1
|
Lepauvre A, Hirschhorn R, Bendtz K, Mudrik L, Melloni L. A standardized framework to test event-based experiments. Behav Res Methods 2024; 56:8852-8868. [PMID: 39285141 PMCID: PMC11525435 DOI: 10.3758/s13428-024-02508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 11/01/2024]
Abstract
The replication crisis in experimental psychology and neuroscience has received much attention recently. This has led to wide acceptance of measures to improve scientific practices, such as preregistration and registered reports. Less effort has been devoted to performing and reporting the results of systematic tests of the functioning of the experimental setup itself. Yet, inaccuracies in the performance of the experimental setup may affect the results of a study, lead to replication failures, and importantly, impede the ability to integrate results across studies. Prompted by challenges we experienced when deploying studies across six laboratories collecting electroencephalography (EEG)/magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and intracranial EEG (iEEG), here we describe a framework for both testing and reporting the performance of the experimental setup. In addition, 100 researchers were surveyed to provide a snapshot of current common practices and community standards concerning testing in published experiments' setups. Most researchers reported testing their experimental setups. Almost none, however, published the tests performed or their results. Tests were diverse, targeting different aspects of the setup. Through simulations, we clearly demonstrate how even slight inaccuracies can impact the final results. We end with a standardized, open-source, step-by-step protocol for testing (visual) event-related experiments, shared via protocols.io. The protocol aims to provide researchers with a benchmark for future replications and insights into the research quality to help improve the reproducibility of results, accelerate multicenter studies, increase robustness, and enable integration across studies.
Collapse
Affiliation(s)
- Alex Lepauvre
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute of Empirical Aesthetics, Frankfurt am Main, Germany.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, the Netherlands.
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Katarina Bendtz
- Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada
| | - Lucia Melloni
- Neural Circuits, Consciousness and Cognition Research Group, Max Planck Institute of Empirical Aesthetics, Frankfurt am Main, Germany
- Department of Neurology, NYU Grossman School of Medicine, New York, USA
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada
| |
Collapse
|
2
|
Cargnelutti E, Maieron M, D'Agostini S, Ius T, Skrap M, Tomasino B. Exploring cognitive Landscapes: Longitudinal Dynamics of left insula gliomas using neuropsychological inquiry, fMRI, and intra-resection real time neuropsychological testing. Neuroimage Clin 2024; 44:103689. [PMID: 39467497 PMCID: PMC11549996 DOI: 10.1016/j.nicl.2024.103689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
We explored the functional outcome following awake surgery and Real-Time Neuropsychological Testing (RTNT) in the left insula. We carried out a longitudinal investigation by comparing the patients' language profile, and, in particular, the object-naming skills and the associated fMRI network, of pre-surgery and follow-up (i.e., a few months after surgery) in a group of 23 patients harboring a left-sided low grade glioma centered to the insulo-temporal area. Tumor resection, performed while continuously monitoring patients' performance by RNTN, was high (median = 92 %). From the neuropsychological viewpoint, almost all patients displayed preserved naming and language skills in general, both before surgery and at follow-up, when they recovered from a transient impairment recorded immediately after surgery. From the functional imaging viewpoint, the naming networks of the two assessment times were almost equivalent, with non-parametric analyses showing brain remodeling involving perilesional areas preoperatively and the contralesional, healthy, insula at follow-up. We discussed the anatomo-functional mechanisms that contributed to the preservation of the functional and cognitive pattern as observed in this longitudinal study, with a particular focus on the promising plasticity potential of the left insular area. In particular, we commented that, at least in our patient series and by applying an optimized surgical procedure, surgery in the insula was safe and generally contributed to the preservation of the language functions.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Italy
| | - Marta Maieron
- Department of Physics, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Serena D'Agostini
- Neuroradiology Unit, Department of Diagnostic Imaging, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy.
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Italy.
| |
Collapse
|
3
|
Thurston MD, Ericksen LC, Jacobson MM, Bustamante A, Koppelmans V, Mickey BJ, Love TM. Oxytocin differentially modulates reward system responses to social and non-social incentives. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06695-6. [PMID: 39365438 DOI: 10.1007/s00213-024-06695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
RATIONALE Oxytocin has been shown to modulate behavior related to processing of monetary incentives and to regulate social and reproductive behavior, yet little is known about how oxytocin differentially influences neural responses to social and non-social incentives. OBJECTIVES We aimed to evaluate the effects of oxytocin administration on behavioral and neural responses to social and monetary incentives. METHODS Twenty-eight healthy adults (age 18-45 years) performed both monetary and social incentive tasks during blood oxygenation level dependent (BOLD) imaging. Intranasal oxytocin or placebo was administered before each scan using a double blind, randomized, cross-over design. Task performance and self-reported motivation and mood states were collected. Time-series analysis was conducted to assess the influence of oxytocin on the hemodynamic response in the ventral tegmental area and substantia nigra (VTA/SN) and nucleus accumbens (NAc). RESULTS Oxytocin demonstrated a multifaceted effect on VTA/SN and NAc when processing reward incentives, with it increasing BOLD response in VTA/SN and decreasing BOLD response in NAc during social incentive anticipation. A reversal of this was shown with decreased BOLD responses in the VTA/SN and increased BOLD response in the NAc during monetary incentive anticipation. CONCLUSIONS Our findings suggest a more nuanced purpose of oxytocin when evaluating reward incentive decision making. It is possible that while oxytocin does increase salience to rewards, that it is more important for cognitive control when determining short-term versus long-term benefits in rewards. Future studies should more closely examine the relationship between oxytocin and delay discounting.
Collapse
Affiliation(s)
- Matthew D Thurston
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4067, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4067, Australia.
| | - Lauren C Ericksen
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Maci M Jacobson
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Allison Bustamante
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Vincent Koppelmans
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Brian J Mickey
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, 84112, USA
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, 84112, USA
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, 84112, USA
| | - Tiffany M Love
- Department of Psychiatry and Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, 84112, USA
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
4
|
Mansour L. S, Seguin C, Winkler AM, Noble S, Zalesky A. Topological cluster statistic (TCS): Toward structural connectivity-guided fMRI cluster enhancement. Netw Neurosci 2024; 8:902-925. [PMID: 39355436 PMCID: PMC11424043 DOI: 10.1162/netn_a_00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/08/2024] [Indexed: 10/03/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies most commonly use cluster-based inference to detect local changes in brain activity. Insufficient statistical power and disproportionate false-positive rates reportedly hinder optimal inference. We propose a structural connectivity-guided clustering framework, called topological cluster statistic (TCS), that enhances sensitivity by leveraging white matter anatomical connectivity information. TCS harnesses multimodal information from diffusion tractography and functional imaging to improve task fMRI activation inference. Compared to conventional approaches, TCS consistently improves power over a wide range of effects. This improvement results in a 10%-50% increase in local sensitivity with the greatest gains for medium-sized effects. TCS additionally enables inspection of underlying anatomical networks and thus uncovers knowledge regarding the anatomical underpinnings of brain activation. This novel approach is made available in the PALM software to facilitate usability. Given the increasing recognition that activation reflects widespread, coordinated processes, TCS provides a way to integrate the known structure underlying widespread activations into neuroimaging analyses moving forward.
Collapse
Affiliation(s)
- Sina Mansour L.
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Anderson M. Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie Noble
- Department of Psychology, Department of Bioengineering, Center for Cognitive and Brain Health, Northeastern University, Boston MA, United States
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Qi S, Cross L, Wise T, Sui X, O'Doherty J, Mobbs D. The Role of the Medial Prefrontal Cortex in Spatial Margin of Safety Calculations. J Neurosci 2024; 44:e1162222024. [PMID: 38997158 PMCID: PMC11340276 DOI: 10.1523/jneurosci.1162-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/05/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Naturalistic observations show that animals pre-empt danger by moving to locations that increase their success in avoiding future threats. To test this in humans, we created a spatial margin of safety (MOS) decision task that quantifies pre-emptive avoidance by measuring the distance subjects place themselves to safety when facing different threats whose attack locations vary in predictability. Behavioral results show that human participants place themselves closer to safe locations when facing threats that attack in spatial locations with more outliers. Using both univariate and multivariate pattern analysis (MVPA) on fMRI data collected during a 2 h session on participants of both sexes, we demonstrate a dissociable role for the vmPFC in MOS-related decision-making. MVPA results revealed that the posterior vmPFC encoded for more unpredictable threats with univariate analyses showing a functional coupling with the amygdala and hippocampus. Conversely, the anterior vmPFC was more active for the more predictable attacks and showed coupling with the striatum. Our findings converge in showing that during pre-emptive danger, the anterior vmPFC may provide a safety signal, possibly via foreseeable outcomes, while the posterior vmPFC drives unpredictable danger signals.
Collapse
Affiliation(s)
- Song Qi
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - Logan Cross
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| | - Toby Wise
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - Xin Sui
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
| | - John O'Doherty
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| | - Dean Mobbs
- Department of Humanities and Social Sciences and Computation, California Institute of Technology, Pasadena, California 91125
- Neural Systems Program at the California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
6
|
Kirk-Provencher KT, Sloan ME, Andereas K, Erickson CJ, Hakimi RH, Penner AE, Gowin JL. Neural responses to reward, threat, and emotion regulation and transition to hazardous alcohol use. Alcohol Alcohol 2024; 59:agae043. [PMID: 38953742 PMCID: PMC11217988 DOI: 10.1093/alcalc/agae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
AIMS Reward processing and regulation of emotions are thought to impact the development of addictive behaviors. In this study, we aimed to determine whether neural responses during reward anticipation, threat appraisal, emotion reactivity, and cognitive reappraisal predicted the transition from low-level to hazardous alcohol use over a 12-month period. METHODS Seventy-eight individuals aged 18-22 with low-level alcohol use [i.e. Alcohol Use Disorder Identification Test (AUDIT) score <7] at baseline were enrolled. They completed reward-based and emotion regulation tasks during magnetic resonance imaging to examine reward anticipation, emotional reactivity, cognitive reappraisal, and threat anticipation (in the nucleus accumbens, amygdala, superior frontal gyrus, and insula, respectively). Participants completed self-report measures at 3-, 6-, 9-, and 12-month follow-up time points to determine if they transitioned to hazardous use (as defined by AUDIT scores ≥8). RESULTS Of the 57 participants who completed follow-up, 14 (24.6%) transitioned to hazardous alcohol use. Higher baseline AUDIT scores were associated with greater odds of transitioning to hazardous use (odds ratio = 1.73, 95% confidence interval 1.13-2.66, P = .005). Brain activation to reward, threat, and emotion regulation was not associated with alcohol use. Of the neural variables, the amygdala response to negative imagery was numerically larger in young adults who transitioned to hazardous use (g = 0.31), but this effect was not significant. CONCLUSIONS Baseline drinking levels were significantly associated with the transition to hazardous alcohol use. Studies with larger samples and longer follow-up should test whether the amygdala response to negative emotional imagery can be used to indicate a future transition to hazardous alcohol use.
