1
|
Loukas S, Filippa M, de Almeida JS, Boehringer AS, Tolsa CB, Barcos-Munoz F, Grandjean DM, van de Ville D, Hüppi PS. Newborn's neural representation of instrumental and vocal music as revealed by fMRI: A dynamic effective brain connectivity study. Hum Brain Mapp 2024; 45:e26724. [PMID: 39001584 PMCID: PMC11245569 DOI: 10.1002/hbm.26724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/16/2024] Open
Abstract
Music is ubiquitous, both in its instrumental and vocal forms. While speech perception at birth has been at the core of an extensive corpus of research, the origins of the ability to discriminate instrumental or vocal melodies is still not well investigated. In previous studies comparing vocal and musical perception, the vocal stimuli were mainly related to speaking, including language, and not to the non-language singing voice. In the present study, to better compare a melodic instrumental line with the voice, we used singing as a comparison stimulus, to reduce the dissimilarities between the two stimuli as much as possible, separating language perception from vocal musical perception. In the present study, 45 newborns were scanned, 10 full-term born infants and 35 preterm infants at term-equivalent age (mean gestational age at test = 40.17 weeks, SD = 0.44) using functional magnetic resonance imaging while listening to five melodies played by a musical instrument (flute) or sung by a female voice. To examine the dynamic task-based effective connectivity, we employed a psychophysiological interaction of co-activation patterns (PPI-CAPs) analysis, using the auditory cortices as seed region, to investigate moment-to-moment changes in task-driven modulation of cortical activity during an fMRI task. Our findings reveal condition-specific, dynamically occurring patterns of co-activation (PPI-CAPs). During the vocal condition, the auditory cortex co-activates with the sensorimotor and salience networks, while during the instrumental condition, it co-activates with the visual cortex and the superior frontal cortex. Our results show that the vocal stimulus elicits sensorimotor aspects of the auditory perception and is processed as a more salient stimulus while the instrumental condition activated higher-order cognitive and visuo-spatial networks. Common neural signatures for both auditory stimuli were found in the precuneus and posterior cingulate gyrus. Finally, this study adds knowledge on the dynamic brain connectivity underlying the newborns capability of early and specialized auditory processing, highlighting the relevance of dynamic approaches to study brain function in newborn populations.
Collapse
Affiliation(s)
- Serafeim Loukas
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Manuela Filippa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Joana Sa de Almeida
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Andrew S Boehringer
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
- Lemanic Neuroscience Doctoral School, University of Geneva, Geneva, Switzerland
| | - Cristina Borradori Tolsa
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Francisca Barcos-Munoz
- Division of Pediatric Intensive Care and Neonatology, Department of Women, Children and Adolescents, University Hospital of Geneva, Geneva, Switzerland
| | - Didier M Grandjean
- Swiss Center for Affective Sciences, Department of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Dimitri van de Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Taheri A. The partial upward migration of the laryngeal motor cortex: A window to the human brain evolution. Brain Res 2024; 1834:148892. [PMID: 38554798 DOI: 10.1016/j.brainres.2024.148892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The pioneer cortical electrical stimulation studies of the last century did not explicitly mark the location of the human laryngeal motor cortex (LMC), but only the "vocalization area" in the lower half of the lateral motor cortex. In the final years of 2010́s, neuroimaging studies did demonstrate two human cortical laryngeal representations, located at the opposing ends of the orofacial motor zone, therefore termed dorsal (LMCd) and ventral laryngeal motor cortex (LMCv). Since then, there has been a continuing debate regarding the origin, function and evolutionary significance of these areas. The "local duplication model" posits that the LMCd evolved by a duplication of an adjacent region of the motor cortex. The "duplication and migration model" assumes that the dorsal LMCd arose by a duplication of motor regions related to vocalization, such as the ancestry LMC, followed by a migration into the orofacial region of the motor cortex. This paper reviews the basic arguments of these viewpoints and suggests a new explanation, declaring that the LMCd in man is rather induced through the division of the unitary LMC in nonhuman primates, upward shift and relocation of its motor part due to the disproportional growth of the head, face, mouth, lips, and tongue motor areas in the ventral part of the human motor homunculus. This explanation may be called "expansion-division and relocation model".
Collapse
Affiliation(s)
- Abbas Taheri
- Neuroscience Razi, Berlin, Germany; Former Assistant Professor of Neurosurgery, Humboldt University, Berlin, Germany
| |
Collapse
|
3
|
Manes JL, Bullock L, Meier AM, Turner RS, Richardson RM, Guenther FH. A neurocomputational view of the effects of Parkinson's disease on speech production. Front Hum Neurosci 2024; 18:1383714. [PMID: 38812472 PMCID: PMC11133703 DOI: 10.3389/fnhum.2024.1383714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this article is to review the scientific literature concerning speech in Parkinson's disease (PD) with reference to the DIVA/GODIVA neurocomputational modeling framework. Within this theoretical view, the basal ganglia (BG) contribute to several different aspects of speech motor learning and execution. First, the BG are posited to play a role in the initiation and scaling of speech movements. Within the DIVA/GODIVA framework, initiation and scaling are carried out by initiation map nodes in the supplementary motor area acting in concert with the BG. Reduced support of the initiation map from the BG in PD would result in reduced movement intensity as well as susceptibility to early termination of movement. A second proposed role concerns the learning of common speech sequences, such as phoneme sequences comprising words; this view receives support from the animal literature as well as studies identifying speech sequence learning deficits in PD. Third, the BG may play a role in the temporary buffering and sequencing of longer speech utterances such as phrases during conversational speech. Although the literature does not support a critical role for the BG in representing sequence order (since incorrectly ordered speech is not characteristic of PD), the BG are posited to contribute to the scaling of individual movements in the sequence, including increasing movement intensity for emphatic stress on key words. Therapeutic interventions for PD have inconsistent effects on speech. In contrast to dopaminergic treatments, which typically either leave speech unchanged or lead to minor improvements, deep brain stimulation (DBS) can degrade speech in some cases and improve it in others. However, cases of degradation may be due to unintended stimulation of efferent motor projections to the speech articulators. Findings of spared speech after bilateral pallidotomy appear to indicate that any role played by the BG in adult speech must be supplementary rather than mandatory, with the sequential order of well-learned sequences apparently represented elsewhere (e.g., in cortico-cortical projections).
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Latané Bullock
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Andrew M. Meier
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
| | - Robert S. Turner
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Frank H. Guenther
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, United States
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Bourqui M, Lancheros M, Assal F, Laganaro M. The encoding of speech modes in motor speech disorders: whispered versus normal speech in apraxia of speech and hypokinetic dysarthria. CLINICAL LINGUISTICS & PHONETICS 2024:1-22. [PMID: 38691845 DOI: 10.1080/02699206.2024.2345353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Speakers with motor speech disorders (MSD) present challenges in speech production, one of them being the difficulty to adapt their speech to different modes. However, it is unclear whether different types of MSD are similarly affected when it comes to adapting their speech to various communication contexts. This study investigates the encoding of speech modes in individuals with AoS following focal brain damage and in individuals with hypokinetic dysarthria (HD) secondary to Parkinson's disease. Participants with mild-to-moderate MSD and their age-matched controls performed a delayed production task of pseudo-words in two speech modes: normal and whispered speech. While overall accuracy did not differ significantly across speech modes, participants with AoS exhibited longer response latencies for whispered speech, reflecting difficulties in the initiation of utterances requiring an unvoiced production. In contrast, participants with HD showed faster response latencies for whispered speech, indicating that this speech mode is easier to encode/control for this population. Acoustic durations followed these same trends, with participants with AoS showing greater lengthening for whispered speech as compared to controls and to participants with HD, while participants with HD exhibited milder lengthening. Contrary to the predictions of speech production models, suggesting that speech mode changes might be particularly difficult in dysarthria, the present results suggest that speech mode adaptation rather seems particularly costly for participants with AoS.
