1
|
Fujishima M, Kawasaki Y, Mitsuhashi T, Matsuda H. Impact of amyloid and tau positivity on longitudinal brain atrophy in cognitively normal individuals. Alzheimers Res Ther 2024; 16:77. [PMID: 38600602 PMCID: PMC11005141 DOI: 10.1186/s13195-024-01450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Individuals on the preclinical Alzheimer's continuum, particularly those with both amyloid and tau positivity (A + T +), display a rapid cognitive decline and elevated disease progression risk. However, limited studies exist on brain atrophy trajectories within this continuum over extended periods. METHODS This study involved 367 ADNI participants grouped based on combinations of amyloid and tau statuses determined through cerebrospinal fluid tests. Using longitudinal MRI scans, brain atrophy was determined according to the whole brain, lateral ventricle, and hippocampal volumes and cortical thickness in AD-signature regions. Cognitive performance was evaluated with the Preclinical Alzheimer's Cognitive Composite (PACC). A generalized linear mixed-effects model was used to examine group × time interactions for these measures. In addition, progression risks to mild cognitive impairment (MCI) or dementia were compared among the groups using Cox proportional hazards models. RESULTS A total of 367 participants (48 A + T + , 86 A + T - , 63 A - T + , and 170 A - T - ; mean age 73.8 years, mean follow-up 5.1 years, and 47.4% men) were included. For the lateral ventricle and PACC score, the A + T - and A + T + groups demonstrated statistically significantly greater volume expansion and cognitive decline over time than the A - T - group (lateral ventricle: β = 0.757 cm3/year [95% confidence interval 0.463 to 1.050], P < .001 for A + T - , and β = 0.889 cm3/year [0.523 to 1.255], P < .001 for A + T + ; PACC: β = - 0.19 /year [- 0.36 to - 0.02], P = .029 for A + T - , and β = - 0.59 /year [- 0.80 to - 0.37], P < .001 for A + T +). Notably, the A + T + group exhibited additional brain atrophy including the whole brain (β = - 2.782 cm3/year [- 4.060 to - 1.504], P < .001), hippocampus (β = - 0.057 cm3/year [- 0.085 to - 0.029], P < .001), and AD-signature regions (β = - 0.02 mm/year [- 0.03 to - 0.01], P < .001). Cox proportional hazards models suggested an increased risk of progressing to MCI or dementia in the A + T + group versus the A - T - group (adjusted hazard ratio = 3.35 [1.76 to 6.39]). CONCLUSIONS In cognitively normal individuals, A + T + compounds brain atrophy and cognitive deterioration, amplifying the likelihood of disease progression. Therapeutic interventions targeting A + T + individuals could be pivotal in curbing brain atrophy, cognitive decline, and disease progression.
Collapse
Affiliation(s)
- Motonobu Fujishima
- Department of Radiology, Kumagaya General Hospital, 4-5-1 Nakanishi, Kumagaya, 360-8567, Japan.
| | - Yohei Kawasaki
- Department of Biostatistics, Graduate School of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, 350-0495, Japan
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikariga-Oka, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-61-2 Yatsuyamada, Koriyama, 963-8052, Japan
| |
Collapse
|
2
|
Bollack A, Pemberton HG, Collij LE, Markiewicz P, Cash DM, Farrar G, Barkhof F. Longitudinal amyloid and tau PET imaging in Alzheimer's disease: A systematic review of methodologies and factors affecting quantification. Alzheimers Dement 2023; 19:5232-5252. [PMID: 37303269 DOI: 10.1002/alz.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring.
