1
|
Sun M, Xue W, Meng H, Sun X, Lu T, Yue W, Wang L, Zhang D, Li J. Dentate Gyrus Morphogenesis is Regulated by an Autism Risk Gene Trio Function in Granule Cells. Neurosci Bull 2024:10.1007/s12264-024-01241-y. [PMID: 38907786 DOI: 10.1007/s12264-024-01241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/17/2024] [Indexed: 06/24/2024] Open
Abstract
Autism Spectrum Disorders (ASDs) are reported as a group of neurodevelopmental disorders. The structural changes of brain regions including the hippocampus were widely reported in autistic patients and mouse models with dysfunction of ASD risk genes, but the underlying mechanisms are not fully understood. Here, we report that deletion of Trio, a high-susceptibility gene of ASDs, causes a postnatal dentate gyrus (DG) hypoplasia with a zigzagged suprapyramidal blade, and the Trio-deficient mice display autism-like behaviors. The impaired morphogenesis of DG is mainly caused by disturbing the postnatal distribution of postmitotic granule cells (GCs), which further results in a migration deficit of neural progenitors. Furthermore, we reveal that Trio plays different roles in various excitatory neural cells by spatial transcriptomic sequencing, especially the role of regulating the migration of postmitotic GCs. In summary, our findings provide evidence of cellular mechanisms that Trio is involved in postnatal DG morphogenesis.
Collapse
Affiliation(s)
- Mengwen Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | | | - Hu Meng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China
- Changping Laboratory, Beijing, 102299, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing, 100083, China.
- Changping Laboratory, Beijing, 102299, China.
| |
Collapse
|
2
|
Ge R, Ching CRK, Bassett AS, Kushan L, Antshel KM, van Amelsvoort T, Bakker G, Butcher NJ, Campbell LE, Chow EWC, Craig M, Crossley NA, Cunningham A, Daly E, Doherty JL, Durdle CA, Emanuel BS, Fiksinski A, Forsyth JK, Fremont W, Goodrich‐Hunsaker NJ, Gudbrandsen M, Gur RE, Jalbrzikowski M, Kates WR, Lin A, Linden DEJ, McCabe KL, McDonald‐McGinn D, Moss H, Murphy DG, Murphy KC, Owen MJ, Villalon‐Reina JE, Repetto GM, Roalf DR, Ruparel K, Schmitt JE, Schuite‐Koops S, Angkustsiri K, Sun D, Vajdi A, van den Bree M, Vorstman J, Thompson PM, Vila‐Rodriguez F, Bearden CE. Source-based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome. Hum Brain Mapp 2024; 45:e26553. [PMID: 38224541 PMCID: PMC10785196 DOI: 10.1002/hbm.26553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.
Collapse
Affiliation(s)
- Ruiyang Ge
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- The Dalglish Family 22q Clinic, Department of Psychiatry and Division of Cardiology, Department of Medicine, and Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | | | | | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtNetherlands
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick ChildrenTorontoOntarioCanada
| | | | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Michael Craig
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- National Autism UnitBethlem Royal HospitalBeckenhamUK
| | - Nicolas A. Crossley
- Department of PsychiatryPontificia Universidad Catolica de ChileSantiagoChile
| | - Adam Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Courtney A. Durdle
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
- Department of Psychological and Brain SciencesUC Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Beverly S. Emanuel
- Division of Human GeneticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ania Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNSMaastricht UniversityMaastrichtNetherlands
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences State University of New YorkUpstate Medical University SyracuseNew YorkUSA
| | - Naomi J. Goodrich‐Hunsaker
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Maria Gudbrandsen
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- Centre for Research in Psychological Wellbeing (CREW), School of PsychologyUniversity of RoehamptonLondonUK
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of MedicineUniversity of Pennsylvania and Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Maria Jalbrzikowski
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences State University of New YorkUpstate Medical University SyracuseNew YorkUSA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Graduate Interdepartmental Program in NeuroscienceUCLA School of MedicineLos AngelesCaliforniaUSA
| | - David E. J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Kathryn L. McCabe
- School of PsychologyUniversity of NewcastleCallaghanAustralia
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
| | - Donna McDonald‐McGinn
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- 22q and You Center, Clinical Genetics Center, and Division of Human GeneticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Human Biology and Medical GeneticsSapienza UniversityRomeItaly
| | - Hayley Moss
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Declan G. Murphy
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic GroupSouth London and Maudsley Foundation NHS TrustLondonUK
| | - Kieran C. Murphy
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | | | - Gabriela M. Repetto
- Centro de Genetica y Genomica, Facultad de MedicinaClinica Alemana Universidad del DesarrolloSantiagoChile
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kosha Ruparel
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - J. Eric Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sanne Schuite‐Koops
- Department of PsychiatryUniversity Medical Center Groningen, Rijksuniversiteit GroningenGroningenNetherlands
| | | | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Kaiser Permanente Bernard J. Tyson School of Medicine PasadenaCaliforniaUSA
