1
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Jiang S, Wang Y, Pei H, Li H, Chen J, Yao Y, Li Q, Yao D, Luo C. Brain activation and connection across resting and motor-task states in patients with generalized tonic-clonic seizures. CNS Neurosci Ther 2024; 30:e14672. [PMID: 38644561 PMCID: PMC11033329 DOI: 10.1111/cns.14672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Yutong Yao
- Department of NeurosurgeySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduP. R. China
| | - Qifu Li
- Department of NeurologyHainan Medical UniversityHainanP. R. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of ChinaChengduP. R. China
- Research Unit of NeuroInformationChinese Academy of Medical SciencesChengduP. R. China
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceCenter for Information in MedicineUniversity of Electronic Science and Technology of ChinaChengduP. R. China
| |
Collapse
|
3
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Ortholand J, Pradat PF, Tezenas du Montcel S, Durrleman S. Interaction of sex and onset site on the disease trajectory of amyotrophic lateral sclerosis. J Neurol 2023; 270:5903-5912. [PMID: 37615751 DOI: 10.1007/s00415-023-11932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Studies showed the impact of sex and onset site (spinal or bulbar) on disease onset and survival in ALS. However, they mainly result from cross-sectional or survival analysis, and the interaction of sex and onset site on the different proxies of disease trajectory has not been fully investigated. METHODS We selected all patients with repeated observations in the PRO-ACT database. We divided them into four groups depending on their sex and onset site. We estimated a multivariate disease progression model, named ALS Course Map, to investigate the combined temporal changes of the four sub-scores of the revised ALS functional rating scale (ALSFRSr), the forced vital capacity (FVC), and the body mass index (BMI). We then compared the progression rate, the estimated age at onset, and the relative progression of the outcomes across each group. RESULTS We included 1438 patients from the PRO-ACT database. They were 51% men with spinal onset, 12% men with bulbar onset, 26% women with spinal onset, and 11% women with bulbar onset. We showed a significant influence of both sex and onset site on the ALSFRSr progression. The BMI decreased 8.9 months earlier (95% CI [3.9, 13.8]) in women than men, after correction for the onset site. Among patients with bulbar onset, FVC was impaired 2.6 months earlier (95% CI [0.6, 4.6]) in women. CONCLUSION Using a multivariable disease modelling approach, we showed that sex and onset site are important drivers of the progression of motor function, BMI, and FVC decline.
Collapse
Affiliation(s)
- Juliette Ortholand
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, InriaInserm, AP-HP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France.
| | - Pierre-François Pradat
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, Paris, France
- APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre Référent SLA, Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry, Londonderry, UK
| | - Sophie Tezenas du Montcel
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, InriaInserm, AP-HP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France
| | - Stanley Durrleman
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, CNRS, InriaInserm, AP-HP, Hôpital de La Pitié Salpêtrière, 75013, Paris, France
| |
Collapse
|
5
|
Kim H. Decoding force production of skeletal muscle from the female brain using functional near-infrared spectroscopy. BMC Res Notes 2023; 16:304. [PMID: 37915005 PMCID: PMC10619293 DOI: 10.1186/s13104-023-06588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Noninvasive neural decoding enables predicting motor output from neural activities without physically damaging the human body. A recent study demonstrated the applicability of functional near-infrared spectroscopy (fNIRS) to decode muscle force production from hemodynamic signals measured in the male brain. However, given the sex differences in cerebral blood flow and muscle physiology, whether the fNIRS approach can also be applied to the female brain remains elusive. Therefore, this study aimed to evaluate whether fNIRS can be used to identify the optimal cortical region and hemodynamic predictor to decode muscle force output in females. RESULTS Statistical group analysis for eight healthy female adults showed that the cortical region for wrist control was topologically dorsal to that for finger control over the primary sensorimotor cortex. This cortical area was maximally activated while the wrist flexor muscles were contracted to hold a load on the subject's palm, as was the case for males. However, the dynamics of oxyhemoglobin concentration measured from the most activated cortical area differed between females and males. The signal intensity during 100% maximal voluntary contraction and the signal increase rate at 50% maximal voluntary contraction was lower and faster in females. Eight predictors were used to characterize hemodynamic signals' amplitude and temporal variation in the female cortex. Unlike the case for males, only the trajectory predictors for the amplitude of oxyhemoglobin concentration change were strongly correlated with the strengths of force produced by the wrist flexor muscles, showing a linear relationship. These results suggest gender-specific hemodynamics must be considered for decoding low-level motor control with fNIRS in females.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Biotechnology, Institute of Convergence Research, DGIST, Daegu, Republic of Korea.
- Department of Interdisciplinary Studies, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Park-Braswell K, Shultz SJ, Ross SE, Sunnassee D, Grooms DR, Schmitz RJ. The Impact of Differential Knee Laxity on Brain Activation During Passive Knee Joint Loading. J Orthop Res 2023; 42:10.1002/jor.25664. [PMID: 37442639 PMCID: PMC10851619 DOI: 10.1002/jor.25664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
Although higher anterior knee laxity is an established risk factor of ACL injury, underlying mechanisms are uncertain. While decreased proprioception and altered movement patterns in individuals with anterior knee laxity have been identified, the potential impact of higher laxity on brain activity is not well understood. Thus, the purpose of this study is to identify the impact of different magnitudes of knee laxity on brain function during anterior knee joint loading. Twenty-seven healthy and active female college students without any previous severe lower leg injuries volunteered for this study. Anterior knee laxity was measured using a knee arthrometer KT-2000 to assign participants to a higher laxity (N=15) or relatively lower laxity group (N=12). Functional magnetic resonance images were obtained during passive anterior knee joint loading in a task-based design using a 3T MRI scanner. Higher knee laxity individuals demonstrated diminished cortical activation in the left superior parietal lobe during passive anterior knee joint loading. Less brain activation in the regions associated with awareness of bodily movements in females with higher knee laxity may indicate a possible connection between brain activity and knee laxity. The results of this study may help researchers and clinicians develop effective rehabilitation programs for individuals with increased knee laxity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Sandra J. Shultz
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Scott E. Ross
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Devdass Sunnassee
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA
- Division of Physical Therapy & Division of Athletic Training, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Randy J. Schmitz
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
- Gateway MRI Center University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
7
|
Azzarito M, Emmenegger T, Ziegler G, Huber E, Grabher P, Callaghan MF, Thompson A, Friston K, Weiskopf N, Killeen T, Freund P. Coherent, time-shifted patterns of microstructural plasticity during motor-skill learning. Neuroimage 2023; 274:120128. [PMID: 37116765 DOI: 10.1016/j.neuroimage.2023.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1 hour of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network.
Collapse
Affiliation(s)
- Michela Azzarito
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Tim Emmenegger
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Eveline Huber
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Grabher
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alan Thompson
- Department of Neuroinflammation, UCL Institute of Neurology, University College London, London, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Tim Killeen
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
8
|
Dadario NB, Tanglay O, Stafford JF, Davis EJ, Young IM, Fonseka RD, Briggs RG, Yeung JT, Teo C, Sughrue ME. Topology of the lateral visual system: The fundus of the superior temporal sulcus and parietal area H connect nonvisual cerebrum to the lateral occipital lobe. Brain Behav 2023; 13:e2945. [PMID: 36912573 PMCID: PMC10097165 DOI: 10.1002/brb3.2945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Mapping the topology of the visual system is critical for understanding how complex cognitive processes like reading can occur. We aim to describe the connectivity of the visual system to understand how the cerebrum accesses visual information in the lateral occipital lobe. METHODS Using meta-analytic software focused on task-based functional MRI studies, an activation likelihood estimation (ALE) of the visual network was created. Regions of interest corresponding to the cortical parcellation scheme previously published under the Human Connectome Project were co-registered onto the ALE to identify the hub-like regions of the visual network. Diffusion Spectrum Imaging-based fiber tractography was performed to determine the structural connectivity of these regions with extraoccipital cortices. RESULTS The fundus of the superior temporal sulcus (FST) and parietal area H (PH) were identified as hub-like regions for the visual network. FST and PH demonstrated several areas of coactivation beyond the occipital lobe and visual network. Furthermore, these parcellations were highly interconnected with other cortical regions throughout extraoccipital cortices related to their nonvisual functional roles. A cortical model demonstrating connections to these hub-like areas was created. CONCLUSIONS FST and PH are two hub-like areas that demonstrate extensive functional coactivation and structural connections to nonvisual cerebrum. Their structural interconnectedness with language cortices along with the abnormal activation of areas commonly located in the temporo-occipital region in dyslexic individuals suggests possible important roles of FST and PH in the integration of information related to language and reading. Future studies should refine our model by examining the functional roles of these hub areas and their clinical significance.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Onur Tanglay
- Omniscient Neurotechnology, Sydney, New South Wales, Australia
| | - Jordan F Stafford
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Robert G Briggs
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Charles Teo
- Cingulum Health, Sydney, New South Wales, Australia
| | - Michael E Sughrue
- Omniscient Neurotechnology, Sydney, New South Wales, Australia.,Cingulum Health, Sydney, New South Wales, Australia.,Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Höbler F, Bitan T, Tremblay L, De Nil L. Explicit benefits: Motor sequence acquisition and short-term retention in adults who do and do not stutter. JOURNAL OF FLUENCY DISORDERS 2023; 75:105959. [PMID: 36736073 DOI: 10.1016/j.jfludis.2023.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Motor sequencing skills have been found to distinguish individuals who experience developmental stuttering from those who do not stutter, with these differences extending to non-verbal sequencing behaviour. Previous research has focused on measures of reaction time and practice under externally cued conditions to decipher the motor learning abilities of persons who stutter. Without the confounds of extraneous demands and sensorimotor processing, we investigated motor sequence learning under conditions of explicit awareness and focused practice among adults with persistent development stuttering. Across two consecutive practice sessions, 18 adults who stutter (AWS) and 18 adults who do not stutter (ANS) performed the finger-to-thumb opposition sequencing (FOS) task. Both groups demonstrated significant within-session performance improvements, as evidenced by fast on-line learning of finger sequences on day one. Additionally, neither participant group showed deterioration of their learning gains the following day, indicating a relative stabilization of finger sequencing performance during the off-line period. These findings suggest that under explicit and focused conditions, early motor learning gains and their short-term retention do not differ between AWS and ANS. Additional factors influencing motor sequencing performance, such as task complexity and saturation of learning, are also considered. Further research into explicit motor learning and its generalization following extended practice and follow-up in persons who stutter is warranted. The potential benefits of motor practice generalizability among individuals who stutter and its relevance to supporting treatment outcomes are suggested as future areas of investigation.