Collapse
Affiliation(s)
- Ariane Bollack
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - Hugh G Pemberton
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- GE Healthcare, Amersham, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Pawel Markiewicz
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
| | - David M Cash
- UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | | | - Frederik Barkhof
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London, London, UK
- UCL Queen Square Institute of Neurology, London, UK
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Maikusa N, Shigemoto Y, Chiba E, Kimura Y, Matsuda H, Sato N. Harmonized Z-Scores Calculated from a Large-Scale Normal MRI Database to Evaluate Brain Atrophy in Neurodegenerative Disorders. J Pers Med 2022; 12:jpm12101555. [PMID: 36294692 PMCID: PMC9605567 DOI: 10.3390/jpm12101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia in elderly individuals, slowly and progressively diminishes the cognitive function. Mild cognitive impairment (MCI) is also a significant risk factor for the onset of AD. Magnetic resonance imaging (MRI) is widely used for the detection and understanding of the natural progression of AD and other neurodegenerative disorders. For proper assessment of these diseases, a reliable database of images from cognitively healthy participants is important. However, differences in magnetic field strength or the sex and age of participants between a normal database and an evaluation data set can affect the accuracy of the detection and evaluation of neurodegenerative disorders. We developed a brain segmentation procedure, based on 30 Japanese brain atlases, and suggest a harmonized Z-score to correct the differences in field strength and sex and age from a large data set (1235 cognitively healthy participants), including 1.5 T and 3 T T1-weighted brain images. We evaluated our harmonized Z-score for AD discriminative power and classification accuracy between stable MCI and progressive MCI. Our procedure can perform brain segmentation in approximately 30 min. The harmonized Z-score of the hippocampus achieved high accuracy (AUC = 0.96) for AD detection and moderate accuracy (AUC = 0.70) to classify stable or progressive MCI. These results show that our method can detect AD with high accuracy and high generalization capability. Moreover, it may discriminate between stable and progressive MCI. Our study has some limitations: the age groups in the 1.5 T data set and 3 T data set are significantly different. In this study, we focused on AD, which is primarily a disease of elderly patients. For other diseases in different age groups, the harmonized Z-score needs to be recalculated using different data sets.
Collapse
Affiliation(s)
- Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo 113-8654, Japan
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
- Correspondence: ; Tel.: +81-42-341-2711
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Emiko Chiba
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| |
Collapse
|
4
|
Diaz-Hurtado M, Martínez-Heras E, Solana E, Casas-Roma J, Llufriu S, Kanber B, Prados F. Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review. Neuroradiology 2022; 64:2103-2117. [PMID: 35864180 DOI: 10.1007/s00234-022-03019-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by demyelinating lesions that are often visible on magnetic resonance imaging (MRI). Segmentation of these lesions can provide imaging biomarkers of disease burden that can help monitor disease progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious and prone to subjective bias, while automated lesion segmentation methods offer objectivity and speed, the latter being particularly important when analysing large datasets. Lesion segmentation can be broadly categorised into two groups: cross-sectional methods, which use imaging data acquired at a single time-point to characterise MRI lesions; and longitudinal methods, which use imaging data from the same subject acquired at two or more different time-points to characterise lesions over time. The main objective of longitudinal segmentation approaches is to more accurately detect the presence of new MS lesions and the growth or remission of existing lesions, which may be effective biomarkers of disease progression and treatment response. This paper reviews articles on longitudinal MS lesion segmentation methods published over the past 10 years. These are divided into traditional machine learning methods and deep learning techniques. PubMed articles using longitudinal information and comparing fully automatic two time point segmentations in any step of the process were selected. Nineteen articles were reviewed. There is an increasing number of deep learning techniques for longitudinal MS lesion segmentation that are promising to help better understand disease progression.
