1
|
Li Z, He L, Peng L, Zhu X, Li M, Hu D. Negative hemodynamic response in the visual cortex: Evidence supporting neuronal origin via hemodynamic observation and two-photon imaging. Brain Res Bull 2024; 220:111149. [PMID: 39615859 DOI: 10.1016/j.brainresbull.2024.111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The positive hemodynamic response (PHR) during stimulation often co-occurs with a strong, sustained negative hemodynamic response (NHR). However, the characteristics and neurophysiological mechanisms of the NHR, especially in regions distal to the PHR, remain incompletely understood. Using intrinsic optical imaging (OI) and two-photon imaging, we observed that forelimb electrical stimulation evoked strong PHR signals in the forelimb region of the primary somatosensory cortex (S1FL). Meanwhile, NHR signals primarily appeared in the primary visual cortex (V1), with a delayed onset and lower amplitude relative to the PHR signals. Additionally, stimulation led to a reduction in cerebral blood flow (CBF) in the NHR region. Notably, there was an overall suppression of the calcium response in the NHR region, although a small proportion (14 %) of neurons exhibited concurrent activation. Axon tracing revealed cortico-cortical projections from S1FL to V1. These findings suggest that neuronal deactivation significantly contributes to the origin of the NHR, offering additional insights into the specific inhibitory mechanisms underlying the NHR.
Collapse
Affiliation(s)
- Zhen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lihua He
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Xuan Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Ming Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
| |
Collapse
|
2
|
Dresbach S, Gulban OF, Steinbach T, Eck J, Kashyap S, Kaas A, Weiskopf N, Goebel R, Huber R. Laminar CBV and BOLD response-characteristics over time and space in the human primary somatosensory cortex at 7T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600746. [PMID: 39372740 PMCID: PMC11451658 DOI: 10.1101/2024.06.26.600746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Uncovering the cortical representation of the body has been at the core of human brain mapping for decades, with special attention given to the digits. In the last decade, advances in functional magnetic resonance imaging (fMRI) technologies have opened the possibility of noninvasively unraveling the 3rd dimension of digit representations in humans along cortical layers. In laminar fMRI it is common to combine the use of the highly sensitive blood oxygen level dependent (BOLD) contrast with cerebral blood volume sensitive measurements, like vascular space occupancy (VASO), that are more specific to the underlying neuronal populations. However, the spatial and temporal VASO response characteristics across cortical depth to passive stimulation of the digits are still unknown. Therefore, we characterized haemodynamic responses to vibrotactile stimulation of individual digit-tips across cortical depth at 0.75 mm in-plane spatial resolution using BOLD and VASO fMRI at 7T. We could identify digit-specific regions of interest (ROIs) in putative Brodmann area 3b, following the known anatomical organization. In the ROIs, the BOLD response increased towards the cortical surface due to the draining vein effect, while the VASO response was more shifted towards middle cortical layers, likely reflecting bottom-up input from the thalamus, as expected. Interestingly, we also found slightly negative BOLD and VASO responses for non-preferred digits in the ROIs, potentially indicating neuronal surround inhibition. Finally, we explored the temporal signal dynamics for BOLD and VASO as a function of distance from activation peaks resulting from stimulation of contralateral digits. With this analysis, we showed a triphasic response consisting of an initial peak and a subsequent negative deflection during stimulation, followed by a positive post-stimulus response in BOLD and to some extent in VASO. While similar responses were reported with invasive methods in animal models, here we demonstrate a potential neuronal excitation-inhibition mechanism in a center-surround architecture across layers in the human somatosensory cortex. Given that, unlike in animals, human experiments do not rely on anesthesia and can readily implement extensive behavioral testing, obtaining this effect in humans is an important step towards further uncovering the functional significance of the different aspects of the triphasic response.
Collapse
|
3
|
Wu S, Tyler LK, Henson RNA, Rowe JB, Cam-Can, Tsvetanov KA. Cerebral blood flow predicts multiple demand network activity and fluid intelligence across the adult lifespan. Neurobiol Aging 2023; 121:1-14. [PMID: 36306687 PMCID: PMC7613814 DOI: 10.1016/j.neurobiolaging.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The preservation of cognitive function in old age is a public health priority. Cerebral hypoperfusion is a hallmark of dementia but its impact on maintaining cognitive ability across the lifespan is less clear. We investigated the relationship between baseline cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) response during a fluid reasoning task in a population-based adult lifespan cohort. As age differences in CBF could lead to non-neuronal contributions to the BOLD signal, we introduced commonality analysis to neuroimaging to dissociate performance-related CBF effects from the physiological confounding effects of CBF on the BOLD response. Accounting for CBF, we confirmed that performance- and age-related differences in BOLD responses in the multiple-demand network were implicated in fluid reasoning. Age differences in CBF explained not only performance-related BOLD responses but also performance-independent BOLD responses. Our results suggest that CBF is important for maintaining cognitive function, while its non-neuronal contributions to BOLD signals reflect an age-related confound. Maintaining perfusion into old age may serve to support brain function and preserve cognitive performance.
Collapse
Affiliation(s)
- Shuyi Wu
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Management, School of Business, Hong Kong Baptist University, Hong Kong, China
| | - Lorraine K Tyler
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Richard N A Henson
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - James B Rowe
- Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Department of Psychiatry, Cambridge, UK
| | - Kamen A Tsvetanov
- Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Choi S, Zeng H, Chen Y, Sobczak F, Qian C, Yu X. Laminar-specific functional connectivity mapping with multi-slice line-scanning fMRI. Cereb Cortex 2022; 32:4492-4501. [PMID: 35107125 PMCID: PMC9574235 DOI: 10.1093/cercor/bhab497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS.
Collapse
Affiliation(s)
- Sangcheon Choi
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Hang Zeng
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Filip Sobczak
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
6
|
Taylor AJ, Kim JH, Ress D. Temporal stability of the hemodynamic response function across the majority of human cerebral cortex. Hum Brain Mapp 2022; 43:4924-4942. [PMID: 35965416 PMCID: PMC9582369 DOI: 10.1002/hbm.26047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The hemodynamic response function (HRF) measured with functional magnetic resonance imaging is generated by vascular and metabolic responses evoked by brief (<4 s) stimuli. It is known that the human HRF varies across cortex, between subjects, with stimulus paradigms, and even between different measurements in the same cortical location. However, our results demonstrate that strong HRFs are remarkably repeatable across sessions separated by time intervals up to 3 months. In this study, a multisensory stimulus was used to activate and measure the HRF across the majority of cortex (>70%, with lesser reliability observed in some areas of prefrontal cortex). HRFs were measured with high spatial resolution (2‐mm voxels) in central gray matter to minimize variations caused by partial‐volume effects. HRF amplitudes and temporal dynamics were highly repeatable across four sessions in 20 subjects. Positive and negative HRFs were consistently observed across sessions and subjects. Negative HRFs were generally weaker and, thus, more variable than positive HRFs. Statistical measurements showed that across‐session variability is highly correlated to the variability across events within a session; these measurements also indicated a normal distribution of variability across cortex. The overall repeatability of the HRFs over long time scales generally supports the long‐term use of event‐related functional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
8
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A Systematic Review of the Impact of Physical Exercise-Induced Increased Resting Cerebral Blood Flow on Cognitive Functions. Front Aging Neurosci 2022; 14:803332. [PMID: 35237146 PMCID: PMC8882971 DOI: 10.3389/fnagi.2022.803332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Brain perfusion declines with aging. Physical exercise represents a low-cost accessible form of intervention to increase cerebral blood flow; however, it remains unclear if exercise-induced amelioration of brain perfusion has any impact on cognition. We aimed to provide a state-of-the art review on this subject. A comprehensive search of the PubMed (MEDLINE) database was performed. On the basis of the inclusion and exclusion criteria, 14 studies were included in the analysis. Eleven of the studies conducted well-controlled exercise programs that lasted 12–19 weeks for 10–40 participants and two studies were conducted in much larger groups of subjects for more than 5 years, but the exercise loads were indirectly measured, and three of them were focused on acute exercise. Literature review does not show a direct link between exercise-induced augmentation of brain perfusion and better cognitive functioning. However, in none of the reviewed studies was such an association the primary study endpoint. Carefully designed clinical studies with focus on cognitive and perfusion variables are needed to provide a response to the question whether exercise-induced cerebral perfusion augmentation is of clinical importance.