Collapse
Affiliation(s)
- Fiona Höbler
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada.
| | - Tali Bitan
- Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Psychology and IIPDM, University of Haifa, Haifa 3498838, Israel
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Clara Benson Building, 320 Huron St., Room 231, Toronto, ON M5S 3J7, Canada; KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Luc De Nil
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
10
|
Rogojin A, Gorbet DJ, Sergio LE. Sex differences in the neural underpinnings of unimanual and bimanual control in adults. Exp Brain Res 2023; 241:793-806. [PMID: 36738359 DOI: 10.1007/s00221-023-06561-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
While many of the movements we make throughout our day involve just one upper limb, most daily movements require a certain degree of coordination between both upper limbs. Historically, sex differences in eye-hand coordination have been observed. As well, there are demonstrated sex-specific differences in hemisphere symmetry, interhemispheric connectivity, and motor cortex organization. While it has been suggested that these anatomical differences may underlie sex-related differences in performance, sex differences in the functional neural correlate underlying bimanual performance have not been explicitly investigated. In the current study we tested the hypothesis that the functional connectivity underlying bimanual movement control differed depending on the sex of an individual. Participants underwent MRI scanning to acquire anatomical and functional brain images. During the functional runs, participants performed unimanual and bimanual coordination tasks using two button boxes. The tasks included pressing the buttons in time to an auditory cue with either their left or their right hand individually (unimanual), or with both hands simultaneously (bimanual). The bimanual task was further divided into either an in-phase (mirror/symmetrical) or anti-phase (parallel/asymmetrical) condition. Participants were provided with extensive training to ensure task comprehension, and performance error rates were found to be equivalent between men and women. A generalized psychophysiological interaction (gPPI) analysis was implemented to examine how functional connectivity in each condition was modulated by sex. In support of our hypothesis, women and men demonstrated differences in the neural correlates underlying unimanual and bimanual movements. In line with previous literature, functional connectivity patterns showed sex-related differences for right- vs left-hand movements. Sex-specific functional connectivity during bimanual movements was not a sum of the functional connectivity underlying right- and left-hand unimanual movements. Further, women generally showed greater interhemispheric functional connectivity across all conditions compared to men and had greater connectivity between task-related cortical areas, while men had greater connectivity involving the cerebellum. Sex differences in brain connectivity were associated with both unimanual and bimanual movement control. Not only do these findings provide novel insight into the fundamentals of how the brain controls bimanual movements in both women and men, they also present potential clinical implications on how bimanual movement training used in rehabilitation can best be tailored to the needs of individuals.
Collapse
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
- Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
- Centre for Vision Research, York University, Toronto, ON, Canada.
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada.
| |
Collapse
|
11
|
Yamaguchi T, Xu J, Sasaki K. Age and sex differences in force steadiness and intermuscular coherence of lower leg muscles during isometric plantar flexion. Exp Brain Res 2023; 241:277-288. [PMID: 36484793 DOI: 10.1007/s00221-022-06517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Age- and sex-related alterations in the control of multiple muscles during contractions are not well understood. The purpose of the present study was to examine the age and sex differences in force steadiness and intermuscular coherence (IMC), and thereby to clarify the functional role of IMC during plantar flexion. Twenty-six young (YNG, 23-34 years), thirty middle-aged (MID, 35-64 years) and twenty-four older adults (OLD, 65-82 years) performed submaximal isometric contractions of plantar flexion, while electromyography was recorded from the soleus (SOL), gastrocnemius lateralis/medialis (GL/GM) and tibialis anterior (TA) muscles. Coefficient of variation (CV) of torque and IMC in the alpha, beta and gamma bands was calculated. We found that OLD demonstrated significantly higher torque CV than YNG and MID, and males demonstrated significantly higher torque CV than females (both p < 0.05). The IMC in the gamma band (five out of the six pairs) was significantly higher in YNG than MID and/or OLD (p < 0.05), while the gamma band IMC between GL and SOL was significantly higher in females. However, age or sex differences were not detected in the alpha or beta band. Moreover, the gamma band IMC between SOL and TA had a weak (r = - 0.229) but significant (p < 0.05) negative correlation with torque CV. These results suggest that force steadiness differs with age and sex, and that the higher gamma band IMC may contribute to more stable force control during plantar flexion.
Collapse
Affiliation(s)
- Tatsuhiro Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| | - Jierui Xu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Kazushige Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
12
|
Jawad ZY, Hamdan FB, Nema IS. Neurophysiologic evaluation of patients with cervical spondylotic myelopathy. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cervical spondylotic myelopathy (CSM) is a neurodegenerative disease caused by repetitive spinal cord damage that has resulted in significant clinical morbidity. The clinical evaluation of signs and symptoms, as well as neuroimaging and several neurophysiological tests, are used to make the diagnosis.
Objectives
To investigate changes in the cutaneous silent period (CuSP), cortical silent period (CoSP), and H-reflex in CSM patients, and to correlate these tests with the Japanese Orthopedic Association (JOA) score and Nurick’s grading, as well as to determine the diagnostic value of each of them.
Methods
Twenty patients (14 males and 6 females) with CSM were clinically diagnosed and documented by magnetic resonance imaging (MRI), and they were paired with another 20 healthy volunteers (13 males and 7 females) as a control group. CuSP, CoSP, and H-reflex tests were performed on both groups.
Results
In CSM patients, CuSP latency and duration are substantially longer and shorter in CSM patients, respectively. The degree of changes in CuSP latency is well correlated with the severity of the disease. Further, CoSP duration is significantly shortened. The H-reflex parameters did not differ significantly between the patient and control groups.
Conclusion
The shortened CoSP’s duration and the prolonged CuSP's latency suggest malfunction of the inhibitory and excitatory circuits in the spinal cord. The CuSP is more sensitive and specific than the CoSP in the diagnosis of a patient with CSM.
Collapse
|
13
|
Park-Braswell K, Grooms D, Shultz S, Raisbeck L, Rhea C, Schmitz R. Sex-Specific Brain Activations during Single-Leg Exercise. Int J Sports Phys Ther 2022; 17:1249-1258. [PMID: 36518825 PMCID: PMC9718712 DOI: 10.26603/001c.40367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2023] Open
Abstract
Background Females have an increased incidence of musculoskeletal injuries compared to males. Sex differences in neuromuscular control has been widely studied regarding the dynamics and muscle activity during preplanned movements. While muscle activation patterns and movement biomechanics are understood to differ between sexes, it is not well understood how sex influences brain activity for lower extremity movement. Since the brain plays a vital role for voluntary movement and joint stability, it is important to understand the sex differences in brain function in order to better understand neuromuscular control associated with increased musculoskeletal injury risk in female. Hypothesis/Purpose The purpose of this study is to understand the differences in brain activation patterns between sexes during a simple active knee extension-flexion movement. It was hypothesized that females would demonstrate higher cortical activation in the somatosensory areas compared to males as a compensatory strategy. Study Design Cross-Sectional Study. Methods Thirteen males and seventeen females who were healthy and physically active participated in this study (Male: 23.7±3.8 years, 74.5±13.5 kg, 172.3±6.4 cm; Female: 20.6±1.6 years, 65.4±12.8 kg, 163±6.1 cm). Functional magnetic resonance imaging data were obtained during a simple left knee extension-flexion exercise with their own leg weight while lying on the MRI table. The blood oxygen level dependent (BOLD) signals were compared between sexes. Results There was significantly greater activation in the visual cortices and premotor cortex in females compared to males during the studied movement. Males demonstrated significantly greater activation in the right cerebellum. Conclusion The results revealed sex differences in BOLD signal during simple knee extension-flexion movement. The results suggest that sex may be a biological factor in understanding brain activity associated with knee motor control. Level of Evidence Level 3.