Collapse
Affiliation(s)
| | - Eloy Martínez-Heras
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Solana
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Casas-Roma
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Sara Llufriu
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Baris Kanber
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre, University College London, London, UK.,Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Institute of Neurology, University College London, London, UK
| | - Ferran Prados
- E-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain.,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,National Institute for Health Research Biomedical Research Centre, University College London, London, UK.,Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
5
|
de Silva E, Sudre CH, Barnes J, Scelsi MA, Altmann A. Polygenic coronary artery disease association with brain atrophy in the cognitively impaired. Brain Commun 2022; 4:fcac314. [PMID: 36523268 PMCID: PMC9746681 DOI: 10.1093/braincomms/fcac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
While a number of low-frequency genetic variants of large effect size have been shown to underlie both cardiovascular disease and dementia, recent studies have highlighted the importance of common genetic variants of small effect size, which, in aggregate, are embodied by a polygenic risk score. We investigate the effect of polygenic risk for coronary artery disease on brain atrophy in Alzheimer's disease using whole-brain volume and put our findings in context with the polygenic risk for Alzheimer's disease and presumed small vessel disease as quantified by white-matter hyperintensities. We use 730 subjects from the Alzheimer's disease neuroimaging initiative database to investigate polygenic risk score effects (beyond APOE) on whole-brain volumes, total and regional white-matter hyperintensities and amyloid beta across diagnostic groups. In a subset of these subjects (N = 602), we utilized longitudinal changes in whole-brain volume over 24 months using the boundary shift integral approach. Linear regression and linear mixed-effects models were used to investigate the effect of white-matter hyperintensities at baseline as well as Alzheimer's disease-polygenic risk score and coronary artery disease-polygenic risk score on whole-brain atrophy and whole-brain atrophy acceleration, respectively. All genetic associations were examined under the oligogenic (P = 1e-5) and the more variant-inclusive polygenic (P = 0.5) scenarios. Results suggest no evidence for a link between the polygenic risk score and markers of Alzheimer's disease pathology at baseline (when stratified by diagnostic group). However, both Alzheimer's disease-polygenic risk score and coronary artery disease-polygenic risk score were associated with longitudinal decline in whole-brain volume (Alzheimer's disease-polygenic risk score t = 3.3, P FDR = 0.007 over 24 months in healthy controls) and surprisingly, under certain conditions, whole-brain volume atrophy is statistically more correlated with cardiac polygenic risk score than Alzheimer's disease-polygenic risk score (coronary artery disease-polygenic risk score t = 2.1, P FDR = 0.04 over 24 months in the mild cognitive impairment group). Further, in our regional analysis of white-matter hyperintensities, Alzheimer's disease-polygenic risk score beyond APOE is predictive of white-matter volume in the occipital lobe in Alzheimer's disease subjects in the polygenic regime. Finally, the rate of change of brain volume (or atrophy acceleration) may be sensitive to Alzheimer's disease-polygenic risk beyond APOE in healthy individuals (t = 2, P = 0.04). For subjects with mild cognitive impairment, beyond APOE, a more inclusive polygenic risk score including more variants, shows coronary artery disease-polygenic risk score to be more predictive of whole-brain volume atrophy, than an oligogenic approach including fewer larger effect size variants.
Collapse
Affiliation(s)
- Eric de Silva
- Centre for Medical Image Computing, University College London, London, UK.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Carole H Sudre
- Centre for Medical Image Computing, University College London, London, UK.,MRC Unit for Lifelong Health and Ageing, University College London, London, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Josephine Barnes
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Marzia A Scelsi
- Centre for Medical Image Computing, University College London, London, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London, UK
| | | |
Collapse
|
6
|
Fiford CM, Sudre CH, Young AL, Macdougall A, Nicholas J, Manning EN, Malone IB, Walsh P, Goodkin O, Pemberton HG, Barkhof F, Alexander DC, Cardoso MJ, Biessels GJ, Barnes J. Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Commun 2021; 3:fcab226. [PMID: 34661106 PMCID: PMC8514859 DOI: 10.1093/braincomms/fcab226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