Collapse
Affiliation(s)
- Maria B. Renke
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Maria B. Renke
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Paweł J. Winklewski
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
10
|
Oelschlägel M, Polanski WH, Morgenstern U, Steiner G, Kirsch M, Koch E, Schackert G, Sobottka SB. Characterization of cortical hemodynamic changes following sensory, visual, and speech activation by intraoperative optical imaging utilizing phase-based evaluation methods. Hum Brain Mapp 2022; 43:598-615. [PMID: 34590384 PMCID: PMC8720199 DOI: 10.1002/hbm.25674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/12/2022] Open
Abstract
Alterations within cerebral hemodynamics are the intrinsic signal source for a wide variety of neuroimaging techniques. Stimulation of specific functions leads due to neurovascular coupling, to changes in regional cerebral blood flow, oxygenation and volume. In this study, we investigated the temporal characteristics of cortical hemodynamic responses following electrical, tactile, visual, and speech activation for different stimulation paradigms using Intraoperative Optical Imaging (IOI). Image datasets from a total of 22 patients that underwent surgical resection of brain tumors were evaluated. The measured reflectance changes at different light wavelength bands, representing alterations in regional cortical blood volume (CBV), and deoxyhemoglobin (HbR) concentration, were assessed by using Fourier-based evaluation methods. We found a decrease of CBV connected to an increase of HbR within the contralateral primary sensory cortex (SI) in patients that were prolonged (30 s/15 s) electrically stimulated. Additionally, we found differences in amplitude as well as localization of activated areas for different stimulation patterns. Contrary to electrical stimulation, prolonged tactile as well as prolonged visual stimulation are provoking increases in CBV within the corresponding activated areas (SI, visual cortex). The processing of the acquired data from awake patients performing speech tasks reveals areas with increased, as well as areas with decreased CBV. The results lead us to the conclusion, that the CBV decreases in connection with HbR increases in SI are associated to processing of nociceptive stimuli and that stimulation type, as well as paradigm have a nonnegligible impact on the temporal characteristics of the following hemodynamic response.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Witold H Polanski
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Ute Morgenstern
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Saxony, Germany
| | - Gerald Steiner
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany.,Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen, Seesen, Saxony, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine, Technische Universität Dresden, Carl Gustav Carus Faculty of Medicine, Clinical Sensoring and Monitoring, Dresden, Saxony, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Technische Universität Dresden, Carl Gustav Carus University Hospital Dresden, Dresden, Saxony, Germany
| |
Collapse
|
11
|
Arboit A, Ku SP, Krautwald K, Angenstein F. Brief neuronal afterdischarges in the rat hippocampus lead to transient changes in oscillatory activity and to a very long-lasting decline in BOLD signals without inducing a hypoxic state. Neuroimage 2021; 245:118769. [PMID: 34861394 DOI: 10.1016/j.neuroimage.2021.118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The effects of hippocampal neuronal afterdischarges (nAD) on hemodynamic parameters, such as blood-oxygen-level-dependent (BOLD) signals) and local cerebral blood volume (CBV) changes, as well as neuronal activity and metabolic parameters in the dentate gyrus, was investigated in rats by combining in vivo electrophysiology with functional magnetic resonance imaging (fMRI) or 1H-nuclear magnetic resonance spectroscopy (1H-NMRS). Brief electrical high-frequency pulse-burst stimulation of the right perforant pathway triggered nAD, a seizure-like activity, in the right dentate gyrus with a high incidence, a phenomenon that in turn caused a sustained decrease in BOLD signals for more than 30 min. The decrease was associated with a reduction in CBV but not with signs of hypoxic metabolism. nAD also triggered transient changes mainly in the low gamma frequency band that recovered within 20 min, so that the longer-lasting altered hemodynamics reflected a switch in blood supply rather than transient changes in ongoing neuronal activity. Even in the presence of reduced baseline BOLD signals, neurovascular coupling mechanisms remained intact, making long-lasting vasospasm unlikely. Subsequently generated nAD did not further alter the baseline BOLD signals. Similarly, nAD did not alter baseline BOLD signals when acetaminophen was previously administered, because acetaminophen alone had already caused a similar decrease in baseline BOLD signals as observed after the first nAD. Thus, at least two different blood supply states exist for the hippocampus, one low and one high, with both states allowing similar neuronal activity. Both acetaminophen and nAD switch from the high to the low blood supply state. As a result, the hemodynamic response function to an identical stimulus differed after nAD or acetaminophen, although the triggered neuronal activity was similar.
Collapse
Affiliation(s)
- Alberto Arboit
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Shih-Pi Ku
- Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Karla Krautwald
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Leipzigerstr, 44, Magdeburg 39118, Germany; Department Functional Architecture of Memory, Leibniz Institute for Neurobiology (LIN), Magdeburg 39118, Germany; Center for Behavior and Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto von Guericke University, Magdeburg 39118, Germany.
| |
Collapse
|
12
|
Suarez A, Valdés-Hernández PA, Bernal B, Dunoyer C, Khoo HM, Bosch-Bayard J, Riera JJ. Identification of Negative BOLD Responses in Epilepsy Using Windkessel Models. Front Neurol 2021; 12:659081. [PMID: 34690906 PMCID: PMC8531269 DOI: 10.3389/fneur.2021.659081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Alongside positive blood oxygenation level–dependent (BOLD) responses associated with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are typically found in epileptic patients. Previous studies suggest that, in general, up to four mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these mechanisms from BOLD signals are pivotal for the improvement of the specificity of the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image modality to identify the seizure-onset zones in refractory local epilepsy. This requires models with physiological interpretation that furnish the understanding of how these mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel model with viscoelastic compliance/inductance in combination with dynamic models of both neuronal population activity and tissue/blood O2 to classify the hemodynamic response functions (HRFs) linked to the above mechanisms in the irritative zones of epileptic patients. First, we evaluated the most relevant imprints on the BOLD response caused by variations of key model parameters. Second, we demonstrated that a general linear model is enough to accurately represent the four different types of NBRs. Third, we tested the ability of a machine learning classifier, built from a simulated ensemble of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones. Cross-validation indicates that these four mechanisms can be classified from realistic fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the presence of some of these mechanisms. We concluded that a proper identification and interpretation of NBR mechanisms in epilepsy can be performed by combining general linear models and biophysically inspired models.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| | | | - Byron Bernal
- Nicklaus Children Hospital, Miami, FL, United States
| | | | - Hui Ming Khoo
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurosurgery, Osaka University, Suita, Japan
| | - Jorge Bosch-Bayard
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jorge J Riera
- Neuronal Mass Dynamics Laboratory, Florida International University, Miami, FL, United States
| |
Collapse
|
13
|
Tak YW, Knights E, Henson R, Zeidman P. Ageing and the Ipsilateral M1 BOLD Response: A Connectivity Study. Brain Sci 2021; 11:1130. [PMID: 34573152 PMCID: PMC8470146 DOI: 10.3390/brainsci11091130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Young people exhibit a negative BOLD response in ipsilateral primary motor cortex (M1) when making unilateral movements, such as button presses. This negative BOLD response becomes more positive as people age. In this study, we investigated why this occurs, in terms of the underlying effective connectivity and haemodynamics. We applied dynamic causal modeling (DCM) to task fMRI data from 635 participants aged 18-88 from the Cam-CAN dataset, who performed a cued button pressing task with their right hand. We found that connectivity from contralateral supplementary motor area (SMA) and dorsal premotor cortex (PMd) to ipsilateral M1 became more positive with age, explaining 44% of the variability across people in ipsilateral M1 responses. In contrast, connectivity from contralateral M1 to ipsilateral M1 was weaker and did not correlate with individual differences in rM1 BOLD. Neurovascular and haemodynamic parameters in the model were not able to explain the age-related shift to positive BOLD. Our results add to a body of evidence implicating neural, rather than vascular factors as the predominant cause of negative BOLD-while emphasising the importance of inter-hemispheric connectivity. This study provides a foundation for investigating the clinical and lifestyle factors that determine the sign and amplitude of the M1 BOLD response in ageing, which could serve as a proxy for neural and vascular health, via the underlying neurovascular mechanisms.