Collapse
Affiliation(s)
- Katelyn T Kirk-Provencher
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| | - Matthew E Sloan
- Addictions Division, Centre for Addiction and Mental Health, 1001 Queen St. W, Toronto, ON, M6J 1H4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle Toronto, ON, M5S 1A8, Canada
- Division of Neurosciences and Clinical Translation, Department of Psychiatry, University of Toronto, 250 College St. Toronto, ON, M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 620 University Ave. Toronto, ON, M5G 2C1, Canada
- Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, 1 King's College Circle Toronto, ON, M5S 1A8, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, 479 Spadina Ave. Toronto, ON, M5S 2S1, Canada
| | - Keinada Andereas
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| | - Cooper J Erickson
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| | - Rosa H Hakimi
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| | - Anne E Penner
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| | - Joshua L Gowin
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
7
|
Alahmadi AAS. Beyond boundaries: investigating shared and divergent connectivity in the pre-/postcentral gyri and supplementary motor area. Neuroreport 2024; 35:283-290. [PMID: 38407836 DOI: 10.1097/wnr.0000000000002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVE This study aimed to comprehensively investigate the functional connectivity of key brain regions involved in motor and sensory functions, namely the precentral gyrus, postcentral gyrus and supplementary motor area (SMA). Using advanced MRI, the objective was to understand the neurophysiological integrative characterizations of these regions by examining their connectivity with eight distinct functional brain networks. The goal was to uncover their roles beyond conventional motor and sensory functions, contributing to a more holistic understanding of brain functioning. METHODS The study involved 198 healthy volunteers, with the primary methodology being functional connectivity analysis using advanced MRI techniques. The bilateral precentral gyrus, postcentral gyrus and SMA served as seed regions, and their connectivity with eight distinct brain regional functional networks was investigated. This approach allowed for the exploration of synchronized activity between these critical brain areas, shedding light on their integrated functioning and relationships with other brain networks. RESULTS The study revealed a nuanced landscape of functional connectivity for the precentral gyrus, postcentral gyrus and SMA with the main functional brain networks. Despite their high functional connectedness, these regions displayed diverse functional integrations with other networks, particularly in the salience, visual, cerebellar and language networks. Specific data and statistical significance were not provided in the abstract, but the results suggested unique and distinct roles for each brain area in sophisticated cognitive tasks beyond their conventional motor and sensory functions. CONCLUSION The study emphasized the multifaceted roles of the precentral gyrus, postcentral gyrus and SMA. Beyond their crucial involvement in motor and sensory functions, these regions exhibited varied functional integrations with different brain networks. The observed disparities, especially in the salience, visual, cerebellar and language networks, indicated a nuanced and specialized involvement of these regions in diverse cognitive functions. The study underscores the importance of considering the broader neurophysiological landscape to comprehend the intricate roles of these brain areas, contributing to ongoing efforts in unraveling the complexities of brain function.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Moe AAK, Singh N, Dimmock M, Cox K, McGarvey L, Chung KF, McGovern AE, McMahon M, Richards AL, Farrell MJ, Mazzone SB. Brainstem processing of cough sensory inputs in chronic cough hypersensitivity. EBioMedicine 2024; 100:104976. [PMID: 38244293 PMCID: PMC10831188 DOI: 10.1016/j.ebiom.2024.104976] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chronic cough is a prevalent and difficult to treat condition often accompanied by cough hypersensitivity, characterised by cough triggered from exposure to low level sensory stimuli. The mechanisms underlying cough hypersensitivity may involve alterations in airway sensory nerve responsivity to tussive stimuli which would be accompanied by alterations in stimulus-induced brainstem activation, measurable with functional magnetic resonance imaging (fMRI). METHODS We investigated brainstem responses during inhalation of capsaicin and adenosine triphosphate (ATP) in 29 participants with chronic cough and 29 age- and sex-matched controls. Psychophysical testing was performed to evaluate individual sensitivities to inhaled stimuli and fMRI was used to compare neural activation in participants with cough and control participants while inhaling stimulus concentrations that evoked equivalent levels of urge-to-cough sensation. FINDINGS Participants with chronic cough were significantly more sensitive to inhaled capsaicin and ATP and showed a change in relationship between urge-to-cough perception and cough induction. When urge-to-cough levels were matched, participants with chronic cough displayed significantly less neural activation in medullary regions known to integrate airway sensory inputs. By contrast, neural activations did not differ significantly between the two groups in cortical brain regions known to encode cough sensations whereas activation in a midbrain region of participants with chronic cough was significantly increased compared to controls. INTERPRETATION Cough hypersensitivity in some patients may occur in brain circuits above the level of the medulla, perhaps involving midbrain regions that amplify ascending sensory signals or change the efficacy of central inhibitory control systems that ordinarily serve to filter sensory inputs. FUNDING Supported in part by a research grant from Investigator-Initiated Studies Program of Merck Sharp & Dohme Pty Ltd. The opinions expressed in this paper are those of the authors and do not necessarily represent those of Merck Sharp & Dohme (Australia) Pty Ltd.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Matthew Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; School of Allied Health Professions, Keele University, Staffordshire, UK
| | - Katherine Cox
- Centre for Human Psychopharmacology, Swinburne University, Australia
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Kian Fan Chung
- Experimental Studies Unit, National Heart & Lung Institute, Imperial College London, UK; Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, UK
| | - Alice E McGovern
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marcus McMahon
- Department of Respiratory and Sleep Medicine, Austin Hospital, Heidelberg, Australia
| | - Amanda L Richards
- Department of Otolaryngology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Acar F, Maumet C, Heuten T, Vervoort M, Bossier H, Seurinck R, Moerkerke B. Improving the Eligibility of Task-Based fMRI Studies for Meta-Analysis: A Review and Reporting Recommendations. Neuroinformatics 2024; 22:5-22. [PMID: 37924428 DOI: 10.1007/s12021-023-09643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Decisions made during the analysis or reporting of an fMRI study influence the eligibility of that study to be entered into a meta-analysis. In a meta-analysis, results of different studies on the same topic are combined. To combine the results, it is necessary that all studies provide equivalent pieces of information. However, in task-based fMRI studies we see a large variety in reporting styles. Several specific meta-analysis methods have been developed to deal with the reporting practices occurring in task-based fMRI studies, therefore each requiring a specific type of input. In this manuscript we provide an overview of the meta-analysis methods and the specific input they require. Subsequently we discuss how decisions made during the study influence the eligibility of a study for a meta-analysis and finally we formulate some recommendations about how to report an fMRI study so that it complies with as many meta-analysis methods as possible.
Collapse
Affiliation(s)
- Freya Acar
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium.
| | - Camille Maumet
- Inria, Univ Rennes, CNRS, Inserm, IRISA UMR 6074, Empenn ERL U 1228, Rennes, F-35000, France
| | - Talia Heuten
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium
| | - Maya Vervoort
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium
| | - Han Bossier
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium
| | - Beatrijs Moerkerke
- Department of Data-Analysis, Faculty of Psychology and Educational Science, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Schott B, Choksi D, Tran K, Karmonik C, Salazar B, Boone T, Khavari R. Is the Brainstem Activation Different Between Healthy Young Male and Female Volunteers at Initiation of Voiding? A High Definition 7-Tesla Magnetic Resonance Imaging Study. Int Neurourol J 2023; 27:174-181. [PMID: 37798884 PMCID: PMC10556429 DOI: 10.5213/inj.2346104.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/05/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Assessing brainstem function in humans through typical neuroimaging modalities has been challenging. Our objective was to evaluate brain and brainstem activation patterns during initiation of voiding in healthy males and females utilizing a 7 Tesla magnetic resonance imaging (MRI) scanner and a noninvasive brain-bladder functional MRI (fMRI) protocol. METHODS Twenty healthy adult volunteers (10 males and 10 females) with no history of urinary symptoms were recruited. Each volunteer underwent a clinic uroflow and postvoid residual assessment and was asked to consume water prior to entering the scanner. Anatomical and diffusion tensor images were obtained first, followed by a blood oxygenation level dependent (BOLD) resting-state fMRI (rs-fMRI) during the empty bladder. Subjects indicated when they felt the urge to void, and a full bladder rs-fMRI was obtained. Once completed, the subjects began 5 voiding cycles, where the first 7.5 seconds of each voiding cycle was identified as "initiation of voiding." BOLD activation maps were generated, and regions of interests with a t-value greater than 2.1 were deemed statistically significant. RESULTS We present 5 distinct regions within the periaqueductal gray (PAG) and pontine micturition center (PMC) with statistically significant activation associated with an initiation of voiding in both men and women, 3 within the PAG and 2 within the PMC. Several additional areas in the brain also demonstrated activation as well. When comparing males to females, there was an overall lower BOLD activation seen in females throughout all regions, with the exception of the caudate lobe. CONCLUSION Our study effectively defines regions within the PAG and PMC involved in initiation of voiding in healthy volunteers. To our knowledge, this is the first study investigating differences between male and female brainstem activation utilizing an ultra-high definition 7T MRI.