| | - Marianne van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Jacob Vorstman
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Program in Genetics and Genome Biology, Research Institute, and Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Paul M. Thompson
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics and OphthalmologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Biomedical Engineering University of British Columbia VancouverBritish ColumbiaCanada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Seitz-Holland J, Lyons M, Kushan L, Lin A, Villalon-Reina JE, Cho KIK, Zhang F, Billah T, Bouix S, Kubicki M, Bearden CE, Pasternak O. Opposing white matter microstructure abnormalities in 22q11.2 deletion and duplication carriers. Transl Psychiatry 2021; 11:580. [PMID: 34759270 PMCID: PMC8581007 DOI: 10.1038/s41398-021-01703-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Deletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Monica Lyons
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Julio E Villalon-Reina
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Kang Ik Kevin Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Tashrif Billah
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Sylvain Bouix
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| |
Collapse
|
4
|
Shimizu R, Ishihara K, Kawashita E, Sago H, Yamakawa K, Mizutani KI, Akiba S. Decrease in the T-box1 gene expression in embryonic brain and adult hippocampus of down syndrome mouse models. Biochem Biophys Res Commun 2021; 535:87-92. [PMID: 33348080 DOI: 10.1016/j.bbrc.2020.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
Down syndrome (DS, Trisomy 21) is the most common genetic cause of delayed fetal brain development and postnatal intellectual disability. Although delayed fetal brain development might be involved in intellectual disability, no evidence of an association between these abnormal phenotypes has been shown. To identify molecules differentially expressed in both the prenatal forebrain and adult hippocampus of Ts1Cje mice, a mouse model of DS, we employed a transcriptomic analysis. In the present study, we conducted transcriptomic profiling of the hippocampus of adult Ts1Cje mice and compared the results with the previously obtained transcriptomic profile of the prenatal forebrain at embryonic day 14.5. Results showed that the Tbx1 mRNA expression was decreased at both life stages. In addition, the decreased expression of Tbx1 mRNA was confirmed in other DS mouse models, Dp(16)1Yey/+ and Ts1Rhr mice, which carry longer and shorter trisomic regions, respectively. Taken together, these findings suggest that Tbx1 may link the delayed fetal brain development and intellectual disability in DS.
Collapse
Affiliation(s)
- Ryohei Shimizu
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan.
| | - Eri Kawashita
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, 650-8586, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, 607-8414, Japan
| |
Collapse
|
5
|
Rogdaki M, Gudbrandsen M, McCutcheon RA, Blackmore CE, Brugger S, Ecker C, Craig MC, Daly E, Murphy DGM, Howes O. Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Mol Psychiatry 2020; 25:1704-1717. [PMID: 31925327 PMCID: PMC7387301 DOI: 10.1038/s41380-019-0638-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/23/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2DS) is a neurodevelopmental disorder associated with a number of volumetric brain abnormalities. The syndrome is also associated with an increased risk for neuropsychiatric disorders including schizophrenia and autism spectrum disorder. An earlier meta-analysis showed reduced grey and white matter volumes in individuals with 22q11.2DS. Since this analysis was conducted, the number of studies has increased markedly, permitting more precise estimates of effects and more regions to be examined. Although 22q11.2DS is clinically heterogeneous, it is not known to what extent this heterogeneity is mirrored in neuroanatomy. The aim of this study was thus to investigate differences in mean brain volume and structural variability within regions, between 22q11.2DS and typically developing controls. We examined studies that reported measures of brain volume using MRI in PubMed, Web of Science, Scopus and PsycINFO from inception to 1 May 2019. Data were extracted from studies in order to calculate effect sizes representing case-control difference in mean volume, and in the variability of volume (as measured using the log variability ratio (lnVR) and coefficient of variation ratio (CVR)). We found significant overall decreases in mean volume in 22q11.2DS compared with control for: total brain (g = -0.96; p < 0.001); total grey matter (g = -0.81, p < 0.001); and total white matter (g = -0.81; p < 0.001). There was also a significant overall reduction of mean volume in 22q11.2DS subjects compared with controls in frontal lobe (g = -0.47; p < 0.001), temporal lobe (g = -0.84; p < 0.001), parietal lobe (g = -0.73; p = 0.053), cerebellum (g = -1.25; p < 0.001) and hippocampus (g = -0.90; p < 0.001). Significantly increased variability in 22q11.2DS individuals compared with controls was found only for the hippocampus (VR, 1.14; p = 0.036; CVR, 1.30; p < 0.001), and lateral ventricles (VR, 1.56; p = 0.004). The results support the notion that structural abnormalities in 22q11.2DS and schizophrenia are convergent, and also to some degree with findings in autism spectrum disorder. Finally, the increased variability seen in the hippocampus in 22q11.2DS may underlie some of the heterogeneity observed in the neuropsychiatric phenotype.
Collapse
Affiliation(s)
- Maria Rogdaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, W12 0NN, UK.