Collapse
Affiliation(s)
- M Bourqui
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland
| | - M Lancheros
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland
| | - F Assal
- Department of Clinical Neurosciences, Geneva University Hospital and Faculty of Medicine, Geneva, Switzerland
| | - M Laganaro
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Balzan P, Palmer R, Tattersall C. Speech and language therapists' management practices, perceived effectiveness of current treatments and interest in neuromuscular electrical stimulation for acquired dysarthria rehabilitation: An international perspective. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2024; 59:744-761. [PMID: 37818779 DOI: 10.1111/1460-6984.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Research is beginning to shed light on the practices employed by speech-language therapists (SLTs) for the management of acquired dysarthria. However, studies that explore SLTs' satisfaction with the effectiveness of current therapies and their interest in new treatment methods for this population have not been carried out. One potential new method is neuromuscular electrical stimulation (NMES): the pool of evidence for its use in rehabilitation is increasing, yet it has not been widely explored for use with dysarthria. AIM To extend the understanding of acquired dysarthria management practices employed by SLTs across the globe and determine their satisfaction with current therapy options. To explore their interest in using NMES with this population. METHODS AND PROCEDURES A cross-sectional international online survey was developed and disseminated to SLTs working with adults with acquired dysarthria through international professional associations. The survey collected information on demographic characteristics, dysarthria management practices, satisfaction with treatment effectiveness and interest in and knowledge of NMES. Survey responses were analysed using descriptive and inferential statistics, and quantitative content analysis. OUTCOMES AND RESULTS A total of 211 SLTs (North America, 48.8%; Europe, 36%; Asia, 8.1%; Oceania, 5.7%; Africa, 0.9%; South America, 0.5%) completed the survey in full. Management practices varied considerably. There was a clear preference for informal assessments, mainly oral-motor examinations, focusing on body functions and structures. The majority of respondents rejected the use of non-speech oral motor exercises as a clinical or carryover exercise. Variable satisfaction with current speech subsystem treatments was noted; however, overall, there was a general dissatisfaction. Whilst a strong interest in the use of NMES for dysarthria was evidenced, it was noted that most SLTs lacked fundamental knowledge of NMES principles and application. CONCLUSION SLTs' management practices and satisfaction with acquired dysarthria treatments differed substantially. Investigations of the potential use of NMES for dysarthria treatment are of interest. WHAT THIS PAPER ADDS What is already known on the subject Recent country-specific surveys have explored speech-language therapists' (SLTs') assessment and intervention practices for acquired dysarthria. These studies indicate that although clinical management for this speech disorder mainly involves informal assessment tools and impairment-focused treatment, communication beyond the impairment, such as the activity and participation domains, is also frequently assessed and treated. What this paper adds to existing knowledge The majority of SLTs are dissatisfied with the overall benefits of current acquired dysarthria treatment. Phonatory, respiration and speech rate therapies are perceived to be more effective than prosody, articulation and resonance treatments. Despite a general lack of theoretical knowledge, most SLTs are interested in neuromuscular electrical stimulation treatment for acquired dysarthria. What are the potential or actual clinical implications of this work? New, evidence-based treatments are needed for SLTs to be confident in the effectiveness of their acquired dysarthria treatment.
Collapse
Affiliation(s)
- Pasquale Balzan
- Division of Human Communication Sciences, School of Allied Health Professions, Nursing and Midwifery, University of Sheffield, Sheffield, UK
| | - Rebecca Palmer
- Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Catherine Tattersall
- Division of Human Communication Sciences, School of Allied Health Professions, Nursing and Midwifery, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Johari K, Berger JI. Theta oscillations within right dorsolateral prefrontal cortex contribute differently to speech versus limb inhibition. J Neurosci Res 2024; 102:e25298. [PMID: 38361410 DOI: 10.1002/jnr.25298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
Evidence suggests that speech and limb movement inhibition are subserved by common neural mechanisms, particularly within the right prefrontal cortex. In a recent study, we found that cathodal stimulation of right dorsolateral prefrontal cortex (rDLPFC) differentially modulated P3 event-related potentials for speech versus limb inhibition. In the present study, we further analyzed these data to examine the effects of cathodal high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC on frontal theta - an oscillatory marker of cognitive control - in response to speech and limb inhibition, during a Go/No-Go task in 21 neurotypical adults. Electroencephalography data demonstrated that both speech and limb No-Go elicited prominent theta activity over right prefrontal electrodes, with stronger activity for speech compared to limb. Moreover, we found that cathodal stimulation significantly increased theta power over right prefrontal electrodes for speech versus limb No-Go. Source analysis revealed that cathodal, but not sham, stimulation increased theta activity within rDLPFC and bilateral premotor cortex for speech No-Go compared to limb movement inhibition. These findings complement our previous report and suggest (1) right prefrontal theta activity is an amodal oscillatory mechanism supporting speech and limb inhibition, (2) larger theta activity in prefrontal electrodes for speech versus limb following cathodal stimulation may reflect allocation of additional neural resources for a more complex motor task, such as speech compared to limb movement. These findings have translational implications for conditions such as Parkinson's disease, wherein both speech and limb movement are impaired.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel I Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Johari K, Berger JI. High-definition transcranial direct current stimulation over right dorsolateral prefrontal cortex differentially modulates inhibitory mechanisms for speech vs. limb movement. Psychophysiology 2023; 60:e14289. [PMID: 36883294 DOI: 10.1111/psyp.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/25/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Evidence suggests that planning and execution of speech and limb movement are subserved by common neural substrates. However, less is known about whether they are supported by a common inhibitory mechanism. P3 event-related potentials (ERPs) is a neural signature of motor inhibition, which are found to be generated by several brain regions including the right dorsolateral prefrontal cortex (rDLPFC). However, the relative contribution of rDLPFC to the P3 response associated with speech versus limb inhibition remains elusive. We investigated the contribution of rDLPFC to the P3 underlying speech versus limb movement inhibition. Twenty-one neurotypical adults received both cathodal and sham high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC. ERPs were subsequently recorded while subjects were performing speech and limb Go/No-Go tasks. Cathodal HD-tDCS decreased accuracy for speech versus limb No-Go. Both speech and limb No-Go elicited a similar topographical distribution of P3, with significantly larger amplitudes for speech versus limb at a frontocentral location following cathodal HD-tDCS. Moreover, results showed stronger activation in cingulate cortex and rDLPFC for speech versus limb No-Go following cathodal HD-tDCS. These results indicate (1) P3 is an ERP marker of amodal inhibitory mechanisms that support both speech and limb inhibition, (2) larger P3 for speech versus limb No-Go following cathodal HD-tDCS may reflect the recruitment of additional neural resources-particularly within rDLPFC and cingulate cortex-as compensatory mechanisms to counteract the temporary stimulation-induced decline in speech inhibitory process. These findings have translational implications for neurological conditions that concurrently affect speech and limb movement.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel I Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Laganaro M. Time-course of phonetic (motor speech) encoding in utterance production. Cogn Neuropsychol 2023; 40:287-297. [PMID: 37944062 DOI: 10.1080/02643294.2023.2279739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Speaking involves the preparation of the linguistic content of an utterance and of the motor programs leading to articulation. The temporal dynamics of linguistic versus motor-speech (phonetic) encoding is highly debated: phonetic encoding has been associated either to the last quarter of an utterance preparation time (∼150ms before articulation), or to virtually the entire planning time, simultaneously with linguistic encoding. We (i) review the evidence on the time-course of motor-speech encoding based on EEG/MEG event-related (ERP) studies and (ii) strive to replicate the early effects of phonological-phonetic factors in referential word production by reanalysing a large EEG/ERP dataset. The review indicates that motor-speech encoding is engaged during at least the last 300ms preceding articulation (about half of a word planning lag). By contrast, the very early involvement of phonological-phonetic factors could be replicated only partially and is not as robust as in the second half of the utterance planning time-window.
Collapse
Affiliation(s)
- Marina Laganaro
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Weismer G. Oromotor Nonverbal Performance and Speech Motor Control: Theory and Review of Empirical Evidence. Brain Sci 2023; 13:brainsci13050768. [PMID: 37239240 DOI: 10.3390/brainsci13050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
This position paper offers a perspective on the long-standing debate concerning the role of oromotor, nonverbal gestures in understanding typical and disordered speech motor control secondary to neurological disease. Oromotor nonverbal tasks are employed routinely in clinical and research settings, but a coherent rationale for their use is needed. The use of oromotor nonverbal performance to diagnose disease or dysarthria type, versus specific aspects of speech production deficits that contribute to loss of speech intelligibility, is argued to be an important part of the debate. Framing these issues are two models of speech motor control, the Integrative Model (IM) and Task-Dependent Model (TDM), which yield contrasting predictions of the relationship between oromotor nonverbal performance and speech motor control. Theoretical and empirical literature on task specificity in limb, hand, and eye motor control is reviewed to demonstrate its relevance to speech motor control. The IM rejects task specificity in speech motor control, whereas the TDM is defined by it. The theoretical claim of the IM proponents that the TDM requires a special, dedicated neural mechanism for speech production is rejected. Based on theoretical and empirical information, the utility of oromotor nonverbal tasks as a window into speech motor control is questionable.
Collapse
Affiliation(s)
- Gary Weismer
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Kent RD, Kim Y, Chen LM. Oral and Laryngeal Diadochokinesis Across the Life Span: A Scoping Review of Methods, Reference Data, and Clinical Applications. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:574-623. [PMID: 34958599 DOI: 10.1044/2021_jslhr-21-00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE The aim of this study was to conduct a scoping review of research on oral and laryngeal diadochokinesis (DDK) in children and adults, either typically developing/developed or with a clinical diagnosis. METHOD Searches were conducted with PubMed/MEDLINE, Google Scholar, CINAHL, and legacy sources in retrieved articles. Search terms included the following: DDK, alternating motion rate, maximum repetition rate, sequential motion rate, and syllable repetition rate. RESULTS Three hundred sixty articles were retrieved and included in the review. Data source tables for children and adults list the number and ages of study participants, DDK task, and language(s) spoken. Cross-sectional data for typically developing children and typically developed adults are compiled for the monosyllables /pʌ/, /tʌ/, and /kʌ/; the trisyllable /pʌtʌkʌ/; and laryngeal DDK. In addition, DDK results are summarized for 26 disorders or conditions. DISCUSSION A growing number of multidisciplinary reports on DDK affirm its role in clinical practice and research across the world. Atypical DDK is not a well-defined singular entity but rather a label for a collection of disturbances associated with diverse etiologies, including motoric, structural, sensory, and cognitive. The clinical value of DDK can be optimized by consideration of task parameters, analysis method, and population of interest.
