1
|
Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022; 12:biom12111618. [DOI: 10.3390/biom12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Ayahuasca is a psychoactive brew traditionally used in indigenous and religious rituals and ceremonies in South America for its therapeutic, psychedelic, and entheogenic effects. It is usually prepared by lengthy boiling of the leaves of the bush Psychotria viridis and the mashed stalks of the vine Banisteriopsis caapi in water. The former contains the classical psychedelic N,N-dimethyltryptamine (DMT), which is thought to be the main psychoactive alkaloid present in the brew. The latter serves as a source for β-carbolines, known for their monoamine oxidase-inhibiting (MAOI) properties. Recent preliminary research has provided encouraging results investigating ayahuasca’s therapeutic potential, especially regarding its antidepressant effects. On a molecular level, pre-clinical and clinical evidence points to a complex pharmacological profile conveyed by the brew, including modulation of serotoninergic, glutamatergic, dopaminergic, and endocannabinoid systems. Its substances also interact with the vesicular monoamine transporter (VMAT), trace amine-associated receptor 1 (TAAR1), and sigma-1 receptors. Furthermore, ayahuasca’s components also seem to modulate levels of inflammatory and neurotrophic factors beneficially. On a biological level, this translates into neuroprotective and neuroplastic effects. Here we review the current knowledge regarding these molecular interactions and how they relate to the possible antidepressant effects ayahuasca seems to produce.
Collapse
|
2
|
Serotonergic receptor gene polymorphism and response to selective serotonin reuptake inhibitors in ethnic Malay patients with first episode of major depressive disorder. THE PHARMACOGENOMICS JOURNAL 2021; 21:498-509. [PMID: 33731884 DOI: 10.1038/s41397-021-00228-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 01/29/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
The polymorphisms of the 5HTR1A and 5HTR2A receptor genes (rs6295C/G and rs6311G/A) have been evaluated for association with SSRI treatment outcome in various populations with different results. The present study was carried out to determine the association between genotypes of HTR1A-rs6295 and HTR2A-rs6311 with SSRI treatment outcome among the ethnic Malay patients diagnosed with first-episode major depressive disorder (MDD). The patients were recruited from four tertiary hospitals in the Klang Valley region of Malaysia. Predefined efficacy phenotypes based on 25% (partial early response) and 50% (clinical efficacy response) reduction in Montgomery Asberg Depression Rating Scale-self Rated score (MADRS-S) were adopted for assessment of treatment efficacy in this study. Self-reporting for adverse effects (AE) was documented using the Patient Rated Inventory of Side Effect (PRISE) after treatment with SSRI for up to 6 weeks. Adjusted binary logistic regression between genotypes of the polymorphism obtained using sequencing technique with the treatment outcome phenotypes was performed. The 142 patients recruited were made up of 96 females (67.6%) and 46 males (32.4%). Clinical efficacy and Partial early response phenotypes were not significantly associated with genotypes of HTR1A and HTR2A polymorphism. The GG genotype of HTR2A polymorphism has decreased odds for dizziness (CNS) and increased odds for poor concentration. The GA genotype increases the odd for excessive sweating, diarrhoea, constipation and blurred vision. The CC genotype of HTR1A-rs6295 decreases the odd for nausea/vomiting and increases the odd for anxiety. Thus, some genotypes of HTR1A and HTR2A polymorphism were associated with SSRI treatment outcomes in ethnic Malay MDD patients.