Collapse
Affiliation(s)
- Yae Won Tak
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| | - Ethan Knights
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Richard Henson
- MRC Cognition and Brain Sciences Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 7EF, UK; (E.K.); (R.H.)
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK;
| |
Collapse
|
14
|
Existence of Interhemispheric Inhibition between Foot Sections of Human Primary Motor Cortices: Evidence from Negative Blood Oxygenation-Level Dependent Signal. Brain Sci 2021; 11:brainsci11081099. [PMID: 34439718 PMCID: PMC8393214 DOI: 10.3390/brainsci11081099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interhemispheric inhibition (IHI) between the left and right primary motor cortices (M1) plays an important role when people perform an isolated unilateral limb movement. Moreover, negative blood oxygenation-level dependent signal (deactivation) obtained from the M1 ipsilateral to the limb could be a surrogate IHI marker. Studies have reported deactivation in the hand section of the ipsilateral M1 during simple unilateral hand movement. However, deactivation in the foot section during unilateral foot movement has not been reported. Therefore, IHI between the foot sections of the bilateral M1s has been considered very weak or absent. Thirty-seven healthy adults performed active control of the right foot and also passively received vibration to the tendon of the tibialis anterior muscle of the right foot, which activates the foot section of the contralateral M1, with brain activity being examined through functional magnetic resonance imaging. The vibration and active tasks significantly and non-significantly, respectively, deactivated the foot section of the ipsilateral M1, with a corresponding 86% and 60% of the participants showing decreased activity. Thus, there could be IHI between the foot sections of the bilateral M1s. Further, our findings demonstrate between-task differences and similarities in cross-somatotopic deactivation.
Collapse
|
15
|
Naito E, Morita T, Asada M. Importance of the Primary Motor Cortex in Development of Human Hand/Finger Dexterity. Cereb Cortex Commun 2021; 1:tgaa085. [PMID: 34296141 PMCID: PMC8152843 DOI: 10.1093/texcom/tgaa085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Hand/finger dexterity is well-developed in humans, and the primary motor cortex (M1) is believed to play a particularly important role in it. Here, we show that efficient recruitment of the contralateral M1 and neuronal inhibition of the ipsilateral M1 identified by simple hand motor and proprioceptive tasks are related to hand/finger dexterity and its ontogenetic development. We recruited healthy, right-handed children (n = 21, aged 8–11 years) and adults (n = 23, aged 20–26 years) and measured their brain activity using functional magnetic resonance imaging during active and passive right-hand extension–flexion tasks. We calculated individual active control-related activity (active–passive) to evaluate efficient brain activity recruitment and individual task-related deactivation (neuronal inhibition) during both tasks. Outside the scanner, participants performed 2 right-hand dexterous motor tasks, and we calculated the hand/finger dexterity index (HDI) based on their individual performance. Participants with a higher HDI exhibited less active control-related activity in the contralateral M1 defined by the active and passive tasks, independent of age. Only children with a higher HDI exhibited greater ipsilateral M1 deactivation identified by these tasks. The results imply that hand/finger dexterity can be predicted by recruitment and inhibition styles of the M1 during simple hand sensory–motor tasks.
Collapse
Affiliation(s)
- Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| | - Minoru Asada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
17
|
Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, Rothman DL, Hyder F. Metabolic underpinnings of activated and deactivated cortical areas in human brain. J Cereb Blood Flow Metab 2021; 41:986-1000. [PMID: 33472521 PMCID: PMC8054719 DOI: 10.1177/0271678x21989186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas. In healthy volunteers, we investigated metabolic distinctions of activating visual cortex (VC, a task-positive area) using a visual task and deactivating posterior cingulate cortex (PCC, a task-negative area) using a cognitive task. We used fMRI-guided J-edited functional MRS (fMRS) to measure lactate, glutamate plus glutamine (Glx) and γ-aminobutyric acid (GABA), as indicators of aerobic glycolysis and excitatory-inhibitory balance, respectively. Both lactate and Glx increased upon activating VC, but did not change upon deactivating PCC. Basal GABA was negatively correlated with BOLD responses in both brain areas, but during functional tasks GABA decreased in VC upon activation and GABA increased in PCC upon deactivation, suggesting BOLD responses in relation to baseline are impacted oppositely by task-induced inhibition. In summary, opposite relations between BOLD response and GABAergic inhibition, and increases in aerobic glycolysis and glutamatergic activity distinguish the BOLD response in (de)activated areas.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ron Kupers
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Maurice Ptito
- School of Optometry, Université de Montreal, Montreal, Canada
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
18
|
Shader MJ, Luke R, Gouailhardou N, McKay CM. The use of broad vs restricted regions of interest in functional near-infrared spectroscopy for measuring cortical activation to auditory-only and visual-only speech. Hear Res 2021; 406:108256. [PMID: 34051607 DOI: 10.1016/j.heares.2021.108256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
As an alternative to fMRI, functional near-infrared spectroscopy (fNIRS) is a relatively new tool for observing cortical activation. However, spatial resolution is reduced compared to fMRI and often the exact locations of fNIRS optodes and specific anatomical information is not known. The aim of this study was to explore the location and range of specific regions of interest that are sensitive to detecting cortical activation using fNIRS in response to auditory- and visual-only connected speech. Two approaches to a priori region-of-interest selection were explored. First, broad regions corresponding to the auditory cortex and occipital lobe were analysed. Next, the fNIRS Optode Location Decider (fOLD) tool was used to divide the auditory and visual regions into two subregions corresponding to distinct anatomical structures. The Auditory-A and -B regions corresponded to Heschl's gyrus and planum temporale, respectively. The Visual-A region corresponded to the superior occipital gyrus and the cuneus, and the Visual-B region corresponded to the middle occipital gyrus. The experimental stimulus consisted of a connected speech signal segmented into 12.5-sec blocks and was presented in either an auditory-only or visual-only condition. Group-level results for eight normal-hearing adult participants averaged over the broad regions of interest revealed significant auditory-evoked activation for both the left and right broad auditory regions of interest. No significant activity was observed for any other broad region of interest in response to any stimulus condition. When divided into subregions, there was a significant positive auditory-evoked response in the left and right Auditory-A regions, suggesting activation near the primary auditory cortex in response to auditory-only speech. There was a significant positive visual-evoked response in the Visual-B region, suggesting middle occipital gyrus activation in response to visual-only speech. In the Visual-A region, however, there was a significant negative visual-evoked response. This result suggests a significant decrease in oxygenated hemoglobin in the superior occipital gyrus as well as the cuneus in response to visual-only speech. Distinct response characteristics, either positive or negative, in adjacent subregions within the temporal and occipital lobes were fairly consistent on the individual level. Results suggest that temporal regions near Heschl's gyrus may be the most advantageous location in adults for identifying hemodynamic responses to complex auditory speech signals using fNIRS. In the occipital lobe, regions corresponding to the facial processing pathway may prove advantageous for measuring positive responses to visual speech using fNIRS.