Collapse
Affiliation(s)
- Bradley Schott
- Interdisciplinary College of Engineering Medicine, Texas A&M, Houston, TX, USA
| | - Darshil Choksi
- Interdisciplinary College of Engineering Medicine, Texas A&M, Houston, TX, USA
| | - Khue Tran
- Interdisciplinary College of Engineering Medicine, Texas A&M, Houston, TX, USA
| | | | - Betsy Salazar
- Department of Urology, Houston Methodist Hospital, Houston, TX, USA
| | - Timothy Boone
- Department of Urology, Houston Methodist Hospital, Houston, TX, USA
| | - Rose Khavari
- Department of Urology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Veillette JP, Ho L, Nusbaum HC. Permutation-based group sequential analyses for cognitive neuroscience. Neuroimage 2023; 277:120232. [PMID: 37348624 DOI: 10.1016/j.neuroimage.2023.120232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Cognitive neuroscientists have been grappling with two related experimental design problems. First, the complexity of neuroimaging data (e.g. often hundreds of thousands of correlated measurements) and analysis pipelines demands bespoke, non-parametric statistical tests for valid inference, and these tests often lack an agreed-upon method for performing a priori power analyses. Thus, sample size determination for neuroimaging studies is often arbitrary or inferred from other putatively but questionably similar studies, which can result in underpowered designs - undermining the efficacy of neuroimaging research. Second, when meta-analyses estimate the sample sizes required to obtain reasonable statistical power, estimated sample sizes can be prohibitively large given the resource constraints of many labs. We propose the use of sequential analyses to partially address both of these problems. Sequential study designs - in which the data is analyzed at interim points during data collection and data collection can be stopped if the planned test statistic satisfies a stopping rule specified a priori - are common in the clinical trial literature, due to the efficiency gains they afford over fixed-sample designs. However, the corrections used to control false positive rates in existing approaches to sequential testing rely on parametric assumptions that are often violated in neuroimaging settings. We introduce a general permutation scheme that allows sequential designs to be used with arbitrary test statistics. By simulation, we show that this scheme controls the false positive rate across multiple interim analyses. Then, performing power analyses for seven evoked response effects seen in the EEG literature, we show that this sequential analysis approach can substantially outperform fixed-sample approaches (i.e. require fewer subjects, on average, to detect a true effect) when study designs are sufficiently well-powered. To facilitate the adoption of this methodology, we provide a Python package "niseq" with sequential implementations of common tests used for neuroimaging: cluster-based permutation tests, threshold-free cluster enhancement, t-max, F-max, and the network-based statistic with tutorial examples using EEG and fMRI data.
Collapse
Affiliation(s)
| | - Letitia Ho
- Department of Psychology, University of Chicago, United States
| | | |
Collapse
|
12
|
Gong XL, Huth AG, Deniz F, Johnson K, Gallant JL, Theunissen FE. Phonemic segmentation of narrative speech in human cerebral cortex. Nat Commun 2023; 14:4309. [PMID: 37463907 PMCID: PMC10354060 DOI: 10.1038/s41467-023-39872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Speech processing requires extracting meaning from acoustic patterns using a set of intermediate representations based on a dynamic segmentation of the speech stream. Using whole brain mapping obtained in fMRI, we investigate the locus of cortical phonemic processing not only for single phonemes but also for short combinations made of diphones and triphones. We find that phonemic processing areas are much larger than previously described: they include not only the classical areas in the dorsal superior temporal gyrus but also a larger region in the lateral temporal cortex where diphone features are best represented. These identified phonemic regions overlap with the lexical retrieval region, but we show that short word retrieval is not sufficient to explain the observed responses to diphones. Behavioral studies have shown that phonemic processing and lexical retrieval are intertwined. Here, we also have identified candidate regions within the speech cortical network where this joint processing occurs.
Collapse
Affiliation(s)
- Xue L Gong
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, 94720, CA, USA.
| | - Alexander G Huth
- Departments of Neuroscience and Computer Science, University of Texas, Austin, Austin, 78712, TX, USA
| | - Fatma Deniz
- Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, 10587, Berlin, Germany
| | - Keith Johnson
- Department of Linguistics, University of California, Berkeley, Berkeley, 94720, CA, USA
| | - Jack L Gallant
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, 94720, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, 94720, CA, USA
| | - Frédéric E Theunissen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, 94720, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, 94720, CA, USA.
- Department of Integrative Biology, University of California, Berkeley, Berkeley, 94720, CA, USA.
| |
Collapse
|
13
|
Kampa M, Hermann A, Stark R, Klucken T. Neural correlates of immediate versus delayed extinction when simultaneously varying the time of the test in humans. Cereb Cortex 2023:bhad205. [PMID: 37317067 DOI: 10.1093/cercor/bhad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Anxiety disorders are effectively treated with exposure therapy based on the extinction of Pavlovian fear conditioning. Animal research indicates that both the timing of extinction and test are important factors to reduce the return of fear. However, empirical evidence in humans is incomplete and inconsistent. In this neuroimaging study, we, therefore, tested 103 young, healthy participants in a 2-factorial between-subjects design with the factors extinction group (immediate, delayed) and test group (+1 day and +7 days). Immediate extinction led to greater retention of fear memory at the beginning of extinction training indicated by increased skin conductance responses. A return of fear was observed in both extinction groups, with a trend toward a greater return of fear in immediate extinction. The return of fear was generally higher in groups with an early test. Neuroimaging results show successful cross-group fear acquisition and retention, as well as activation of the left nucleus accumbens during extinction training. Importantly, the delayed extinction group showed a larger bilateral nucleus accumbens activation during test. This nucleus accumbens finding is discussed in terms of salience, contingency, relief, and prediction error processing. It may imply that the delayed extinction group benefits more from the test as a new learning opportunity.
Collapse
Affiliation(s)
- Miriam Kampa
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
| | - Andrea Hermann
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University, Giessen 35394, Germany
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen 35394, Germany
| | - Tim Klucken
- Department of Clinical Psychology and Psychotherapy, University of Siegen, Siegen 57072, Germany
| |
Collapse
|
14
|
Characterizing habit learning in the human brain at the individual and group levels: a multi-modal MRI study. Neuroimage 2023. [DOI: 10.1016/j.neuroimage.2023.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
15
|
Kang M, Norman M, Becker A, Zhou W, Wang T, Xuan S, Glass A. Response assignment influences visual recognition. Atten Percept Psychophys 2023; 85:1179-1198. [PMID: 37036655 DOI: 10.3758/s13414-023-02702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
This study investigated whether two different neural systems influenced performance in an immediate visual recognition, i.e. visual same/different task. An observer had to respond rapidly whether a test consonant had just appeared in the study string by pressing one of two response keys, labeled same and different. When the same response was assigned to the response key on the right, there was no effect of study-string position on target response time (RT), indicating that the test item was not compared with the study string. When the different response was assigned to the response key on the right, same RT was an increasing function of the left-to-right position of a target in the study string and different RT was slower than same RT, indicating that during test the study string was compared with the test item. Functional magnetic resonance imaging confirmed that the caudate and left hippocampus were more active when the different response was assigned to the right key but the right hippocampus was more active when the same response was assigned to the right key. Therefore, two different computational processes are performed by two different brain systems depending on whether the same or different response is assigned to the right response key.
Collapse
Affiliation(s)
- Mengxue Kang
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Madison Norman
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Alexa Becker
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Wenzhe Zhou
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Tingtao Wang
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Siyuan Xuan
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Arnold Glass
- Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
16
|
Teghipco A, Okada K, Murphy E, Hickok G. Predictive Coding and Internal Error Correction in Speech Production. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:81-119. [PMID: 37229143 PMCID: PMC10205072 DOI: 10.1162/nol_a_00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 05/27/2023]
Abstract
Speech production involves the careful orchestration of sophisticated systems, yet overt speech errors rarely occur under naturalistic conditions. The present functional magnetic resonance imaging study sought neural evidence for internal error detection and correction by leveraging a tongue twister paradigm that induces the potential for speech errors while excluding any overt errors from analysis. Previous work using the same paradigm in the context of silently articulated and imagined speech production tasks has demonstrated forward predictive signals in auditory cortex during speech and presented suggestive evidence of internal error correction in left posterior middle temporal gyrus (pMTG) on the basis that this area tended toward showing a stronger response when potential speech errors are biased toward nonwords compared to words (Okada et al., 2018). The present study built on this prior work by attempting to replicate the forward prediction and lexicality effects in nearly twice as many participants but introduced novel stimuli designed to further tax internal error correction and detection mechanisms by biasing speech errors toward taboo words. The forward prediction effect was replicated. While no evidence was found for a significant difference in brain response as a function of lexical status of the potential speech error, biasing potential errors toward taboo words elicited significantly greater response in left pMTG than biasing errors toward (neutral) words. Other brain areas showed preferential response for taboo words as well but responded below baseline and were less likely to reflect language processing as indicated by a decoding analysis, implicating left pMTG in internal error correction.
Collapse
Affiliation(s)
- Alex Teghipco
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| | - Kayoko Okada
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, USA
| | - Emma Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Bhaumik DK, Song Y, Yen PS, Ajilore OA. Power Analysis for High Dimensional Neuroimaging Studies. Psychiatr Ann 2023. [DOI: 10.3928/00485713-20230216-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Andin J, Elwér Å, Mäki‐Torkko E. Arithmetic in the signing brain: Differences and similarities in arithmetic processing between deaf signers and hearing non-signers. J Neurosci Res 2023; 101:172-195. [PMID: 36259315 PMCID: PMC9828253 DOI: 10.1002/jnr.25138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/07/2022] [Accepted: 10/06/2022] [Indexed: 01/12/2023]
Abstract
Deaf signers and hearing non-signers have previously been shown to recruit partially different brain regions during simple arithmetic. In light of the triple code model, the differences were interpreted as relating to stronger recruitment of the verbal system of numerical processing, that is, left angular and inferior frontal gyrus, in hearing non-signers, and of the quantity system of numerical processing, that is, right horizontal intraparietal sulcus, for deaf signers. The main aim of the present study was to better understand similarities and differences in the neural correlates supporting arithmetic in deaf compared to hearing individuals. Twenty-nine adult deaf signers and 29 hearing non-signers were enrolled in an functional magnetic resonance imaging study of simple and difficult subtraction and multiplication. Brain imaging data were analyzed using whole-brain analysis, region of interest analysis, and functional connectivity analysis. Although the groups were matched on age, gender, and nonverbal intelligence, the deaf group performed generally poorer than the hearing group in arithmetic. Nevertheless, we found generally similar networks to be involved for both groups, the only exception being the involvement of the left inferior frontal gyrus. This region was activated significantly stronger for the hearing compared to the deaf group but showed stronger functional connectivity with the left superior temporal gyrus in the deaf, compared to the hearing, group. These results lend no support to increased recruitment of the quantity system in deaf signers. Perhaps the reason for performance differences is to be found in other brain regions not included in the original triple code model.