Collapse
|
3
|
Moein MM, Halldin C. Sample preparation techniques for protein binding measurement in radiopharmaceutical approaches: A short review. Talanta 2020; 219:121220. [PMID: 32887121 DOI: 10.1016/j.talanta.2020.121220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Plasma protein binding (PPB) measurement is a key step in radiopharmaceutical studies for the development of positron emission tomography (PET) radioligands. PPB refers to the binding degree of a radioligand, radiotracer, or drug to blood plasma proteins or tissues after administration into the body. Several techniques have been successfully developed and applied for PPB measurement of PET radioligands. However, there is room for progress among these techniques in relation to duration time, adaptability with nonpolar radioligands, in vivo measurement, specificity, and selectivity. This mini review gives a brief overview of advances, limitations, and prospective applications of commercially-available PPB methods.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Karolinska Radiopharmacy, Karolinska University Hospital, S-171 64 Stockholm, Sweden; Karolinska Institutet, Department of Oncology-Pathology, J5:20, S-171 77 Stockholm, Sweden.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
4
|
Baldassarri SR, Park E, Finnema SJ, Planeta B, Nabulsi N, Najafzadeh S, Ropchan J, Huang Y, Hannestad J, Maloney K, Bhagwagar Z, Carson RE. Inverse changes in raphe and cortical 5-HT 1B receptor availability after acute tryptophan depletion in healthy human subjects. Synapse 2020; 74:e22159. [PMID: 32324935 DOI: 10.1002/syn.22159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 11/07/2022]
Abstract
Serotonergic neurotransmission plays a key role in the pathophysiology and treatment of various neuropsychiatric diseases. The purpose of this study was to investigate changes in serotonergic neurotransmission after acute tryptophan depletion (ATD) using positron emission tomography (PET) with [11 C]P943, a 5-HT1B receptor radioligand previously shown to be sensitive to changes in 5-HT. Five healthy subjects were scanned on a high resolution PET scanner twice on the same day, before and approximately 5 hours after ingesting capsules containing an amino acid mixture that lacks tryptophan. For each scan, emission data were acquired for 120 min after intravenous bolus injection of [11 C]P943. Binding potential (BPND ) values were estimated from parametric images using the second version of the multilinear reference tissue model (MRTM2, t* = 20 min) with cerebellar grey matter used as a reference region. The change in [11 C]P943 binding (ΔBPND , %) was calculated as (BPND,post - BPND,pre )/(BPND,pre ) × 100, and correlation analysis was performed to measure linear associations of ΔBPND between raphe and other regions of interest (ROIs). ΔBPND ranged from -6% to 45% in the raphe, with positive values indicating reduced competition from 5-HT. In cortical regions, ΔBPND ranged from -28% to 7%. While these changes did not reach significance, there were significant negative correlations of ΔBPND of the raphe with those of cerebral cortical regions and the thalamus (e.g., r = -.96, p = .011 for average cortex). These findings support the hypothesis that raphe serotonin is a critical modulator of cortical serotonin release via projecting neurons in healthy human subjects.
Collapse
Affiliation(s)
- Stephen R Baldassarri
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Eunkyung Park
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA.,Division of Nuclear Medicine, Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sjoerd J Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Soheila Najafzadeh
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Jonas Hannestad
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Kathleen Maloney
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Zubin Bhagwagar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Kim E, Howes OD, Park JW, Kim SN, Shin SA, Kim BH, Turkheimer FE, Lee YS, Kwon JS. Altered serotonin transporter binding potential in patients with obsessive-compulsive disorder under escitalopram treatment: [11C]DASB PET study. Psychol Med 2016; 46:357-366. [PMID: 26423910 DOI: 10.1017/s0033291715001865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a chronic, relapsing mental illness. Selective serotonin reuptake inhibitors block serotonin transporters (SERTs) and are the mainstay of treatment for OCD. SERT abnormalities are reported in drug-free patients with OCD, but it is not known what happens to SERT levels during treatment. This is important as alterations in SERT levels in patients under treatment could underlie poor response, or relapse during or after treatment. The aim of the present study was first to validate a novel approach to measuring SERT levels in people taking treatment and then to investigate SERT binding potential (BP) using [11C]DASB PET in patients with OCD currently treated with escitalopram in comparison with healthy controls. METHOD Twelve patients and age- and sex-matched healthy controls were enrolled. The patients and healthy controls underwent serial PET scans after administration of escitalopram and blood samples for drug concentrations were collected simultaneously with the scans. Drug-free BPs were obtained by using an inhibitory E max model we developed previously. RESULTS The inhibitory E max model was able to accurately predict drug-free SERT BP in people taking drug treatment. The drug-free BP in patients with OCD currently treated with escitalopram was significantly different from those in healthy volunteers [Cohen's d = 0.03 (caudate), 1.16 (putamen), 1.46 (thalamus), -5.67 (dorsal raphe nucleus)]. CONCLUSIONS This result extends previous findings showing SERT abnormalities in drug-free patients with OCD by indicating that altered SERT availability is seen in OCD despite treatment. This could account for poor response and the high risk of relapse in OCD.