MRI-derived features of presumed cerebral small vessel disease are frequently found in Alzheimer's disease. Influences of such markers on disease-progression measures are poorly understood. We measured markers of presumed small vessel disease (white matter hyperintensity volumes; cerebral microbleeds) on baseline images of newly enrolled individuals in the Alzheimer's Disease Neuroimaging Initiative cohort (GO and 2) and used linear mixed models to relate these to subsequent atrophy and neuropsychological score change. We also assessed heterogeneity in white matter hyperintensity positioning within biomarker abnormality sequences, driven by the data, using the Subtype and Stage Inference algorithm. This study recruited both sexes and included: controls: [n = 159, mean(SD) age = 74(6) years]; early and late mild cognitive impairment [ns = 265 and 139, respectively, mean(SD) ages =71(7) and 72(8) years, respectively]; Alzheimer's disease [n = 103, mean(SD) age = 75(8)] and significant memory concern [n = 72, mean(SD) age = 72(6) years]. Baseline demographic and vascular risk-factor data, and longitudinal cognitive scores (Mini-Mental State Examination; logical memory; and Trails A and B) were collected. Whole-brain and hippocampal volume change metrics were calculated. White matter hyperintensity volumes were associated with greater whole-brain and hippocampal volume changes independently of cerebral microbleeds (a doubling of baseline white matter hyperintensity was associated with an increase in atrophy rate of 0.3 ml/year for brain and 0.013 ml/year for hippocampus). Cerebral microbleeds were found in 15% of individuals and the presence of a microbleed, as opposed to none, was associated with increases in atrophy rate of 1.4 ml/year for whole brain and 0.021 ml/year for hippocampus. White matter hyperintensities were predictive of greater decline in all neuropsychological scores, while cerebral microbleeds were predictive of decline in logical memory (immediate recall) and Mini-Mental State Examination scores. We identified distinct groups with specific sequences of biomarker abnormality using continuous baseline measures and brain volume change. Four clusters were found; Group 1 showed early Alzheimer's pathology; Group 2 showed early neurodegeneration; Group 3 had early mixed Alzheimer's and cerebrovascular pathology; Group 4 had early neuropsychological score abnormalities. White matter hyperintensity volumes becoming abnormal was a late event for Groups 1 and 4 and an early event for 2 and 3. In summary, white matter hyperintensities and microbleeds were independently associated with progressive neurodegeneration (brain atrophy rates) and cognitive decline (change in neuropsychological scores). Mechanisms involving white matter hyperintensities and progression and microbleeds and progression may be partially separate. Distinct sequences of biomarker progression were found. White matter hyperintensity development was an early event in two sequences.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Health Sciences, University College London, London WC1E 3HB, UK
| | - Alexandra L Young
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 3AF, UK
| | - Amy Macdougall
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Nicholas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Olivia Goodkin
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Hugh G Pemberton
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Healthcare Engineering, London WC1E 6DH, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
7
|
A comparison of automated atrophy measures across the frontotemporal dementia spectrum: Implications for trials. NEUROIMAGE-CLINICAL 2021; 32:102842. [PMID: 34626889 PMCID: PMC8503665 DOI: 10.1016/j.nicl.2021.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
Background Frontotemporal dementia (FTD) is a common cause of young onset dementia, and whilst there are currently no treatments, there are several promising candidates in development and early phase trials. Comprehensive investigations of neuroimaging markers of disease progression across the full spectrum of FTD disorders are lacking and urgently needed to facilitate these trials. Objective To investigate the comparative performance of multiple automated segmentation and registration pipelines used to quantify longitudinal whole-brain atrophy across the clinical, genetic and pathological subgroups of FTD, in order to inform upcoming trials about suitable neuroimaging-based endpoints. Methods Seventeen fully automated techniques for extracting whole-brain atrophy measures were applied and directly compared in a cohort of 226 participants who had undergone longitudinal structural 3D T1-weighted imaging. Clinical diagnoses were behavioural variant FTD (n = 56) and primary progressive aphasia (PPA, n = 104), comprising semantic variant PPA (n = 38), non-fluent variant PPA (n = 42), logopenic variant PPA (n = 18), and PPA-not otherwise specified (n = 6). 49 of these patients had either a known pathogenic mutation or postmortem confirmation of their underlying pathology. 66 healthy controls were included for comparison. Sample size estimates to detect a 30% reduction in atrophy (80% power; 0.05 significance) were computed to explore the relative feasibility of these brain measures as surrogate markers of disease progression and their ability to detect putative disease-modifying treatment effects. Results Multiple automated techniques showed great promise, detecting significantly increased rates of whole-brain atrophy (p<0.001) and requiring sample sizes of substantially less than 100 patients per treatment arm. Across the different FTD subgroups, direct measures of volume change consistently outperformed their indirect counterparts, irrespective of the initial segmentation quality. Significant differences in performance were found between both techniques and patient subgroups, highlighting the importance of informed biomarker choice based on the patient population of interest. Conclusion This work expands current knowledge and builds on the limited longitudinal investigations currently available in FTD, as well as providing valuable information about the potential of fully automated neuroimaging biomarkers for sporadic and genetic FTD trials.