Collapse
Affiliation(s)
- Maureen J Shader
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.
| | - Robert Luke
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Linguistics, Faculty of Medicine, Health and Human Sciences, Macquarie Hearing, Macquarie University, 16 University Avenue, New South Wales 2109, Australia
| | | | - Colette M McKay
- Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics and impulse firing across cortical depth. Eur J Neurosci 2021; 54:4230-4245. [PMID: 33901325 DOI: 10.1111/ejn.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain and Mind Research Centre, University of Sydney, Camperdown, NSW, Australia
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
| | - Leslie Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - William G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Rossetti GM, d'Avossa G, Rogan M, Macdonald JH, Oliver SJ, Mullins PG. Reversal of neurovascular coupling in the default mode network: Evidence from hypoxia. J Cereb Blood Flow Metab 2021; 41:805-818. [PMID: 32538282 PMCID: PMC7983511 DOI: 10.1177/0271678x20930827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Gabriella Mk Rossetti
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Giovanni d'Avossa
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Matthew Rogan
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
21
|
de la Rosa N, Ress D, Taylor AJ, Kim JH. Retinotopic variations of the negative blood-oxygen-level dependent hemodynamic response function in human primary visual cortex. J Neurophysiol 2021; 125:1045-1057. [PMID: 33625949 DOI: 10.1152/jn.00676.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) measures blood-oxygen-level-dependent (BOLD) contrast that is generally assumed to be linearly related to excitatory neural activity. The positive hemodynamic response function (pHRF) is the positive BOLD response (PBR) evoked by a brief neural stimulation; the pHRF is often used as the impulse response for linear analysis of neural excitation. Many fMRI studies have observed a negative BOLD response (NBR) that is often associated with neural suppression. However, the temporal dynamics of the NBR evoked by a brief stimulus, the negative HRF (nHRF), remains unclear. Here, a unilateral visual stimulus was presented in a slow event-related design to elicit both pHRFs in the stimulus representation (SR), and nHRFs elsewhere. The observed nHRFs were not inverted versions of the pHRF previously reported. They were characterized by a stronger initial negative response followed by a significantly later positive peak. In contralateral primary visual cortex (V1), these differences varied with eccentricity from the SR. Similar nHRFs were observed in ipsilateral V1 with less eccentricity variation. Experiments with the blocked version of the same stimulus confirmed that brain regions presenting the unexpected nHRF dynamics correspond to those presenting a strong NBR. These data demonstrated that shift-invariant temporal linearity did not hold for the NBR while confirming that the PBR maintained rough linearity. Modeling indicated that the observed nHRFs can be created by suppression of both blood flow and oxygen metabolism. Critically, the nHRF can be misinterpreted as a pHRF due to their similarity, which could confound linear analysis for event-related fMRI experiments.NEW & NOTEWORTHY We investigate dynamics of the negative hemodynamic response function (nHRF), the negative blood-oxygen-level-dependent (BOLD) response (NBR) evoked by a brief stimulus, in human early visual cortex. Here, we show that the nHRFs are not inverted versions of the corresponding pHRFs. The nHRF has complex dynamics that varied significantly with eccentricity. The results also show shift-invariant temporal linearity does not hold for the NBR.
Collapse
|
22
|
Morita T, Asada M, Naito E. Examination of the development and aging of brain deactivation using a unimanual motor task. Adv Robot 2021. [DOI: 10.1080/01691864.2021.1886168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tomoyo Morita
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Minoru Asada
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
23
|
V1 Projection Zone Signals in Human Macular Degeneration Depend on Task Despite Absence of Visual Stimulus. Curr Biol 2020; 31:406-412.e3. [PMID: 33157025 DOI: 10.1016/j.cub.2020.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Identifying the plastic and stable components of the visual cortex after retinal loss is an important topic in visual neuroscience and neuro-ophthalmology.1-5 Humans with juvenile macular degeneration (JMD) show significant blood-oxygen-level-dependent (BOLD) responses in the primary visual area (V1) lesion projection zone (LPZ),6 despite the absence of the feedforward signals from the degenerated retina. Our previous study7 reported that V1 LPZ responds to full-field visual stimuli during the one-back task (OBT), not during passive viewing, suggesting the involvement of task-related feedback signals. Aiming to clarify whether visual inputs to the intact retina are necessary for the LPZ responses, here, we measured BOLD responses to tactile and auditory stimuli for both JMD patients and control participants with and without OBT. Participants were instructed to close their eyes during the experiment for the purpose of eliminating retinal inputs. Without OBT, no V1 responses were detected in both groups of participants. With OBT, to the contrary, both stimuli caused substantial V1 responses in JMD patients, but not controls. Furthermore, we also found that the task-dependent activity in V1 LPZ became less pronounced when JMD patients opened their eyes, suggesting that task-related feedback signals can be partially suppressed by residual feedforward signals. Modality-independent V1 LPZ responses only in the task condition suggest that V1 LPZ responses reflect task-related feedback signals rather than reorganized feedforward visual inputs.
Collapse
|
24
|
Boscolo Galazzo I, Magrinelli F, Pizzini FB, Storti SF, Agosta F, Filippi M, Marotta A, Mansueto G, Menegaz G, Tinazzi M. Voxel-based morphometry and task functional magnetic resonance imaging in essential tremor: evidence for a disrupted brain network. Sci Rep 2020; 10:15061. [PMID: 32934259 PMCID: PMC7493988 DOI: 10.1038/s41598-020-69514-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
The pathophysiology of essential tremor (ET) is controversial and might be further elucidated by advanced neuroimaging. Focusing on homogenous ET patients diagnosed according to the 2018 consensus criteria, this study aimed to: (1) investigate whether task functional MRI (fMRI) can identify networks of activated and deactivated brain areas, (2) characterize morphometric and functional modulations, relative to healthy controls (HC). Ten ET patients and ten HC underwent fMRI while performing two motor tasks with their upper limb: (1) maintaining a posture (both groups); (2) simulating tremor (HC only). Activations/deactivations were obtained from General Linear Model and compared across groups/tasks. Voxel-based morphometry and linear regressions between clinical and fMRI data were also performed. Few cerebellar clusters of gray matter loss were found in ET. Conversely, widespread fMRI alterations were shown. Tremor in ET (task 1) was associated with extensive deactivations mainly involving the cerebellum, sensory-motor cortex, and basal ganglia compared to both tasks in HC, and was negatively correlated with clinical tremor scales. Homogeneous ET patients demonstrated deactivation patterns during tasks triggering tremor, encompassing a network of cortical and subcortical regions. Our results point towards a marked cerebellar involvement in ET pathophysiology and the presence of an impaired cerebello-thalamo-cortical tremor network.