Collapse
Affiliation(s)
- E Kim
- Department of Neuropsychiatry,Seoul National University Bundang Hospital,Gyeonggi-do,Korea
| | - O D Howes
- Psychiatric Imaging,Medical Research Council Clinical Sciences Centre,Imperial College London,Hammersmith Hospital Campus,London,UK
| | - J W Park
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| | - S N Kim
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| | - S A Shin
- Department of Biomedical Sciences,Seoul National University,Seoul,Korea
| | - B-H Kim
- Department of Clinical Pharmacology and Therapeutics,Kyung Hee University College of Medicine and Hospital,Seoul,Korea
| | - F E Turkheimer
- King's College London, Institute of Psychiatry,London,UK
| | - Y-S Lee
- Department of Nuclear Medicine,Seoul National University College of Medicine,Seoul,Korea
| | - J S Kwon
- Department of Psychiatry,Seoul National University College of Medicine,Seoul,Korea
| |
Collapse
|
6
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Simonsen A, Scheel-Krüger J, Jensen M, Roepstorff A, Møller A, Frith CD, Campbell-Meiklejohn D. Serotoninergic effects on judgments and social learning of trustworthiness. Psychopharmacology (Berl) 2014; 231:2759-69. [PMID: 24464530 DOI: 10.1007/s00213-014-3444-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Certain disorders, such as depression and anxiety, to which serotonin dysfunction is historically associated, are also associated with lower assessments of other people's trustworthiness. Serotonergic changes are known to alter cognitive responses to threatening stimuli. This effect may manifest socially as reduced apparent trustworthiness of others. Trustworthiness judgments can emerge from either direct observation or references provided by third parties. OBJECTIVE We assessed whether explicit judgments of trustworthiness and social influences on those judgments are altered by changes within serotonergic systems. METHODS We implemented a double-blind between-subject design where 20 healthy female volunteers received a single dose of the selective serotonin reuptake inhibitor (SSRI) citalopram (2 × 20 mg), while 20 control subjects (matched on age, intelligence, and years of education) received a placebo. Subjects performed a face-rating task assessing how trustworthy they found 153 unfamiliar others (targets). After each rating, the subjects were told how other subjects, on average, rated the same target. The subjects then performed 30 min of distractor tasks before, unexpectedly, being asked to rate all 153 faces again, in a random order. RESULTS Compared to subjects receiving a placebo, subjects receiving citalopram rated targets as less trustworthy. They also conformed more to opinions of others, when others rated targets to be even less trustworthy than subjects had initially indicated. The two effects were independent of negative effects of citalopram on subjective state. CONCLUSIONS This is evidence that serotonin systems can mediate explicit assessment and social learning of the trustworthiness of others.
Collapse
Affiliation(s)
- Arndis Simonsen
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
8
|
Albert PR. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 2012; 367:2402-15. [PMID: 22826341 DOI: 10.1098/rstb.2011.0376] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The serotonin-1A (5-HT(1A)) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT(1A) receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT(1A) receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT(1A) receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT(1A) autoreceptor expression in animal models and humans. Its association with altered 5-HT(1A) expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT(1A) heteroreceptors, and rs6295-induced upregulation of 5-HT(1A) autoreceptors. Targeted therapeutics to inhibit 5-HT(1A) autoreceptor expression and induce 5-HT(1A) heteroreceptor expression may ameliorate treatment of anxiety and major depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , 451 Smyth Road, Ottawa, ON, Canada , K1H 8M5.
| |
Collapse
|
9
|
Measuring endogenous changes in serotonergic neurotransmission in humans: a [11C]CUMI-101 PET challenge study. Mol Psychiatry 2012; 17:1254-60. [PMID: 22665264 DOI: 10.1038/mp.2012.78] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin (5-HT) neurotransmission is implicated in cognitive and emotional processes and a number of neuropsychiatric disorders. The use of positron emission tomography (PET) to measure ligand displacement has allowed estimation of endogenous dopamine release in the human brain; however, applying this methodology to assess central 5-HT release has proved more challenging. The aim of this study was to assess the sensitivity of a highly selective 5-HT(1A) partial agonist radioligand [(11)C]CUMI-101 to changes in endogenous 5-HT levels induced by an intravenous challenge with the selective 5-HT re-uptake inhibitor (SSRI), citalopram, in healthy human participants. We studied 15 healthy participants who underwent PET scanning in conjunction with [(11)C]CUMI-101 after receiving an intravenous infusion of citalopram 10 mg or placebo in a double-blind, crossover, randomized design. Regional estimates of binding potential (BP(ND)) were obtained by calculating total volumes of distribution (V(T)) for presynaptic dorsal raphe nucleus (DRN) and postsynaptic cortical regions. Relative to placebo, citalopram infusion significantly increased [(11)C]CUMI-101 BP(ND) at postsynaptic 5-HT(1A) receptors in several cortical regions, but there was no change in binding at 5-HT(1A) autoreceptors in the DRN. Across the postsynaptic brain regions, citalopram treatment induced a mean 7% in [(11)C]CUMI-101 BP(ND) (placebo 1.3 (0.2); citalopram 1.4 (0.2); paired t-test P=0.003). The observed increase in postsynaptic [(11)C]CUMI-101 availability identified following acute citalopram administration could be attributable to a decrease in endogenous 5-HT availability in cortical terminal regions, consistent with preclinical animal studies, in which acute administration of SSRIs decreases DRN cell firing through activation of 5-HT(1A) autoreceptors to reduce 5-HT levels in postsynaptic regions. We conclude that [(11)C]CUMI-101 may be sensitive to changes in endogenous 5-HT release in humans.