| | - Maria Gudbrandsen
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK
| | - Robert A McCutcheon
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK
| | - Charlotte E Blackmore
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK
| | - Stefan Brugger
- 0000 0001 2113 8111grid.7445.2Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, W12 0NN UK ,0000 0001 0807 5670grid.5600.3Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, Wales CF24 4HQ UK ,0000000121901201grid.83440.3bDivision of Psychiatry, UCL, Maple House, London, W1T 7NF UK
| | - Christine Ecker
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK ,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt am Main, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Michael C Craig
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK ,0000 0001 2324 5535grid.415717.1National Autism Unit, Bethlem Royal Hospital, London, UK
| | - Eileen Daly
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK
| | - Declan G M Murphy
- 0000 0001 2322 6764grid.13097.3cDepartment of Forensic and Neurodevelopmental Sciences, and the Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, SE5 8AF UK ,0000 0001 2322 6764grid.13097.3cMRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Oliver Howes
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK ,0000 0001 2113 8111grid.7445.2Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College, London, W12 0NN UK
| |
Collapse
|
6
|
Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, Harony-Nicolas H, De Rubeis S, Drapeau E, Buxbaum JD, Hof PR. Autism spectrum disorder: neuropathology and animal models. Acta Neuropathol 2017; 134:537-566. [PMID: 28584888 PMCID: PMC5693718 DOI: 10.1007/s00401-017-1736-4] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Collapse
Affiliation(s)
- Merina Varghese
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neha Keshav
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Jacot-Descombes
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Unit of Psychiatry, Department of Children and Teenagers, University Hospitals and School of Medicine, Geneva, CH-1205, Switzerland
| | - Tahia Warda
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bridget Wicinski
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara L Dickstein
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Box 1639, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Tylee DS, Kikinis Z, Quinn TP, Antshel KM, Fremont W, Tahir MA, Zhu A, Gong X, Glatt SJ, Coman IL, Shenton ME, Kates WR, Makris N. Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study. NEUROIMAGE-CLINICAL 2017; 15:832-842. [PMID: 28761808 PMCID: PMC5522376 DOI: 10.1016/j.nicl.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic neurodevelopmental syndrome that has been studied intensively in order to understand relationships between the genetic microdeletion, brain development, cognitive function, and the emergence of psychiatric symptoms. White matter microstructural abnormalities identified using diffusion tensor imaging methods have been reported to affect a variety of neuroanatomical tracts in 22q11.2DS. In the present study, we sought to combine two discovery-based approaches: (1) white matter query language was used to parcellate the brain's white matter into tracts connecting pairs of 34, bilateral cortical regions and (2) the diffusion imaging characteristics of the resulting tracts were analyzed using a machine-learning method called support vector machine in order to optimize the selection of a set of imaging features that maximally discriminated 22q11.2DS and comparison subjects. With this unique approach, we both confirmed previously-recognized 22q11.2DS-related abnormalities in the inferior longitudinal fasciculus (ILF), and identified, for the first time, 22q11.2DS-related anomalies in the middle longitudinal fascicle and the extreme capsule, which may have been overlooked in previous, hypothesis-guided studies. We further observed that, in participants with 22q11.2DS, ILF metrics were significantly associated with positive prodromal symptoms of psychosis.
Collapse
Key Words
- (-fp), fronto-parietal aspect
- (-to), temporo-occipital aspect
- (-tp), temporo-parietal aspect
- (22q11.2DS), 22q11.2 deletion syndrome
- (AD), axial diffusivity
- (DTI), diffusion tensor imaging
- (DWI), diffusion weighted image
- (EmC), extreme capsule
- (FA), fractional anisotropy
- (FOV), field of view
- (GDS), Gordon Diagnostic Systems
- (ILF), inferior longitudinal fasciculus
- (MdLF), middle longitudinal fascicle
- (RD), radial diffusivity
- (ROI), region of interest
- (SIPS), Structured Interview for Prodromal Syndromes
- (SRS), Social Responsiveness Scale
- (STG), superior temporal gyrus
- (SVM), support vector machine
- (UKF), Unscented Kalman Filter
- (WAIS-III), Wechsler Adult Intelligence Scale – 3rd edition
- (WMQL), white matter query language
- (dTP), dorsal temporal pole
- 22q11.2 deletion syndrome
- Callosal asymmetry
- Diffusion tensor imaging
- Extreme capsule
- Inferior longitudinal fasciculus
- Machine-learning
- Middle longitudinal fascicle
- Support vector machine
- Velocardiofacial syndrome
- White matter query language
Collapse
Affiliation(s)
- Daniel S Tylee
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Thomas P Quinn
- Bioinformatics Core Research Group, Deakin University, Geelong, Victoria, Australia
| | | | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Muhammad A Tahir
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anni Zhu
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Gong
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen J Glatt
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA.
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences; SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Nikos Makris
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Flore G, Cioffi S, Bilio M, Illingworth E. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome. Cereb Cortex 2017; 27:2210-2225. [PMID: 27005988 DOI: 10.1093/cercor/bhw076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm.