Collapse
Affiliation(s)
- Ray D Kent
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison
| | - Yunjung Kim
- School of Communication Sciences & Disorders, Florida State University, Tallahassee
| | - Li-Mei Chen
- Department of Foreign Languages and Literature, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Jouen AL, Lancheros M, Laganaro M. Microstate ERP Analyses to Pinpoint the Articulatory Onset in Speech Production. Brain Topogr 2020; 34:29-40. [PMID: 33161471 PMCID: PMC7803690 DOI: 10.1007/s10548-020-00803-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
The use of electroencephalography (EEG) to study overt speech production has increased substantially in the past 15 years and the alignment of evoked potential (ERPs) on the response onset has become an extremely useful method to target “latest” stages of speech production. Yet, response-locked ERPs raise a methodological issue: on which event should the point of alignment be placed? Response-locked ERPs are usually aligned to the vocal (acoustic) onset, although it is well known that articulatory movements may start up to a hundred milliseconds prior to the acoustic onset and that this “articulatory onset to acoustic onset interval” (AAI) depends on the phoneme properties. Given the previously reported difficulties to measure the AAI, the purpose of this study was to determine if the AAI could be reliably detected with EEG-microstates. High-density EEG was recorded during delayed speech production of monosyllabic pseudowords with four different onset consonants. Whereas the acoustic response onsets varied depending on the onset consonant, the response-locked spatiotemporal EEG analysis revealed a clear asynchrony of the same sequence of microstates across onset consonants. A specific microstate, the latest observed in the ERPs locked to the vocal onset, presented longer duration for phonemes with longer acoustic response onsets. Converging evidences seemed to confirm that this microstate may be related to the articulatory onset of motor execution: its scalp topography corresponded to those previously associated with muscle activity and source localization highlighted the involvement of motor areas. Finally, the analyses on the duration of such microstate in single trials further fit with the AAI intervals for specific phonemes reported in previous studies. These results thus suggest that a particular ERP-microstate is a reliable index of articulation onset and of the AAI.
Collapse
Affiliation(s)
- Anne-Lise Jouen
- Faculty of Psychology and Educational Science (FPSE), University of Geneva, 28 Boulevard du Pont d'Arve, 1205, Geneva, Switzerland.
| | - Monica Lancheros
- Faculty of Psychology and Educational Science (FPSE), University of Geneva, 28 Boulevard du Pont d'Arve, 1205, Geneva, Switzerland
| | - Marina Laganaro
- Faculty of Psychology and Educational Science (FPSE), University of Geneva, 28 Boulevard du Pont d'Arve, 1205, Geneva, Switzerland
| |
Collapse
|
12
|
Al Dahhan NZ, Kirby JR, Brien DC, Gupta R, Harrison A, Munoz DP. Understanding the biological basis of dyslexia at a neural systems level. Brain Commun 2020; 2:fcaa173. [PMID: 33305260 PMCID: PMC7713994 DOI: 10.1093/braincomms/fcaa173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 11/12/2022] Open
Abstract
We examined the naming speed performance of 18 typically achieving and 16 dyslexic adults while simultaneously recording eye movements, articulations and fMRI data. Naming speed tasks, which require participants to name a list of letters or objects, have been proposed as a proxy for reading and are thought to recruit similar reading networks in the left hemisphere of the brain as more complex reading tasks. We employed letter and object naming speed tasks, with task manipulations to make the stimuli more or less phonologically and/or visually similar. Compared to typically achieving readers, readers with dyslexia had a poorer behavioural naming speed task performance, longer fixation durations, more regressions and increased activation in areas of the reading network in the left-hemisphere. Whereas increased network activation was positively associated with performance in dyslexics, it was negatively related to performance in typically achieving readers. Readers with dyslexia had greater bilateral activation and recruited additional regions involved with memory, namely the amygdala and hippocampus; in contrast, the typically achieving readers additionally activated the dorsolateral prefrontal cortex. Areas within the reading network were differentially activated by stimulus manipulations to the naming speed tasks. There was less efficient naming speed behavioural performance, longer fixation durations, more regressions and increased neural activity when letter stimuli were both phonologically and visually similar. Discussion focuses on the differences in activation within the reading network, how they are related to behavioural task differences, and how progress in furthering the understanding of the relationship between behavioural performance and brain activity can change the overall trajectories of children with reading difficulties by contributing to both early identification and remediation processes.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Correspondence to: Noor Z. Al Dahhan, Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada. E-mail:
| | - John R Kirby
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Faculty of Education, Queen's University, Kingston, ON K7M 5R7, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Rina Gupta
- Regional Assessment and Resource Centre, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Allyson Harrison
- Regional Assessment and Resource Centre, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
13
|
Vocal-motor interference eliminates the memory advantage for vocal melodies. Brain Cogn 2020; 145:105622. [PMID: 32949847 DOI: 10.1016/j.bandc.2020.105622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022]
Abstract
Spontaneous motor cortical activity during passive perception of action has been interpreted as a sensorimotor simulation of the observed action. There is currently interest in how sensorimotor simulation can support higher-up cognitive functions, such as memory, but this is relatively unexplored in the auditory domain. In the present study, we examined whether the established memory advantage for vocal melodies over non-vocal melodies is attributable to stronger sensorimotor simulation during perception of vocal relative to non-vocal action. Participants listened to 24 unfamiliar folk melodies presented in vocal or piano timbres. These were encoded during three interference conditions: whispering (vocal-motor interference), tapping (non-vocal motor interference), and no-interference. Afterwards, participants heard the original 24 melodies presented among 24 foils and judged whether melodies were old or new. A vocal-memory advantage was found in the no-interference and tapping conditions; however, the advantage was eliminated in the whispering condition. This suggests that sensorimotor simulationduring the perception of vocal melodies is responsible for the observed vocal-memory advantage.
Collapse
|
14
|
Wang J, Yang Y, Zhao X, Zuo Z, Tan LH. Evolutional and developmental anatomical architecture of the left inferior frontal gyrus. Neuroimage 2020; 222:117268. [PMID: 32818615 DOI: 10.1016/j.neuroimage.2020.117268] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
The left inferior frontal gyrus (IFG) including Broca's area is involved in the processing of many language subdomains, and thus, research on the evolutional and human developmental characteristics of the left IFG will shed light on how language emerges and maturates. In this study, we used diffusion magnetic resonance imaging (dMRI) and resting-state functional MRI (fMRI) to investigate the evolutional and developmental patterns of the left IFG in humans (age 6-8, age 11-13, and age 16-18 years) and macaques. Tractography-based parcellation was used to define the subcomponents of left IFG and consistently identified four subregions in both humans and macaques. This parcellation scheme for left IFG in human was supported by specific coactivation patterns and functional characterization for each subregion. During evolution and development, we found increased functional balance, amplitude of low frequency fluctuations, functional integration, and functional couplings. We also observed higher fractional anisotropy values, i.e. better myelination of dorsal and ventral white matter language pathways during evolution and development. We assume that the resting-state functional connectivity and task-related coactivation mapping are associated with hierarchical language processing. Our findings have shown the evolutional and human developmental patterns of left IFG, and will contribute to the understanding of how the human language evolves and how atypical language developmental disorders may occur.
Collapse
Affiliation(s)
- Jiaojiang Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xudong Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Li-Hai Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen 518057, China.
| |
Collapse
|
15
|
Chase HW, Grace AA, Fox PT, Phillips ML, Eickhoff SB. Functional differentiation in the human ventromedial frontal lobe: A data-driven parcellation. Hum Brain Mapp 2020; 41:3266-3283. [PMID: 32314470 PMCID: PMC7375078 DOI: 10.1002/hbm.25014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision-making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross-species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two-stage parcellation of the region to identify six distinct structures within the region on the basis of data-driven classification of functional connectivity patterns obtained using the meta-analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting-state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical "default mode network" regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.
Collapse
Affiliation(s)
- Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
16
|
NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals. SENSORS 2020; 20:s20082248. [PMID: 32316162 PMCID: PMC7218843 DOI: 10.3390/s20082248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
Neural speech decoding-driven brain-computer interface (BCI) or speech-BCI is a novel paradigm for exploring communication restoration for locked-in (fully paralyzed but aware) patients. Speech-BCIs aim to map a direct transformation from neural signals to text or speech, which has the potential for a higher communication rate than the current BCIs. Although recent progress has demonstrated the potential of speech-BCIs from either invasive or non-invasive neural signals, the majority of the systems developed so far still assume knowing the onset and offset of the speech utterances within the continuous neural recordings. This lack of real-time voice/speech activity detection (VAD) is a current obstacle for future applications of neural speech decoding wherein BCI users can have a continuous conversation with other speakers. To address this issue, in this study, we attempted to automatically detect the voice/speech activity directly from the neural signals recorded using magnetoencephalography (MEG). First, we classified the whole segments of pre-speech, speech, and post-speech in the neural signals using a support vector machine (SVM). Second, for continuous prediction, we used a long short-term memory-recurrent neural network (LSTM-RNN) to efficiently decode the voice activity at each time point via its sequential pattern-learning mechanism. Experimental results demonstrated the possibility of real-time VAD directly from the non-invasive neural signals with about 88% accuracy.