Collapse
|
10
|
Pinborg LH, Feng L, Haahr ME, Gillings N, Dyssegaard A, Madsen J, Svarer C, Yndgaard S, Kjaer TW, Parsey RV, Hansen HD, Ettrup A, Paulson OB, Knudsen GM. No change in [¹¹C]CUMI-101 binding to 5-HT(1A) receptors after intravenous citalopram in human. Synapse 2012; 66:880-4. [PMID: 22730164 DOI: 10.1002/syn.21579] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/05/2012] [Accepted: 06/13/2012] [Indexed: 11/12/2022]
Abstract
The main objective of this study was to determine the sensitivity of [¹¹C]CUMI-101 to citalopram challenge aiming at increasing extracellular 5-HT. CUMI-101 has agonistic properties in human embryonic kidney 293 cells transfected with human recombinant 5-HT(1A) receptors (Hendry et al. [2011] Nucl Med Biol 38:273-277; Kumar et al. [2006] J Med Chem 49:125-134) and has previously been demonstrated to be sensitive to bolus citalopram in monkeys (Milak et al. [2011] J Cereb Blood Flow Metab 31:243-249). We studied six healthy individuals. Two PET-scans were performed on the same day in each individual before and after constant infusion of citalopram (0.15 mg/kg). The imaging data were analyzed using two tissue compartment kinetic modeling with metabolite corrected arterial input and Simplified Reference Tissue Modeling using cerebellum as a reference region. There was no significant difference in regional distribution volume or non-displaceable binding potential values before and after citalopram infusion. The mean receptor occupancy was 0.03 (range -0.14 to 0.17). Our data imply that [¹¹C]CUMI-101 binding is not sensitive to citalopram infusion in humans.
Collapse
Affiliation(s)
- Lars H Pinborg
- Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future.
Collapse
|
12
|
Gómez-Gil E, Navinés R, Martínez De Osaba MJ, Díaz-Ricart M, Escolar G, Salamero M, Martín-Santos R, Galán A, Gastó C. Hormonal responses to the 5-HT1A agonist buspirone in remitted endogenous depressive patients after long-term imipramine treatment. Psychoneuroendocrinology 2010; 35:481-9. [PMID: 19762159 DOI: 10.1016/j.psyneuen.2009.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/23/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The serotonin-1A (5-HT1A) receptor subtypes are considered as targets of a variety of antidepressant drugs. Previous studies have suggested different adaptive changes in pre- and post-synaptic 5-HT receptors in the brain after treatment with non-selective tricyclic antidepressants (TCA) and selective 5-HT re-uptake inhibitors (SSRIs). The present study aimed to investigate the adaptive effect of the TCA imipramine on the post-synaptic 5-HT1A receptor function in the hypothalamus. METHODS A longitudinal design was used in 14 patients with major depressive disorder (DSM-IV) with endogenous features (Newcastle Scale) in order to assess the functional status of post-synaptic 5-HT1A receptors before and after successful antidepressant treatment with imipramine. The effect of the 5-HT1A receptor agonist, buspirone, on ACTH, cortisol, and prolactine (PRL) plasma levels was used to assess the functional status of hypothalamic 5-HT1A receptors. A group of 15 concurrent normal subjects were used as control. RESULTS Endogenous depressed patients in remission and currently receiving treatment with imipramine (mean length of treatment 145 days, SD=27) presented significantly lower buspirone responses to ACTH and cortisol than in the pre-treatment condition (Deltamax p< or =.05; AUC p<.001) and to ACTH in comparison with healthy controls (Deltamax p<.01; AUC p<.05). No significant differences were found between the post-treatment and pre-treatment PRL responses, or between patients in both conditions and controls; nevertheless, the PRL response in patients in remission and receiving treatment almost reached the values seen in controls. CONCLUSIONS This study extends previous findings from our group using the SSRI citalopram as an antidepressant. Imipramine and citalopram induce similar changes in the endocrine response to buspirone in depressed patients. As the direction of change in ACTH-cortisol and PRL responses after treatment is the opposite, we cannot substantiate increases or decreases in the sensitivity of post-synaptic 5-HT1A receptors in the hypothalamus by long-term imipramine treatment and/or resolution of illness. Therefore, the hormonal changes may result from different or multiples unknown mechanisms.
Collapse
Affiliation(s)
- Esther Gómez-Gil
- Servicio de Psiquiatría, Instituto de Neurociencias, Hospital Clínic, Instituto de Investigaciones Biomédiques August Pi i Sunyer (IDIBAPS), Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The use of MS imaging (MSI) to resolve the spatial and pharmacodynamic distributions of compounds in tissues is emerging as a powerful tool for pharmacological research. Unlike established imaging techniques, only limited a priori knowledge is required and no extensive manipulation (e.g., radiolabeling) of drugs is necessary prior to dosing. MS provides highly multiplexed detection, making it possible to identify compounds, their metabolites and other changes in biomolecular abundances directly off tissue sections in a single pass. This can be employed to obtain near cellular, or potentially subcellular, resolution images. Consideration of technical limitations that affect the process is required, from sample preparation through to analyte ionization and detection. The techniques have only recently been adapted for imaging and novel variations to the established MSI methodologies will further enhance the application of MSI for pharmacological research.