Collapse
Affiliation(s)
- Ilaria Boscolo Galazzo
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy.
| | - Francesca Magrinelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | | | - Silvia Francesca Storti
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Marotta
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| | - Giancarlo Mansueto
- Department of Diagnostics and Pathology, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
25
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
26
|
Marquardt I, De Weerd P, Schneider M, Gulban OF, Ivanov D, Wang Y, Uludağ K. Feedback contribution to surface motion perception in the human early visual cortex. eLife 2020; 9:e50933. [PMID: 32496189 PMCID: PMC7314553 DOI: 10.7554/elife.50933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Human visual surface perception has neural correlates in early visual cortex, but the role of feedback during surface segmentation in human early visual cortex remains unknown. Feedback projections preferentially enter superficial and deep anatomical layers, which provides a hypothesis for the cortical depth distribution of fMRI activity related to feedback. Using ultra-high field fMRI, we report a depth distribution of activation in line with feedback during the (illusory) perception of surface motion. Our results fit with a signal re-entering in superficial depths of V1, followed by a feedforward sweep of the re-entered information through V2 and V3. The magnitude and sign of the BOLD response strongly depended on the presence of texture in the background, and was additionally modulated by the presence of illusory motion perception compatible with feedback. In summary, the present study demonstrates the potential of depth-resolved fMRI in tackling biomechanical questions on perception.
Collapse
Affiliation(s)
- Ingo Marquardt
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
- Maastricht Center of Systems Biology (MACSBIO), Faculty of Science & Engineering, Maastricht UniversityMaastrichtNetherlands
| | - Marian Schneider
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Yawen Wang
- Department of Cognitive Neuroscience, Maastricht Brain Imaging Centre (MBIC) Faculty of Psychology and Neuroscience, Maastricht UniversityMaastrichtNetherlands
| | - Kâmil Uludağ
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, N Center, Sungkyunkwan UniversityJangan-guRepublic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health NetworkTorontoCanada
| |
Collapse
|
27
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
29
|
Bolay H, Vuralli D, Goadsby PJ. Aura and Head pain: relationship and gaps in the translational models. J Headache Pain 2019; 20:94. [PMID: 31481015 PMCID: PMC6734357 DOI: 10.1186/s10194-019-1042-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Migraine is a complex brain disorder and initiating events for acute attacks still remain unclear. It seems difficult to explain the development of migraine headache with one mechanism and/or a single anatomical location. Cortical spreading depression (CSD) is recognized as the biological substrate of migraine aura and experimental animal studies have provided mechanisms that possibly link CSD to the activation of trigeminal neurons mediating lateralized head pain. However, some CSD features do not match the clinical features of migraine headache and there are gaps in translating CSD to migraine with aura. Clinical features of migraine headache and results from research are critically evaluated; and consistent and inconsistent findings are discussed according to the known basic features of canonical CSD: typical SD limited to the cerebral cortex as it was originally defined. Alternatively, arguments related to the emergence of SD in other brain structures in addition to the cerebral cortex or CSD initiated dysfunction in the thalamocortical network are proposed. Accordingly, including thalamus, particularly reticular nucleus and higher order thalamic nuclei, which functions as a hub connecting the visual, somatosensory, language and motor cortical areas and subjects to modulation by brain stem projections into the CSD theory, would greatly improve our current understanding of migraine.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology and Algology, Gazi University Faculty of Medicine, Besevler, 06510 Ankara, Turkey
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
| | - Doga Vuralli
- Neuropsychiatry Center, Gazi University, Besevler, Ankara, Turkey
- Department of Algology, Bakirkoy Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul, Turkey
| | - Peter J. Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
30
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between transient BOLD responses, cortical energetics, and impulse firing in different cortical regions. J Neurophysiol 2019; 122:1226-1237. [PMID: 31339798 DOI: 10.1152/jn.00171.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging signal arises as a consequence of changes in blood flow (cerebral blood flow) and oxygen usage (cerebral metabolic rate of oxygen) that in turn are modulated by changes in neuronal activity. Much attention has been given to both theoretical and experimental aspects of the energetics but not to the neuronal activity. Here we use our previous theory relating the steady-state BOLD signal to neuronal activity and amalgamate it with the standard dynamic causal model (DCM, Friston) theory to produce a quantitative model relating the time-dependent BOLD signal to the underlying neuronal activity. Unlike existing treatments, this new theory incorporates a nonzero baseline activity in a completely consistent way and is thus able to account for both positive and negative BOLD signals. It can reproduce a wide variety of experimental BOLD signals reported in the literature solely by adjusting the neuronal input activity. In this way it provides support for the claim that the main features of the signals, including poststimulus undershoot and overshoot, are principally a result of changes in neuronal activity.NEW & NOTEWORTHY A previous model relating the steady-state blood oxygen level-dependent (BOLD) signal to neuronal activity, both above and below baseline, is extended to account for transient BOLD signals. This allows for a detailed investigation of the role neuronal activity can play in such signals and also encompasses poststimulus undershoot and overshoot. A wide variety of experimental BOLD signals are reproduced solely by adjusting the neuronal input activity, including recent results regarding the BOLD signal in patients with schizophrenia.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Centre, University of Sydney, Sydney, New South Wales, Australia.,Center for Mathematical Biology, University of Sydney, Sydney, New South Wales, Australia
| | - L Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, New South Wales, Australia.,The School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - W G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, New South Wales, Australia.,The School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Vascular effects on the BOLD response and the retinotopic mapping of hV4. PLoS One 2019; 14:e0204388. [PMID: 31194745 PMCID: PMC6563965 DOI: 10.1371/journal.pone.0204388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/29/2019] [Indexed: 11/30/2022] Open
Abstract
Despite general acceptance that the retinotopic organisation of human V4 (hV4) takes the form of a single, uninterrupted ventral hemifield, measured retinotopic maps of this visual area are often incomplete. Here, we test hypotheses that artefact from draining veins close to hV4 cause inverted BOLD responses that may serve to obscure a portion of the lower visual quarterfield—including the lower vertical meridian—in some hemispheres. We further test whether correcting such responses can restore the ‘missing’ retinotopic coverage in hV4. Subjects (N = 10) viewed bowtie, ring, drifting bar and full field flash stimuli. Functional EPIs were acquired over approximately 1.5h and analysed to reveal retinotopic maps of early visual cortex, including hV4. Normalised mean maps (which show the average EPI signal amplitude) were constructed by voxel-wise averaging of the EPI time course and used to locate venous eclipses, which can be identified by a decrease in the EPI signal caused by deoxygenated blood. Inverted responses are shown to cluster in these regions and correcting these responses improves maps of hV4 in some hemispheres, including restoring a complete hemifield map in one. A leftwards bias was found whereby 6/10 left hemisphere hV4 maps were incomplete, while this was the case in only 1/10 right hemisphere maps. Incomplete hV4 maps did not correspond with venous artefact in every instance, with incomplete maps being present in the absence of a venous eclipse and complete maps coexisting with a proximate venous eclipse. We also show that mean maps of upper surfaces (near the boundary between cortical grey matter and CSF) provide highly detailed maps of veins on the cortical surface. Results suggest that venous eclipses and inverted voxels can explain some incomplete hV4 maps, but cannot explain the remainder nor the leftwards bias in hV4 coverage reported here.