Collapse
|
17
|
Lancheros M, Jouen AL, Laganaro M. Neural dynamics of speech and non-speech motor planning. BRAIN AND LANGUAGE 2020; 203:104742. [PMID: 31986473 DOI: 10.1016/j.bandl.2020.104742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
As the speech apparatus is also involved in producing non-speech movements, understanding whether speech and non-speech planning are controlled by the same brain mechanisms is central to the comprehension of motor speech planning. A crucial issue is whether a specialized motor planning/control system is dedicated to speech or if the motor planning/control system is shared across oromotor behaviors. We investigated the EEG/ERP spatio-temporal dynamics of the motor planning processes preceding articulation by comparing the production of non-speech gestures matched to monosyllabic words and non-words. To isolate motor from pre-motor planning, we used a delayed production task combined with an articulatory suppression task. Results suggest that the planning processes preceding articulation for non-speech, words and non-words recruit the same neural networks but with different involvement for non-speech and speech. The results support the idea of shared motor planning/control systems for speech and non-speech but with different dynamics for each oromotor behavior.
Collapse
Affiliation(s)
- M Lancheros
- Faculty of Psychology and Educational Science, University of Geneva, Switzerland.
| | - A-L Jouen
- Faculty of Psychology and Educational Science, University of Geneva, Switzerland
| | - M Laganaro
- Faculty of Psychology and Educational Science, University of Geneva, Switzerland
| |
Collapse
|
18
|
Al Dahhan NZ, Kirby JR, Chen Y, Brien DC, Munoz DP. Examining the neural and cognitive processes that underlie reading through naming speed tasks. Eur J Neurosci 2020; 51:2277-2298. [PMID: 31912932 DOI: 10.1111/ejn.14673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
We combined fMRI with eye tracking and speech recording to examine the neural and cognitive mechanisms that underlie reading. To simplify the study of the complex processes involved during reading, we used naming speed (NS) tasks (also known as rapid automatized naming or RAN) as a focus for this study, in which average reading right-handed adults named sets of stimuli (letters or objects) as quickly and accurately as possible. Due to the possibility of spoken output during fMRI studies creating motion artifacts, we employed both an overt session and a covert session. When comparing the two sessions, there were no significant differences in behavioral performance, sensorimotor activation (except for regions involved in the motor aspects of speech production) or activation in regions within the left-hemisphere-dominant neural reading network. This established that differences found between the tasks within the reading network were not attributed to speech production motion artifacts or sensorimotor processes. Both behavioral and neuroimaging measures showed that letter naming was a more automatic and efficient task than object naming. Furthermore, specific manipulations to the NS tasks to make the stimuli more visually and/or phonologically similar differentially activated the reading network in the left hemisphere associated with phonological, orthographic and orthographic-to-phonological processing, but not articulatory/motor processing related to speech production. These findings further our understanding of the underlying neural processes that support reading by examining how activation within the reading network differs with both task performance and task characteristics.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - John R Kirby
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Faculty of Education, Queen's University, Kingston, ON, Canada
| | - Ying Chen
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Pyun SB, Hwang YM, Jo SY, Ha JW. Reliability and Validity of the Comprehensive Limb and Oral Apraxia Test: Standardization and Clinical Application in Korean Patients With Stroke. Ann Rehabil Med 2019; 43:544-554. [PMID: 31693844 PMCID: PMC6835135 DOI: 10.5535/arm.2019.43.5.544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022] Open
Abstract
Objective To develop and standardize the Limb and Oral Apraxia Test (LOAT) for Korean patients and investigate its reliability, validity, and clinical usefulness for patients with stroke. Methods We developed the LOAT according to a cognitive neuropsychological model of limb and oral praxis. The test included meaningless, intransitive, transitive, and oral praxis composed of 72 items (56 items on limb praxis and 16 items on oral praxis; maximum score 216). We standardized the LOAT in a nationwide sample of 324 healthy adults. Intra-rater and inter-rater reliability and concurrent validity tests were performed in patients with stroke. We prospectively applied the LOAT in 80 patients and analyzed the incidence of apraxia. We also compared the clinical characteristics between the apraxia and non-apraxia groups. Results The internal consistency was high (Cronbach’s alpha=0.952). The inter-rater and intra-rater reliability and concurrent validity were also high (r=0.924–0.992, 0.961–0.999, and 0.830, respectively; p<0.001). The mean total, limb, and oral scores were not significantly different according to age and education (p>0.05). Among the 80 patients with stroke, 19 (23.8%) had limb apraxia and 21 (26.3%) had oral apraxia. Left hemispheric lesions and aphasia were significantly more frequently observed in the limb/oral apraxia group than in the non-apraxia group (p<0.001). Conclusion The LOAT is a newly developed comprehensive test for limb and oral apraxia for Korean patients with stroke. It has high internal consistency, reliability, and validity and is a useful apraxia test for patients with stroke.
Collapse
Affiliation(s)
- Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Korea.,Brain Convergence Research Center, Korea University College of Medicine, Seoul, Korea
| | - Yu Mi Hwang
- Brain Convergence Research Center, Korea University College of Medicine, Seoul, Korea
| | - Soo Yung Jo
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Seoul, Korea
| | - Ji-Wan Ha
- Department of Speech Pathology, Daegu University, Gyeongsan, Korea
| |
Collapse
|
20
|
Basilakos A, Smith KG, Fillmore P, Fridriksson J, Fedorenko E. Functional Characterization of the Human Speech Articulation Network. Cereb Cortex 2019; 28:1816-1830. [PMID: 28453613 DOI: 10.1093/cercor/bhx100] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
A number of brain regions have been implicated in articulation, but their precise computations remain debated. Using functional magnetic resonance imaging, we examine the degree of functional specificity of articulation-responsive brain regions to constrain hypotheses about their contributions to speech production. We find that articulation-responsive regions (1) are sensitive to articulatory complexity, but (2) are largely nonoverlapping with nearby domain-general regions that support diverse goal-directed behaviors. Furthermore, premotor articulation regions show selectivity for speech production over some related tasks (respiration control), but not others (nonspeech oral-motor [NSO] movements). This overlap between speech and nonspeech movements concords with electrocorticographic evidence that these regions encode articulators and their states, and with patient evidence whereby articulatory deficits are often accompanied by oral-motor deficits. In contrast, the superior temporal regions show strong selectivity for articulation relative to nonspeech movements, suggesting that these regions play a specific role in speech planning/production. Finally, articulation-responsive portions of posterior inferior frontal gyrus show some selectivity for articulation, in line with the hypothesis that this region prepares an articulatory code that is passed to the premotor cortex. Taken together, these results inform the architecture of the human articulation system.
Collapse
Affiliation(s)
- Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Kimberly G Smith
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA.,Department of Speech Pathology and Audiology, University of South Alabama, Mobile, AL 36688, USA
| | - Paul Fillmore
- Department of Communication Sciences and Disorders, Baylor University, Waco, TX 76798, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Evelina Fedorenko
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Zhang H, Eppes A, Beatty-Martínez A, Navarro-Torres C, Diaz MT. Task difficulty modulates brain-behavior correlations in language production and cognitive control: Behavioral and fMRI evidence from a phonological go/no-go picture-naming paradigm. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:964-981. [PMID: 29923097 PMCID: PMC6301137 DOI: 10.3758/s13415-018-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.
Collapse
Affiliation(s)
- Haoyun Zhang
- Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Eppes
- Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - Michele T Diaz
- Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Manes JL, Tjaden K, Parrish T, Simuni T, Roberts A, Greenlee JD, Corcos DM, Kurani AS. Altered resting-state functional connectivity of the putamen and internal globus pallidus is related to speech impairment in Parkinson's disease. Brain Behav 2018; 8:e01073. [PMID: 30047249 PMCID: PMC6160640 DOI: 10.1002/brb3.1073] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Speech impairment in Parkinson's disease (PD) is pervasive, with life-impacting consequences. Yet, little is known about how functional connections between the basal ganglia and cortex relate to PD speech impairment (PDSI). Whole-brain resting-state connectivity analyses of basal ganglia nuclei can expand the understanding of PDSI pathophysiology. METHODS Resting-state data from 89 right-handed subjects were downloaded from the Parkinson's Progression Markers Initiative database. Subjects included 12 older healthy controls ("OHC"), 42 PD patients without speech impairment ("PDN"), and 35 PD subjects with speech impairment ("PDSI"). Subjects were assigned to PDN and PDSI groups based on the Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III speech item scores ("0" vs. "1-4"). Whole-brain functional connectivity was calculated for four basal ganglia seeds in each hemisphere: putamen, caudate, external globus pallidus (GPe), and internal globus pallidus (GPi). For each seed region, group-averaged connectivity maps were compared among OHC, PDN, and PDSI groups using a multivariate ANCOVA controlling for the effects of age and sex. Subsequent planned pairwise t-tests were performed to determine differences between the three groups using a voxel-wise threshold of p < 0.001 and cluster-extent threshold of 272 mm3 (FWE<0.05). RESULTS In comparison with OHCs, both PDN and PDSI groups demonstrated significant differences in cortical connectivity with bilateral putamen, bilateral GPe, and right caudate. Compared to the PDN group, the PDSI subjects demonstrated significant differences in cortical connectivity with left putamen and left GPi. PDSI subjects had lower connectivity between the left putamen and left superior temporal gyrus compared to PDN. In addition, PDSI subjects had greater connectivity between left GPi and three cortical regions: left dorsal premotor/laryngeal motor cortex, left angular gyrus, and right angular gyrus. CONCLUSIONS The present findings suggest that speech impairment in PD is associated with altered cortical connectivity with left putamen and left GPi.