Collapse
Affiliation(s)
- Gemma Flore
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Sara Cioffi
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Bio-Ker srl, c/o Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Marchesa Bilio
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy
| | - Elizabeth Illingworth
- Institute of Genetics and Biophysics "ABT", CNR, 80131 Naples, Italy.,Department of Chemistry and Biology, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
9
|
Wonkam A, Toko R, Chelo D, Tekendo-Ngongang C, Kingue S, Dahoun S. The 22q11.2 Deletion Syndrome in Congenital Heart Defects: Prevalence of Microdeletion Syndrome in Cameroon. Glob Heart 2017; 12:115-120. [PMID: 28302550 DOI: 10.1016/j.gheart.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The 22q11.2 deletion syndrome is amongst the most common microdeletion syndrome in humans. Its prevalence remains unknown in sub-Saharan Africa, and its clinical features are under-reported for people of African descent. OBJECTIVE We have investigated the prevalence of the 22q11.2 deletion syndrome in patients with congenital heart defects in Cameroon. METHODS A total of 70 of 100 cases of congenital cardiac malformation with echocardiographic evidence were examined prospectively and tested for the 22q11.2 deletion, using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. RESULTS Two of 70 patients (2.8%) were found to have 22q11.2 deletion. Both cases had conotruncal heart defects and exhibited extracardiac features of the 22q11.2 deletion syndrome that were either classical (e.g., puffy upper eyelids, bulbous tip of the nose) or less identifiable (telecanthus, hooding of eyelids and prominent nasal bridge). CONCLUSIONS The report shows that the prevalence of the 22q11.2 deletion syndrome in patients with heart malformations in Cameroon (2.8%) is similar to that of various world populations. The clinical phenotypes will contribute to the Global Atlas for dysmorphology. "Omics" technologies offer much promise in genetic/genomic screening of severe global health problems.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Ricardo Toko
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - David Chelo
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Cedrik Tekendo-Ngongang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samuel Kingue
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Sophie Dahoun
- Service of Genetic Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
Colle R, Cury C, Chupin M, Deflesselle E, Hardy P, Nasser G, Falissard B, Ducreux D, Colliot O, Corruble E. Hippocampal volume predicts antidepressant efficacy in depressed patients without incomplete hippocampal inversion. NEUROIMAGE-CLINICAL 2016; 12:949-955. [PMID: 27995060 PMCID: PMC5153557 DOI: 10.1016/j.nicl.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/16/2022]
Abstract
Background Incomplete hippocampal inversion (IHI), also called malrotation, is a frequent atypical anatomical pattern of the hippocampus. Because of the crucial implication of the hippocampus in Major Depressive Disorder (MDD) and the neurodevelopmental hypothesis of MDD, we aimed to assess the prevalence of IHI in patients with MDD, the link of IHI with hippocampal volume (HV) and the impact of IHI on the predictive value of HV for response and remission after antidepressant treatment. Methods IHI (right and left, partial and total and IHI scores) and HV were assessed in 60 patients with a current Major Depressive Episode (MDE) in a context of MDD and 60 matched controls. Patients were prospectively assessed at baseline and after one, three and six months of antidepressant treatment for response and remission. Results The prevalence of IHI did not significantly differ between MDD patients (right = 23.3%; left = 38.3%) and controls (right = 16.7%; left = 33.3%). IHI was not significantly associated with MDD clinical characteristics. IHI alone did not predict response and remission after antidepressant treatment. However, an interaction between left HV and left IHI predicted six-month response (p = 0.04), HDRS score decrease (p = 0.02) and both three-month (p = 0.04) and six-month (p = 0.03) remission. A case-control design in 30 matched patients with or without left IHI confirmed that interaction. In patients without left IHI, left HV at baseline were smaller in six-month non-remitters as compared to remitters (2.2(± 0.43) cm3 vs 2.97(± 0.5) cm3 p = 0.02), and in six-month non-responders as compared to responders (2.18(± 0.42) cm3 vs 2.86(± 0.54) cm3, p = 0.03). In patients with left IHI, no association was found between left HV at baseline and antidepressant response and remission. Conclusion IHI is not more frequent in MDD patients than in controls, is not associated with HV, but is a confounder that decreases the predictive value of hippocampal volume to predict response or remission after antidepressant treatment. IHI should be systematically assessed in future research studies assessing hippocampal volume in MDD. Incomplete hippocampal inversion (IHI) is not significantly more frequent in MDD than in controls. IHI is not significantly associated with MDD clinical characteristics. Hippocampal volume predicts antidepressant efficacy in MDD patients without IHI. Hippocampal volume does not predict antidepressant efficacy in patients with IHI.
Collapse
Affiliation(s)
- Romain Colle
- INSERM UMRS 1178, Team "Depression and Antidepressants", 94275 Le Kremlin Bicêtre, France; Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; Service de Psychiatrie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Claire Cury
- INSERM U1127, F-75013 Paris, France; CNRS, UMR 7225, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Departments of Neuroradiology and Neurology, F-75013 Paris, France
| | - Marie Chupin
- INSERM U1127, F-75013 Paris, France; CNRS, UMR 7225, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Departments of Neuroradiology and Neurology, F-75013 Paris, France
| | - Eric Deflesselle
- INSERM UMRS 1178, Team "Depression and Antidepressants", 94275 Le Kremlin Bicêtre, France; Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; Service de Psychiatrie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Patrick Hardy
- INSERM UMRS 1178, Team "Depression and Antidepressants", 94275 Le Kremlin Bicêtre, France; Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; Service de Psychiatrie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Ghaidaa Nasser
- Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; CNRS IR4M, UMR 8081, 94275 Le Kremlin Bicêtre, France; Service de Neuroradiologie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Bruno Falissard
- Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - Denis Ducreux
- Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; CNRS IR4M, UMR 8081, 94275 Le Kremlin Bicêtre, France; Service de Neuroradiologie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| | - Olivier Colliot
- INSERM U1127, F-75013 Paris, France; CNRS, UMR 7225, 75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMRS 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, Departments of Neuroradiology and Neurology, F-75013 Paris, France
| | - Emmanuelle Corruble
- INSERM UMRS 1178, Team "Depression and Antidepressants", 94275 Le Kremlin Bicêtre, France; Univ. Paris-Sud, Faculté de Médecine Paris Sud, 94275 Le Kremlin Bicêtre, France; Service de Psychiatrie, Hôpital Bicêtre, Hôpitaux Universitaires Paris Sud, Assistance Publique-Hôpitaux de Paris, 94275 Le Kremlin Bicêtre, France
| |
Collapse
|
11
|
Cury C, Toro R, Cohen F, Fischer C, Mhaya A, Samper-González J, Hasboun D, Mangin JF, Banaschewski T, Bokde ALW, Bromberg U, Buechel C, Cattrell A, Conrod P, Flor H, Gallinat J, Garavan H, Gowland P, Heinz A, Ittermann B, Lemaitre H, Martinot JL, Nees F, Paillère Martinot ML, Orfanos DP, Paus T, Poustka L, Smolka MN, Walter H, Whelan R, Frouin V, Schumann G, Glaunès JA, Colliot O. Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects. Front Neuroanat 2015; 9:160. [PMID: 26733822 PMCID: PMC4686650 DOI: 10.3389/fnana.2015.00160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ(2)-test, p < 10(-28)). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe.