Collapse
|
14
|
Iyo AH, Kieran N, Chandran A, Albert PR, Wicks I, Bissette G, Austin MC. Differential regulation of the serotonin 1 A transcriptional modulators five prime repressor element under dual repression-1 and nuclear-deformed epidermal autoregulatory factor by chronic stress. Neuroscience 2009; 163:1119-27. [PMID: 19647046 DOI: 10.1016/j.neuroscience.2009.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/15/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Chronic stress is known to affect brain areas involved in learning and emotional responses. These changes, thought to be related to the development of cognitive deficits are evident in major depressive disorder and other stress-related pathophysiologies. The serotonin-related transcription factors (Freud-1/CC2D1A; five prime repressor element under dual repression/coiled-coil C2 domain 1a, and NUDR/Deaf-1; nuclear-deformed epidermal autoregulatory factor) are two important regulators of the 5-HT1A receptor. Using Western blotting and quantitative real-time polymerase chain reaction (qPCR) we examined the expression of mRNA and proteins for Freud-1, NUDR, and the 5-HT1A receptor in the prefrontal cortex (PFC) of male rats exposed to chronic restraint stress (CRS; 6 h/day for 21 days). After 21 days of CRS, significant reductions in both Freud-1 mRNA and protein were observed in the PFC (36.8% and 32%, respectively; P<0.001), while the levels of both NUDR protein and mRNA did not change significantly. Consistent with reduced Freud-1 protein, 5-HT1A receptor mRNA levels were equally upregulated in the PFC, while protein levels actually declined, suggesting post-transcriptional receptor downregulation. The data suggest that CRS produces distinct alterations in the serotonin system specifically altering Freud-1 and the 5-HT1A receptor in the PFC of the male rat while having no effect on NUDR. These results point to the importance of understanding the mechanism for the differential regulation of Freud-1 and NUDR in the PFC as a basis for understanding the related effects of chronic stress on the serotonin system (serotonin-related transcription factors) and stress-related disorders like depression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Chronic Disease
- Corticosterone/blood
- Gene Expression
- Male
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymerase Chain Reaction
- Prefrontal Cortex/metabolism
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Restraint, Physical
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Transcription Factors
Collapse
Affiliation(s)
- A H Iyo
- Department of Psychiatry and Human Behavior, Center for Psychiatric Neuroscience, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine. THE PHARMACOGENOMICS JOURNAL 2009; 10:126-33. [PMID: 19636336 DOI: 10.1038/tpj.2009.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To identify genes that may be relevant to the molecular action of antidepressants, we investigated transcriptional changes induced by the selective serotonin reuptake inhibitor paroxetine in a serotonergic cell line. We examined gene expression changes after acute treatment with paroxetine and sought to validate microarray results by quantitative PCR (qPCR). Concordant transcriptional changes were confirmed for 14 genes by qPCR and five of these, including the adrenomedullin gene (Adm), either approached or reached statistical significance. Reporter gene assays showed that a SNP (rs11042725) in the upstream flanking region of ADM significantly altered expression. Association analysis demonstrated rs11042725 to be significantly associated with response to paroxetine (odds ratio=0.075, P<0.001) but not with response to either fluoxetine or citalopram. Our results suggest that ADM is involved with the therapeutic efficacy of paroxetine, which may have pharmacogenetic utility.
Collapse
|
16
|
Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88:17-31. [PMID: 19428959 DOI: 10.1016/j.pneurobio.2009.01.009] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Dysfunction of the serotonin 1A receptor (5-HT(1A)) may play a role in the genesis of major depressive disorder (MDD). Here we review the pharmacological, post-mortem, positron emission tomography (PET), and genetic evidence in support of this statement. We also touch briefly on two MDD-associated phenotypes, cognitive impairment and somatic pain. The results of pharmacological challenge studies with 5-HT(1A) receptor agonists are indicative of blunted endocrine responses in depressed patients. Lithium, valproate, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and other treatment, such as electroconvulsive shock therapy (ECT), all increase post-synaptic 5-HT(1A) receptor signaling through either direct or indirect effects. Reduced somatodendritic and postsynaptic 5-HT(1A) receptor numbers or affinity have been reported in some post-mortem studies of suicide victims, a result consistent with well-replicated PET analyses demonstrating reduced 5-HT(1A) receptor binding potential in diverse regions such as the dorsal raphe, medial prefrontal cortex (mPFC), amygdala and hippocampus. 