain high-risk female inmates predating HIV infection. These findings further suggest that HIV risk reduction should target neurologically impaired females as a high-risk group. Larger studies are needed to validate these findings.
Collapse
|