Collapse
Affiliation(s)
- Claire Cury
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France; Centre d'Acquisition et de Traitement des ImagesParis, France
| | - Roberto Toro
- Centre National de la Recherche Scientifique, Genes, Synapses and Cognition, URA 2182, Institut PasteurParis, France; Human Genetics and Cognitive Functions, Institut PasteurParis, France
| | - Fanny Cohen
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France
| | - Clara Fischer
- Centre d'Acquisition et de Traitement des ImagesParis, France; Institut d'Imagerie Biomédicale; Commissariat à l'énergie atomique et aux énergies alternatives; Direction des Sciences du VivantGif-Sur-Yvette, France
| | - Amel Mhaya
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France
| | - Jorge Samper-González
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France
| | - Dominique Hasboun
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France; Departments of Neuroradiology and Neurology, AP-HP, Hôpital de la Pitié-SalpétrièreParis, France
| | - Jean-François Mangin
- Centre d'Acquisition et de Traitement des ImagesParis, France; Institut d'Imagerie Biomédicale; Commissariat à l'énergie atomique et aux énergies alternatives; Direction des Sciences du VivantGif-Sur-Yvette, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Clinical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine, Trinity College DublinDublin, Ireland; Institute of Neuroscience, Trinity College DublinDublin, Ireland
| | - Uli Bromberg
- Department of Systems Neuroscience, Universitätsklinikum Hamburg Eppendorf Hamburg, Germany
| | - Christian Buechel
- Department of Systems Neuroscience, Universitätsklinikum Hamburg EppendorfHamburg, Germany; Department of Psychology, Stanford UniversityStanford, CA, USA
| | - Anna Cattrell
- Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK; MRC Social, Genetic and Developmental Psychiatry CentreLondon, UK
| | - Patricia Conrod
- Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK; Département de Psychiatrie, Centre Hospitalier Universitaire Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Juergen Gallinat
- Department of Systems Neuroscience, Universitätsklinikum Hamburg EppendorfHamburg, Germany; Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin BerlinGermany
| | - Hugh Garavan
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin Dublin, Ireland
| | - Penny Gowland
- School of Physics and Astronomy, University of Nottingham Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin Berlin Germany
| | | | - Hervé Lemaitre
- Institut national de la santé et de la recherche médicale U1000, Neuroimagerie en Psychiatrie, Université Paris-Sud, Université Paris Descartes Paris, France
| | - Jean-Luc Martinot
- Institut national de la santé et de la recherche médicale U1000, Neuroimagerie en Psychiatrie, Université Paris-Sud, Université Paris Descartes Paris, France
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | - Marie-Laure Paillère Martinot
- Institut national de la santé et de la recherche médicale U1000, Neuroimagerie en Psychiatrie, Université Paris-Sud, Université Paris DescartesParis, France; AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, University Paris Descartes, Sorbonne Paris CitéParis, France
| | - Dimitri P Orfanos
- Institut d'Imagerie Biomédicale; Commissariat à l'énergie atomique et aux énergies alternatives; Direction des Sciences du Vivant Gif-Sur-Yvette, France
| | - Tomas Paus
- Rotman Research Institute, BaycrestToronto, ON, Canada; Departments of Psychology and Psychiatry, University of TorontoToronto, Canada; Center for Developing Brain, Child Mind InstituteNew York, NY, USA
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Clinical Faculty Mannheim, Central Institute of Mental Health, University of HeidelbergMannheim, Germany; Department of Child and Adolescent Psychiatry, Medical University of ViennaVienna, Austria
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin BerlinGermany; Berlin School of Mind and Brain, Humboldt University BerlinBerlin, Germany
| | - Robert Whelan
- Department of Psychology, University College Dublin Dublin, Ireland
| | - Vincent Frouin
- Institut d'Imagerie Biomédicale; Commissariat à l'énergie atomique et aux énergies alternatives; Direction des Sciences du Vivant Gif-Sur-Yvette, France
| | - Gunter Schumann
- Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK; MRC Social, Genetic and Developmental Psychiatry CentreLondon, UK
| | - Joan A Glaunès
- MAP5, Université Paris Descartes, Sorbonne Paris Cité Paris, France
| | - Olivier Colliot
- Institut national de la santé et de la recherche médicale, U1127Paris, France; Centre National de la Recherche Scientifique, UMR 7225 Institut du Cerveau et de la Moelle épinièreParis, France; Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR S 1127Paris, France; Institut du Cerveau et de la Moelle épinière, Institut du Cerveau et de la Moelle épinièreParis, France; Inria, Aramis Team, Centre de Recherche Paris-RocquencourtParis, France; Centre d'Acquisition et de Traitement des ImagesParis, France; Departments of Neuroradiology and Neurology, AP-HP, Hôpital de la Pitié-SalpétrièreParis, France
| | | |
Collapse
|
12
|
Váša F, Griffa A, Scariati E, Schaer M, Urben S, Eliez S, Hagmann P. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome. NEUROIMAGE-CLINICAL 2015; 10:239-49. [PMID: 26870660 PMCID: PMC4711395 DOI: 10.1016/j.nicl.2015.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023]
Abstract
Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop. Graph theory confirms reduced integration in 22q11.2 deletion syndrome (22q11DS). An “affected core” (A-core) of hub regions drives global integration deficits. The A-core is generally densely connected, but less so in 22q11DS. Shortest network paths are rerouted around the A-core in 22q11DS. Connectivity of a subset of A-core regions correlates with negative symptoms.