Collapse
Affiliation(s)
- Jordan L. Manes
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Kris Tjaden
- Department of Communication Disorders and SciencesUniversity at BuffaloBuffaloNew York
| | - Todd Parrish
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| | - Tanya Simuni
- Ken and Ruth Davee Department of NeurologyNorthwestern UniversityChicagoIllinois
- The Parkinson's Disease and Movement Disorders ClinicNorthwestern UniversityChicagoIllinois
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and DisordersNorthwestern UniversityEvanstonIllinois
| | | | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
| | - Ajay S. Kurani
- Department of RadiologyNorthwestern UniversityChicagoIllinois
| |
Collapse
|
23
|
Carey D, Krishnan S, Callaghan MF, Sereno MI, Dick F. Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract. Cereb Cortex 2018; 27:265-278. [PMID: 28069761 PMCID: PMC5808730 DOI: 10.1093/cercor/bhw393] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Speech articulation requires precise control of and coordination between the effectors of the vocal tract (e.g., lips, tongue, soft palate, and larynx). However, it is unclear how the cortex represents movements of and contact between these effectors during speech, or how these cortical responses relate to inter-regional anatomical borders. Here, we used phase-encoded fMRI to map somatomotor representations of speech articulations. Phonetically trained participants produced speech phones, progressing from front (bilabial) to back (glottal) place of articulation. Maps of cortical myelin proxies (R1 = 1/T1) further allowed us to situate functional maps with respect to anatomical borders of motor and somatosensory regions. Across participants, we found a consistent topological map of place of articulation, spanning the central sulcus and primary motor and somatosensory areas, that moved from lateral to inferior as place of articulation progressed from front to back. Phones produced at velar and glottal places of articulation activated the inferior aspect of the central sulcus, but with considerable across-subject variability. R1 maps for a subset of participants revealed that articulator maps extended posteriorly into secondary somatosensory regions. These results show consistent topological organization of cortical representations of the vocal apparatus in the context of speech behavior.
Collapse
Affiliation(s)
- Daniel Carey
- Department of Psychology, Royal Holloway, University of London, London, TW20 0EX, UK.,The Irish Longitudinal Study on Ageing, Department of Medical Gerontology, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK
| | - Saloni Krishnan
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford, OX1 3UD, UK
| | - Martina F Callaghan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK
| | - Martin I Sereno
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London, WC1H 0AP, UK.,Department of Experimental Psychology, UCL Division of Psychology and Language Sciences, 26 Bedford Way, London, WC1H 0AP, UK.,Department of Psychology, College of Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4611, USA
| | - Frederic Dick
- Department of Psychological Sciences, Birkbeck College, University of London, Malet St, London, WC1E 7HX, UK.,Birkbeck/UCL Centre for Neuroimaging, 26 Bedford Way, London, WC1H 0AP, UK
| |
Collapse
|
24
|
Maas E. Speech and nonspeech: What are we talking about? INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2017; 19:345-359. [PMID: 27701907 PMCID: PMC5380597 DOI: 10.1080/17549507.2016.1221995] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 05/29/2023]
Abstract
Understanding of the behavioural, cognitive and neural underpinnings of speech production is of interest theoretically, and is important for understanding disorders of speech production and how to assess and treat such disorders in the clinic. This paper addresses two claims about the neuromotor control of speech production: (1) speech is subserved by a distinct, specialised motor control system and (2) speech is holistic and cannot be decomposed into smaller primitives. Both claims have gained traction in recent literature, and are central to a task-dependent model of speech motor control. The purpose of this paper is to stimulate thinking about speech production, its disorders and the clinical implications of these claims. The paper poses several conceptual and empirical challenges for these claims - including the critical importance of defining speech. The emerging conclusion is that a task-dependent model is called into question as its two central claims are founded on ill-defined and inconsistently applied concepts. The paper concludes with discussion of methodological and clinical implications, including the potential utility of diadochokinetic (DDK) tasks in assessment of motor speech disorders and the contraindication of nonspeech oral motor exercises to improve speech function.
Collapse
Affiliation(s)
- Edwin Maas
- a Department of Communication Sciences and Disorders , Temple University , Philadelphia , PA , USA
| |
Collapse
|
25
|
Metzger FL, Auer T, Helms G, Paulus W, Frahm J, Sommer M, Neef NE. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering. Brain Struct Funct 2017; 223:165-182. [PMID: 28741037 PMCID: PMC5772149 DOI: 10.1007/s00429-017-1476-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
Abstract
Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.
Collapse
Affiliation(s)
- F Luise Metzger
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Tibor Auer
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.,MRC Cognition and Brain Sciences Unit, Cambridge, UK.,Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Gunther Helms
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany
| | - Nicole E Neef
- Department of Clinical Neurophysiology, Georg August University, Göttingen, Germany. .,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.
| |
Collapse
|
26
|
Dissociating oral motor capabilities: Evidence from patients with movement disorders. Neuropsychologia 2017; 95:40-53. [DOI: 10.1016/j.neuropsychologia.2016.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
|
27
|
Structural Organization of the Laryngeal Motor Cortical Network and Its Implication for Evolution of Speech Production. J Neurosci 2016; 36:4170-81. [PMID: 27076417 DOI: 10.1523/jneurosci.3914-15.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/28/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. SIGNIFICANCE STATEMENT The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production.
Collapse
|
28
|
Bzdok D, Hartwigsen G, Reid A, Laird AR, Fox PT, Eickhoff SB. Left inferior parietal lobe engagement in social cognition and language. Neurosci Biobehav Rev 2016; 68:319-334. [PMID: 27241201 PMCID: PMC5441272 DOI: 10.1016/j.neubiorev.2016.02.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
Social cognition and language are two core features of the human species. Despite distributed recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of topographical convergence. The present study quantitatively summarizes hundreds of neuroimaging studies on social cognition and language. Using connectivity-based parcellation on a meta-analytically defined volume of interest (VOI), regional coactivation patterns within this VOI allowed identifying distinct subregions. Across parcellation solutions, two clusters emerged consistently in rostro-ventral and caudo-ventral aspects of the parietal VOI. Both clusters were functionally significantly associated with social-cognitive and language processing. In particular, the rostro-ventral cluster was associated with lower-level processing facets, while the caudo-ventral cluster was associated with higher-level processing facets in both mental capacities. Contrarily, in the (less stable) dorsal parietal VOI, all clusters reflected computation of general-purpose processes, such as working memory and matching tasks, that are frequently co-recruited by social or language processes. Our results hence favour a rostro-caudal distinction of lower- versus higher-level processes underlying social cognition and language in the left inferior parietal lobe.
Collapse
Affiliation(s)
- Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA, Translational Brain Medicine, Aachen, Germany; Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany; Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Gesa Hartwigsen
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Andrew Reid
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Angela R Laird
- Department of Physics, Florida International University, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
29
|
Tremblay P, Deschamps I, Baroni M, Hasson U. Neural sensitivity to syllable frequency and mutual information in speech perception and production. Neuroimage 2016; 136:106-21. [PMID: 27184201 DOI: 10.1016/j.neuroimage.2016.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/31/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022] Open
Abstract
Many factors affect our ability to decode the speech signal, including its quality, the complexity of the elements that compose it, as well as their frequency of occurrence and co-occurrence in a language. Syllable frequency effects have been described in the behavioral literature, including facilitatory effects during speech production and inhibitory effects during word recognition, but the neural mechanisms underlying these effects remain largely unknown. The objective of this study was to examine, using functional neuroimaging, the neurobiological correlates of three different distributional statistics in simple 2-syllable nonwords: the frequency of the first and second syllables, and the mutual information between the syllables. We examined these statistics during nonword perception and production using a powerful single-trial analytical approach. We found that repetition accuracy was higher for nonwords in which the frequency of the first syllable was high. In addition, brain responses to distributional statistics were widespread and almost exclusively cortical. Importantly, brain activity was modulated in a distinct manner for each statistic, with the strongest facilitatory effects associated with the frequency of the first syllable and mutual information. These findings show that distributional statistics modulate nonword perception and production. We discuss the common and unique impact of each distributional statistic on brain activity, as well as task differences.