Collapse
Affiliation(s)
- Josefine Andin
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Åsa Elwér
- Department of Behavioural Sciences and LearningLinköping UniversityLinköpingSweden
| | - Elina Mäki‐Torkko
- Audiological Research Center, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
19
|
Impaired Inter-Hemispheric Functional Connectivity during Resting State in Female Patients with Migraine. Brain Sci 2022; 12:brainsci12111505. [PMID: 36358431 PMCID: PMC9688662 DOI: 10.3390/brainsci12111505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The application of voxel-mirrored homotopic connectivity (VMHC) analysis to study the central mechanism of migraine has been limited. Furthermore, little is known about inter-hemispheric functional connectivity (FC) alterations during resting state in female patients with migraine. This study aimed to investigate potential interictal VMHC impairments in migraine without aura (MwoA) patients and the relationship between connectivity alterations and clinical parameters. Resting-state functional magnetic resonance imaging data and clinical information were acquired from 43 female MwoA patients and 43 matched healthy controls. VMHC analysis was used to compare differences between these two groups, and brain regions showing significant differences were chosen as a mask to perform a seed-based FC group comparison. Subsequent correlation analysis was conducted to explore the relationship between abnormal inter-hemispheric FC and clinical data. Compared with healthy controls, female MwoA patients revealed significantly decreased VMHC in the bilateral cerebellum; cuneus; and lingual, middle occipital, precentral and postcentral gyri. Seed-based FC analysis indicated disrupted intrinsic connectivity in the cerebellum, and default mode, visual and sensorimotor network. These VMHC and FC abnormalities were negatively correlated with clinical indexes including duration of disease, migraine days and visual analogue scale. These inter-hemispheric FC impairments and correlations between abnormal VMHC and FC and clinical scores may improve our understanding of the central mechanism of female-specific migraine.
Collapse
|
20
|
Pimpini L, Kochs S, Franssen S, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. More complex than you might think: Neural representations of food reward value in obesity. Appetite 2022; 178:106164. [PMID: 35863505 DOI: 10.1016/j.appet.2022.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 01/22/2023]
Abstract
Obesity reached pandemic proportions and weight-loss treatments are mostly ineffective. The level of brain activity in the reward circuitry is proposed to be proportionate to the reward value of food stimuli, and stronger in people with obesity. However, empirical evidence is inconsistent. This may be due to the double-sided nature of high caloric palatable foods: at once highly palatable and high in calories (unhealthy). This study hypothesizes that, viewing high caloric palatable foods, a hedonic attentional focus compared to a health and a neutral attentional focus elicits more activity in reward-related brain regions, mostly in people with obesity. Moreover, caloric content and food palatability can be decoded from multivoxel patterns of activity most accurately in people with obesity and in the corresponding attentional focus. During one fMRI-session, attentional focus (hedonic, health, neutral) was manipulated using a one-back task with individually tailored food stimuli in 32 healthy-weight people and 29 people with obesity. Univariate analyses (p < 0.05, FWE-corrected) showed that brain activity was not different for palatable vs. unpalatable foods, nor for high vs. low caloric foods. Instead, this was higher in the hedonic compared to the health and neutral attentional focus. Multivariate analyses (MVPA) (p < 0.05, FDR-corrected) showed that palatability and caloric content could be decoded above chance level, independently of either BMI or attentional focus. Thus, brain activity to visual food stimuli is neither proportionate to the reward value (palatability and/or caloric content), nor significantly moderated by BMI. Instead, it depends on people's attentional focus, and may reflect motivational salience. Furthermore, food palatability and caloric content are represented as patterns of brain activity, independently of BMI and attentional focus. So, food reward value is reflected in patterns, not levels, of brain activity.
Collapse
Affiliation(s)
- Leonardo Pimpini
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Sarah Kochs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Job van den Hurk
- Scannexus, Maastricht, Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Giancarlo Valente
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
21
|
Donne J, Farrell MJ, Kolic J, Powell J, Fahey M, Williams C. Two-point discrimination responses in children with idiopathic toe walking: A feasibility fMRI study. Sci Prog 2022; 105:368504221132141. [PMID: 36373762 PMCID: PMC10306138 DOI: 10.1177/00368504221132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Idiopathic toe walking (ITW) is a diagnosis given to children who walk with an absence or limitation of heel strike in the contact phase of the gait cycle, that are otherwise typically developing. There is emerging evidence that this gait pattern may occur in children who experience tactile sensory processing challenges. This feasibility study aimed to determine if children were able to respond to a sensory stimulus during a fMRI. Children aged between 8-16 years of age, with and without idiopathic toe walking were recruited from general public advertising. Participants were required to perform a two-point discrimination test (task block) and press a button without being tested (control block) during an fMRI using a standard block design. Activation differences were examined in the left frontal pole, left supramarginal gyrus, left parahippocampal gyrus, left paracingulate gyrus and the right superior temporal. Five children were in the typically developing (TD) group and three were in the ITW group. There were between-group activation differences in the decision-making block compared to the control block in the left frontal lobe, parahippocampal gyrus and the right superior temporal gyrus. There was greater variation in activation in the left supramarginal gyrus and the left paracingulate gyrus in the ITW group compared to the typically developing group. Based on this study a future sample size of 15 children per group will be required to detect an adequate effect across chosen regions of interest Conducting fMRI using two-point discrimination testing on this population is feasible. Further research is required with larger population sizes to determine if brain activation patterns during the sensory input decision-making process are different in this population.
Collapse
Affiliation(s)
- Jack Donne
- School of Primary and Allied Health, Monash University, Frankston, VIC, Australia
| | - Michael J Farrell
- Department of Medical Imaging and
Radiation Sciences, Monash Biomedical Imaging, Clayton, VIC, Australia
| | - Jessica Kolic
- Allied Health, Peninsula Health, Frankston, VIC, Australia
| | - Jennifer Powell
- School of Medicine, The University of
Queensland, Queensland Children's Hospital, Saint Lucia, Australia
| | - Michael Fahey
- Department of Neurology, Monash
Children's Hospital, Clayton, VIC, Australia
| | - Cylie Williams
- School of Primary and Allied Health, Monash University, Frankston, VIC, Australia
- Allied Health, Peninsula Health, Frankston, VIC, Australia
| |
Collapse
|
22
|
Ma S, Huang H, Zhong Z, Zheng H, Li M, Yao L, Yu B, Wang H. Effect of acupuncture on brain regions modulation of mild cognitive impairment: A meta-analysis of functional magnetic resonance imaging studies. Front Aging Neurosci 2022; 14:914049. [PMID: 36212046 PMCID: PMC9540390 DOI: 10.3389/fnagi.2022.914049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background As a non-pharmacological therapy, acupuncture has significant efficacy in treating Mild Cognitive Impairment (MCI) compared to pharmacological therapies. In recent years, advances in neuroimaging techniques have provided new perspectives to elucidate the central mechanisms of acupuncture for MCI. Many acupuncture brain imaging studies have found significant improvements in brain function after acupuncture treatment of MCI, but the underlying mechanisms of brain regions modulation are unclear. Objective A meta-analysis of functional magnetic resonance imaging studies of MCI patients treated with acupuncture was conducted to summarize the effects of acupuncture on the modulation of MCI brain regions from a neuroimaging perspective. Methods Using acupuncture, neuroimaging, magnetic resonance, and Mild Cognitive Impairment as search terms, PubMed, EMBASE, Web of Science, Cochrane Library, Cochrane Database of Systematic Reviews, Cochrane Database of Abstracts of Reviews of Effects (DARE), Google Scholar, China National Knowledge Infrastructure (CNKI), China Biology Medicine disk (CBM disk), Wanfang and Chinese Scientific Journal Database (VIP) for brain imaging studies on acupuncture on MCI published up to April 2022. Voxel-based neuroimaging meta-analysis of fMRI data was performed using voxel-based d Mapping with Permutation of Subject Images (SDM-PSI), allowing for Family-Wise Error Rate (FWER) correction correction for correction multiple comparisons of results. Subgroup analysis was used to compare the differences in brain regions between the acupuncture treatment group and other control groups. Meta-regression was used to explore demographic information and altered cognitive function effects on brain imaging outcomes. Linear models were drawn using MATLAB 2017a, and visual graphs for quality evaluation were produced using R software and RStudio software. Results A total of seven studies met the inclusion criteria, with 94 patients in the treatment group and 112 patients in the control group. All studies were analyzed using the regional homogeneity (ReHo) method. The experimental design of fMRI included six task state studies and one resting-state study. The meta-analysis showed that MCI patients had enhanced activity in the right insula, left anterior cingulate/paracingulate gyri, right thalamus, right middle frontal gyrus, right median cingulate/paracingulate gyri, and right middle temporal gyrus brain regions after acupuncture treatment. Further analysis of RCT and longitudinal studies showed that Reho values were significantly elevated in two brain regions, the left anterior cingulate/paracingulate gyrus and the right insula, after acupuncture. The MCI group showed stronger activity in the right supramarginal gyrus after acupuncture treatment compared to healthy controls. Meta-regression analysis showed that the right anterior thalamic projection ReHo index was significantly correlated with the MMSE score after acupuncture treatment in all MCI patients. Conclusions Acupuncture therapy has a modulating effect on the brain regions of MCI patients. However, due to the inadequate experimental design of neuroimaging studies, multi-center neuroimaging studies with large samples are needed better to understand the potential neuroimaging mechanisms of acupuncture for MCI. In addition, machine learning algorithm-based predictive models for evaluating the efficacy of acupuncture for MCI may become a focus of future research. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022287826, identifier: CRD 42022287826.
Collapse
Affiliation(s)
- Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haipeng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Yao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongfeng Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
23
|
Scholz C, Chan HY, Poldrack RA, de Ridder DTD, Smidts A, van der Laan LN. Can we have a second helping? A preregistered direct replication study on the neurobiological mechanisms underlying self-control. Hum Brain Mapp 2022; 43:4995-5016. [PMID: 36082693 PMCID: PMC9582371 DOI: 10.1002/hbm.26065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/14/2022] [Accepted: 08/04/2022] [Indexed: 11/09/2022] Open
Abstract
Self‐control is of vital importance for human wellbeing. Hare et al. (2009) were among the first to provide empirical evidence on the neural correlates of self‐control. This seminal study profoundly impacted theory and empirical work across multiple fields. To solidify the empirical evidence supporting self‐control theory, we conducted a preregistered replication of this work. Further, we tested the robustness of the findings across analytic strategies. Participants underwent functional magnetic resonance imaging while rating 50 food items on healthiness and tastiness and making choices about food consumption. We closely replicated the original analysis pipeline and supplemented it with additional exploratory analyses to follow‐up on unexpected findings and to test the sensitivity of results to key analytical choices. Our replication data provide support for the notion that decisions are associated with a value signal in ventromedial prefrontal cortex (vmPFC), which integrates relevant choice attributes to inform a final decision. We found that vmPFC activity was correlated with goal values regardless of the amount of self‐control and it correlated with both taste and health in self‐controllers but only taste in non‐self‐controllers. We did not find strong support for the hypothesized role of left dorsolateral prefrontal cortex (dlPFC) in self‐control. The absence of statistically significant group differences in dlPFC activity during successful self‐control in our sample contrasts with the notion that dlPFC involvement is required in order to effectively integrate longer‐term goals into subjective value judgments. Exploratory analyses highlight the sensitivity of results (in terms of effect size) to the analytical strategy, for instance, concerning the approach to region‐of‐interest analysis.