Collapse
|
8
|
Abushakra S, Porsteinsson AP, Sabbagh M, Bracoud L, Schaerer J, Power A, Hey JA, Scott D, Suhy J, Tolar M. APOE ε4/ε4 homozygotes with early Alzheimer's disease show accelerated hippocampal atrophy and cortical thinning that correlates with cognitive decline. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12117. [PMID: 33304988 PMCID: PMC7716452 DOI: 10.1002/trc2.12117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hippocampal volume (HV) and cortical thickness are commonly used imaging biomarkers in Alzheimer's disease (AD) trials, and may have utility as selection criteria for enrichment strategies. Atrophy rates of these measures, in the high-risk apolipoprotein E (APOE) ε4/ε4 homozygous AD subjects are unknown. METHODS Data from Alzheimer's Disease Neuroimaging Initiative (ADNI-1) and a tramiprosate trial were analyzed in APOE ε4/ε4 and APOE ε3/ε3 subjects with mild cognitive impairment (MCI) or mild AD. Magnetic resonance imaging (MRI) data were centrally processed using FreeSurfer; total HV and composite average cortical thickness were derived and adjusted for age, head size, and education. Volumetric changes from baseline were assessed using Boundary Shift Integral, and correlated with cognitive changes. RESULTS APOE ε4/ε4 MCI subjects showed significantly higher % HV atrophy and cortical thinning at 12 months (4.4%, 3.1%, n = 29) compared to APOE ε3/ε3 subjects (2.8%, 1.8%, n = 93) and similarly in mild AD (7.4%, 4.7% n = 21 vs 5.4%, 3.3% n = 29). Differences were all significant at 24 months. Over 24 months, HV atrophy and cortical thinning correlated significantly with Alzheimer's Disease Assessment Scale-Cognitive subscale worsening in APOE ε4/ε4 MCI subjects, but not in mild AD. DISCUSSION Correlation of volumetric measures to cognitive change in APOE ε4/ε4 subjects with early AD supports their role as efficacy biomarkers. If confirmed in a Phase 3 trial with ALZ-801 (pro-drug of tramiprosate) in APOE ε4/ε4 early AD subjects, it may allow their use as surrogate outcomes in future treatment or prevention trials in AD.
Collapse
Affiliation(s)
| | - Anton P. Porsteinsson
- Alzheimer's Disease CareResearch and Education ProgramUniversity of RochesterRochesterNew YorkUSA
| | - Marwan Sabbagh
- Cleveland Clinic Lou Ruvo Center for Brain Health & University of NevadaLas VegasNevadaUSA
| | | | | | | | | | | | - Joyce Suhy
- BioclinicaLyonFrance
- BioclinicaNewarkCaliforniaUSA
| | | | | |
Collapse
|
9
|
Maikusa N, Fukami T, Matsuda H. Longitudinal analysis of brain structure using existence probability. Brain Behav 2020; 10:e01869. [PMID: 33034427 PMCID: PMC7749599 DOI: 10.1002/brb3.1869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION We propose a method to evaluate quantitatively the longitudinal structural changes in brain atrophy to provide early detection of Alzheimer's disease (AD) and mild cognitive impairment (MCI). METHODS We used existence probabilities obtained by segmenting magnetic resonance (MR) images at two different time points into four regions: gray matter, white matter, cerebrospinal fluid, and background. This method was applied to T1-weighted MR images of 110 participants with normal cognition (NL), 165 with MCI, and 82 with AD, obtained from the Japanese Alzheimer's Disease Neuroimaging Initiative database. RESULTS We obtained the coefficients of probability change (CPC) for each dataset. We found high area under the receiver operating characteristic curve (ROC) values (up to 0.908 of the difference of ROCs) for some CPC regions that are considered indicators of atrophy. Additionally, we attempted to establish a machine-learning algorithm to classify participants as NL or AD. The maximum accuracy was 92.1% for NL-AD classification and 81.2% for NL-MCI classification using CPC values between images acquired at first and sixth months, respectively. CONCLUSION These results showed that the proposed method is effective for the early detection of AD and MCI.