Collapse
Affiliation(s)
- František Váša
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elisa Scariati
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland; Stanford Cognitive and Systems Neuroscience Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sébastien Urben
- Service Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (SUPEA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Stephan Eliez
- Office Médico-Pédagogique, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 2015; 86:680-95. [PMID: 25913858 DOI: 10.1016/j.neuron.2015.04.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/24/2015] [Accepted: 03/16/2015] [Indexed: 11/20/2022]
Abstract
22q11.2 deletion carriers show specific cognitive deficits, and ∼30% of them develop schizophrenia. One of the disrupted genes is ZDHHC8, which encodes for a palmitoyltransferase. We show that Zdhhc8-deficient mice have reduced palmitoylation of proteins that regulate axonal growth and branching. Analysis of axonal projections of pyramidal neurons from both Zdhhc8-deficient and Df(16)A(+/-) mice, which model the 22q11.2 deletion, revealed deficits in axonal growth and terminal arborization, which can be prevented by reintroduction of active ZDHHC8 protein. Impaired terminal arborization is accompanied by a reduction in the strength of synaptic connections and altered functional connectivity and working memory. The effect of ZDHHC8 is mediated in part via Cdc42-dependent modulation of Akt/Gsk3β signaling at the tip of the axon and can be reversed by pharmacologically decreasing Gsk3β activity during postnatal brain development. Our findings provide valuable mechanistic insights into the cognitive and psychiatric symptoms associated with a schizophrenia-predisposing mutation.
Collapse
|
14
|
Baker K, Astle DE, Scerif G, Barnes J, Smith J, Moffat G, Gillard J, Baldeweg T, Raymond FL. Epilepsy, cognitive deficits and neuroanatomy in males with ZDHHC9 mutations. Ann Clin Transl Neurol 2015; 2:559-69. [PMID: 26000327 PMCID: PMC4435709 DOI: 10.1002/acn3.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Systematic investigation of individuals with intellectual disability after genetic diagnosis can illuminate specific phenotypes and mechanisms relevant to common neurodevelopmental disorders. We report the neurological, cognitive and neuroanatomical characteristics of nine males from three families with loss-of-function mutations in ZDHHC9 (OMIM #300799). METHODS All known cases of X-linked intellectual disability (XLID) due to ZDHHC9 mutation in the United Kingdom were invited to participate in a study of neurocognitive and neuroimaging phenotypes. RESULTS Seven out of nine males with ZDHHC9 mutations had been diagnosed with epilepsy, exceeding epilepsy risk in XLID comparison subjects (P = 0.01). Seizure histories and EEG features amongst ZDHHC9 mutation cases shared characteristics with rolandic epilepsy (RE). Specific cognitive deficits differentiated males with ZDHHC9 mutations from XLID comparison subjects and converged with reported linguistic and nonlinguistic deficits in idiopathic RE: impaired oromotor control, reduced verbal fluency, and impaired inhibitory control on visual attention tasks. Consistent neuroanatomical abnormalities included thalamic and striatal volume reductions and hypoplasia of the corpus callosum. INTERPRETATION Mutations in ZDHHC9 are associated with susceptibility to focal seizures and specific cognitive impairments intersecting with the RE spectrum. Neurocognitive deficits are accompanied by consistent abnormalities of subcortical structures and inter-hemispheric connectivity. The biochemical, cellular and network-level mechanisms responsible for the ZDHHC9-associated neurocognitive phenotype may be relevant to cognitive outcomes in RE.