Collapse
|
32
|
Morita T, Asada M, Naito E. Developmental Changes in Task-Induced Brain Deactivation in Humans Revealed by a Motor Task. Dev Neurobiol 2019; 79:536-558. [PMID: 31136084 PMCID: PMC6771882 DOI: 10.1002/dneu.22701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Performing tasks activates relevant brain regions in adults while deactivating task-irrelevant regions. Here, using a well-controlled motor task, we explored how deactivation is shaped during typical human development and whether deactivation is related to task performance. Healthy right-handed children (8-11 years), adolescents (12-15 years), and young adults (20-24 years; 20 per group) underwent functional magnetic resonance imaging with their eyes closed while performing a repetitive button-press task with their right index finger in synchronization with a 1-Hz sound. Deactivation in the ipsilateral sensorimotor cortex (SM1), bilateral visual and auditory (cross-modal) areas, and bilateral default mode network (DMN) progressed with development. Specifically, ipsilateral SM1 and lateral occipital deactivation progressed prominently between childhood and adolescence, while medial occipital (including primary visual) and DMN deactivation progressed from adolescence to adulthood. In adults, greater cross-modal deactivation in the bilateral primary visual cortices was associated with higher button-press timing accuracy relative to the sound. The region-specific deactivation progression in a developmental period may underlie the gradual promotion of sensorimotor function segregation required in the task. Task-induced deactivation might have physiological significance regarding suppressed activity in task-irrelevant regions. Furthermore, cross-modal deactivation develops to benefit some aspects of task performance in adults.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
33
|
Wilson R, Mullinger KJ, Francis ST, Mayhew SD. The relationship between negative BOLD responses and ERS and ERD of alpha/beta oscillations in visual and motor cortex. Neuroimage 2019; 199:635-650. [PMID: 31189075 DOI: 10.1016/j.neuroimage.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/10/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Previous work has investigated the electrophysiological origins of the intra-modal (within the stimulated sensory cortex) negative BOLD fMRI response (NBR, decrease from baseline) but little attention has been paid to the origin of cross-modal NBRs, those in a different sensory cortex. In the current study we use simultaneous EEG-fMRI recordings to assess the neural correlates of both intra- and cross-modal responses to left-hemifield visual stimuli and right-hand motor tasks, and evaluate the balance of activation and deactivation between the visual and motor systems. Within- and between-subject covariations of EEG and fMRI responses to both tasks are assessed to determine how patterns of event-related desynchronization/synchronisation (ERD/ERS) of alpha/beta frequency oscillations relate to the NBR in the two sensory cortices. We show that both visual and motor tasks induce intra-modal NBR and cross-modal NBR (e.g. visual stimuli evoked NBRs in both visual and motor cortices). In the EEG data, bilateral intra-modal alpha/beta ERD were consistently observed to both tasks, whilst the cross-modal EEG response varied across subjects between alpha/beta ERD and ERS. Both the mean cross-modal EEG and fMRI response amplitudes showed a small increase in magnitude with increasing task intensity. In response to the visual stimuli, subjects displaying cross-modal ERS of motor beta power displayed a significantly larger magnitude of cross-modal NBR in motor cortex. However, in contrast to the motor stimuli, larger cross-modal ERD of visual alpha power was associated with larger cross-modal visual NBR. Single-trial correlation analysis provided further evidence of relationship between EEG signals and the NBR, motor cortex beta responses to motor tasks were significantly negatively correlated with cross-modal visual cortex NBR amplitude, and positively correlated with intra-modal motor cortex PBR. This study provides a new body of evidence that the coupling between BOLD and low-frequency (alpha/beta) sensory cortex EEG responses extends to cross-modal NBR.
Collapse
Affiliation(s)
- Ross Wilson
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK; SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Stephen D Mayhew
- Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK.
| |
Collapse
|
34
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
35
|
Shulman RG, Rothman DL. A Non-cognitive Behavioral Model for Interpreting Functional Neuroimaging Studies. Front Hum Neurosci 2019; 13:28. [PMID: 30914933 PMCID: PMC6421518 DOI: 10.3389/fnhum.2019.00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The dominant model for interpreting brain imaging experiments, which we refer to as the Standard Cognitive Model (SCM), assumes that the brain is organized in support of mental processes that control behavior. However, functional neuroimaging experiments of cognitive tasks have not shown clear anatomic segregation between mental processes originally proposed by this model. This failing has been blamed on limitations in imaging technology and non-linearity in the brain's implementation of these processes. However, the validity of the underlying cognitive models used to describe the brain has rarely been questioned or directly tested against imaging results. We propose an alternative model of brain function, that we term the Non-cognitive Behavioral Model (NBM), which correlates observed human behavior directly with measured brain activity without making assumptions about intervening cognitive processes. Our model derives from behavioral psychology but is extended to include brain activity, in addition to behavior, as observables. A further extension is the role of neuroplasticity, as opposed to innate cognitive processes, in developing the brain's support of cognitive behavior. We present the theoretical basis with which the SCM maps cognitive processes onto functional magnetic resonance and positron emission tomography images and compare and contrast with the NBM. We also describe how the NBM can be used experimentally to study how the brain supports behavior. Two applications are presented that support the usefulness of the NBM. In one, the NBM use of the total functional imaging signal (not just the differences between states) provides a stronger correlation of neural activity with the behavioral state of consciousness than the SCM approach in both anesthesia and coma. The second example reviews studies of facial and object recognition that provide evidence for the NBM proposal that neuroplasticity and experience play key roles in the brain's support of recognition and other behaviors. The conclusions regarding neuroplasticity are then generalized to explain the incomplete functional segregation observed in the application of the SCM to neuroimaging.
Collapse
Affiliation(s)
- Robert G. Shulman
- Magnetic Resonance Research Center, Department of Radiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Douglas L. Rothman
- Magnetic Resonance Research Center, Department of Radiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
36
|
Taylor AJ, Kim JH, Ress D. Characterization of the hemodynamic response function across the majority of human cerebral cortex. Neuroimage 2018; 173:322-331. [PMID: 29501554 DOI: 10.1016/j.neuroimage.2018.02.061] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
A brief (<4 s) period of neural activation evokes a stereotypical sequence of vascular and metabolic events to create the hemodynamic response function (HRF) measured using functional magnetic resonance imaging (fMRI). Linear analysis of fMRI data requires that the HRF be treated as an impulse response, so the character and temporal stability of the HRF are critical issues. Here, a simple audiovisual stimulus combined with a fast-paced task was used to evoke a strong HRF across a majority, ∼77%, of cortex during a single scanning session. High spatiotemporal resolution (2-mm voxels, 1.25-s acquisition time) was used to focus HRF measurements specifically on the gray matter for whole brain. The majority of activated cortex responds with positive HRFs, while ∼27% responds with negative (inverted) HRFs. Spatial patterns of the HRF response amplitudes were found to be similar across subjects. Timing of the initial positive lobe of the HRF was relatively stable across the cortical surface with a mean of 6.1 ± 0.6 s across subjects, yet small but significant timing variations were also evident in specific regions of cortex. The results provide guidance for linear analysis of fMRI data. More importantly, this method provides a means to quantify neurovascular function across most of the brain, with potential clinical utility for the diagnosis of brain pathologies such as traumatic brain injury.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Ress
- Department of Neuroscience, Core for Advanced MRI, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics, and impulse firing. J Neurophysiol 2018; 119:979-989. [PMID: 29187550 DOI: 10.1152/jn.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging signal arises as a consequence of changes in blood flow and oxygen usage that in turn are modulated by changes in neural activity. Much attention has been given to both theoretical and experimental aspects of the energetics but not to the neural activity. Here we identify the best energetic theory for the steady-state BOLD signal on the basis of correct predictions of experimental observations. This theory is then used, together with the recently determined relationship between energetics and neural activity, to predict how the BOLD signal changes with activity. Unlike existing treatments, this new theory incorporates a nonzero baseline activity in a completely consistent way and is thus able to account for both sustained positive and negative BOLD signals. We also show that the increase in BOLD signal for a given increase in activity is significantly smaller the larger the baseline activity, as is experimentally observed. Furthermore, the decline of the positive BOLD signal arising from deeper cortical laminae in response to an increase in neural firing is shown to arise as a consequence of the larger baseline activity in deeper laminae. Finally, we provide quantitative relations integrating BOLD responses, energetics, and impulse firing, which among other predictions give the same results as existing theories when the baseline activity is zero. NEW & NOTEWORTHY We use a recently established relation between energetics and neural activity to give a quantitative account of BOLD dependence on neural activity. The incorporation of a nonzero baseline neural activity accounts for positive and negative BOLD signals, shows that changes in neural activity give BOLD changes that are smaller the larger the baseline, and provides a basis for the observed inverse relation between BOLD responses and the depth of cortical laminae giving rise to them.