Collapse
Affiliation(s)
- Pascale Tremblay
- Université Laval, Département de Réadaptation, Québec City, QC, Canada; Centre de Recherche de l'Institut Universitaire en santé mentale de Québec (CRIUSMQ), Québec City, QC, Canada.
| | - Isabelle Deschamps
- Université Laval, Département de Réadaptation, Québec City, QC, Canada; Centre de Recherche de l'Institut Universitaire en santé mentale de Québec (CRIUSMQ), Québec City, QC, Canada
| | - Marco Baroni
- Center for Mind and Brain Sciences (CIMeC), Università Degli Studi di Trento, Via delle Regole, 101, I-38060 Mattarello, TN, Italy
| | - Uri Hasson
- Center for Mind and Brain Sciences (CIMeC), Università Degli Studi di Trento, Via delle Regole, 101, I-38060 Mattarello, TN, Italy
| |
Collapse
|
30
|
Abstract
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and be more integrative. For voice production, a separation of the nonhuman vocalization system from the human learned voice production system has been posited based primarily on studies of nonhuman primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production have shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech involve a common integrative system. However, recent studies of nonhuman primates have provided evidence that some cortical activity vocalization and cortical changes occur with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and nonhuman primates.
Collapse
|
31
|
Belyk M, Pfordresher PQ, Liotti M, Brown S. The Neural Basis of Vocal Pitch Imitation in Humans. J Cogn Neurosci 2015; 28:621-35. [PMID: 26696298 DOI: 10.1162/jocn_a_00914] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Vocal imitation is a phenotype that is unique to humans among all primate species, and so an understanding of its neural basis is critical in explaining the emergence of both speech and song in human evolution. Two principal neural models of vocal imitation have emerged from a consideration of nonhuman animals. One hypothesis suggests that putative mirror neurons in the inferior frontal gyrus pars opercularis of Broca's area may be important for imitation. An alternative hypothesis derived from the study of songbirds suggests that the corticostriate motor pathway performs sensorimotor processes that are specific to vocal imitation. Using fMRI with a sparse event-related sampling design, we investigated the neural basis of vocal imitation in humans by comparing imitative vocal production of pitch sequences with both nonimitative vocal production and pitch discrimination. The strongest difference between these tasks was found in the putamen bilaterally, providing a striking parallel to the role of the analogous region in songbirds. Other areas preferentially activated during imitation included the orofacial motor cortex, Rolandic operculum, and SMA, which together outline the corticostriate motor loop. No differences were seen in the inferior frontal gyrus. The corticostriate system thus appears to be the central pathway for vocal imitation in humans, as predicted from an analogy with songbirds.
Collapse
|
32
|
Kent RD. Nonspeech Oral Movements and Oral Motor Disorders: A Narrative Review. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2015; 24:763-89. [PMID: 26126128 PMCID: PMC4698470 DOI: 10.1044/2015_ajslp-14-0179] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/02/2015] [Accepted: 06/13/2015] [Indexed: 05/25/2023]
Abstract
PURPOSE Speech and other oral functions such as swallowing have been compared and contrasted with oral behaviors variously labeled quasispeech, paraspeech, speechlike, and nonspeech, all of which overlap to some degree in neural control, muscles deployed, and movements performed. Efforts to understand the relationships among these behaviors are hindered by the lack of explicit and widely accepted definitions. This review article offers definitions and taxonomies for nonspeech oral movements and for diverse speaking tasks, both overt and covert. METHOD Review of the literature included searches of Medline, Google Scholar, HighWire Press, and various online sources. Search terms pertained to speech, quasispeech, paraspeech, speechlike, and nonspeech oral movements. Searches also were carried out for associated terms in oral biology, craniofacial physiology, and motor control. RESULTS AND CONCLUSIONS Nonspeech movements have a broad spectrum of clinical applications, including developmental speech and language disorders, motor speech disorders, feeding and swallowing difficulties, obstructive sleep apnea syndrome, trismus, and tardive stereotypies. The role and benefit of nonspeech oral movements are controversial in many oral motor disorders. It is argued that the clinical value of these movements can be elucidated through careful definitions and task descriptions such as those proposed in this review article.
Collapse
Affiliation(s)
- Ray D. Kent
- Waisman Center, University of Wisconsin–Madison
| |
Collapse
|
33
|
Cummine J, Chouinard B, Szepesvari E, Georgiou G. An examination of the rapid automatized naming–reading relationship using functional magnetic resonance imaging. Neuroscience 2015; 305:49-66. [DOI: 10.1016/j.neuroscience.2015.07.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/13/2015] [Accepted: 07/27/2015] [Indexed: 01/18/2023]
|
34
|
Eickhoff SB, Thirion B, Varoquaux G, Bzdok D. Connectivity-based parcellation: Critique and implications. Hum Brain Mapp 2015; 36:4771-92. [PMID: 26409749 DOI: 10.1002/hbm.22933] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Regional specialization and functional integration are often viewed as two fundamental principles of human brain organization. They are closely intertwined because each functionally specialized brain region is probably characterized by a distinct set of long-range connections. This notion has prompted the quickly developing family of connectivity-based parcellation (CBP) methods in neuroimaging research. CBP assumes that there is a latent structure of parcels in a region of interest (ROI). First, connectivity strengths are computed to other parts of the brain for each voxel/vertex within the ROI. These features are then used to identify functionally distinct groups of ROI voxels/vertices. CBP enjoys increasing popularity for the in-vivo mapping of regional specialization in the human brain. Due to the requirements of different applications and datasets, CBP has diverged into a heterogeneous family of methods. This broad overview critically discusses the current state as well as the commonalities and idiosyncrasies of the main CBP methods. We target frequent concerns faced by novices and veterans to provide a reference for the investigation and review of CBP studies.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut Für Neurowissenschaften Und Medizin (INM-1), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institut Für Klinische Neurowissenschaften Und Medizinische Psychologie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, 40225, Germany
| | - Bertrand Thirion
- Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Gaël Varoquaux
- Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Danilo Bzdok
- Institut Für Neurowissenschaften Und Medizin (INM-1), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institut Für Klinische Neurowissenschaften Und Medizinische Psychologie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, 40225, Germany.,Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France.,Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH, 52074, Aachen, Germany
| |
Collapse
|
35
|
Abstract
In the past few years, several studies have been directed to understanding the complexity of functional interactions between different brain regions during various human behaviors. Among these, neuroimaging research installed the notion that speech and language require an orchestration of brain regions for comprehension, planning, and integration of a heard sound with a spoken word. However, these studies have been largely limited to mapping the neural correlates of separate speech elements and examining distinct cortical or subcortical circuits involved in different aspects of speech control. As a result, the complexity of the brain network machinery controlling speech and language remained largely unknown. Using graph theoretical analysis of functional MRI (fMRI) data in healthy subjects, we quantified the large-scale speech network topology by constructing functional brain networks of increasing hierarchy from the resting state to motor output of meaningless syllables to complex production of real-life speech as well as compared to non-speech-related sequential finger tapping and pure tone discrimination networks. We identified a segregated network of highly connected local neural communities (hubs) in the primary sensorimotor and parietal regions, which formed a commonly shared core hub network across the examined conditions, with the left area 4p playing an important role in speech network organization. These sensorimotor core hubs exhibited features of flexible hubs based on their participation in several functional domains across different networks and ability to adaptively switch long-range functional connectivity depending on task content, resulting in a distinct community structure of each examined network. Specifically, compared to other tasks, speech production was characterized by the formation of six distinct neural communities with specialized recruitment of the prefrontal cortex, insula, putamen, and thalamus, which collectively forged the formation of the functional speech connectome. In addition, the observed capacity of the primary sensorimotor cortex to exhibit operational heterogeneity challenged the established concept of unimodality of this region. This study uses graph theory to analyze functional MRI data recorded from speakers as they produce single syllables or whole sentences, revealing the complexity of the brain network machinery that controls speech and language. Speech production is a complex process that requires the orchestration of multiple brain regions. However, our current understanding of the large-scale neural architecture during speaking remains scant, as research has mostly focused on examining distinct brain circuits involved in distinct aspects of speech control. Here, we performed graph theoretical analyses of functional MRI data acquired from healthy subjects in order to reveal how brain regions relate to one another while speaking. We constructed functional brain networks of increasing hierarchy from rest to simple vocal motor output to the production of real-life speech, and compared these to nonspeech control tasks such as finger tapping and pure tone discrimination. We discovered a specialized network of densely connected sensorimotor regions, which formed a common processing core across all conditions. Specifically, the primary sensorimotor cortex participated in multiple functional domains across different networks and modulated long-range connections depending on task content, which challenges the established concept of low-order unimodal function of this region. Compared to other tasks, speech production was characterized by the formation of six distinct neural communities with specialized recruitment of the prefrontal cortex, insula, putamen, and thalamus, which collectively formed the functional speech connectome.