5-HT(1A) receptor knockout (KO) mice display increased anxiety-related behavior, which, unlike in their wild-type counterparts, cannot be rescued with antidepressant drug (AD) treatment. In humans, the G allele of a single nucleotide polymorphism (SNP) in the 5-HT(1A) receptor gene (HTR1A; rs6295), which abrogates a transcription factor binding site for deformed epidermal autoregulatory factor-1 (Deaf-1) and Hes5, has been reported to be over-represented in MDD cases. Conversely, the C allele has been associated with better response to AD drugs. We raise the possibility that 5-HT(1A) receptor dysfunction represents one potential mechanism underpinning MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Jonathan Savitz
- Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
17
|
MicroPET imaging of 5-HT 1A receptors in rat brain: a test-retest [18F]MPPF study. Eur J Nucl Med Mol Imaging 2008; 36:53-62. [PMID: 18704404 DOI: 10.1007/s00259-008-0891-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Earlier studies have shown that positron emission tomography (PET) imaging with the radioligand [(18)F]MPPF allows for measuring the binding potential of serotonin 5-hydroxytryptamine(1A) (5-HT(1A)) receptors in different regions of animal and human brain, including that of 5-HT(1A) autoreceptors in the raphe nuclei. In the present study, we sought to determine if such data could be obtained in rat, with a microPET (R4, Concorde Microsystems). METHODS Scans from isoflurane-anaesthetised rats (n = 18, including six test-retest) were co-registered with magnetic resonance imaging data, and binding potential, blood to plasma ratio and radiotracer efflux were estimated according to a simplified reference tissue model. RESULTS Values of binding potential for hippocampus (1.2), entorhinal cortex (1.1), septum (1.1), medial prefrontal cortex (1.0), amygdala (0.8), raphe nuclei (0.6), paraventricular hypothalamic nucleus (0.5) and raphe obscurus (0.5) were comparable to those previously measured with PET in cats, non-human primates or humans. Test-retest variability was in the order of 10% in the larger brain regions (hippocampus, medial prefrontal and entorhinal cortex) and less than 20% in small nuclei such as the septum and the paraventricular hypothalamic, basolateral amygdaloid and raphe nuclei. CONCLUSIONS MicroPET brain imaging of 5-HT(1A) receptors with [(18)F]MPPF thus represents a promising avenue for investigating 5-HT(1A) receptor function in rat.
Collapse
|
18
|
Bellido I, Delange L, Gomez-Luque A. The platelet of the patients with ischemic cardiopathy and cardiac valve disease showed a reduction of 8OH-DPAT binding sites. Thromb Res 2008; 121:555-65. [PMID: 17675218 DOI: 10.1016/j.thromres.2007.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Depression is prospectively associated with increased risk of coronary artery disease in individuals initially free of clinical cardiovascular disease probably by an increased platelet activity. The serotonergic receptors mainly implied in depression are 5-HT1A and 5-HT2 receptors. Activation of 5HT2 receptor induces platelet aggregation. Drugs with 5-HT1A receptor agonist and 5-HT2A receptor antagonist effects reduced the receptor-mediated platelet aggregation. There are only indirect data about 5-HT1A receptors presence in platelet membranes, thus our aims were to study the characteristics of the platelet membranes 5-HT1A binding sites of both healthy volunteers and patients with cardiac valve disease and ischemic cardiopathy. The bound of the 5-HT1A selective agonist 3H-8OH-DPAT to the platelet membranes 5-HT1A binding sites of patients with cardiac valve disease and ischemic cardiopathy were compared with a control group of healthy voluntaries using radioligand binding methods. The patients with cardiovascular disease showed a reduction (-50.40%) (p<0.01) of the 3H-8OH-DPAT bound to the platelet membranes 5-HT1A receptors (1.652+/-0.79 fmol/mg protein) with respect to the control group (3.331+/-0.16 fmol/mg protein). 3H-8OH-DPAT binding to human platelet membranes is saturable, of high affinity, and seems selective for 5-HT1A receptors, and similar to that described in animal brain and in other human cells. Patients with ischemic cardiopathy and cardiac valve disease showed a reduction of the 8OH-DPAT bound to the platelet membranes. Taken together, these findings suggest that the 8OH-DPAT bound to the human platelet membranes is modulated by modifications produced by cardiovascular disease conditions.
Collapse
Affiliation(s)
- Inmaculada Bellido
- Department of Pharmacology and Clinical Therapeutics, School of Medicine, Campus de Teatinos, Boulevard Louis Pasteur, 32, 29071, University of Malaga, Spain.