Collapse
Affiliation(s)
- Christin Scholz
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hang-Yee Chan
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Russell A Poldrack
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Denise T D de Ridder
- Department of Social, Health and Organisational Psychology, Utrecht University, Utrecht, The Netherlands
| | - Ale Smidts
- Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | | |
Collapse
|
24
|
Li WO, Yu CKC, Yuen KSL. A systematic examination of the neural correlates of subjective time perception with fMRI and tDCS. Neuroimage 2022; 260:119368. [PMID: 35853318 DOI: 10.1016/j.neuroimage.2022.119368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022] Open
Abstract
The ability to keep track of time is one of the fundamental human behaviours that enhance survival in the wild. It is still an essential skill that enables an individual to function well in modern society. In the present study, we tested the attentional gate model, one of the most common conceptual frameworks in studies of subjective time perception. Its utility has been well established, but it has been criticised for its lack of neurophysiological support; few studies attempted to systematically identify its components and their neural correlates. Previous studies established that the dorsolateral prefrontal cortex (DLPFC) was associated with working memory tasks and a correlation between activity in the cerebellum and the timing of tasks. An fMRI study was conducted to confirm that these two cortical regions were activated during the execution of a new time discrimination task that considers individual variations in subjective time perception. Simulations were conducted to optimize the electrode placement in order to maximize the electric fields of tDCS perturbation to these two areas. According to the attentional gate model, hypotheses about tDCS perturbation to subjective time perception, attention and working memory were formulated and tested. Attention and working memory were measured by the attention network and N-back tasks. There are weak effects to the perceived subjective equivalent and the reaction time in the attention network task, but both are not statistically significant after correction for multiple comparisons. Exploration analyses show a link between attention and subjective time perception after tDCS perturbation. To conclude, the results do not support the attentional gate model, but show a linkage between attention and subjective time perception in terms of similar neural circuits and their relationships under certain circumstances.
Collapse
Affiliation(s)
- Wang On Li
- Department of Counselling and Psychology, Hong Kong Shue Yan University.
| | | | - Kenneth Sung Lai Yuen
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
25
|
Morris RW, Dezfouli A, Griffiths KR, Le Pelley ME, Balleine BW. The Neural Bases of Action-Outcome Learning in Humans. J Neurosci 2022; 42:3636-3647. [PMID: 35296548 PMCID: PMC9053851 DOI: 10.1523/jneurosci.1079-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
From an associative perspective the acquisition of new goal-directed actions requires the encoding of specific action-outcome (AO) associations and, therefore, sensitivity to the validity of an action as a predictor of a specific outcome relative to other events. Although competitive architectures have been proposed within associative learning theory to achieve this kind of identity-based selection, whether and how these architectures are implemented by the brain is still a matter of conjecture. To investigate this issue, we trained human participants to encode various AO associations while undergoing functional neuroimaging (fMRI). We then degraded one AO contingency by increasing the probability of the outcome in the absence of its associated action while keeping other AO contingencies intact. We found that this treatment selectively reduced performance of the degraded action. Furthermore, when a signal predicted the unpaired outcome, performance of the action was restored, suggesting that the degradation effect reflects competition between the action and the context for prediction of the specific outcome. We used a Kalman filter to model the contribution of different causal variables to AO learning and found that activity in the medial prefrontal cortex (mPFC) and the dorsal anterior cingulate cortex (dACC) tracked changes in the association of the action and context, respectively, with regard to the specific outcome. Furthermore, we found the mPFC participated in a network with the striatum and posterior parietal cortex to segregate the influence of the various competing predictors to establish specific AO associations.SIGNIFICANCE STATEMENT Humans and other animals learn the consequences of their actions, allowing them to control their environment in a goal-directed manner. Nevertheless, it is unknown how we parse environmental causes from the effects of our own actions to establish these specific action-outcome (AO) relationships. Here, we show that the brain learns the causal structure of the environment by segregating the unique influence of actions from other causes in the medial prefrontal and anterior cingulate cortices and, through a network of structures, including the caudate nucleus and posterior parietal cortex, establishes the distinct causal relationships from which specific AO associations are formed.
Collapse
Affiliation(s)
- Richard W Morris
- Centre for Translational Data Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Amir Dezfouli
- Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW 2015, Australia
| | - Kristi R Griffiths
- Brain Dynamics Centre, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| | - Bernard W Balleine
- School of Psychology, University of New South Wales Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Revealing the Neuroimaging Mechanism of Acupuncture for Poststroke Aphasia: A Systematic Review. Neural Plast 2022; 2022:5635596. [PMID: 35494482 PMCID: PMC9050322 DOI: 10.1155/2022/5635596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aphasia is a common symptom in stroke patients, presenting with the impairment of spontaneous speech, repetition, naming, auditory comprehension, reading, and writing function. Multiple rehabilitation methods have been suggested for the recovery of poststroke aphasia, including medication treatment, behavioral therapy, and stimulation approach. Acupuncture has been proven to have a beneficial effect on improving speech functions in repetition, oral speech, reading, comprehension, and writing ability. Neuroimaging technology provides a visualized way to explore cerebral neural activity, which helps reveal the therapeutic effect of acupuncture therapy. In this systematic review, we aim to reveal and summarize the neuroimaging mechanism of acupuncture therapy on poststroke aphasia to provide the foundation for further study. Methods Seven electronic databases were searched including PubMed, Web of Science, Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, the Wanfang databases, and the Chinese Scientific Journal Database. After screening the studies according to the inclusion and exclusion criteria, we summarized the neuroimaging mechanism of acupuncture on poststroke aphasia, as well as the utilization of acupuncture therapy and the methodological characteristics. Result After searching, 885 articles were retrieved. After removing the literature studies, animal studies, and case reports, 16 studies were included in the final analysis. For the acupuncture type, 10 studies used manual acupuncture and 5 studies used electroacupuncture, while body acupuncture (10 studies), scalp acupuncture (7 studies), and tongue acupuncture (8 studies) were applied for poststroke aphasia patients. Based on blood oxygen level-dependent (BOLD) and diffusion tensor imaging (DTI) technologies, 4 neuroimaging analysis methods were used including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), seed-based analysis, and independent component analysis (ICA). Two studies reported the instant acupuncture effect, and 14 studies reported the constant acupuncture's effect on poststroke aphasia patients. 5 studies analyzed the correlation between the neuroimaging outcomes and the clinical language scales. Conclusion In this systematic review, we found that the mechanism of acupuncture's effect might be associated with the activation and functional connectivity of language-related brain areas, such as brain areas around Broca's area and Wernicke's area in the left inferior temporal gyrus, supramarginal gyrus, middle frontal gyrus, and inferior frontal gyrus. However, these studies were still in the preliminary stage. Multicenter randomized controlled trials (RCT) with large sample sizes were needed to verify current evidence, as well as to explore deeply the neuroimaging mechanisms of acupuncture's effects.
Collapse
|
27
|
Trujillo JP, Özyürek A, Kan CC, Sheftel-Simanova I, Bekkering H. Differences in functional brain organization during gesture recognition between autistic and neurotypical individuals. Soc Cogn Affect Neurosci 2022; 17:1021-1034. [PMID: 35428885 PMCID: PMC9629468 DOI: 10.1093/scan/nsac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023] Open
Abstract
Persons with and without autism process sensory information differently. Differences in sensory processing are directly relevant to social functioning and communicative abilities, which are known to be hampered in persons with autism. We collected functional magnetic resonance imaging data from 25 autistic individuals and 25 neurotypical individuals while they performed a silent gesture recognition task. We exploited brain network topology, a holistic quantification of how networks within the brain are organized to provide new insights into how visual communicative signals are processed in autistic and neurotypical individuals. Performing graph theoretical analysis, we calculated two network properties of the action observation network: 'local efficiency', as a measure of network segregation, and 'global efficiency', as a measure of network integration. We found that persons with autism and neurotypical persons differ in how the action observation network is organized. Persons with autism utilize a more clustered, local-processing-oriented network configuration (i.e. higher local efficiency) rather than the more integrative network organization seen in neurotypicals (i.e. higher global efficiency). These results shed new light on the complex interplay between social and sensory processing in autism.
Collapse
Affiliation(s)
- James P Trujillo
- Correspondence should be addressed to James P. Trujillo, Radboud University, Donders Centre for Cognition, Maria Montessori Building, Thomas van Aquinostraat 4, Nijmegen 6525 GD, The Netherlands. E-mail:
| | - Asli Özyürek
- Donders Institute for Brain, Cognition, and Behavior, Donders Centre for Cognition, Nijmegen, GD 6525, The Netherlands,Max Planck Institute for Psycholinguistics, Nijmegen, XD 6525, The Netherlands
| | - Cornelis C Kan
- Department of Psychiatry, Radboud University Medical Centre, Radboudumc, Nijmegen, GA 6525, The Netherlands
| | - Irina Sheftel-Simanova
- One Planet Research Centre, Radboud University Medical Centre, Radboudumc, Nijmegen, GA 6525, The Netherlands
| | - Harold Bekkering
- Donders Institute for Brain, Cognition, and Behavior, Donders Centre for Cognition, Nijmegen, GD 6525, The Netherlands
| |
Collapse
|
28
|
Kelly RE, Hoptman MJ. Replicability in Brain Imaging. Brain Sci 2022; 12:brainsci12030397. [PMID: 35326353 PMCID: PMC8946129 DOI: 10.3390/brainsci12030397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Robert E. Kelly
- Department of Psychiatry, Weill Cornell Medicine, White Plains, NY 10605, USA
- Correspondence:
| | - Matthew J. Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Franssen S, Jansen A, van den Hurk J, Adam T, Geyskens K, Roebroeck A, Roefs A. Effects of mindset on hormonal responding, neural representations, subjective experience and intake. Physiol Behav 2022; 249:113746. [PMID: 35182553 DOI: 10.1016/j.physbeh.2022.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
A person can alternate between food-related mindsets, which in turn may depend on one's emotional state or situation. Being in a certain mindset can influence food-related thoughts, but interestingly it might also affect eating-related physiological responses. The current study investigates the influence of an induced 'loss of control' mindset as compared to an 'in control' mindset on hormonal, neural and behavioural responses to chocolate stimuli. Mindsets were induced by having female chocolate lovers view a short movie during two sessions in a within-subjects design. Neural responses to visual chocolate stimuli were measured using an ultra-high field (7T) scanner. Momentary ghrelin and glucagon-like peptide 1 (GLP-1) levels were determined on five moments and were simultaneously assessed with self-reports on perceptions of chocolate craving, hunger and feelings of control. Furthermore, chocolate intake was measured using a bogus chocolate taste test. It was hypothesized that the loss of control mindset would lead to hormonal, neural and behavioural responses that prepare for ongoing food intake, even after eating, while the control mindset would lead to responses reflecting satiety. Results show that neural activity in the mesocorticolimbic system was stronger for chocolate stimuli than for neutral stimuli and that ghrelin and GLP-1 levels responded to food intake, irrespective of mindset. Self-reported craving and actual chocolate intake were affected by mindset, in that cravings and intake were higher with a loss of control mindset than with a control mindset. Interestingly, these findings suggest that physiology on the one hand (hormonal and neural responses) and behavior and subjective experience (food intake and craving) on the other hand are not in sync, are not equally affected by mindset.