Collapse
Affiliation(s)
| | - Dustin Grooms
- Ohio Musculoskeletal & Neurological Institute Ohio University
- Division of Physical Therapy & Division of Athletic Training, College of Health Sciences and Professions Ohio University
| | - Sandra Shultz
- Department of Kinesiology University of North Carolina at Greensboro
| | - Louisa Raisbeck
- Department of Kinesiology University of North Carolina at Greensboro
| | - Christopher Rhea
- Department of Kinesiology University of North Carolina at Greensboro
| | - Randy Schmitz
- Department of Kinesiology University of North Carolina at Greensboro
- Gateway MRI Center University of North Carolina at Greensboro
| |
Collapse
|
14
|
Hemispheric Asymmetry of the Hand Motor Representations in Patients with Highly Malignant Brain Tumors: Implications for Surgery and Clinical Practice. Brain Sci 2022; 12:brainsci12101274. [PMID: 36291208 PMCID: PMC9599694 DOI: 10.3390/brainsci12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
We addressed both brain pre-surgical functional and neurophysiological aspects of the hand representation in 18 right-handed patients harboring a highly malignant brain tumor in the sensorimotor (SM) cortex (10 in the left hemisphere, LH, and 8 in the right hemisphere, RH) and 10 healthy controls, who performed an fMRI hand-clenching task with both hands alternatively. We extracted the main ROI in the SM cortex and compared ROI values and volumes between hemispheres and groups, in addition to their motor neurophysiological measures. Hemispheric asymmetry in the fMRI signal was observed for healthy controls, namely higher signal for the left-hand movements, but not for either patients’ groups. ROI values, although altered in patients vs. controls, did not differ significantly between groups. ROI volumes associated with right-hand movement were lower for both patients’ groups vs. controls, and those associated with left-hand movement were lower in the RH group vs. all groups. These results are relevant to interpret potential preoperative plasticity and make inferences about postoperative plasticity and can be integrated in the surgical planning to increase surgery success and postoperative prognosis and quality of life.
Collapse
|
15
|
Differences in implicit motor learning between adults who do and do not stutter. Neuropsychologia 2022; 174:108342. [PMID: 35931135 DOI: 10.1016/j.neuropsychologia.2022.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Implicit learning allows us to acquire complex motor skills through repeated exposure to sensory cues and repetition of motor behaviours, without awareness or effort. Implicit learning is also critical to the incremental fine-tuning of the perceptual-motor system. To understand how implicit learning and associated domain-general learning processes may contribute to motor learning differences in people who stutter, we investigated implicit finger-sequencing skills in adults who do (AWS) and do not stutter (ANS) on an Alternating Serial Reaction Time task. Our results demonstrated that, while all participants showed evidence of significant sequence-specific learning in their speed of performance, male AWS were slower and made fewer sequence-specific learning gains than their ANS counterparts. Although there were no learning gains evident in accuracy of performance, AWS performed the implicit learning task more accurately than ANS, overall. These findings may have implications for sex-based differences in the experience of developmental stuttering, for the successful acquisition of complex motor skills during development by individuals who stutter, and for the updating and automatization of speech motor plans during the therapeutic process.
Collapse
|
16
|
Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073909. [PMID: 35409591 PMCID: PMC8997532 DOI: 10.3390/ijerph19073909] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives.
Collapse
|
17
|
Mehta RK, Rhee J. Revealing Sex Differences During Upper and Lower Extremity Neuromuscular Fatigue in Older Adults Through a Neuroergonomics Approach. FRONTIERS IN NEUROERGONOMICS 2021; 2:663368. [PMID: 38235250 PMCID: PMC10790897 DOI: 10.3389/fnrgo.2021.663368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/26/2021] [Indexed: 01/19/2024]
Abstract
Background: Sex differences in neuromuscular fatigue is well-documented, however the underlying mechanisms remain understudied, particularly for the aging population. Objective: This study investigated sex differences in fatigability of the upper and lower extremity of older adults using a neuroergonomics approach. Methods: Thirty community-dwelling older adults (65 years or older; 15 M, 15 F) performed intermittent submaximal fatiguing handgrip and knee extension exercises until voluntary exhaustion on separate days. Muscle activity from prime muscles of the hand/arm and knee extensors were monitored using electromyography, neural activity from the frontal, motor, and sensory areas were monitored using functional near infrared spectroscopy, and force output were obtained. Results: While older males were stronger than females across both muscle groups, they exhibited longer endurance times and greater strength loss during knee extension exercises. These lower extremity findings were associated with greater force complexity over time and concomitant increase in left motor and right sensory motor regions. While fatigability during handgrip exercises was comparable across sexes, older females exhibited concurrent increases in the activation of the ipsilateral motor regions over time. Discussion: We identified differences in the underlying central neural strategies adopted by males and females in maintaining downstream motor outputs during handgrip fatigue that were not evident with traditional ergonomics measures. Additionally, enhanced neural activation in males during knee exercises that accompanied longer time to exhaustion point to potential rehabilitation/exercise strategies to improve neuromotor outcomes in more fatigable older adults.
Collapse
Affiliation(s)
- Ranjana K. Mehta
- Wm. Michael Barnes '64 Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Joohyun Rhee
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Molloy EN, Mueller K, Beinhölzl N, Blöchl M, Piecha FA, Pampel A, Steele CJ, Scharrer U, Zheleva G, Regenthal R, Sehm B, Nikulin VV, Möller HE, Villringer A, Sacher J. Modulation of premotor cortex response to sequence motor learning during escitalopram intake. J Cereb Blood Flow Metab 2021; 41:1449-1462. [PMID: 33148103 PMCID: PMC8138331 DOI: 10.1177/0271678x20965161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The contribution of selective serotonin reuptake inhibitors to motor learning by inducing motor cortical plasticity remains controversial given diverse findings from positive preclinical data to negative findings in recent clinical trials. To empirically address this translational disparity, we use functional magnetic resonance imaging in a double-blind, randomized controlled study to assess whether 20 mg escitalopram improves sequence-specific motor performance and modulates cortical motor response in 64 healthy female participants. We found decreased left premotor cortex responses during sequence-specific learning performance comparing single dose and steady escitalopram state. Escitalopram plasma levels negatively correlated with the premotor cortex response. We did not find evidence in support of improved motor performance after a week of escitalopram intake. These findings do not support the conclusion that one week escitalopram intake increases motor performance but could reflect early adaptive plasticity with improved neural processing underlying similar task performance when steady peripheral escitalopram levels are reached.
Collapse
Affiliation(s)
- Eóin N Molloy
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Karsten Mueller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nathalie Beinhölzl
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maria Blöchl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,International Max Planck Research School NeuroCom, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, University of Münster, Münster, Germany
| | - Fabian A Piecha
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - André Pampel
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Ulrike Scharrer
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gergana Zheleva
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Harald E Möller
- Nuclear Magnetic Resonance Methods & Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany.,MindBrainBody Institute, Berlin School of Mind and Brain, Charité - Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Sacher
- Emotion Neuroimaging (EGG) Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
19
|
Reduction of falls in a rat model of PD falls by the M1 PAM TAK-071. Psychopharmacology (Berl) 2021; 238:1953-1964. [PMID: 33735392 PMCID: PMC7969347 DOI: 10.1007/s00213-021-05822-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE In addition to the disease-defining motor symptoms, patients with Parkinson's disease (PD) exhibit gait dysfunction, postural instability, and a propensity for falls. These dopamine (DA) replacement-resistant symptoms in part have been attributed to loss of basal forebrain (BF) cholinergic neurons and, in interaction with striatal dopamine (DA) loss, to the resulting disruption of the attentional control of balance and complex movements. Rats with dual cholinergic-DA losses ("DL rats") were previously demonstrated to model PD falls and associated impairments of gait and balance. OBJECTIVES We previously found that the muscarinic M1-positive allosteric modulator (PAM) TAK-071 improved the attentional performance of rats with BF cholinergic losses. Here, we tested the hypotheses that TAK-071 reduces fall rates in DL rats. RESULTS Prior to DL surgery, female rats were trained to traverse a rotating straight rod as well as a rod with two zigzag segments. DL rats were refamiliarized with such traversals post-surgery and tested over 7 days on increasingly demanding testing conditions. TAK-071 (0.1, 0.3 mg/kg, p.o.) was administered prior to daily test sessions over this 7-day period. As before, DL rats fell more frequently than sham-operated control rats. Treatment of DL rats with TAK-071 reduced falls from the rotating rod and the rotating zigzag rod, specifically when the angled part of the zigzag segment, upon entering, was at a steep, near vertical angle. CONCLUSIONS TAK-071 may benefit complex movement control, specifically in situations which disrupt the patterning of forward movement and require the interplay between cognitive and motor functions to modify movement based on information about the state of dynamic surfaces, balance, and gait.