Collapse
Affiliation(s)
- Stefan Fuertinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Barry Horwitz
- Brain Imaging and Modeling Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB. Subspecialization in the human posterior medial cortex. Neuroimage 2014; 106:55-71. [PMID: 25462801 DOI: 10.1016/j.neuroimage.2014.11.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-unconstrained but not task-constrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications.
Collapse
Affiliation(s)
- Danilo Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adrian Heeger
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Brent A Vogt
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Cingulum NeuroSciences Institute and Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
37
|
Kronschnabel J, Brem S, Maurer U, Brandeis D. The level of audiovisual print-speech integration deficits in dyslexia. Neuropsychologia 2014; 62:245-61. [PMID: 25084224 DOI: 10.1016/j.neuropsychologia.2014.07.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 03/28/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023]
Abstract
The classical phonological deficit account of dyslexia is increasingly linked to impairments in grapho-phonological conversion, and to dysfunctions in superior temporal regions associated with audiovisual integration. The present study investigates mechanisms of audiovisual integration in typical and impaired readers at the critical developmental stage of adolescence. Congruent and incongruent audiovisual as well as unimodal (visual only and auditory only) material was presented. Audiovisual presentations were single letters and three-letter (consonant-vowel-consonant) stimuli accompanied by matching or mismatching speech sounds. Three-letter stimuli exhibited fast phonetic transitions as in real-life language processing and reading. Congruency effects, i.e. different brain responses to congruent and incongruent stimuli were taken as an indicator of audiovisual integration at a phonetic level (grapho-phonological conversion). Comparisons of unimodal and audiovisual stimuli revealed basic, more sensory aspects of audiovisual integration. By means of these two criteria of audiovisual integration, the generalizability of audiovisual deficits in dyslexia was tested. Moreover, it was expected that the more naturalistic three-letter stimuli are superior to single letters in revealing group differences. Electrophysiological and hemodynamic (EEG and fMRI) data were acquired simultaneously in a simple target detection task. Applying the same statistical models to event-related EEG potentials and fMRI responses allowed comparing the effects detected by the two techniques at a descriptive level. Group differences in congruency effects (congruent against incongruent) were observed in regions involved in grapho-phonological processing, including the left inferior frontal and angular gyri and the inferotemporal cortex. Importantly, such differences also emerged in superior temporal key regions. Three-letter stimuli revealed stronger group differences than single letters. No significant differences in basic measures of audiovisual integration emerged. Convergence of hemodynamic and electrophysiological signals appeared to be limited and mainly occurred for highly significant and large effects in visual cortices. The findings suggest efficient superior temporal tuning to audiovisual congruency in controls. In impaired readers, however, grapho-phonological conversion is effortful and inefficient, although basic audiovisual mechanisms seem intact. This unprecedented demonstration of audiovisual deficits in adolescent dyslexics provides critical evidence that the phonological deficit might be explained by impaired audiovisual integration at a phonetic level, especially for naturalistic and word-like stimulation.
Collapse
Affiliation(s)
- Jens Kronschnabel
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Silvia Brem
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland
| | - Urs Maurer
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Daniel Brandeis
- University Clinics of Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
38
|
Spann MN, Bansal R, Rosen TS, Peterson BS. Morphological features of the neonatal brain support development of subsequent cognitive, language, and motor abilities. Hum Brain Mapp 2014; 35:4459-74. [PMID: 24615961 DOI: 10.1002/hbm.22487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 01/11/2023] Open
Abstract
Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults.
Collapse
Affiliation(s)
- Marisa N Spann
- Center for Developmental Neuropsychiatry in the Department of Psychiatry, College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, New York
| | | | | | | |
Collapse
|
39
|
Ito T, Johns AR, Ostry DJ. Left lateralized enhancement of orofacial somatosensory processing due to speech sounds. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2013; 56:S1875-S1881. [PMID: 24687443 PMCID: PMC4228692 DOI: 10.1044/1092-4388(2013/12-0226)] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory inputs. The authors examined whether speech sounds modify orofacial somatosensory cortical potentials that were elicited using facial skin perturbations. METHOD Somatosensory event-related potentials in EEG were recorded in 3 background sound conditions (pink noise, speech sounds, and nonspeech sounds) and also in a silent condition. Facial skin deformations that are similar in timing and duration to those experienced in speech production were used for somatosensory stimulation. RESULTS The authors found that speech sounds reliably enhanced the first negative peak of the somatosensory event-related potential when compared with the other 3 sound conditions. The enhancement was evident at electrode locations above the left motor and premotor area of the orofacial system. The result indicates that speech sounds interact with somatosensory cortical processes that are produced by speech-production-like patterns of facial skin stretch. CONCLUSION Neural circuits in the left hemisphere, presumably in left motor and premotor cortex, may play a prominent role in the interaction between auditory inputs and speech-relevant somatosensory processing.
Collapse
Affiliation(s)
| | - Alexis R. Johns
- Haskins Laboratories, New Haven, CT
- University of Connecticut, Storrs
| | - David J. Ostry
- Haskins Laboratories, New Haven, CT
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Lévêque Y, Schön D. Listening to the human voice alters sensorimotor brain rhythms. PLoS One 2013; 8:e80659. [PMID: 24265836 PMCID: PMC3827177 DOI: 10.1371/journal.pone.0080659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/05/2013] [Indexed: 11/19/2022] Open
Abstract
While neuronal desynchronization in the mu (≈ 10 Hz) and beta (≈ 20 Hz) frequency bands has long been known to be an EEG index of sensorimotor activity, this method has rarely been employed to study auditory perception. In the present study, we measured mu and beta event-related desynchronisation (ERD) while participants were asked to listen to vocal and triangle-wave melodies and to sing them back. Results showed that mu and beta ERD began earlier and were stronger when listening to vocal compared to non-vocal melodies. Interestingly, this humanness effect was stronger for less accurate singers. These results show that voice perception favors an early involvement of motor representations.
Collapse
Affiliation(s)
- Yohana Lévêque
- Laboratoire Parole et Langage, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Aix-en-Provence, France
- * E-mail:
| | - Daniele Schön
- Institut de Neurosciences Cognitives de la Méditerranée, Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université, Marseille, France
| |
Collapse
|
41
|
Lévêque Y, Muggleton N, Stewart L, Schön D. Involvement of the larynx motor area in singing-voice perception: a TMS study(†). Front Psychol 2013; 4:418. [PMID: 23874314 PMCID: PMC3708144 DOI: 10.3389/fpsyg.2013.00418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/19/2013] [Indexed: 11/13/2022] Open
Abstract
Recent evidence has reported that the motor system has a role in speech or emotional vocalization discrimination. In the present study we investigated the involvement of the larynx motor representation in singing perception. Twenty-one non-musicians listened to short tones sung by a human voice or played by a machine and performed a categorization task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over the right larynx premotor area or on the vertex and the test administered again. Overall, reaction times (RTs) were shorter after stimulation over both sites. Nonetheless and most importantly, RTs became longer for sung than for "machine" sounds after stimulation on the larynx area. This effect suggests that the right premotor region is functionally involved in singing perception and that sound humanness modulates motor resonance.
Collapse
Affiliation(s)
- Yohana Lévêque
- Laboratoire Parole et Langage, Centre National de la Recherche Scientifique and Aix-Marseille Université Aix-en-Provence, France
| | | | | | | |
Collapse
|
42
|
Clos M, Amunts K, Laird AR, Fox PT, Eickhoff SB. Tackling the multifunctional nature of Broca's region meta-analytically: co-activation-based parcellation of area 44. Neuroimage 2013; 83:174-88. [PMID: 23791915 DOI: 10.1016/j.neuroimage.2013.06.041] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/12/2013] [Accepted: 06/11/2013] [Indexed: 12/30/2022] Open
Abstract
Cytoarchitectonic area 44 of Broca's region in the left inferior frontal gyrus is known to be involved in several functional domains including language, action and music processing. We investigated whether this functional heterogeneity is reflected in distinct modules within cytoarchitectonically defined left area 44 using meta-analytic connectivity-based parcellation (CBP). This method relies on identifying the whole-brain co-activation pattern for each area 44 voxel across a wide range of functional neuroimaging experiments and subsequently grouping the voxels into distinct clusters based on the similarity of their co-activation patterns. This CBP analysis revealed that five separate clusters exist within left area 44. A post-hoc functional characterization and functional connectivity analysis of these five clusters was then performed. The two posterior clusters were primarily associated with action processes, in particular with phonology and overt speech (posterior-dorsal cluster) and with rhythmic sequencing (posterior-ventral cluster). The three anterior clusters were primarily associated with language and cognition, in particular with working memory (anterior-dorsal cluster), with detection of meaning (anterior-ventral cluster) and with task switching/cognitive control (inferior frontal junction cluster). These five clusters furthermore showed specific and distinct connectivity patterns. The results demonstrate that left area 44 is heterogeneous, thus supporting anatomical data on the molecular architecture of this region, and provide a basis for more specific interpretations of activations localized in area 44.