Collapse
Affiliation(s)
- Kate Baker
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge Cambridge, United Kingdom ; MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Duncan E Astle
- MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Gaia Scerif
- Department of Experimental Psychology, University of Oxford Oxford, United Kingdom
| | - Jessica Barnes
- MRC Cognitive and Brain Sciences Unit Cambridge, United Kingdom
| | - Jennie Smith
- Speech and Language Therapy Team, Cleft.Net.East, Addenbrookes Hospital Cambridge, United Kingdom
| | - Georgina Moffat
- Speech and Language Therapy Team, Cleft.Net.East, Addenbrookes Hospital Cambridge, United Kingdom
| | - Jonathan Gillard
- Department of Radiology, University of Cambridge Cambridge, United Kingdom
| | - Torsten Baldeweg
- Developmental Neuroscience Programme, Institute of Child Health, University College London London, United Kingdom
| | - F Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
15
|
Kates WR, Olszewski AK, Gnirke MH, Kikinis Z, Nelson J, Antshel KM, Fremont W, Radoeva PD, Middleton FA, Shenton ME, Coman IL. White matter microstructural abnormalities of the cingulum bundle in youths with 22q11.2 deletion syndrome: associations with medication, neuropsychological function, and prodromal symptoms of psychosis. Schizophr Res 2015; 161:76-84. [PMID: 25066496 PMCID: PMC4277733 DOI: 10.1016/j.schres.2014.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND The 22q11.2 deletion syndrome (22q11.2DS) is regarded as an etiologically homogenous model for understanding neuroanatomic disruptions associated with a high risk for schizophrenia. This study utilized diffusion tensor imaging (DTI) to analyze white matter microstructure in individuals with 22q11.2DS. We focused on the cingulum bundle (CB), previously shown to be disrupted in patients with schizophrenia and associated with symptoms of psychosis. METHODS White matter microstructure was assessed in the anterior, superior, and posterior CB using the tractography algorithm in DTIStudio. Neuropsychological function, presence of prodromal symptoms of psychosis, and medication history were assessed in all participants. RESULTS Relative to controls, young adults with 22q11.2DS showed alterations in most DTI metrics of the CB. Alterations were associated with positive prodromal symptoms of psychosis. However, when individuals with 22q11.2DS were divided by usage of antipsychotics/mood stabilizers, the medicated and non-medicated groups differed significantly in axial diffusivity of the anterior CB and in fractional anisotropy of the superior CB. DTI metrics did not differ between the medicated group and the control group. CONCLUSIONS Results suggest that the microstructure of the CB is altered in individuals with 22q11.2DS, and that those alterations may underlie positive prodromal symptoms of psychosis. Our findings further provide preliminary evidence that antipsychotic/mood stabilizer usage may have a reparative effect on white matter microstructure in prodromal 22q11.2DS, independent of the potential effects of psychosis. Future studies of white matter pathology in individuals with 22q11.2DS should test for potential effects of medication on white matter microstructure.
Collapse
Affiliation(s)
- Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States.
| | - Amy K Olszewski
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Matthew H Gnirke
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Zora Kikinis
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Nelson
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Kevin M Antshel
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States; Department of Psychology, Syracuse University, Syracuse, NY, United States
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Petya D Radoeva
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Frank A Middleton
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States; Department of Neuroscience and Physiology, State University of New York at Upstate Medical University, Syracuse, NY, United States
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Ioana L Coman
- Department of Psychiatry and Behavioral Sciences, State University of New York at Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
16
|
Paronett EM, Meechan DW, Karpinski BA, LaMantia AS, Maynard TM. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cereb Cortex 2014; 25:3977-93. [PMID: 25452572 DOI: 10.1093/cercor/bhu285] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.
Collapse
Affiliation(s)
| | - Daniel W Meechan
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| | - Beverly A Karpinski
- GW Institute for Neuroscience Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Thomas M Maynard
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| |
Collapse
|
17
|
Jalbrzikowski M, Villalon-Reina JE, Karlsgodt KH, Senturk D, Chow C, Thompson PM, Bearden CE. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome. Front Behav Neurosci 2014; 8:393. [PMID: 25426042 PMCID: PMC4227518 DOI: 10.3389/fnbeh.2014.00393] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022] Open
Abstract
22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk.
Collapse
Affiliation(s)
- Maria Jalbrzikowski
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Katherine H Karlsgodt
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research Manhasset, NY, USA ; Division of Psychiatric Research, Zucker Hillside Hospital Glen Oaks, NY, USA ; Psychiatry, Hofstra Northshore-LIJ School of Medicine Hempstead, NY, USA
| | - Damla Senturk
- Department of Biostatistics, School of Public Health, University of California at Los Angeles Los Angeles, CA, USA
| | - Carolyn Chow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California Marina del Rey, CA, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Los Angeles, CA, USA ; Department of Psychology, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|
18
|
Wu P, Teot L, Murdoch G, Monaghan-Nichols AP, McFadden K. Neuropathology of 22q11 deletion syndrome in an infant. Pediatr Dev Pathol 2014; 17:386-92. [PMID: 25019421 DOI: 10.2350/13-11-1399-cr.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 22q11 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans and one of the chromosomal conditions most associated with psychosis and autism spectrum disorder. To date, only 2 neuropathologic studies of 22q11DS have been reported. Findings included polymicrogyria, neuronal heterotopias, excess subcortical white-matter (interstitial) neurons, significant white-matter gliosis/hypomyelination, and microvasculopathy. Here, we report on a 3-month-old infant with documented 22q11DS, tetralogy of Fallot, and pulmonary atresia. The brain exhibited tortuous cerebral vessels and proportionately smaller occipital lobes. Histologic examination revealed cerebral white-matter pathology and subtle differences in cortical lamination, including an excess of interstitial white-matter neurons compared with a sample of age-matched controls. There was a 15% increase in DARPP-32+ medium spiny neurons in the anterior-superior caudate. In this first neuropathologic report of an infant with 22q11DS, the findings were similar to previously reported manifestations and are likely secondary to perfusion issues, developmental microvasculopathy, and abnormal frontal cortical development.