Collapse
Affiliation(s)
- M R Bennett
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales , Australia.,Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia
| | - L Farnell
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| | - W G Gibson
- Center for Mathematical Biology, University of Sydney , Sydney, New South Wales , Australia.,The School of Mathematics and Statistics, University of Sydney, Camperdown, New South Wales , Australia
| |
Collapse
|
38
|
Jorge J, Figueiredo P, Gruetter R, van der Zwaag W. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T. Hum Brain Mapp 2018; 39:2426-2441. [PMID: 29464809 DOI: 10.1002/hbm.24012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 11/06/2022] Open
Abstract
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI.
Collapse
Affiliation(s)
- João Jorge
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Patrícia Figueiredo
- Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Wietske van der Zwaag
- Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Institute for Neuroimaging, Royal Netherlands Academy for Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Thompson GJ, Sanganahalli BG, Baker KL, Herman P, Shepherd GM, Verhagen JV, Hyder F. Spontaneous activity forms a foundation for odor-evoked activation maps in the rat olfactory bulb. Neuroimage 2018; 172:586-596. [PMID: 29374582 DOI: 10.1016/j.neuroimage.2018.01.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/16/2018] [Accepted: 01/20/2018] [Indexed: 12/12/2022] Open
Abstract
Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.
Collapse
Affiliation(s)
- Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
40
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
41
|
Provencher D, Bizeau A, Gilbert G, Bérubé-Lauzière Y, Whittingstall K. Structural impacts on the timing and amplitude of the negative BOLD response. Magn Reson Imaging 2017; 45:34-42. [PMID: 28917813 DOI: 10.1016/j.mri.2017.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023]
Abstract
The positive (PBR) and negative BOLD responses (NBR) arising in task-fMRI display varying magnitudes and dynamics across voxels. While the effects of structure, particularly of veins, on the PBR have been studied, little is known of NBR-structure relationships. Like the PBR, the NBR is often used as a surrogate marker of neuronal activation in both basic and clinical research and assessing its relationship with cortical structure may help interpret group differences. We therefore investigated how local structure affects BOLD amplitude and timing in PBR and NBR areas using multi-band fMRI during visual stimulation to obtain high temporal resolution (TR=0.45s) data combined with T1 imaging and susceptibility-weighted imaging (SWI) to quantify the local densities of gray/white matter and veins, respectively. In both PBRs and NBRs, larger venous density was consistently associated with larger BOLD amplitude and delay, up to 1-2s larger relative to areas devoid of large veins. Both binary and sinusoidal visual stimulus modulation yielded similar activation maps and results, suggesting that underlying vasculature affects PBR and NBR temporal dynamics in the same manner. Accounting for structural impacts on PBR and NBR magnitude and timing could help enhance activation map accuracy, better assess functional connectivity, and better characterize neurovascular coupling.
Collapse
Affiliation(s)
- David Provencher
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.
| | - Alexandre Bizeau
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare, 281 Hillmount road, Markham L6C 2S3, Canada
| | - Yves Bérubé-Lauzière
- Department of Electrical and Computer Engineering, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke J1K 2R1, Canada; Sherbrooke Molecular Imaging Center, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| | - Kevin Whittingstall
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada; Department of Diagnostic Radiology, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| |
Collapse
|
42
|
Thompson GJ. Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 2017; 180:448-462. [PMID: 28899744 DOI: 10.1016/j.neuroimage.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.
Collapse
Affiliation(s)
- Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
43
|
Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: An event-related fNIRS study. Neuropsychologia 2017; 106:31-41. [PMID: 28888891 DOI: 10.1016/j.neuropsychologia.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
Functional near infrared spectroscopy (fNIRS) is a safe, non-invasive, relatively quiet imaging technique that is tolerant of movement artifact making it uniquely ideal for the assessment of hearing mechanisms. Previous research demonstrates the capacity for fNIRS to detect cortical changes to varying speech intelligibility, revealing a positive relationship between cortical activation amplitude and speech perception score. In the present study, we use an event-related design to investigate the hemodynamic response in the temporal lobe across different listening conditions. We presented participants with a speech recognition task using sentences in quiet, sentences in noise, and vocoded sentences. Hemodynamic responses were examined across conditions and then compared when speech perception was accurate compared to when speech perception was inaccurate in the context of noisy speech. Repeated measures, two-way ANOVAs revealed that the speech in noise condition (-2.8dB signal-to-noise ratio/SNR) demonstrated significantly greater activation than the easier listening conditions on multiple channels bilaterally. Further analyses comparing correct recognition trials to incorrect recognition trials (during the presentation phase of the trial) revealed that activation was significantly greater during correct trials. Lastly, during the repetition phase of the trial, where participants correctly repeated the sentence, the hemodynamic response demonstrated significantly higher deoxyhemoglobin than oxyhemoglobin, indicating a difference between the effects of perception and production on the cortical response. Using fNIRS, the present study adds meaningful evidence to the body of knowledge that describes the brain/behavior relationship related to speech perception.
Collapse
|
44
|
Hubbard NA, Turner MP, Ouyang M, Himes L, Thomas BP, Hutchison JL, Faghihahmadabadi S, Davis SL, Strain JF, Spence J, Krawczyk DC, Huang H, Lu H, Hart J, Frohman TC, Frohman EM, Okuda DT, Rypma B. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis. Hum Brain Mapp 2017; 38:5375-5390. [PMID: 28815879 DOI: 10.1002/hbm.23727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Minhui Ouyang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lyndahl Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Binu P Thomas
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | | | - Scott L Davis
- Department of Applied Physiology and Wellness, Southern Methodist University, Dallas, Texas
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| | - Daniel C Krawczyk
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Huang
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Teresa C Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Elliot M Frohman
- Department of Neurology, The University of Texas at Austin Dell Medical School, Austin, Texas
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
45
|
Evaluation of Visual-Evoked Cerebral Metabolic Rate of Oxygen as a Diagnostic Marker in Multiple Sclerosis. Brain Sci 2017; 7:brainsci7060064. [PMID: 28604606 PMCID: PMC5483637 DOI: 10.3390/brainsci7060064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022] Open
Abstract
A multiple sclerosis (MS) diagnosis often relies upon clinical presentation and qualitative analysis of standard, magnetic resonance brain images. However, the accuracy of MS diagnoses can be improved by utilizing advanced brain imaging methods. We assessed the accuracy of a new neuroimaging marker, visual-evoked cerebral metabolic rate of oxygen (veCMRO2), in classifying MS patients and closely age- and sex-matched healthy control (HC) participants. MS patients and HCs underwent calibrated functional magnetic resonance imaging (cfMRI) during a visual stimulation task, diffusion tensor imaging, T1- and T2-weighted imaging, neuropsychological testing, and completed self-report questionnaires. Using resampling techniques to avoid bias and increase the generalizability of the results, we assessed the accuracy of veCMRO2 in classifying MS patients and HCs. veCMRO2 classification accuracy was also examined in the context of other evoked visuofunctional measures, white matter microstructural integrity, lesion-based measures from T2-weighted imaging, atrophy measures from T1-weighted imaging, neuropsychological tests, and self-report assays of clinical symptomology. veCMRO2 was significant and within the top 16% of measures (43 total) in classifying MS status using both within-sample (82% accuracy) and out-of-sample (77% accuracy) observations. High accuracy of veCMRO2 in classifying MS demonstrated an encouraging first step toward establishing veCMRO2 as a neurodiagnostic marker of MS.