Collapse
|
20
|
Lund MJ, Alnæs D, Schwab S, van der Meer D, Andreassen OA, Westlye LT, Kaufmann T. Differences in directed functional brain connectivity related to age, sex and mental health. Hum Brain Mapp 2020; 41:4173-4186. [PMID: 32613721 PMCID: PMC7502836 DOI: 10.1002/hbm.25116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Functional interconnections between brain regions define the "connectome" which is of central interest for understanding human brain function. Resting-state functional magnetic resonance (rsfMRI) work has revealed changes in static connectivity related to age, sex, cognitive abilities and psychiatric symptoms, yet little is known how these factors may alter the information flow. The commonly used approach infers functional brain connectivity using stationary coefficients yielding static estimates of the undirected connection strength between brain regions. Dynamic graphical models (DGMs) are a multivariate model with dynamic coefficients reflecting directed temporal associations between nodes, and can yield novel insight into directed functional connectivity. Here, we leveraged this approach to test for associations between edge-wise estimates of direction flow across the functional connectome and age, sex, intellectual abilities and mental health. We applied DGM to investigate patterns of information flow in data from 984 individuals from the Human Connectome Project (HCP) and 10,249 individuals from the UK Biobank. Our analysis yielded patterns of directed connectivity in independent HCP and UK Biobank data similar to those previously reported, including that the cerebellum consistently receives information from other networks. We show robust associations between information flow and age and sex for several connections, with strongest effects of age observed in the sensorimotor network. Visual, auditory and sensorimotor nodes were also linked to mental health. Our findings support the use of DGM as a measure of directed connectivity in rsfMRI data and provide new insight into the shaping of the connectome during aging.
Collapse
Affiliation(s)
- Martina J. Lund
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- Bjørknes University CollegeOsloNorway
| | - Simon Schwab
- Center for Reproducible Science (CRS) & Epidemiology, Biostatistics and Prevention Institute (EBPI)University of ZürichZurichSwitzerland
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
- KG Jebsen Centre for neurodevelopmental disorders, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University Hospital, and Institute of Clinical Medicine, University of OsloOsloNorway
| |
Collapse
|
21
|
Mendonca GV, Pezarat-Correia P, Gonçalves AD, Gomes M, Correia JM, Vila-Chã C. Sex differences in soleus muscle H-reflex and V-wave excitability. Exp Physiol 2020; 105:1928-1938. [PMID: 32886814 DOI: 10.1113/ep088820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do H-reflex and V-wave excitability compare between men and women engaging in similar levels of physical activity? What is the main finding and its importance? H-reflex excitability is lower in women than in men because of their greater level of antagonist co-activation during sustained plantar flexion isometric exercise. In addition, supraspinal drive is similar between men and women independently of their differences in H-reflex excitability and antagonist muscle co-activation. ABSTRACT We compared H-reflex and V-wave excitability between men and women engaging in similar levels of physical activity. We also explored whether differences in antagonist muscle co-activation between sexes might partially explain sexual dimorphism in the excitability of the H-reflex and V-wave. Fifty-seven young participants were included (29 men: 21.7 ± 2.3 years; 28 women: 22.4 ± 3.3 years). Soleus M- and H-recruitment curves were constructed on a tonic background muscle activation. V-waves were elicited during maximal voluntary contraction (MVC). Besides being stronger than women, men achieved greater Hmax /Mmax values and presented a steeper slope of the ascending limb of the H-reflex recruitment curve (P < 0.05). The current intensity required to elicit Hmax was lower for men (P < 0.05). The co-activation of the tibialis anterior muscle during the sustained plantar flexions was greater in women (ratio between tibialis and soleus normalized EMG: 20.5 vs. 8.3%, P < 0.05). Covariance analysis showed that sexual dimorphism in H-reflex excitability was dissipated when controlling for antagonist co-activation. V-wave normalized amplitude was similar between sexes even after controlling for the effects of Hmax /Mmax and antagonist co-activation as covariates. Thus, women exhibit lower H-reflex excitability than men and this is dependent on their higher level of antagonist muscle co-activation. While sex differences in antagonist co-activation persist during MVCs, this is not the case for V-wave normalized amplitude. Thus, although the efficacy of the transmission between Ia afferent fibres to α-motoneurons is lower in women because of a greater level of antagonist co-activation, our findings are consistent with similar supraspinal drive between sexes.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - André D Gonçalves
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Gomes
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Joana M Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Vila-Chã
- Polytechnic Institute of Guarda, Guarda, Portugal.,Health and Human Development (CIDESD), Research Center in Sports Sciences, Vila Real, Portugal
| |
Collapse
|
22
|
Churchill NW, Hutchison MG, Graham SJ, Schweizer TA. Scale-free functional brain dynamics during recovery from sport-related concussion. Hum Brain Mapp 2020; 41:2567-2582. [PMID: 32348019 PMCID: PMC7294069 DOI: 10.1002/hbm.24962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Studies using blood‐oxygenation‐level‐dependent functional magnetic resonance imaging (BOLD fMRI) have characterized how the resting brain is affected by concussion. The literature to date, however, has largely focused on measuring changes in the spatial organization of functional brain networks. In the present study, changes in the temporal dynamics of BOLD signals are examined throughout concussion recovery using scaling (or fractal) analysis. Imaging data were collected for 228 university‐level athletes, 61 with concussion and 167 athletic controls. Concussed athletes were scanned at the acute phase of injury (1–7 days postinjury), the subacute phase (8–14 days postinjury), medical clearance to return to sport (RTS), 1 month post‐RTS and 1 year post‐RTS. The wavelet leader multifractal approach was used to assess scaling (c1) and multifractal (c2) behavior. Significant longitudinal changes were identified for c1, which was lowest at acute injury, became significantly elevated at RTS, and returned near control levels by 1 year post‐RTS. No longitudinal changes were identified for c2. Secondary analyses showed that clinical measures of acute symptom severity and time to RTP were related to longitudinal changes in c1. Athletes with both higher symptoms and prolonged recovery had elevated c1 values at RTS, while athletes with higher symptoms but rapid recovery had reduced c1 at acute injury. This study provides the first evidence for long‐term recovery of BOLD scale‐free brain dynamics after a concussion.