| | | | | |
Collapse
|
19
|
Oya S, Choi SR, Kung MP, Kung HF. 5-Chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine: a new serotonin transporter ligand. Nucl Med Biol 2007; 34:129-39. [PMID: 17307121 PMCID: PMC1892637 DOI: 10.1016/j.nucmedbio.2006.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/02/2006] [Accepted: 12/13/2006] [Indexed: 11/20/2022]
Abstract
Two novel ligands with 4' substitution on the Phenyl Ring B of biphenylthiol, 5-chloro-2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine (7) and 2-(2'-((dimethylamino)methyl)-4'-methoxyphenylthio)-5-iodobenzenamine (8), were prepared and tested as potential serotonin transporter (SERT) imaging agents. The new ligands displayed extremely high binding affinities to SERT (K(i)=0.22+/-0.09 and 0.11+/-0.04 nM, respectively), with very low binding affinities to dopamine and norepinephrine transporters (K(i)>1000 nM). The corresponding [(125)I]7 and [(125)I]8 were successfully prepared from tri-n-butyltin derivatives. They showed good brain uptakes and prolonged retention after intravenous injection in rats (brain uptake was 1.77% and 0.98% dose/g for [(125)I]7, and 0.92% and 0.29% dose/g for [(125)I]8, at 2 and 120 min, respectively). Significantly, [(125)I]7 showed excellent uptake and prolonged retention in the hypothalamus, where SERT concentration was highest. The hypothalamus/cerebellum (HY/CB) ratios (target/background ratios) were 4.24, 7.10, 8.24 and 12.6 at 2, 4, 6 and 12 h, respectively. The HY/CB ratios for [(125)I]8 were 3.97, 5.57 and 5.06 at 1, 2 and 4 h, respectively. Adding the 4'-iodo group to the Phenyl Ring B of Compound (7) appeared to reduce the rate of clearance from the brain, and kinetics favored uptake and retention in the hypothalamus. The localization of [(125)I]7 in the hypothalamus region in the rat brain could be blocked by pretreatment with (+)McN5652, escitalopram and ADAM (2), which are all selective SERT ligands (at 2 mg/kg iv, 5 min pretreatment). Ex vivo autoradiograms of rat brain sections (at 4 h after intravenous injection of [(125)I]7) showed intense labeling in regions of the brain known to have high SERT density. The excellent selective uptake and retention in the hypothalamus region suggest that [(123)I]7 is a potential lead compound for developing new imaging agents targeting SERT-binding sites with single-photon emission computed tomography.
Collapse
Affiliation(s)
- Shunichi Oya
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
20
|
Lundquist P, Roman M, Syvänen S, Hartvig P, Blomquist G, Hammarlund-Udenaes M, Långström B. Effect on [11C]DASB binding after tranylcypromine-induced increase in serotonin concentration: positron emission tomography studies in monkeys and rats. Synapse 2007; 61:440-9. [PMID: 17372973 DOI: 10.1002/syn.20382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several research groups have demonstrated that under specific conditions, in vivo neuroreceptor binding techniques can be used to measure acute changes in the concentrations of endogenous transmitters in the vicinity of neuroreceptors. The aim of this study was to investigate whether [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB) binding to the plasma membrane serotonin transporter (SERT) in the rhesus monkey and rat brain decreased after a pharmacologically-induced increase in the interstitial serotonin (5HT) concentration. Three rhesus monkeys were given repeated single boluses of [(11)C]DASB in sequential positron emission tomography (PET) experiments. Rats were given the tracer as a bolus dose plus a constant infusion. In vivo binding in both models was studied before and after presumably having increased interstitial 5HT concentrations using tranylcypromine (TCP), which inhibits the enzyme (monoamine oxidase, MAO), that degrades 5HT. The rat brain tissue was analyzed using high-performance liquid chromatography (HPLC) to determine the proportion of the PET signal comprising unchanged [(11)C]DASB. The binding of [(11)C]DASB in the thalamus decreased in both rhesus monkeys and rats after TCP administration. The possibility of using [(11)C]DASB as a tool for monitoring changes in endogenous serotonin concentrations merits further investigation.
Collapse
Affiliation(s)
- Pinelopi Lundquist
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Navinés R, Martín-Santos R, Gómez-Gil E, Martínez de Osaba MJ, Imaz ML, Gastó C. Effects of citalopram treatment on hypothermic and hormonal responses to the 5-HT1A receptor agonist buspirone in patients with major depression and therapeutic response. Psychoneuroendocrinology 2007; 32:411-6. [PMID: 17337123 DOI: 10.1016/j.psyneuen.2007.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 11/25/2022]
Abstract
Serotonin (5-HT) 5-HT1A receptor seems to play an important role in the pathophysiology of major depression and in the mechanism of action of antidepressants. In vivo function of 5-HT1A receptors can be monitored using specific pharmacological challenge tests. The present study aimed at exploring the adaptative 5-HT1A receptor changes in depressed patients before and after 8 week treatment with citalopram. The study population consisted of 30 consecutive outpatients of both sexes aged 18-45 years with major depressive disorders (DSM-IV). Basal score in the Hamilton Rating Scale for Depression (HRSD) was higher than 17. Therapeutic response was defined as a 50% decrease in the HRSD score. The hypothermic and endocrine responses (ACTH, cortisol, and prolactin) induced by the 5-HT1A receptor agonist, buspirone (30 mg p.o.) were measured. After 8 weeks on citalopram, the delta max of hypothermic response elicited by buspirone was markedly decreased (p<0.001). Patients showed a decrease in responses to ACTH (delta max p=0.005; AUC p=0.028) and cortisol (delta max p=0.05). However, the prolactin response increased (delta max p=0.02; AUC p=0.005). There was a significant correlation between the therapeutic effect and reductions of ACTH (r=0.883; p<0.001) and cortisol (r=0.610; p=0.001) responses. Changes induced by citalopram support an alteration of 5-HT1A receptors in major depression. A decrease in the overactivity of the HPA axis may be one factor associated with the response to citalopram.