Collapse
Affiliation(s)
- Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Tanja Adam
- Department of school of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht UMC+, Maastricht University, Maastricht, The Netherlands
| | - Kelly Geyskens
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
31
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
32
|
Kim SA, Kim SH, Hamann S. Neural and self-reported responses to antisocial news stories: Entertaining versus traditional news introduction. COMPUTERS IN HUMAN BEHAVIOR 2022. [DOI: 10.1016/j.chb.2021.106994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Masharipov R, Knyazeva I, Nikolaev Y, Korotkov A, Didur M, Cherednichenko D, Kireev M. Providing Evidence for the Null Hypothesis in Functional Magnetic Resonance Imaging Using Group-Level Bayesian Inference. Front Neuroinform 2021; 15:738342. [PMID: 34924989 PMCID: PMC8674455 DOI: 10.3389/fninf.2021.738342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Classical null hypothesis significance testing is limited to the rejection of the point-null hypothesis; it does not allow the interpretation of non-significant results. This leads to a bias against the null hypothesis. Herein, we discuss statistical approaches to ‘null effect’ assessment focusing on the Bayesian parameter inference (BPI). Although Bayesian methods have been theoretically elaborated and implemented in common neuroimaging software packages, they are not widely used for ‘null effect’ assessment. BPI considers the posterior probability of finding the effect within or outside the region of practical equivalence to the null value. It can be used to find both ‘activated/deactivated’ and ‘not activated’ voxels or to indicate that the obtained data are not sufficient using a single decision rule. It also allows to evaluate the data as the sample size increases and decide to stop the experiment if the obtained data are sufficient to make a confident inference. To demonstrate the advantages of using BPI for fMRI data group analysis, we compare it with classical null hypothesis significance testing on empirical data. We also use simulated data to show how BPI performs under different effect sizes, noise levels, noise distributions and sample sizes. Finally, we consider the problem of defining the region of practical equivalence for BPI and discuss possible applications of BPI in fMRI studies. To facilitate ‘null effect’ assessment for fMRI practitioners, we provide Statistical Parametric Mapping 12 based toolbox for Bayesian inference.
Collapse
Affiliation(s)
- Ruslan Masharipov
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Irina Knyazeva
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Yaroslav Nikolaev
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexander Korotkov
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Michael Didur
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Denis Cherednichenko
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Maxim Kireev
- N. P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
34
|
Palraj K, Kalaivani V. Predicting the abnormality of brain and compute the cognitive power of human using deep learning techniques using functional magnetic resonance images. Soft comput 2021. [DOI: 10.1007/s00500-021-06292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Sichko S, Bui TQ, Vinograd M, Shields GS, Saha K, Devkota S, Olvera-Alvarez HA, Carroll JE, Cole SW, Irwin MR, Slavich GM. Psychobiology of Stress and Adolescent Depression (PSY SAD) Study: Protocol overview for an fMRI-based multi-method investigation. Brain Behav Immun Health 2021; 17:100334. [PMID: 34595481 PMCID: PMC8478351 DOI: 10.1016/j.bbih.2021.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is a common, often recurrent disorder that causes substantial disease burden worldwide, and this is especially true for women following the pubertal transition. According to the Social Signal Transduction Theory of Depression, stressors involving social stress and rejection, which frequently precipitate major depressive episodes, induce depressive symptoms in vulnerable individuals in part by altering the activity and connectivity of stress-related neural pathways, and by upregulating components of the immune system involved in inflammation. To test this theory, we recruited adolescent females at high and low risk for depression and assessed their psychological, neural, inflammatory, and genomic responses to a brief (10 minute) social stress task, in addition to trait psychological and microbial factors affecting these responses. We then followed these adolescents longitudinally to investigate how their multi-level stress responses at baseline were related to their biological aging at baseline, and psychosocial and clinical functioning over one year. In this protocol paper, we describe the theoretical motivations for conducting this study as well as the sample, study design, procedures, and measures. Ultimately, our aim is to elucidate how social adversity influences the brain and immune system to cause depression, one of the most common and costly of all disorders.
Collapse
Affiliation(s)
- Stassja Sichko
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Theresa Q. Bui
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Meghan Vinograd
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, and Department of Psychiatry, University of California, San Diego, CA, USA
| | - Grant S. Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne Devkota
- Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Judith E. Carroll
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Steven W. Cole
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael R. Irwin
- Department of Psychology, University of California, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - George M. Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Caldinelli C, Cusack R. The fronto-parietal network is not a flexible hub during naturalistic cognition. Hum Brain Mapp 2021; 43:750-759. [PMID: 34652872 PMCID: PMC8720185 DOI: 10.1002/hbm.25684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/12/2022] Open
Abstract
The fronto‐parietal network (FPN) is crucial for cognitively demanding tasks as it selectively represents task‐relevant information and controls other brain regions. To implement these functions, it has been argued that it is a flexible hub that reconfigures its functional connectivity with other networks. This was supported by a study in which a set of demanding tasks were presented, that varied in their sensory features, comparison rules, and response mappings, and the FPN showed greater reconfiguration of functional connectivity between tasks than any other network. However, this task set was designed to engage the FPN, and therefore it remains an open question whether the FPN is in a flexible hub in general or only for such task sets. Using two freely available datasets (Experiment 1, N = 15, Experiment 2, N = 644), we examined dynamic functional connectivity during naturalistic cognition, while participants watched a movie. Many differences in the flexibility were found across networks but the FPN was not the most flexible hub in the brain, during either movie for any of two measures, using a regression model or a correlation model and across five timescales. We, therefore, conclude that the FPN does not have the trait of being a flexible hub, although it may adopt this state for particular task sets.
Collapse
Affiliation(s)
- Chiara Caldinelli
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin
| |
Collapse
|
37
|
Bara I, Darda KM, Kurz AS, Ramsey R. Functional specificity and neural integration in the aesthetic appreciation of artworks with implied motion. Eur J Neurosci 2021; 54:7231-7259. [PMID: 34585450 DOI: 10.1111/ejn.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022]
Abstract
Although there is growing interest in the neural foundations of aesthetic experience, it remains unclear how particular mental subsystems (e.g. perceptual, affective and cognitive) are involved in different types of aesthetic judgements. Here, we use fMRI to investigate the involvement of different neural networks during aesthetic judgements of visual artworks with implied motion cues. First, a behavioural experiment (N = 45) confirmed a preference for paintings with implied motion over static cues. Subsequently, in a preregistered fMRI experiment (N = 27), participants made aesthetic and motion judgements towards paintings representing human bodies in dynamic and static postures. Using functional region-of-interest and Bayesian multilevel modelling approaches, we provide no compelling evidence for unique sensitivity within or between neural systems associated with body perception, motion and affective processing during the aesthetic evaluation of paintings with implied motion. However, we show suggestive evidence that motion and body-selective systems may integrate signals via functional connections with a separate neural network in dorsal parietal cortex, which may act as a relay or integration site. Our findings clarify the roles of basic visual and affective brain circuitry in evaluating a central aesthetic feature-implied motion-while also pointing towards promising future research directions, which involve modelling aesthetic preferences as hierarchical interplay between visual and affective circuits and integration processes in frontoparietal cortex.
Collapse
Affiliation(s)
- Ionela Bara
- Wales Institute for Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, UK
| | - Kohinoor Monish Darda
- University of Glasgow, Glasgow, UK.,Department of Psychology, Macquarie University, Sydney, Australia
| | - Andrew Solomon Kurz
- VISN 17 Center of Excellence for Research on Returning War Veterans, Central Texas Veterans Health Care System, Temple, Texas, USA
| | - Richard Ramsey
- Department of Psychology, Macquarie University, Sydney, Australia
| |
Collapse
|
38
|
Giglio L, Ostarek M, Weber K, Hagoort P. Commonalities and Asymmetries in the Neurobiological Infrastructure for Language Production and Comprehension. Cereb Cortex 2021; 32:1405-1418. [PMID: 34491301 PMCID: PMC8971077 DOI: 10.1093/cercor/bhab287] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/30/2023] Open
Abstract
The neurobiology of sentence production has been largely understudied compared to the neurobiology of sentence comprehension, due to difficulties with experimental control and motion-related artifacts in neuroimaging. We studied the neural response to constituents of increasing size and specifically focused on the similarities and differences in the production and comprehension of the same stimuli. Participants had to either produce or listen to stimuli in a gradient of constituent size based on a visual prompt. Larger constituent sizes engaged the left inferior frontal gyrus (LIFG) and middle temporal gyrus (LMTG) extending to inferior parietal areas in both production and comprehension, confirming that the neural resources for syntactic encoding and decoding are largely overlapping. An ROI analysis in LIFG and LMTG also showed that production elicited larger responses to constituent size than comprehension and that the LMTG was more engaged in comprehension than production, while the LIFG was more engaged in production than comprehension. Finally, increasing constituent size was characterized by later BOLD peaks in comprehension but earlier peaks in production. These results show that syntactic encoding and parsing engage overlapping areas, but there are asymmetries in the engagement of the language network due to the specific requirements of production and comprehension.