Collapse
Affiliation(s)
- Nathan W Churchill
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada
| | - Michael G Hutchison
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto Faculty of Medicine, Toronto, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, St. Michael's Hospital, Toronto, Canada.,Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Canada.,Faculty of Medicine (Neurosurgery), University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Deshpande G, Jia H. Multi-Level Clustering of Dynamic Directional Brain Network Patterns and Their Behavioral Relevance. Front Neurosci 2020; 13:1448. [PMID: 32116487 PMCID: PMC7017718 DOI: 10.3389/fnins.2019.01448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/27/2019] [Indexed: 11/18/2022] Open
Abstract
Dynamic functional connectivity (DFC) obtained from resting state functional magnetic resonance imaging (fMRI) data has been shown to provide novel insights into brain function which may be obscured by static functional connectivity (SFC). Further, DFC, and by implication how different brain regions may engage or disengage with each other over time, has been shown to be behaviorally relevant and more predictive than SFC of behavioral performance and/or diagnostic status. DFC is not a directional entity and may capture neural synchronization. However, directional interactions between different brain regions is another putative mechanism by which neural populations communicate. Accordingly, static effective connectivity (SEC) has been explored as a means of characterizing such directional interactions. But investigation of its dynamic counterpart, i.e., dynamic effective connectivity (DEC), is still in its infancy. Of particular note are methodological insufficiencies in identifying DEC configurations that are reproducible across time and subjects as well as a lack of understanding of the behavioral relevance of DEC obtained from resting state fMRI. In order to address these issues, we employed a dynamic multivariate autoregressive (MVAR) model to estimate DEC. The method was first validated using simulations and then applied to resting state fMRI data obtained in-house (N = 21), wherein we performed dynamic clustering of DEC matrices across multiple levels [using adaptive evolutionary clustering (AEC)] – spatial location, time, and subjects. We observed a small number of directional brain network configurations alternating between each other over time in a quasi-stable manner akin to brain microstates. The dominant and consistent DEC network patterns involved several regions including inferior and mid temporal cortex, motor and parietal cortex, occipital cortex, as well as part of frontal cortex. The functional relevance of these DEC states were determined using meta-analyses and pertained mainly to memory and emotion, but also involved execution and language. Finally, a larger cohort of resting-state fMRI and behavioral data from the Human Connectome Project (HCP) (N = 232, Q1–Q3 release) was used to demonstrate that metrics derived from DEC can explain larger variance in 70 behaviors across different domains (alertness, cognition, emotion, and personality traits) compared to SEC in healthy individuals.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States.,Department of Psychology, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States.,Center for Health Ecology and Equity Research, Auburn, AL, United States.,Alabama Advanced Imaging Consortium, Birmingham, AL, United States.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India.,School of Psychology, Capital Normal University, Beijing, China.,Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
| | - Hao Jia
- Department of Automation, College of Information Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
24
|
Yang Y, Tam F, Graham SJ, Sun G, Li J, Gu C, Tao R, Wang N, Bi HY, Zuo Z. Men and women differ in the neural basis of handwriting. Hum Brain Mapp 2020; 41:2642-2655. [PMID: 32090433 PMCID: PMC7294055 DOI: 10.1002/hbm.24968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/23/2022] Open
Abstract
There is an ongoing debate about whether, and to what extent, males differ from females in their language skills. In the case of handwriting, a composite language skill involving language and motor processes, behavioral observations consistently show robust sex differences but the mechanisms underlying the effect are unclear. Using functional magnetic resonance imaging (fMRI) in a copying task, the present study examined the neural basis of sex differences in handwriting in 53 healthy adults (ages 19–28, 27 males). Compared to females, males showed increased activation in the left posterior middle frontal gyrus (Exner's area), a region thought to support the conversion between orthographic and graphomotor codes. Functional connectivity between Exner's area and the right cerebellum was greater in males than in females. Furthermore, sex differences in brain activity related to handwriting were independent of language material. This study identifies a novel neural signature of sex differences in a hallmark of human behavior, and highlights the importance of considering sex as a factor in scientific research and clinical applications involving handwriting.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Guochen Sun
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Tianjin, China
| | - Junjun Li
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chanyuan Gu
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Tao
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nizhuan Wang
- Artificial Intelligence and Neuro-informatics Engineering (ARINE) Laboratory, School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Hong-Yan Bi
- Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,The Innovation Center of Excellence on Brain Science, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Korzhyk OV, Dmutrotsa OR, Poruchynskyi AI, Morenko AH. Event-related potentials during contralateral switching over motor programs in humans. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The study of processes related to the motor response suppression and the evaluation of the next, alternative, response after termination of the already observed initial motor response is of significant interest to modern scientists. The objective of our research is to identify the gender-specific features of the amplitude-time characteristics of induced cortical electrical activity in the process of the excitation of the motor programs of manual movement. Healthy and right-handed men and women aged 18–23 participated in the research. The research tasks investigated the time of simple and complex visual-motor responses, amplitude-temporal features of N2 and P3 components of cognitive evoked potentials in the response to launch and contralateral switching (dominant or subdominant arm) of the motor program of finger flexes (pressing the remote control button) in the Stop-Change paradigm. Event-related potentials (ERPs) were analyzed in the frontal, central, and parietal lobes of the cortex. It was established that male participants had lower time indexes of simple and complex visual-motor responses than women. In addition, during the contralateral switching of motor programs of manual movements the smaller latent periods of the ERPs components in the right central and left frontal sections (component N2), in the left hemisphere lobes (component P3) among men were observed. The amplitudes of the N2 and P3 components revealed higher values in male participants at the parietal lobes. Thus, the process of recognizing and differentiating the stimulus among men was faster, with more powerful focus and attention on the operative memory. In the left hemisphere of men and women the smaller latent periods of P3component (in the central lobe) and amplitudes of N2 and P3 components were determined compared to the right hemisphere. Thus, the motor programs switching in the paradigm of the experiment occurred with the sequential activation of the left and contralateral right hemispheres.
Collapse
|
26
|
Reyes S, Algarín C, Lozoff B, Peigneux P, Peirano P. Sleep and motor sequence learning consolidation in former iron deficient anemic adolescents. Sleep Med 2019; 64:116-122. [PMID: 31704427 DOI: 10.1016/j.sleep.2019.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Iron deficiency is the most prevalent micronutrient deficiency worldwide. There is evidence that iron deficiency produces alterations in the developing brain, eventually leading to long-lasting effects on various cognitive functions. METHODS Here, we investigated motor learning and its consolidation after sleep in adolescents who sustained iron deficiency anemia (IDA) in infancy, compared to healthy controls, in the context of a long-term follow-up Chilean research project. Fifty-three adolescents who formerly had iron deficiency anemia as infants and 40 control adolescents practiced a sequential motor finger tapping task, before and after a night of sleep. Performance was measured at the end of learning, 30 min later (boost effect), and the next morning. RESULTS Revealed slower learning in subjects with infant iron deficiency anemia than control subjects, followed by a proportionally similar performance boost at 30 min. Performance remained stable overnight in healthy controls but further improved in infant IDA adolescents, suggesting a beneficial effect of post-training sleep on the consolidation of incompletely learned motor skills. In particular, overnight gains in performance were observed in female, but not male infant iron deficiency anemic subjects, suggesting a gender effect. CONCLUSIONS Our results indicate long-lasting motor learning deficits in infant IDA adolescents and provide support to the hypothesis that post-training sleep might, to some extent, compensate for hampered motor learning during wakefulness.
Collapse
Affiliation(s)
- Sussanne Reyes
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Cecilia Algarín
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics and Communicable Disease, University of Michigan, North Ingalls Building, 10th Floor, 300 N. Ingalls Street, Ann Arbor, MI, 48109-5406, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Group, CRCN - Center for Research in Cognition and Neurosciences, UNI - ULB Neurosciences Institute, Université Libre de Bruxelles, 50 avenue F.D. Roosevelt CP191 B-1050, Brussels, Belgium.
| | - Patricio Peirano
- Sleep and Functional Neurobiology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
27
|
Ingkatecha O, Hirunrat S, Vanadurongwan B, Tongkhambanchong S. Ground reaction force in different footwear during late stance phase of running. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Soylu F, Seo R, Newman M, Newman SD. Gray Matter Correlates of Finger Gnosis in Children: A VBM Study. Neuroscience 2019; 404:82-90. [PMID: 30699334 DOI: 10.1016/j.neuroscience.2019.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023]
Abstract
Accumulating evidence relates finger gnosis (also called finger sense or finger gnosia), the ability to identify and individuate fingers, to cognitive processing, particularly numerical cognition. Multiple studies have shown that finger gnosis scores correlate with or predict numerical skills in children. Neuropsychological cases as well as magnetic stimulation studies have also shown that finger agnosia (defects in finger gnosis) often co-occurs with cognitive impairments, including agraphia and acalculia. However, our knowledge of the structural and functional correlates, and the development of finger gnosis is limited. To expand our understanding of structural brain features that are associated with finger gnosis, we conducted a voxel-based morphometry study with 42 seven- to 10-year-old children, where we investigated the correlation between finger gnosis scores and whole-brain gray matter volume (GMV). Correlations between finger gnosis and GMV were found in a set of frontoparietal, striatal, and cerebellar areas. We also found sex differences in how GMV is associated with finger gnosis. While females showed a more distributed and extensive set of frontal and parietal clusters, males showed two striatal clusters. This study provides the first findings on structural brain features that correlate with finger gnosis.
Collapse
Affiliation(s)
| | - Roy Seo
- University of Washington, Seattle, USA
| | | | | |
Collapse
|
29
|
Sex comparisons of the bilateral deficit in proximal and distal upper body limb muscles. Hum Mov Sci 2019; 64:329-337. [PMID: 30836207 DOI: 10.1016/j.humov.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/28/2023]
Abstract
Bilateral deficit (BLD) describes a phenomenon that the force produced during maximal simultaneous bilateral contraction is lower than the sum of those produced unilaterally. The aim of this study was to examine the potential sex-related differences in BLD in upper body proximal and distal limb muscles. Ten men and eight women performed single-joint maximal contractions with their elbow flexors and index finger abductors at separate laboratory visits, during which the maximal isometric voluntary contractions (MVICs) were performed unilaterally and bilaterally with a randomized order in the designated muscle group. Surface electromyographic (EMG) signals were recorded from the prime movers of the designated muscle groups (biceps brachii and first dorsal interosseous) during the maximal contractions. Both men and women demonstrated BLD in their elbow flexors (deficit: men = -11.0 ± 6.3%; women = -10.2 ± 5.0%). Accompanied by this force deficit was the reduced EMG amplitude from the dominant biceps brachii (collapsed across sex: p = 0.045). For the index finger abductors, only men (deficit = -13.7 ± 6.1%), but not women showed BLD. Our results suggested that the BLD in the proximal muscle group is likely induced by the decreased maximal muscle activity from the dominant prime mover. The absence of BLD in women's index finger muscle is largely due to the inter-subject variability possibly related to the sex hormone flux and unique levels of interhemispheric inhibition.