Collapse
Affiliation(s)
- Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tadanori Fukami
- Department of Informatics, Faculty of Engineering, Yamagata University, Yamagata, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
10
|
Fiford CM, Nicholas JM, Biessels GJ, Lane CA, Cardoso MJ, Barnes J. High blood pressure predicts hippocampal atrophy rate in cognitively impaired elders. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12035. [PMID: 32587882 PMCID: PMC7308793 DOI: 10.1002/dad2.12035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Understanding relationships among blood pressure (BP), cognition, and brain volume could inform Alzheimer's disease (AD) management. METHODS We investigated Alzheimer's Disease Neuroimaging Initiative (ADNI) participants: 200 controls, 346 mild cognitive impairment (MCI), and 154 AD. National Alzheimer's Co-ordinating Center (NACC) participants were separately analyzed: 1098 controls, 2297 MCI, and 4845 AD. Relationships between cognition and BP were assessed in both cohorts and BP and atrophy rates in ADNI. Multivariate mixed linear-regression models were fitted with joint outcomes of BP (systolic, diastolic, and pulse pressure), cognition (Mini-Mental State Examination, Logical Memory, and Digit Symbol) and atrophy rate (whole-brain, hippocampus). RESULTS ADNI MCI and AD patients with greater baseline systolic BP had higher hippocampal atrophy rates ([r, P value]; 0.2, 0.005 and 0.2, 0.04, respectively). NACC AD patients with lower systolic BP had lower cognitive scores (0.1, 0.0003). DISCUSSION Higher late-life BP may be associated with faster decline in cognitively impaired elders.
Collapse
Affiliation(s)
- Cassidy M. Fiford
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of NeurologyLondonUK
| | | | - Geert Jan Biessels
- Department of Neurology and NeurosurgeryBrain Center Rudolf MagnusUniversity Medical CenterUtrechtthe Netherlands
| | - Christopher A. Lane
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of NeurologyLondonUK
| | - M. Jorge Cardoso
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research CentreUCL Institute of NeurologyLondonUK
| |
Collapse
|
11
|
Generalised boundary shift integral for longitudinal assessment of spinal cord atrophy. Neuroimage 2019; 209:116489. [PMID: 31877375 DOI: 10.1016/j.neuroimage.2019.116489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022] Open
Abstract
Spinal cord atrophy measurements obtained from structural magnetic resonance imaging (MRI) are associated with disability in many neurological diseases and serve as in vivo biomarkers of neurodegeneration. Longitudinal spinal cord atrophy rate is commonly determined from the numerical difference between two volumes (based on 3D surface fitting) or two cross-sectional areas (CSA, based on 2D edge detection) obtained at different time-points. Being an indirect measure, atrophy rates are susceptible to variable segmentation errors at the edge of the spinal cord. To overcome those limitations, we developed a new registration-based pipeline that measures atrophy rates directly. We based our approach on the generalised boundary shift integral (GBSI) method, which registers 2 scans and uses a probabilistic XOR mask over the edge of the spinal cord, thereby measuring atrophy more accurately than segmentation-based techniques. Using a large cohort of longitudinal spinal cord images (610 subjects with multiple sclerosis from a multi-centre trial and 52 healthy controls), we demonstrated that GBSI is a sensitive, quantitative and objective measure of longitudinal spinal cord volume change. The GBSI pipeline is repeatable, reproducible, and provides more precise measurements of longitudinal spinal cord atrophy than segmentation-based methods in longitudinal spinal cord atrophy studies.