Collapse
Affiliation(s)
- Peter Wu
- 1 Dietrich School of Arts and Sciences, University of Pittsburgh, 917 Cathedral of Learning, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
19
|
Increased corpus callosum volume in children with chromosome 22q11.2 deletion syndrome is associated with neurocognitive deficits and genetic polymorphisms. Eur J Hum Genet 2012; 20:1051-7. [PMID: 22763378 DOI: 10.1038/ejhg.2012.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosome 22q11.2 deletion syndrome (22q11DS) is associated with neurocognitive impairments. The neural substrates of cognitive impairments in 22q11DS remain poorly understood. Because the corpus callosum (CC) is found to be abnormal in a variety of neurodevelopmental disorders, we obtained volumetric measurements of the CC and its subregions, examined the relationship between these regions and neurocognition and selected genotypes within candidate genes in the 22q11.2 interval in 59 children with 22q11DS and 53 control subjects. The total CC, splenium and genu were significantly larger in children with 22q11DS and the enlargement was associated with better neurocognitive functioning in the 22q11DS group, suggestive of a compensatory increase in the CC volumes. The expected age-related increase in the volume of the CC was not seen in children with 22q11DS, indicative of dysmaturation of the CC in these children. The increased volumes in the genu, splenium and total CC in the 22q11DS group were associated with polymorphisms within the candidate genes: COMT (rs4680), ZDHHC8 (rs175174) and UFD1L (rs5992403). These findings indicate that alterations in the CC volume in children with 22q11DS are associated with cognition and specific genotypes in the 22q11.2 interval.
Collapse
|
20
|
Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience 2012; 251:90-107. [PMID: 22546337 DOI: 10.1016/j.neuroscience.2012.04.044] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 01/22/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder whose clinical features include impairments in perception, cognition and motivation. These impairments reflect alterations in neuronal circuitry within and across multiple brain regions that are due, at least in part, to deficits in dendritic spines, the site of most excitatory synaptic connections. Dendritic spine alterations have been identified in multiple brain regions in schizophrenia, but are best characterized in layer 3 of the neocortex, where pyramidal cell spine density is lower. These spine deficits appear to arise during development, and thus are likely the result of disturbances in the molecular mechanisms that underlie spine formation, pruning, and/or maintenance. Each of these mechanisms may provide insight into novel therapeutic targets for preventing or repairing the alterations in neural circuitry that mediate the debilitating symptoms of schizophrenia.
Collapse
Affiliation(s)
- J R Glausier
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
21
|
van Beveren NJM, Krab LC, Swagemakers S, Buitendijk G, Buitendijk GHS, Boot E, van der Spek P, Elgersma Y, van Amelsvoort TAMJ. Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One 2012; 7:e33473. [PMID: 22457764 PMCID: PMC3310870 DOI: 10.1371/journal.pone.0033473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/09/2012] [Indexed: 12/19/2022] Open
Abstract
22q11 Deletion Syndrome (22q11DS) is associated with dysmorphology and a high prevalence of schizophrenia-like symptoms. Several genes located on chromosome 22q11 have been linked to schizophrenia. The deletion is thought to disrupt the expression of multiple genes involved in maturation and development of neurons and neuronal circuits, and neurotransmission. We investigated whole-genome gene expression of Peripheral Blood Mononuclear Cells (PBMC's) of 8 22q11DS patients and 8 age- and gender-matched controls, to (1) investigate the expression levels of 22q11 genes and (2) to investigate whether 22q11 genes participate in functional genetic networks relevant to schizophrenia. Functional relationships between genes differentially expressed in patients (as identified by Locally Adaptive Statistical procedure (LAP) or satisfying p<0.05 and fold-change >1.5) were investigated with the Ingenuity Pathways Analysis (IPA). 14 samples (7 patients, 7 controls) passed quality controls. LAP identified 29 deregulated genes. Pathway analysis showed 262 transcripts differentially expressed between patients and controls. Functional pathways most disturbed were cell death, cell morphology, cellular assembly and organization, and cell-to-cell signaling. In addition, 10 canonical pathways were identified, among which the signal pathways for Natural Killer-cells, neurotrophin/Trk, neuregulin, axonal guidance, and Huntington's disease. Our findings support the use of 22q11DS as a research model for schizophrenia. We identified decreased expression of several genes (among which COMT, Ufd1L, PCQAP, and GNB1L) previously linked to schizophrenia as well as involvement of signaling pathways relevant to schizophrenia, of which Neurotrophin/Trk and neuregulin signaling seems to be especially notable.
Collapse
Affiliation(s)
- Nico J M van Beveren
- Department of Psychiatry, Erasmus University Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia. Schizophr Res 2011; 132:75-83. [PMID: 21831603 DOI: 10.1016/j.schres.2011.07.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 11/23/2022]
Abstract
Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.
Collapse
|
23
|
Vicari S, Mantovan M, Addona F, Costanzo F, Verucci L, Menghini D. Neuropsychological Profile of Italian Children and Adolescents with 22q11.2 Deletion Syndrome with and Without Intellectual Disability. Behav Genet 2011; 42:287-98. [DOI: 10.1007/s10519-011-9499-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|