Collapse
|
30
|
Rhee J, Mehta RK. Functional Connectivity During Handgrip Motor Fatigue in Older Adults Is Obesity and Sex-Specific. Front Hum Neurosci 2018; 12:455. [PMID: 30483085 PMCID: PMC6243051 DOI: 10.3389/fnhum.2018.00455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in older adults, particularly in females, is increasing rapidly and is associated with declines in both the brain and physical health. Both the obese and the female populations have shown greater motor fatigue than their counterparts, however, the central neural mechanisms for fatigue are unclear. The present study measured fatigue-related functional connectivity across frontal and sensorimotor areas using functional near-infrared spectroscopy (fNIRS). Fifty-nine older adults (30 non-obese and 29 obese) performed submaximal handgrip motor fatigue until voluntary exhaustion. Functional connectivity and cerebral hemodynamics were compared across eight cortical areas during motor fatigue and across obesity and sex groups along with neuromuscular fatigue outcomes (i.e., endurance time, strength loss, and force steadiness). Both obesity- and sex-specific functional architecture and mean activation differences during motor fatigue in older adults were observed, which were accompanied by fatigue-related changes in variability of force steadiness that differed between groups. While primary indicators of fatigue, i.e., endurance and strength loss, did not differ between groups, the motor steadiness changes indicated different neural adaptation strategies between the groups. These findings indicate that obesity and sex differences exist in brain function in older adults, which may affect performance during motor fatigue.
Collapse
Affiliation(s)
- Joohyun Rhee
- Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Ranjana K Mehta
- Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX, United States.,Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Shaqiri A, Roinishvili M, Grzeczkowski L, Chkonia E, Pilz K, Mohr C, Brand A, Kunchulia M, Herzog MH. Sex-related differences in vision are heterogeneous. Sci Rep 2018; 8:7521. [PMID: 29760400 PMCID: PMC5951855 DOI: 10.1038/s41598-018-25298-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Despite well-established sex differences for cognition, audition, and somatosensation, few studies have investigated whether there are also sex differences in visual perception. We report the results of fifteen perceptual measures (such as visual acuity, visual backward masking, contrast detection threshold or motion detection) for a cohort of over 800 participants. On six of the fifteen tests, males significantly outperformed females. On no test did females significantly outperform males. Given this heterogeneity of the sex effects, it is unlikely that the sex differences are due to any single mechanism. A practical consequence of the results is that it is important to control for sex in vision research, and that findings of sex differences for cognitive measures using visually based tasks should confirm that their results cannot be explained by baseline sex differences in visual perception.
Collapse
Affiliation(s)
- Albulena Shaqiri
- Laboratory of Psychophysics, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| | - Maya Roinishvili
- Laboratory of Vision Physiology, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | | | - Eka Chkonia
- Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia.,Department of Psychiatry, Tbilisi State Medical University, Tbilisi, Georgia
| | - Karin Pilz
- School of Psychology, University of Aberdeen, Aberdeen, Scotland, UK
| | - Christine Mohr
- Institute of Psychology, Faculty of Social and Political Sciences, Bâtiment Geopolis, Quartier Mouline, 1015, Lausanne, Switzerland
| | - Andreas Brand
- Institute for Psychology and Cognition Research, University of Bremen, Bremen, Germany
| | - Marina Kunchulia
- Laboratory of Vision Physiology, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.,Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia
| | - Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, EPFL, Lausanne, Switzerland
| |
Collapse
|
32
|
Li X, Morton SM. Explicit Awareness does not Modulate Retrograde Interference Effects in Sequence Learning. J Mot Behav 2018; 51:68-74. [PMID: 29336724 DOI: 10.1080/00222895.2017.1417818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Motor sequences are learned explicitly or implicitly based on conscious awareness of the sequence. Interference happens when two sequences are learned successively. Here, we aimed to determine whether implicit and explicit sequence learning are affected differently by retrograde interference. Young healthy volunteers participated in either a control or interference group and either an explicit or implicit learning condition. We used a modified serial reaction time task to induce sequence learning and control awareness. Results showed that the overall amount of sequence learning was greater in the explicit condition compared to implicit. However, sequence learning was equally susceptible to retrograde interference under either condition. We conclude that although susceptible to interference, explicit awareness improves overall sequence learning compared to implicit conditions.
Collapse
Affiliation(s)
- Xin Li
- a Department of Physical Therapy , University of Delaware , Newark , Delaware , USA.,b Graduate Program in Biomechanics and Movement Science , University of Delaware , Newark , Delaware , USA
| | - Susanne M Morton
- a Department of Physical Therapy , University of Delaware , Newark , Delaware , USA.,b Graduate Program in Biomechanics and Movement Science , University of Delaware , Newark , Delaware , USA
| |
Collapse
|
33
|
Casamento-Moran A, Hunter SK, Chen YT, Kwon MH, Fox EJ, Yacoubi B, Christou EA. Sex differences in spatial accuracy relate to the neural activation of antagonistic muscles in young adults. Exp Brain Res 2017; 235:2425-2436. [DOI: 10.1007/s00221-017-4968-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022]
|
34
|
Valtr L, Psotta R, Abdollahipour R. Gender differences in performance of the Movement Assessment Battery for Children - 2 nd edition test in adolescents. ACTA GYMNICA 2016. [DOI: 10.5507/ag.2016.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Zoghi M, Vaseghi B, Bastani A, Jaberzadeh S, Galea MP. The Effects of Sex Hormonal Fluctuations during Menstrual Cycle on Cortical Excitability and Manual Dexterity (a Pilot Study). PLoS One 2015; 10:e0136081. [PMID: 26308341 PMCID: PMC4550432 DOI: 10.1371/journal.pone.0136081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022] Open
Abstract
AIM To investigate whether hormonal fluctuations during the menstrual cycle affect corticospinal excitability, intracortical inhibition (ICI) or facilitation (ICF) in primary motor cortex, and also whether the hormonal fluctuations have any effect on manual dexterity in neurologically intact women. MATERIALS AND METHODS Twenty volunteers (10 Female, 10 Male) were included in this study. The levels of progesterone and estradiol were measured from saliva during the women's menstrual follicular, ovulation and mid-luteal phases. Motor evoked potentials were recorded from the right first dorsal interosseous muscle. Single and paired-pulse Transcranial Magnetic Stimulation (TMS) were delivered in a block of 20 stimuli. With paired-pulse technique, 3ms and 10ms inter-stimulus intervals were used to assess ICI and ICF, respectively. The Grooved Pegboard Test (GPT) was completed in each session before the TMS assessments. Male participants were tested at similar time intervals as female participants. RESULTS Mixed design ANOVA revealed that GPT score in female participants was significantly lower at the mid-luteal phase compared to the ovulation phase (p = 0.017). However, it was not correlated with progesterone or estrogen fluctuations during the menstrual cycle. The results also showed that the effect of phase, sex and the interaction of phase by sex for resting motor threshold, ICI or ICF were not significant (p > 0.05). CONCLUSION Manual dexterity performance fluctuates during the menstrual cycle in neurologically intact women, which might be due to the balance of the neuromodulatory effects of P4 and E2 in the motor cortex during different phases.
Collapse
Affiliation(s)
- Maryam Zoghi
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Melbourne, Australia
| | - Bita Vaseghi
- School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Melbourne, Australia
| | - Andisheh Bastani
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Melbourne, Australia
| | - Shapour Jaberzadeh
- School of Primary Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Melbourne, Australia
| | - Mary P. Galea
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
36
|
Yoon T, Vanden Noven ML, Nielson KA, Hunter SK. Brain areas associated with force steadiness and intensity during isometric ankle dorsiflexion in men and women. Exp Brain Res 2014; 232:3133-45. [PMID: 24903120 PMCID: PMC4172577 DOI: 10.1007/s00221-014-3976-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Although maintenance of steady contractions is required for many daily tasks, there is little understanding of brain areas that modulate lower limb force accuracy. Functional magnetic resonance imaging was used to determine brain areas associated with steadiness and force during static (isometric) lower limb target-matching contractions at low and high intensities. Fourteen young adults (6 men and 8 women; 27.1 ± 9.1 years) performed three sets of 16-s isometric contractions with the ankle dorsiflexor muscles at 10, 30, 50, and 70 % of maximal voluntary contraction (MVC). Percent signal changes (PSCs, %) of the blood oxygenation level-dependent response were extracted for each contraction using region of interest analysis. Mean PSC increased with contraction intensity in the contralateral primary motor area (M1), supplementary motor area, putamen, pallidum cingulate cortex, and ipsilateral cerebellum (p < 0.05). The amplitude of force fluctuations (standard deviation, SD) increased from 10 to 70 % MVC but relative to the mean force (coefficient of variation, CV %) was greatest at 10 % MVC. The CV of force was associated with PSC in the ipsilateral parietal lobule (r = -0.28), putamen (r = -0.29), insula (r = -0.33), and contralateral superior frontal gyrus (r = -0.33, p < 0.05). There were minimal sex differences in brain activation across the isometric motor tasks indicating men and women were similarly motivated and able to activate cortical motor centers during static tasks. Control of steady lower limb contractions involves cortical and subcortical motor areas in both men and women and provides insight into key areas for potential cortical plasticity with impaired or enhanced leg function.