Collapse
Affiliation(s)
- Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany.
| | | | | | | | | |
Collapse
|
43
|
Cognitive-motor brain-machine interfaces. ACTA ACUST UNITED AC 2013; 108:38-44. [PMID: 23774120 DOI: 10.1016/j.jphysparis.2013.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/27/2013] [Accepted: 05/23/2013] [Indexed: 11/21/2022]
Abstract
Brain-machine interfaces (BMIs) open new horizons for the treatment of paralyzed persons, giving hope for the artificial restoration of lost physiological functions. Whereas BMI development has mainly focused on motor rehabilitation, recent studies have suggested that higher cognitive functions can also be deciphered from brain activity, bypassing low level planning and execution functions, and replacing them by computer-controlled effectors. This review describes the new generation of cognitive-motor BMIs, focusing on three BMI types: By outlining recent progress in developing these BMI types, we aim to provide a unified view of contemporary research towards the replacement of behavioral outputs of cognitive processes by direct interaction with the brain.
Collapse
|
44
|
Ziegler W, Ackermann H. Neuromotor Speech Impairment: It's All in the Talking. Folia Phoniatr Logop 2013; 65:55-67. [DOI: 10.1159/000353855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Abstract
Recent studies have provided evidence for sensory-motor adaptive changes and action goal coding of visually guided manual action in premotor and posterior parietal cortices. To extend these results to orofacial actions, devoid of auditory and visual feedback, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging during repeated intransitive and silent lip, jaw and tongue movements. In the motor domain, this paradigm refers to decreased activity in specific neural populations due to repeated motor acts and has been proposed to reflect sensory-motor adaptation. Orofacial movements activated a set of largely overlapping, common brain areas forming a core neural network classically involved in orofacial motor control. Crucially, suppressed neural responses during repeated orofacial actions were specifically observed in the left ventral premotor cortex, the intraparietal sulcus, the inferior parietal lobule and the superior parietal lobule. Since no visual and auditory feedback were provided during orofacial actions, these results suggest somatosensory-motor adaptive control of intransitive and silent orofacial actions in these premotor and parietal regions.
Collapse
|
46
|
Grabski K, Lamalle L, Vilain C, Schwartz JL, Vallée N, Tropres I, Baciu M, Le Bas JF, Sato M. Functional MRI assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements. Hum Brain Mapp 2012; 33:2306-21. [PMID: 21826760 PMCID: PMC6870116 DOI: 10.1002/hbm.21363] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/01/2011] [Accepted: 04/26/2011] [Indexed: 12/23/2022] Open
Abstract
Compared with complex coordinated orofacial actions, few neuroimaging studies have attempted to determine the shared and distinct neural substrates of supralaryngeal and laryngeal articulatory movements when performed independently. To determine cortical and subcortical regions associated with supralaryngeal motor control, participants produced lip, tongue and jaw movements while undergoing functional magnetic resonance imaging (fMRI). For laryngeal motor activity, participants produced the steady-state/i/vowel. A sparse temporal sampling acquisition method was used to minimize movement-related artifacts. Three main findings were observed. First, the four tasks activated a set of largely overlapping, common brain areas: the sensorimotor and premotor cortices, the right inferior frontal gyrus, the supplementary motor area, the left parietal operculum and the adjacent inferior parietal lobule, the basal ganglia and the cerebellum. Second, differences between tasks were restricted to the bilateral auditory cortices and to the left ventrolateral sensorimotor cortex, with greater signal intensity for vowel vocalization. Finally, a dorso-ventral somatotopic organization of lip, jaw, vocalic/laryngeal, and tongue movements was observed within the primary motor and somatosensory cortices using individual region-of-interest (ROI) analyses. These results provide evidence for a core neural network involved in laryngeal and supralaryngeal motor control and further refine the sensorimotor somatotopic organization of orofacial articulators.
Collapse
Affiliation(s)
- Krystyna Grabski
- Gipsa-Lab, Département Parole & Cognition, UMR CNRS 5216, Grenoble Universités, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter. Cortex 2012; 49:2151-61. [PMID: 23140891 DOI: 10.1016/j.cortex.2012.08.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 06/23/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022]
Abstract
It is well documented that neuroanatomical differences exist between adults who stutter and their fluently speaking peers. Specifically, adults who stutter have been found to have more grey matter volume (GMV) in speech relevant regions including inferior frontal gyrus, insula and superior temporal gyrus (Beal et al., 2007; Song et al., 2007). Despite stuttering having its onset in childhood only one study has investigated the neuroanatomical differences between children who do and do not stutter. Chang et al. (2008) reported children who stutter had less GMV in the bilateral inferior frontal gyri and middle temporal gyrus relative to fluently speaking children. Thus it appears that children who stutter present with unique neuroanatomical abnormalities as compared to those of adults who stutter. In order to better understand the neuroanatomical correlates of stuttering earlier in its development, near the time of onset, we used voxel-based morphometry to examine volumetric differences between 11 children who stutter and 11 fluent children. Children who stutter had less GMV in the bilateral inferior frontal gyri and left putamen but more GMV in right Rolandic operculum and superior temporal gyrus relative to fluent children. Children who stutter also had less white matter volume bilaterally in the forceps minor of the corpus callosum. We discuss our findings of widespread anatomic abnormalities throughout the cortical network for speech motor control within the context of the speech motor skill limitations identified in people who stutter (Namasivayam and van Lieshout, 2008; Smits-Bandstra et al., 2006).
Collapse
|
48
|
Tsai CG, Fan LY, Lee SH, Chen JH, Chou TL. Specialization of the posterior temporal lobes for audio-motor processing - evidence from a functional magnetic resonance imaging study of skilled drummers. Eur J Neurosci 2012; 35:634-43. [PMID: 22330101 DOI: 10.1111/j.1460-9568.2012.07996.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sounds of hammering or clapping can evoke simulation of the arm movements that have been previously associated with those sounds. This audio-motor transformation also occurs at the sequential level and plays a role in speech and music processing. The present study aimed to demonstrate how the activation pattern of the sensorimotor network was modulated by the sequential nature of the auditory input and effector. Fifteen skilled drum set players participated in our functional magnetic resonance imaging study. Prior to the scan, these drummers practiced six drumming grooves. During the scan, there were four rehearsal conditions: covertly playing the drum set under the guidance of its randomly-presented isolated stroke sounds, covertly playing the drum set along with the sounds of learned percussion music, covertly reciting the syllable representation along with this music, and covertly reciting along with the syllable representation of this music. We found greater activity in the bilateral posterior middle temporal gyri for active listening to isolated drum strokes than for active listening to learned drum music. These regions might mediate the one-to-one mappings from sounds to limb movements. Compared with subvocal rehearsals along with learned drum music, covert rehearsals of limb movements along with the same music additionally activated a lateral subregion of the left posterior planum temporale. Our results illustrate a functional specialization of the posterior temporal lobes for audio-motor processing.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, Center for Neurobiology and Cognitive Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
49
|
Lévêque Y, Giovanni A, Schön D. Effects of humanness and gender in voice processing. LOGOP PHONIATR VOCO 2012; 37:137-43. [PMID: 22587690 DOI: 10.3109/14015439.2012.687763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
When we observe a producible human movement, the brain performs a specific perception-action matching process, which possibly facilitates perceptual processing. In this work, we wanted to study whether the producibility of a sound affects the speed at which it is categorized. Participants were presented with isolated sounds, either sung by a natural male or female voice ('producible') or distorted by saturation ('non-producible'), and had to categorize them as produced by a voice or by a machine. We analyzed reaction time variations as a function of the gender and humanness of the voice. Results corroborate the existence of a 'human bias' in auditory perception, and suggest a processing speed asymmetry between natural female and male voices.
Collapse
Affiliation(s)
- Yohana Lévêque
- Laboratoire Parole et Langage, CNRS & Aix-Marseille University, 5 avenue Pasteur, Aix-en-Provence 13604, France.
| | | | | |
Collapse
|
50
|
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012; 62:816-47. [PMID: 22584224 PMCID: PMC3398395 DOI: 10.1016/j.neuroimage.2012.04.062] [Citation(s) in RCA: 1298] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023] Open
Abstract
The anatomy of language has been investigated with PET or fMRI for more than 20 years. Here I attempt to provide an overview of the brain areas associated with heard speech, speech production and reading. The conclusions of many hundreds of studies were considered, grouped according to the type of processing, and reported in the order that they were published. Many findings have been replicated time and time again leading to some consistent and undisputable conclusions. These are summarised in an anatomical model that indicates the location of the language areas and the most consistent functions that have been assigned to them. The implications for cognitive models of language processing are also considered. In particular, a distinction can be made between processes that are localized to specific structures (e.g. sensory and motor processing) and processes where specialisation arises in the distributed pattern of activation over many different areas that each participate in multiple functions. For example, phonological processing of heard speech is supported by the functional integration of auditory processing and articulation; and orthographic processing is supported by the functional integration of visual processing, articulation and semantics. Future studies will undoubtedly be able to improve the spatial precision with which functional regions can be dissociated but the greatest challenge will be to understand how different brain regions interact with one another in their attempts to comprehend and produce language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, UCL, London WC1N 3BG, UK.
| |
Collapse
|