Collapse
Affiliation(s)
- Ricard Navinés
- Institut de Neurociències. Servei de Psiquiatria. Hospital Clínic, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Aznavour N, Rbah L, Riad M, Reilhac A, Costes N, Descarries L, Zimmer L. A PET imaging study of 5-HT1A receptors in cat brain after acute and chronic fluoxetine treatment. Neuroimage 2006; 33:834-42. [PMID: 16996750 DOI: 10.1016/j.neuroimage.2006.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/04/2006] [Accepted: 08/05/2006] [Indexed: 11/28/2022] Open
Abstract
Immuno-electron microscopic and beta-microprobe studies have demonstrated that the internalization of serotonin 5-HT(1A) autoreceptors, after acute treatment with the selective 5-HT(1A) receptor agonist 8-OH-DPAT or with the specific serotonin reuptake inhibitor (SSRI) fluoxetine, is associated with a marked decrease in the in vivo binding of [(18)F]MPPF in the nucleus raphe dorsalis (NRD) of rat. To determine whether this event might be amenable to brain imaging, the present [(18)F]MPPF positron emission tomographic (PET) study was carried out in anesthetized cats given or not a single dose (5 mg/kg, i.v.) or chronically treated with fluoxetine (5 mg/kg, s.c. for 21 days). Compared to control, [(18)F]MPPF binding potential was considerably (and visibly) decreased in the cat NRD after acute fluoxetine treatment, while it remained unchanged in other brain regions. Unexpectedly, after chronic fluoxetine treatment, [(18)F]MPPF binding potential was not affected in any brain region. In parallel immuno-electron microscopic experiments carried out in rat, the density of 5-HT(1A) autoreceptors on the plasma membrane of NRD dendrites was comparable to control after chronic fluoxetine treatment. If the decrease in [(18)F]MPPF binding at the onset of SSRI treatment was detectable by PET imaging, it could potentially serve as a biological index of efficacy.
Collapse
Affiliation(s)
- Nicolas Aznavour
- Laboratoire de Neuropharmacologie, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Tokugawa J, Ravasi L, Nakayama T, Lang L, Schmidt KC, Seidel J, Green MV, Sokoloff L, Eckelman WC. Distribution of the 5-HT(1A) receptor antagonist [ (18)F]FPWAY in blood and brain of the rat with and without isoflurane anesthesia. Eur J Nucl Med Mol Imaging 2006; 34:259-66. [PMID: 17021813 DOI: 10.1007/s00259-006-0228-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 07/03/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine whether brain and plasma equilibrium of a proposed PET tracer for 5-HT(1A), [(18)F]FPWAY, can be achieved in a sufficiently short time for practical use of the brain to plasma equilibrium distribution ratio (DR) to monitor receptor availability with and without isoflurane anesthesia. METHODS Awake (n=4) and isoflurane-anesthetized (n=4) rats were administered a continuous 60 min intravenous infusion of [(18)F]FPWAY with timed arterial blood sampling. Brains of the isoflurane-anesthetized rats were scanned with the ATLAS small animal PET scanner; awake rats were not. All rats were killed at 60 min and scanned postmortem for 15 min, followed by brain slicing for autoradiography. Several regions of interest (ROIs) were defined in the PET images as well as in the autoradiographic images. Regional DRs were calculated as total activity in the brain ROI divided by plasma [(18)F]FPWAY activity. RESULTS DRs in the anesthetized animals were constant between 30 and 60 min, indicating that near equilibrium between brain and plasma had been achieved by approximately 30 min. DRs determined from postmortem PET data were higher in the isoflurane-anesthetized rats by 24% (not significant) and 33% (p=0.065) in whole brain and hippocampus, respectively. DRs determined from autoradiographic data were greater in isoflurane-anesthetized rats in medial hippocampus, lateral hippocampus, and cerebellum by 33% (p=0.054), 63% (p<0.01), and 32% (p<0.05), respectively. CONCLUSION [(18)F]FPWAY could be an appropriate ligand for monitoring changes in receptor availability in the serotonergic system using a bolus/infusion paradigm. One possible explanation for higher DRs in anesthetized rats may be a reduction in endogenous 5-HT secretion under isoflurane anesthesia.
Collapse
Affiliation(s)
- Joji Tokugawa
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|