Collapse
Affiliation(s)
- Tejin Yoon
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
- Kinesiology and Integrative Physiology, Michigan Technological University,
Houghton, MI, USA
| | - Marnie L. Vanden Noven
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, USA
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI,
USA
| | - Sandra K. Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette
University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
37
|
Chauvigné LAS, Gitau KM, Brown S. The neural basis of audiomotor entrainment: an ALE meta-analysis. Front Hum Neurosci 2014; 8:776. [PMID: 25324765 PMCID: PMC4179708 DOI: 10.3389/fnhum.2014.00776] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/12/2014] [Indexed: 11/17/2022] Open
Abstract
Synchronization of body movement to an acoustic rhythm is a major form of entrainment, such as occurs in dance. This is exemplified in experimental studies of finger tapping. Entrainment to a beat is contrasted with movement that is internally driven and is therefore self-paced. In order to examine brain areas important for entrainment to an acoustic beat, we meta-analyzed the functional neuroimaging literature on finger tapping (43 studies) using activation likelihood estimation (ALE) meta-analysis with a focus on the contrast between externally-paced and self-paced tapping. The results demonstrated a dissociation between two subcortical systems involved in timing, namely the cerebellum and the basal ganglia. Externally-paced tapping highlighted the importance of the spinocerebellum, most especially the vermis, which was not activated at all by self-paced tapping. In contrast, the basal ganglia, including the putamen and globus pallidus, were active during both types of tapping, but preferentially during self-paced tapping. These results suggest a central role for the spinocerebellum in audiomotor entrainment. We conclude with a theoretical discussion about the various forms of entrainment in humans and other animals.
Collapse
Affiliation(s)
- Léa A S Chauvigné
- NeuroArts Lab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Kevin M Gitau
- NeuroArts Lab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| | - Steven Brown
- NeuroArts Lab, Department of Psychology, Neuroscience & Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
38
|
Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol (Oxf) 2014; 210:768-89. [PMID: 24433272 DOI: 10.1111/apha.12234] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/29/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.
Collapse
Affiliation(s)
- S. K. Hunter
- Exercise Science Program; Department of Physical Therapy; Marquette University; Milwaukee WI USA
| |
Collapse
|
39
|
Wesley MJ, Bickel WK. Remember the future II: meta-analyses and functional overlap of working memory and delay discounting. Biol Psychiatry 2014; 75:435-48. [PMID: 24041504 PMCID: PMC3943930 DOI: 10.1016/j.biopsych.2013.08.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022]
Abstract
Previously we showed that working memory training decreased the discounting of future rewards in stimulant addicts without affecting a go/no-go task. While a relationship between delay discounting and working memory is consistent with other studies, the unique brain regions of plausible causality between these two abilities have yet to be determined. Activation likelihood estimation meta-analyses were performed on foci from studies of delay discounting (DD = 449), working memory (WM = 452), finger tapping (finger tapping = 450), and response inhibition (RI = 450). Activity maps from relatively less (finger tapping) and more (RI) demanding executive tasks were contrasted with maps of DD and WM. Overlap analysis identified unique functional coincidence between DD and WM. The anterior cingulate cortex was engaged by all tasks. Finger tapping largely engaged motor-related brain areas. In addition to motor-related areas, RI engaged frontal brain regions. The right lateral prefrontal cortex was engaged by RI, DD, and WM and was contrasted out of overlap maps. A functional cluster in the posterior portion of the left lateral prefrontal cortex emerged as the largest location of unique overlap between DD and WM. A portion of the left lateral prefrontal cortex is a unique location where delay discounting and working memory processes overlap in the brain. This area, therefore, represents a therapeutic target for improving behaviors that rely on the integration of the recent past with the foreseeable future.
Collapse
Affiliation(s)
- Michael J. Wesley
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Addiction Recovery Research Center,Human Neuroimaging Laboratory
| | - Warren K. Bickel
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Addiction Recovery Research Center
| |
Collapse
|
40
|
Flatters I, Hill LJB, Williams JHG, Barber SE, Mon-Williams M. Manual control age and sex differences in 4 to 11 year old children. PLoS One 2014; 9:e88692. [PMID: 24523931 PMCID: PMC3921207 DOI: 10.1371/journal.pone.0088692] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/10/2014] [Indexed: 11/18/2022] Open
Abstract
To what degree does being male or female influence the development of manual skills in pre-pubescent children? This question is important because of the emphasis placed on developing important new manual skills during this period of a child's education (e.g. writing, drawing, using computers). We investigated age and sex-differences in the ability of 422 children to control a handheld stylus. A task battery deployed using tablet PC technology presented interactive visual targets on a computer screen whilst simultaneously recording participant's objective kinematic responses, via their interactions with the on-screen stimuli using the handheld stylus. The battery required children use the stylus to: (i) make a series of aiming movements, (ii) trace a series of abstract shapes and (iii) track a moving object. The tasks were not familiar to the children, allowing measurement of a general ability that might be meaningfully labelled ‘manual control’, whilst minimising culturally determined differences in experience (as much as possible). A reliable interaction between sex and age was found on the aiming task, with girls' movement times being faster than boys in younger age groups (e.g. 4–5 years) but with this pattern reversing in older children (10–11 years). The improved performance in older boys on the aiming task is consistent with prior evidence of a male advantage for gross-motor aiming tasks, which begins to emerge during adolescence. A small but reliable sex difference was found in tracing skill, with girls showing a slightly higher level of performance than boys irrespective of age. There were no reliable sex differences between boys and girls on the tracking task. Overall, the findings suggest that prepubescent girls are more likely to have superior manual control abilities for performing novel tasks. However, these small population differences do not suggest that the sexes require different educational support whilst developing their manual skills.
Collapse
Affiliation(s)
- Ian Flatters
- Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Liam J. B. Hill
- Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
- * E-mail:
| | - Justin H. G. Williams
- Department of Mental Health, University of Aberdeen, Royal Cornhill Hospital, Aberdeen, Scotland, United Kingdom
| | - Sally E. Barber
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, United Kingdom
| | - Mark Mon-Williams
- Institute of Psychological Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
41
|
Suntrup S, Teismann I, Wollbrink A, Winkels M, Warnecke T, Flöel A, Pantev C, Dziewas R. Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation. Neuroimage 2013; 83:346-54. [PMID: 23800793 DOI: 10.1016/j.neuroimage.2013.06.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 12/12/2022] Open
Abstract
Swallowing is a complex neuromuscular task that is processed within multiple regions of the human brain. Rehabilitative treatment options for dysphagia due to neurological diseases are limited. Because the potential for adaptive cortical changes in compensation of disturbed swallowing is recognized, neuromodulation techniques like transcranial direct current stimulation (tDCS) are currently considered as a treatment option. Here we evaluate the effect of tDCS on cortical swallowing network activity and behavior. In a double-blind crossover study, anodal tDCS (20 min, 1 mA) or sham stimulation was administered over the left or right swallowing motor cortex in 21 healthy subjects in separate sessions. Cortical activation was measured using magnetoencephalography (MEG) before and after tDCS during cued "simple", "fast" and "challenged" swallow tasks with increasing levels of difficulty. Swallowing response times and accuracy were measured. Significant bilateral enhancement of cortical swallowing network activation was found in the theta frequency range after left tDCS in the fast swallow task (p=0.006) and following right tDCS in the challenged swallow task (p=0.007), but not after sham stimulation. No relevant behavioral effects were observed on swallow response time, but swallow precision improved after left tDCS (p<0.05). Anodal tDCS applied over the swallowing motor cortex of either hemisphere was able to increase bilateral swallow-related cortical network activation in a frequency specific manner. These neuroplastic effects were associated with subtle behavioral gains during complex swallow tasks in healthy individuals suggesting that tDCS deserves further evaluation as a treatment tool for dysphagia.
Collapse
Affiliation(s)
- Sonja Suntrup
- Institute for Biomagnetism and Biosignal Analysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Department of Neurology, University of Muenster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lissek S, Vallana GS, Güntürkün O, Dinse H, Tegenthoff M. Brain activation in motor sequence learning is related to the level of native cortical excitability. PLoS One 2013; 8:e61863. [PMID: 23613956 PMCID: PMC3628854 DOI: 10.1371/journal.pone.0061863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/15/2013] [Indexed: 11/18/2022] Open
Abstract
Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo) showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi). In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | | | |
Collapse
|
43
|
Sanders G. Sex differences in motor and cognitive abilities predicted from human evolutionary history with some implications for models of the visual system. JOURNAL OF SEX RESEARCH 2013; 50:353-366. [PMID: 23480077 DOI: 10.1080/00224499.2013.769492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This article expands the knowledge base available to sex researchers by reviewing recent evidence for sex differences in coincidence-anticipation timing (CAT), motor control with the hand and arm, and visual processing of stimuli in near and far space. In CAT, the differences are between sex and, therefore, typical of other widely reported sex differences. Men perform CAT tasks with greater accuracy and precision than women, who tend to underestimate time to arrival. Null findings arise because significant sex differences are found with easy but not with difficult tasks. The differences in motor control and visual processing are within sex, and they underlie reciprocal patterns of performance in women and men. Motor control is exerted better by women with the hand than the arm. In contrast, men showed the reverse pattern. Visual processing is performed better by women with stimuli within hand reach (near space) as opposed to beyond hand reach (far space); men showed the reverse pattern. The sex differences seen in each of these three abilities are consistent with the evolutionary selection of men for hunting-related skills and women for gathering-related skills. The implications of the sex differences in visual processing for two visual system models of human vision are discussed.