Collapse
Affiliation(s)
- Laura Giglio
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Markus Ostarek
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Kirsten Weber
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.,Donders Institute for Cognition, Brain and Behaviour, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
39
|
Palraj K, Kalaivani V. Deep learning methods for predicting brain abnormalities and compute human cognitive power using fMRI. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-202069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In modern times, digital medical images play a significant progression in clinical diagnosis to treat the populace earlier to hoard their lives. Magnetic Resonance Imaging (MRI) is one of the most advanced medical imaging modalities that facilitate scanning various parts of the human body like the head, chest, abdomen, and pelvis and identify the diseases. Numerous studies on the same discipline have proposed different algorithms, techniques, and methods for analyzing medical digital images, especially MRI. Most of them have mainly focused on identifying and classifying the images as either normal or abnormal. Computing brainpower is essential to understand and handle various brain diseases efficiently in critical situations. This paper knuckles down to design and implement a computer-aided framework, enhancing the identification of humans’ cognitive power from their MRI. Images. The proposed framework converts the 3D DICOM images into 2D medical images, preprocessing, enhancement, learning, and extracting various image information to classify it as normal or abnormal and provide the brain’s cognitive power. This study widens the efficient use of machine learning methods, Voxel Residual Network (VRN), with multimodality fusion architecture to learn and analyze the image to classify and predict cognitive power. The experimental results denote that the proposed framework demonstrates better performance than the existing approaches.
Collapse
Affiliation(s)
- K. Palraj
- AP, CSE, Srividya College of Engineering &Technology, Virudhunagar, Tamilnadu, India
| | - V. Kalaivani
- CSE, National Engineering College, Kovilpatti, Tamilnadu, India
| |
Collapse
|
40
|
Midazolam and Ketamine Produce Distinct Neural Changes in Memory, Pain, and Fear Networks during Pain. Anesthesiology 2021; 135:69-82. [PMID: 33872345 DOI: 10.1097/aln.0000000000003774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Despite the well-known clinical effects of midazolam and ketamine, including sedation and memory impairment, the neural mechanisms of these distinct drugs in humans are incompletely understood. The authors hypothesized that both drugs would decrease recollection memory, task-related brain activity, and long-range connectivity between components of the brain systems for memory encoding, pain processing, and fear learning. METHODS In this randomized within-subject crossover study of 26 healthy adults, the authors used behavioral measures and functional magnetic resonance imaging to study these two anesthetics, at sedative doses, in an experimental memory paradigm using periodic pain. The primary outcome, recollection memory performance, was quantified with d' (a difference of z scores between successful recognition versus false identifications). Secondary outcomes were familiarity memory performance, serial task response times, task-related brain responses, and underlying brain connectivity from 17 preselected anatomical seed regions. All measures were determined under saline and steady-state concentrations of the drugs. RESULTS Recollection memory was reduced under midazolam (median [95% CI], d' = 0.73 [0.43 to 1.02]) compared with saline (d' = 1.78 [1.61 to 1.96]) and ketamine (d' = 1.55 [1.12 to 1.97]; P < 0.0001). Task-related brain activity was detected under saline in areas involved in memory, pain, and fear, particularly the hippocampus, insula, and amygdala. Compared with saline, midazolam increased functional connectivity to 20 brain areas and decreased to 8, from seed regions in the precuneus, posterior cingulate, and left insula. Compared with saline, ketamine decreased connectivity to 17 brain areas and increased to 2, from 8 seed regions including the hippocampus, parahippocampus, amygdala, and anterior and primary somatosensory cortex. CONCLUSIONS Painful stimulation during light sedation with midazolam, but not ketamine, can be accompanied by increased coherence in brain connectivity, even though details are less likely to be recollected as explicit memories. EDITOR’S PERSPECTIVE
Collapse
|
41
|
Neurocognitive mechanisms underlying improvement of prosocial responses by a novel implicit compassion promotion task. Neuroimage 2021; 240:118333. [PMID: 34229063 DOI: 10.1016/j.neuroimage.2021.118333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/28/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Compassion is closely associated with prosocial behavior. Although there is growing interest in developing strategies that cultivate compassion, most available strategies rely on effortful reflective processes. Furthermore, few studies have investigated neurocognitive mechanisms underlying compassion-dependent improvement of prosocial responses. We devised a novel implicit compassion promotion task that operates based on association learning and examined its prosocial effects in two independent experiments. In Experiment 1, healthy adults were assigned to either the compassion or control group. For the intervention task, the compassion group completed word fragments that were consistently related to compassionate responses toward others; in contrast, the control group completed word fragments related to emotionally neutral responses toward others. Following the intervention task, we measured attentional biases to fearful, sad, and happy faces. Prosocial responses were assessed using two measures of helping: the pen-drop test and the helping intentions rating test. In Experiment 2, independent groups of healthy adults completed the same intervention tasks used in Experiment 1. Inside a functional MRI scanner, participants rated empathic care and distress based on either distressful or neutral video clips. Outside the scanner, we assessed the degree of helping intentions toward the victims depicted in the distressful clips. The results of Experiment 1 showed that the compassion promotion task reduced attentional vigilance to fearful faces, which in turn mediated a compassion promotion task-dependent increase in helping intentions. In Experiment 2, relative to the control group, the compassion group showed reduced empathic distress and increased activity in the medial orbitofrontal cortex in response to others' suffering. Furthermore, increased functional connectivity of the medial orbitofrontal and inferior parietal cortex, predicted by reduced empathic distress, explained the increase in helping intentions. These results suggest the potential of implicit compassion promotion intervention to modulate compassion-related and prosocial responses as well as highlight the brain activation and connectivity related to these responses, contributing to our understanding of the neurocognitive mechanisms underlying compassion-dependent prosocial improvement.
Collapse
|
42
|
Fronto-parietal homotopy in resting-state functional connectivity predicts task-switching performance. Brain Struct Funct 2021; 227:655-672. [PMID: 34106305 PMCID: PMC8843912 DOI: 10.1007/s00429-021-02312-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 10/29/2022]
Abstract
Homotopic functional connectivity reflects the degree of synchrony in spontaneous activity between homologous voxels in the two hemispheres. Previous studies have associated increased brain homotopy and decreased white matter integrity with performance decrements on different cognitive tasks across the life-span. Here, we correlated functional homotopy, both at the whole-brain level and specifically in fronto-parietal network nodes, with task-switching performance in young adults. Cue-to-target intervals (CTI: 300 vs. 1200 ms) were manipulated on a trial-by-trial basis to modulate cognitive demands and strategic control. We found that mixing costs, a measure of task-set maintenance and monitoring, were significantly correlated to homotopy in different nodes of the fronto-parietal network depending on CTI. In particular, mixing costs for short CTI trials were smaller with lower homotopy in the superior frontal gyrus, whereas mixing costs for long CTI trials were smaller with lower homotopy in the supramarginal gyrus. These results were specific to the fronto-parietal network, as similar voxel-wise analyses within a control language network did not yield significant correlations with behavior. These findings extend previous literature on the relationship between homotopy and cognitive performance to task-switching, and show a dissociable role of homotopy in different fronto-parietal nodes depending on task demands.
Collapse
|
43
|
Pelletier G, Aridan N, Fellows LK, Schonberg T. A Preferential Role for Ventromedial Prefrontal Cortex in Assessing "the Value of the Whole" in Multiattribute Object Evaluation. J Neurosci 2021; 41:5056-5068. [PMID: 33906899 PMCID: PMC8197643 DOI: 10.1523/jneurosci.0241-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 11/21/2022] Open
Abstract
Everyday decision-making commonly involves assigning values to complex objects with multiple value-relevant attributes. Drawing on object recognition theories, we hypothesized two routes to multiattribute evaluation: assessing the value of the whole object based on holistic attribute configuration or summing individual attribute values. In two samples of healthy human male and female participants undergoing eye tracking and functional magnetic resonance imaging (fMRI) while evaluating novel pseudo objects, we found evidence for both forms of evaluation. Fixations to and transitions between attributes differed systematically when the value of pseudo objects was associated with individual attributes or attribute configurations. Ventromedial prefrontal cortex (vmPFC) and perirhinal cortex were engaged when configural processing was required. These results converge with our recent findings that individuals with vmPFC lesions were impaired in decisions requiring configural evaluation but not when evaluating the sum of the parts. This suggests that multiattribute decision-making engages distinct evaluation mechanisms relying on partially dissociable neural substrates, depending on the relationship between attributes and value.SIGNIFICANCE STATEMENT Decision neuroscience has only recently begun to address how multiple choice-relevant attributes are brought together during evaluation and choice among complex options. Object recognition research makes a crucial distinction between individual attribute and holistic/configural object processing, but how the brain evaluates attributes and whole objects remains unclear. Using fMRI and eye tracking, we found that the vmPFC and the perirhinal cortex contribute to value estimation specifically when value was related to whole objects, that is, predicted by the unique configuration of attributes and not when value was predicted by the sum of individual attribute values. This perspective on the interactions between subjective value and object processing mechanisms provides a novel bridge between the study of object recognition and reward-guided decision-making.