Collapse
|
46
|
Gibson WS, Cho S, Abulseoud OA, Gorny KR, Felmlee JP, Welker KM, Klassen BT, Min HK, Lee KH. The Impact of Mirth-Inducing Ventral Striatal Deep Brain Stimulation on Functional and Effective Connectivity. Cereb Cortex 2017; 27:2183-2194. [PMID: 27001680 DOI: 10.1093/cercor/bhw074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect.
Collapse
Affiliation(s)
| | | | - Osama A Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55906, USA.,National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | | | | | | | | | - Hoon-Ki Min
- Department of Neurologic Surgery.,Department of Radiology.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, US.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Li H, Sun J, Zhang D, Omire-Mayor D, Lewin PA, Tong S. Low-intensity (400 mW/cm 2, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats. Brain Stimul 2017; 10:695-702. [PMID: 28279642 DOI: 10.1016/j.brs.2017.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Preconditioning methods, which could increase tolerance of brain to subsequent ischemic injuries with a small dose of non-injury stimuli, have gained attention. Capitalizing on noninvasiveness and safety of ultrasound modality, the pulsed transcranial ultrasound stimulation (pTUS) approach may provide a novel treatment for patients with high risk of stroke. OBJECTIVE This study's goal was to investigate whether the risk of stroke could be minimized or eliminated by prior exposure to low-intensity, pulsed transcranial ultrasound stimulation (pTUS). METHODS Rats were randomly assigned to control (n = 12) and pTUS preconditioning (pTUS-PC) groups (n = 14). The animals in pTUS-PC group were exposed to transcranial ultrasound stimulation before the induction of photothrombotic stroke, whereas control animals were handled identically but without the ultrasound stimulation. Cerebral blood flow was monitored using laser speckle imaging in both groups during stroke induction, as well as 24 and 48 h after stroke, respectively. Also, infarct volumes and edema were measured at 48 h after stroke. RESULTS pTUS-PC rats had smaller ischemic areas during stroke induction, and 24 and 48 h after the stroke, and smaller infarct volume (1.770 ± 0.169%) than the controls (3.215 ± 0.401%) (p < 0.01). Moreover, the pTUS-PC group experienced lower volume of brain edema than the control group (pTUS-PC rats: 6.658 ± 1.183%; control rats: 12.48 ± 1.386%, p < 0.01). CONCLUSION These results support the hypothesis that transcranial ultrasound stimulation applied before photothrombosis could provide neuroprotection by increasing the brain's tolerance to subsequently induced focal ischemic injury.
Collapse
Affiliation(s)
- Hangdao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daqu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daryl Omire-Mayor
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Peter A Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA.
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb Cortex 2017; 27:962-980. [PMID: 28168279 PMCID: PMC6093432 DOI: 10.1093/cercor/bhx024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
One of the basic properties of sensory cortices is their topographical organization. Most imaging studies explored this organization using the positive blood oxygenation level-dependent (BOLD) signal. Here, we studied the topographical organization of both positive and negative BOLD in contralateral and ipsilateral primary somatosensory cortex (S1). Using phase-locking mapping methods, we verified the topographical organization of contralateral S1, and further showed that different body segments elicit pronounced negative BOLD responses in both hemispheres. In the contralateral hemisphere, we found a sharpening mechanism in which stimulation of a given body segment triggered a gradient of activation with a significant deactivation in more remote areas. In the ipsilateral cortex, deactivation was not only located in the homolog area of the stimulated parts but rather was widespread across many parts of S1. Additionally, analysis of resting-state functional magnetic resonance imaging signal showed a gradient of connectivity to the neighboring contralateral body parts as well as to the ipsilateral homologous area for each body part. Taken together, our results indicate a complex pattern of baseline and activity-dependent responses in the contralateral and ipsilateral sides. Both primary sensory areas were characterized by unique negative BOLD responses, suggesting that they are an important component in topographic organization of sensory cortices.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel – Canada (IMRIC), Faculty of Medicine
- The Edmond and Lily Safra Center for Brain Science (ELSC)
- Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
49
|
Emberson LL, Boldin AM, Riccio JE, Guillet R, Aslin RN. Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth. Curr Biol 2017; 27:431-436. [PMID: 28132814 DOI: 10.1016/j.cub.2016.12.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
A prominent theoretical view is that the brain is inherently predictive [1, 2] and that prediction helps drive the engine of development [3, 4]. Although infants exhibit neural signatures of top-down sensory prediction [5, 6], in order to establish that prediction supports development, it must be established that deficits in early prediction abilities alter trajectories. We investigated prediction in infants born prematurely, a leading cause of neuro-cognitive impairment worldwide [7]. Prematurity, independent of medical complications, leads to developmental disturbances [8-12] and a broad range of developmental delays [13-17]. Is an alteration in early prediction abilities the common cause? Using functional near-infrared spectroscopy (fNIRS), we measured top-down sensory prediction in preterm infants (born <33 weeks gestation) before infants exhibited clinically identifiable developmental delays (6 months corrected age). Whereas preterm infants had typical neural responses to presented visual stimuli, they exhibited altered neural responses to predicted visual stimuli. Importantly, a separate behavioral control confirmed that preterm infants detect pattern violations at the same rate as full-terms, establishing selectivity of this response to top-down predictions (e.g., not in learning an audiovisual association). These findings suggest that top-down sensory prediction plays a crucial role in development and that deficits in this ability may be the reason why preterm infants experience altered developmental trajectories and are at risk for poor developmental outcomes. Moreover, this work presents an opportunity for establishing a neuro-biomarker for early identification of infants at risk and could guide early intervention regimens.
Collapse
Affiliation(s)
- Lauren L Emberson
- Psychology Department, Princeton University, Peretsman-Scully Hall, Princeton, NJ 08544, USA; Brain and Cognitive Sciences Department and the Rochester Center for Brain Imaging, University of Rochester, PO Box 270268, Meliora Hall, Rochester, NY 14627, USA.
| | - Alex M Boldin
- Psychology Department, Princeton University, Peretsman-Scully Hall, Princeton, NJ 08544, USA
| | - Julie E Riccio
- Neonatology Unit, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Ronnie Guillet
- Neonatology Unit, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - Richard N Aslin
- Brain and Cognitive Sciences Department and the Rochester Center for Brain Imaging, University of Rochester, PO Box 270268, Meliora Hall, Rochester, NY 14627, USA
| |
Collapse
|
50
|
Ma Z, Cao P, Sun P, Lu Z, Li L, Chen Y, Chai X. Negative hemodynamic response without neuronal inhibition investigated by combining optical imaging and electrophysiological recording. Neurosci Lett 2017; 637:161-167. [DOI: 10.1016/j.neulet.2016.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/06/2016] [Accepted: 11/12/2016] [Indexed: 12/26/2022]
|