Collapse
Affiliation(s)
- Geoff Sanders
- School of Psychology, London Metropolitan University, UK.
| |
Collapse
|
44
|
Xu G, Zhang L, Shu H, Wang X, Li P. Access to lexical meaning in pitch-flattened Chinese sentences: an fMRI study. Neuropsychologia 2012; 51:550-6. [PMID: 23262075 DOI: 10.1016/j.neuropsychologia.2012.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 11/26/2022]
Abstract
Chinese is a tonal language in which variation in pitch is used to distinguish word meanings. Thus, in order to understand a word, listeners have to extract the pitch patterns in addition to its phonemes. Can the correct word meaning still be accessed in sentence contexts if pitch patterns of words are altered? If so, how is this accomplished? The present study attempts to address such questions with event-related functional magnetic resonance imaging (fMRI). Native speakers of Mandarin Chinese listened to normal and pitch-flattened (monotone) speech inside the scanner. The behavioral results indicated that they rated monotone sentences as intelligible as normal sentences, and performed equally well in a dictation test on the two types of sentences. The fMRI results showed that both types of sentences elicited similar activation in the left insular, middle and inferior temporal gyri, but the monotone sentences elicited greater activation in the left planum temporale (PT) compared with normal sentences. These results demonstrate that lexical meaning can still be accessed in pitch-flattened Chinese sentences, and that this process is realized by automatic recovery of the phonological representations of lexical tones from the altered tonal patterns. Our findings suggest that the details of spoken pitch patterns are not essential for adequate lexical-semantic processing during sentence comprehension even in tonal languages like Mandarin Chinese, given that listeners can automatically use additional neural and cognitive resources to recover distorted tonal patterns in sentences.
Collapse
Affiliation(s)
- Guoqing Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
45
|
Callan DE, Gamez M, Cassel DB, Terzibas C, Callan A, Kawato M, Sato MA. Dynamic visuomotor transformation involved with remote flying of a plane utilizes the 'Mirror Neuron' system. PLoS One 2012; 7:e33873. [PMID: 22536320 PMCID: PMC3335037 DOI: 10.1371/journal.pone.0033873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/20/2012] [Indexed: 12/21/2022] Open
Abstract
Brain regions involved with processing dynamic visuomotor representational transformation are investigated using fMRI. The perceptual-motor task involved flying (or observing) a plane through a simulated Red Bull Air Race course in first person and third person chase perspective. The third person perspective is akin to remote operation of a vehicle. The ability for humans to remotely operate vehicles likely has its roots in neural processes related to imitation in which visuomotor transformation is necessary to interpret the action goals in an egocentric manner suitable for execution. In this experiment for 3rd person perspective the visuomotor transformation is dynamically changing in accordance to the orientation of the plane. It was predicted that 3rd person remote flying, over 1st, would utilize brain regions composing the ‘Mirror Neuron’ system that is thought to be intimately involved with imitation for both execution and observation tasks. Consistent with this prediction differential brain activity was present for 3rd person over 1st person perspectives for both execution and observation tasks in left ventral premotor cortex, right dorsal premotor cortex, and inferior parietal lobule bilaterally (Mirror Neuron System) (Behaviorally: 1st>3rd). These regions additionally showed greater activity for flying (execution) over watching (observation) conditions. Even though visual and motor aspects of the tasks were controlled for, differential activity was also found in brain regions involved with tool use, motion perception, and body perspective including left cerebellum, temporo-occipital regions, lateral occipital cortex, medial temporal region, and extrastriate body area. This experiment successfully demonstrates that a complex perceptual motor real-world task can be utilized to investigate visuomotor processing. This approach (Aviation Cerebral Experimental Sciences ACES) focusing on direct application to lab and field is in contrast to standard methodology in which tasks and conditions are reduced to their simplest forms that are remote from daily life experience.
Collapse
|
46
|
Bayer U, Hausmann M. Menstrual cycle-related changes of functional cerebral asymmetries in fine motor coordination. Brain Cogn 2012; 79:34-8. [PMID: 22387299 DOI: 10.1016/j.bandc.2012.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/09/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Fluctuating sex hormone levels during the menstrual cycle have been shown to affect functional cerebral asymmetries in cognitive domains. These effects seem to result from the neuromodulatory properties of sex hormones and their metabolites on interhemispheric processing. The present study was carried out to investigate whether functional cerebral asymmetries in fine motor coordination as reflected by manual asymmetries are also susceptible to natural sex hormonal variations during the menstrual cycle. Sixteen right-handed women with a regular menstrual cycle performed a finger tapping paradigm consisting of two conditions (simple, sequential) during the low hormone menstrual phase and the high estrogen and progesterone luteal phase. To validate the luteal phase, saliva levels of free progesterone (P) were analysed using chemiluminescence assays. As expected, normally cycling women showed a substantial decrease in manual asymmetries in a more demanding sequential tapping condition involving four fingers compared with simple (repetitive) finger tapping. This reduction in the degree of dominant (right) hand manual asymmetries was evident during the luteal phase. During the menstrual phase, however, manual asymmetries were even reversed in direction, indicating a slight advantage in favour of the non-dominant (left) hand. These findings suggest that functional cerebral asymmetries in fine motor coordination are affected by sex hormonal changes during the menstrual cycle, probably via hormonal modulations of interhemispheric interaction.
Collapse
Affiliation(s)
- Ulrike Bayer
- Department of Psychology, Durham University, United Kingdom.
| | | |
Collapse
|
47
|
On the bilateral asymmetry during running and cycling – A review considering leg preference. Phys Ther Sport 2010; 11:136-42. [DOI: 10.1016/j.ptsp.2010.06.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/09/2010] [Accepted: 06/18/2010] [Indexed: 11/23/2022]
|
48
|
Jang SH, Ahn SH, Byun WM, Kim CS, Lee MY, Kwon YH. The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: An fMRI study. Neurosci Lett 2009; 460:117-20. [DOI: 10.1016/j.neulet.2009.05.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/26/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
49
|
Holper L, Biallas M, Wolf M. Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study. Neuroimage 2009; 46:1105-13. [PMID: 19306929 DOI: 10.1016/j.neuroimage.2009.03.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 03/08/2009] [Accepted: 03/10/2009] [Indexed: 12/01/2022] Open
Abstract
Hand motor tasks are frequently used to assess impaired motor function in neurology and neurorehabilitation. Assessments can be varied by means of hand laterality, i.e. unimanual or bimanual performance, as well as by means of task complexity, i.e. different degrees ranging from simple to complex sequence tasks. The resulting functional activation in human primary motor cortex (M1) has been studied intensively by traditional neuroimaging methods. Previous studies using functional near-infrared spectroscopy (fNIRS) investigated simple hand motor tasks. However, it is unknown whether fNIRS can also detect changes in response to increasing task complexity. Our hypothesis was to show that fNIRS could detect activation changes in relation to task complexity in uni- and bimanual tasks. Sixteen healthy right-handed subjects performed five finger-tapping tasks: unimanual left and right, simple and complex tasks as well as bimanual complex tasks. We found significant differences in oxy-hemoglobin (O(2)Hb) and deoxy-hemoglobin (HHb) concentration in the right hemisphere over M1. Largest O(2)Hb concentration changes were found during complex (0.351+/-0.051 micromol/l) and simple (0.275+/-0.054 micromol/l) right hand tasks followed by bimanual (0.249+/-0.047 micromol/l), complex (0.154+/-0.034 micromol/l) and simple (0.110+/-0.034 micromol/l) left hand tasks. Largest HHb concentration changes were found during bimanual (-0.138+/-0.006 micromol/l) tasks, followed by simple right hand (-0.12+/-0.016 micromol/l), complex left (-0.0875+/-0.007 micromol/l), complex right (-0.0863+/-0.005 micromol/l) and simple left (-0.0674+/-0.005 micromol/l) hand tasks. We report for the first time that fNIRS detects oxygenation changes in relation to task complexity during finger-tapping. The study aims to contribute to the establishment of fNIRS as a neuroimaging method to assess hand motor function in clinical settings where traditional neuroimaging methods cannot be applied.
Collapse
Affiliation(s)
- Lisa Holper
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
50
|
Improvement in speech-reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects. Neuropsychologia 2009; 47:972-9. [DOI: 10.1016/j.neuropsychologia.2008.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 10/20/2008] [Accepted: 10/23/2008] [Indexed: 12/31/2022]
|