Collapse
Affiliation(s)
- Gabriel Pelletier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nadav Aridan
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lesley K Fellows
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Tom Schonberg
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
44
|
Tran K, Shi Z, Karmonik C, John B, Rajab H, Helekar SA, Boone T, Khavari R. Therapeutic effects of non-invasive, individualized, transcranial neuromodulation treatment for voiding dysfunction in multiple sclerosis patients: study protocol for a pilot clinical trial. Pilot Feasibility Stud 2021; 7:83. [PMID: 33757581 PMCID: PMC7989407 DOI: 10.1186/s40814-021-00825-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Voiding dysfunction (VD) is a common neurogenic lower urinary tract dysfunction (NLUTD) in multiple sclerosis (MS) patients. Currently, the only effective management for VD and urinary retention in MS patients is catheterization, prompting us to look for novel therapeutic options beyond the bladder, such as the brain. Transcranial rotating permanent magnet stimulator (TRPMS) is a non-invasive, portable, multifocal neuromodulator that simultaneously modulates multiple cortical regions, enhancing or attenuating strengths of functional connections between these regions. The objective of this pilot clinical trial is to evaluate the feasibility of a TRPMS trial to address lower urinary tract symptoms in MS patients, through investigating the therapeutic effects of TRPMS in modulating brain regions during voiding initiation and mitigating VD in female MS individuals. Methods Ten adult female MS patients with VD (defined as having %post-void residual/bladder capacity (%PVR/BC) ≥ 40% or Liverpool nomogram percentile < 10%) will be recruited for this study. Concurrent urodynamic and functional MRI evaluation with a bladder filling/emptying task repeated three to four times will be performed at baseline and post-treatment. Predetermined regions of interest and their blood-oxygen-level-dependent (BOLD) activation at voiding initiation will be identified on each patient’s baseline anatomical and functional MRI scan, corresponding to the microstimulators placement on their individualized TRPMS treatment cap to either stimulate or inhibit these regions. Patients will receive 10 40-min treatment sessions. Non-instrumented uroflow and validated questionnaires will also be collected at baseline and post-treatment to evaluate clinical improvement. Discussion Despite the crucial role of the central nervous system in urinary control and its sensitivity to MS, there has been no treatment for urinary dysfunction targeting the brain centers that are involved in proper bladder function. This trial, to our knowledge, will be the first of its kind in humans to consider non-invasive and individualized cortical modulation for treating VD in MS patients. Results from this study will provide a better understanding of the brain control of neurogenic bladders and lay the foundation for a potential alternative therapy for VD in MS patients and other NLUTD in a larger neurogenic population in the future. Trial registration This trial is registered at ClinicalTrials.Gov (NCT03574610, 2 July 2018.) and Houston Methodist Research Institute IRB (PRO00019329)
Collapse
Affiliation(s)
- Khue Tran
- Department of Urology, Houston Methodist Hospital, 6560 Fannin St. Suite 2100, Houston, TX, 77030, USA
| | - Zhaoyue Shi
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Christof Karmonik
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Blessy John
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Hamida Rajab
- Department of Urology, Houston Methodist Hospital, 6560 Fannin St. Suite 2100, Houston, TX, 77030, USA
| | - Santosh A Helekar
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Timothy Boone
- Department of Urology, Houston Methodist Hospital, 6560 Fannin St. Suite 2100, Houston, TX, 77030, USA
| | - Rose Khavari
- Department of Urology, Houston Methodist Hospital, 6560 Fannin St. Suite 2100, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Klapwijk ET, van den Bos W, Tamnes CK, Raschle NM, Mills KL. Opportunities for increased reproducibility and replicability of developmental neuroimaging. Dev Cogn Neurosci 2021; 47:100902. [PMID: 33383554 PMCID: PMC7779745 DOI: 10.1016/j.dcn.2020.100902] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Many workflows and tools that aim to increase the reproducibility and replicability of research findings have been suggested. In this review, we discuss the opportunities that these efforts offer for the field of developmental cognitive neuroscience, in particular developmental neuroimaging. We focus on issues broadly related to statistical power and to flexibility and transparency in data analyses. Critical considerations relating to statistical power include challenges in recruitment and testing of young populations, how to increase the value of studies with small samples, and the opportunities and challenges related to working with large-scale datasets. Developmental studies involve challenges such as choices about age groupings, lifespan modelling, analyses of longitudinal changes, and data that can be processed and analyzed in a multitude of ways. Flexibility in data acquisition, analyses and description may thereby greatly impact results. We discuss methods for improving transparency in developmental neuroimaging, and how preregistration can improve methodological rigor. While outlining challenges and issues that may arise before, during, and after data collection, solutions and resources are highlighted aiding to overcome some of these. Since the number of useful tools and techniques is ever-growing, we highlight the fact that many practices can be implemented stepwise.
Collapse
Affiliation(s)
- Eduard T Klapwijk
- Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Wouter van den Bos
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Max Planck Institute for Human Development, Center for Adaptive Rationality, Berlin, Germany
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora M Raschle
- Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Kathryn L Mills
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
46
|
Zhang J, Wu X, Nie D, Zhuo Y, Li J, Hu Q, Xu J, Yu H. Magnetic Resonance Imaging Studies on Acupuncture Therapy in Depression: A Systematic Review. Front Psychiatry 2021; 12:670739. [PMID: 34489749 PMCID: PMC8417590 DOI: 10.3389/fpsyt.2021.670739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies had been performed using magnetic resonance imaging (MRI) to understand the neural mechanism of acupuncture therapy for depression. However, inconsistencies remain due to differences in research designs and MRI analytical methods. Therefore, we aim to summarize the current MRI research and provide useful information for further research by identifying papers published in English and Chinese about MRI studies on acupuncture for depression up to November 2020. A total of 22 studies met the inclusion criteria, including 810 depression patients and 416 health controls (HCs). The applied designs of these studies are mainly random control trial and pre-post designs. The MRI analytical methods are mainly (fractional) amplitude of low-frequency fluctuation (fALFF/ALFF) and functional connectivity (FC), whereas a small subset of studies used voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). The most consistent functional MRI (fMRI) results showed increased N-acetylaspartate/creatine (NAA/Cr) ratios, increased ALFF in the right precuneus, decreased ALFF in the inferior frontal gyrus (IFG), and increased FC of the anterior cingulate cortex (ACC). In contrast, no significant neurological changes were identified in any of the DTI or VBM studies. However, clear, reliable conclusions cannot be drawn due to the use of different designs, analytical methods, seed points selected, types of depression, acupuncture points, and so on. Improved report specifications, well-designed studies, consistent analytical methods, and larger sample sizes will enable the field to better elucidate the underlying mechanisms of acupuncture in depressed patients.
Collapse
Affiliation(s)
- Jinhuan Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoxiong Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dehui Nie
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanyuan Zhuo
- Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jiaying Li
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haibo Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.,Acupuncture Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
47
|
SUN RR, MA PH, HE ZX, YIN T, QU YZ, YIN S, LIU XY, LU J, ZHANG TT, HUANG LY, SUO XL, LEI D, GONG QY, LIANG FR, ZENG F. Changed ACC-DMN functional connectivity after acupuncture with deqi for functional dyspepsia treatment. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2021. [DOI: 10.1016/j.wjam.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Li JL, Liu CZ, Zhang N, Yan CQ, Tu JF, Wang LQ, Qi YS, Liu JH, Wang X. Neurological and psychological mechanisms of the specific and nonspecific effects of acupuncture on knee osteoarthritis: study protocol for a randomized, controlled, crossover trial. Trials 2020; 21:989. [PMID: 33256796 PMCID: PMC7706223 DOI: 10.1186/s13063-020-04908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Background Acupuncture, as one of the promising non-pharmacological interventions, has been proved to be beneficial for patients. However, the magnitude of acupuncture’s specific and nonspecific effects, as well as their neurological and psychological determinants, remains unclear. Therefore, this study is designed to examine the acupuncture efficacy, investigate whether the brain mechanisms between the specific and nonspecific effects of acupuncture are different, and to evaluate how psychological factors affect the acupuncture effects. Methods This is a randomized, controlled, crossover clinical trial. A total of 60 patients with knee osteoarthritis will receive 4 weeks of acupuncture treatment and 4 weeks of sham acupuncture treatment in a random order separated by a washout period of 2 weeks. The changes in clinical characteristics based on pain-related scales will be assessed to investigate the clinical efficacy of acupuncture. Resting state functional magnetic resonance imaging (fMRI) scans will be used to identify the brain activity changes related to the specific and nonspecific effects of acupuncture. The questionnaires of psychological factors will be used to evaluate patients’ psychological properties. Correlation and mediation analyses will be conducted among psychological factors, brain activity changes, and symptoms improvement to explore the neurological and psychological correlates of the acupuncture effects. Discussion This study will concentrate on distinguishing and clarifying the specific and nonspecific effects of acupuncture. The results of this study may contribute to rationally optimize the acupuncture therapies by flexible application of the specific and nonspecific effects of acupuncture. Trial registration Chinese Clinical Trial Registry ChiCTR1900025807. Registered on 9 September 2019 Supplementary information The online version contains supplementary material available at 10.1186/s13063-020-04908-9.
Collapse
Affiliation(s)
- Jin-Ling Li
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cun-Zhi Liu
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Na Zhang
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao-Qun Yan
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Feng Tu
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Li-Qiong Wang
- Acupuncture Research Center, School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - You-Sheng Qi
- Nanyuan Community Health Service Center, Fengtai District, Beijing, 100076, China
| | - Jun-Hong Liu
- Nanyuan Community Health Service Center, Fengtai District, Beijing, 100076, China
| | - Xu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
49
|
Abstract
Blood oxygen level dependent (BOLD) fMRI is a common technique for measuring brain activation that could be affected by low-level carbon monoxide (CO) exposure from, e.g. smoking. This study aimed to probe the vulnerability of BOLD fMRI to CO and determine whether it may constitute a significant neuroimaging confound. Low-level (6 ppm exhaled) CO effects on BOLD response were assessed in 12 healthy never-smokers on two separate experimental days (CO and air control). fMRI tasks were breath-holds (hypercapnia), visual stimulation and fingertapping. BOLD fMRI response was lower during breath holds, visual stimulation and fingertapping in the CO protocol compared to the air control protocol. Behavioural and physiological measures remained unchanged. We conclude that BOLD fMRI might be vulnerable to changes in baseline CO, and suggest exercising caution when imaging populations exposed to elevated CO levels. Further work is required to fully elucidate the impact on CO on fMRI and its underlying mechanisms.
Collapse
Affiliation(s)
- Caroline Bendell
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Shakeeb H Moosavi
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Mari Herigstad
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
50
|
Grady CL, Rieck JR, Nichol D, Rodrigue KM, Kennedy KM. Influence of sample size and analytic approach on stability and interpretation of brain-behavior correlations in task-related fMRI data. Hum Brain Mapp 2020; 42:204-219. [PMID: 32996635 PMCID: PMC7721240 DOI: 10.1002/hbm.25217] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023] Open
Abstract
Limited statistical power due to small sample sizes is a problem in fMRI research. Most of the work to date has examined the impact of sample size on task‐related activation, with less attention paid to the influence of sample size on brain‐behavior correlations, especially in actual experimental fMRI data. We addressed this issue using two large data sets (a working memory task, N = 171, and a relational processing task, N = 865) and both univariate and multivariate approaches to voxel‐wise correlations. We created subsamples of different sizes and calculated correlations between task‐related activity at each voxel and task performance. Across both data sets the magnitude of the brain‐behavior correlations decreased and similarity across spatial maps increased with larger sample sizes. The multivariate technique identified more extensive correlated areas and more similarity across spatial maps, suggesting that a multivariate approach would provide a consistent advantage over univariate approaches in the stability of brain‐behavior correlations. In addition, the multivariate analyses showed that a sample size of roughly 80 or more participants would be needed for stable estimates of correlation magnitude in these data sets. Importantly, a number of additional factors would likely influence the choice of sample size for assessing such correlations in any given experiment, including the cognitive task of interest and the amount of data collected per participant. Our results provide novel experimental evidence in two independent data sets that the sample size commonly used in fMRI studies of 20–30 participants is very unlikely to be sufficient for obtaining reproducible brain‐behavior correlations, regardless of analytic approach.
Collapse
Affiliation(s)
- Cheryl L Grady
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada.,Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Jenny R Rieck
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Daniel Nichol
- Rotman Research Institute at Baycrest, Toronto, Ontario, Canada
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| |
Collapse
|