Collapse
|
12
|
Santos M, Osório E, Finnegan S, Clarkson M, Timóteo S, Brandão I, Roma-Torres A, Fox NC, Bastos-Leite AJ. Registration-based methods applied to serial high-resolution T1-weighted magnetic resonance imaging for the assessment of brain volume changes in anorexia nervosa of the restricting type. Psychiatry Res Neuroimaging 2018; 279:14-18. [PMID: 30075347 DOI: 10.1016/j.pscychresns.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/18/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
We aimed to determine whether variation in the body mass index (BMI)—a marker of anorexia nervosa (AN) severity—is associated with brain volume changes longitudinally estimated using registration-based methods on serial high-resolution T1-weighted magnetic resonance images (MRI). Fifteen female patients (mean age = 21 years; standard deviation [SD] = 5.7; range: 15–33 years) with the diagnosis of AN of the restricting type (AN-r)—according to the Diagnostic and Statistic Manual of Mental Disorders, 5th edition criteria—underwent T1-weighted MRI at baseline and after a mean follow-up period of 11 months (SD = 6.4). We used the brain boundary shift integral (BSI) and the ventricular BSI (VBSI) to estimate volume changes after registering voxels of follow-up onto baseline MRI. Very significant and strong correlations were found between BMI variation and the brain BSI, as well as between BMI variation and the VBSI. After adjustment for age at onset, duration of illness, and the BMI rate of change before baseline MRI, the statistical significance of both associations persisted. Registration-based methods on serial MRI represent an additional tool to estimate AN severity, because they provide measures of brain volume change strongly associated with BMI variation.
Collapse
Affiliation(s)
- Mariana Santos
- University of Porto, Faculty of Medicine, Porto, Portugal
| | - Eva Osório
- University of Porto, Faculty of Medicine, Porto, Portugal; Hospital de São João, Department of Psychiatry, Porto, Portugal
| | - Sarah Finnegan
- University College London, Institute of Neurology, London, United Kingdom
| | - Matt Clarkson
- University College London, Centre for Medical Image Computing, London, United Kingdom
| | | | - Isabel Brandão
- University of Porto, Faculty of Medicine, Porto, Portugal; Hospital de São João, Department of Psychiatry, Porto, Portugal
| | | | - Nick C Fox
- University College London, Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
13
|
Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D. Structural brain imaging in Alzheimer's disease and mild cognitive impairment: biomarker analysis and shared morphometry database. Sci Rep 2018; 8:11258. [PMID: 30050078 PMCID: PMC6062561 DOI: 10.1038/s41598-018-29295-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance (MR) imaging is a powerful technique for non-invasive in-vivo imaging of the human brain. We employed a recently validated method for robust cross-sectional and longitudinal segmentation of MR brain images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Specifically, we segmented 5074 MR brain images into 138 anatomical regions and extracted time-point specific structural volumes and volume change during follow-up intervals of 12 or 24 months. We assessed the extracted biomarkers by determining their power to predict diagnostic classification and by comparing atrophy rates to published meta-studies. The approach enables comprehensive analysis of structural changes within the whole brain. The discriminative power of individual biomarkers (volumes/atrophy rates) is on par with results published by other groups. We publish all quality-checked brain masks, structural segmentations, and extracted biomarkers along with this article. We further share the methodology for brain extraction (pincram) and segmentation (MALPEM, MALPEM4D) as open source projects with the community. The identified biomarkers hold great potential for deeper analysis, and the validated methodology can readily be applied to other imaging cohorts.
Collapse
Affiliation(s)
- Christian Ledig
- Imperial College London, Department of Computing, London, SW7 2AZ, UK.
| | - Andreas Schuh
- Imperial College London, Department of Computing, London, SW7 2AZ, UK
| | - Ricardo Guerrero
- Imperial College London, Department of Computing, London, SW7 2AZ, UK
| | - Rolf A Heckemann
- MedTech West, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.,Department of Radiation Therapy, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Division of Brain Sciences, Imperial College London, London, UK
| | - Daniel Rueckert
- Imperial College London, Department of Computing, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Fiford CM, Ridgway GR, Cash DM, Modat M, Nicholas J, Manning EN, Malone IB, Biessels GJ, Ourselin S, Carmichael OT, Cardoso MJ, Barnes J. Patterns of progressive atrophy vary with age in Alzheimer's disease patients. Neurobiol Aging 2018; 63:22-32. [PMID: 29220823 PMCID: PMC5805840 DOI: 10.1016/j.neurobiolaging.2017.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/14/2017] [Accepted: 11/06/2017] [Indexed: 01/18/2023]
Abstract
Age is not only the greatest risk factor for Alzheimer's disease (AD) but also a key modifier of disease presentation and progression. Here, we investigate how longitudinal atrophy patterns vary with age in mild cognitive impairment (MCI) and AD. Data comprised serial longitudinal 1.5-T magnetic resonance imaging scans from 153 AD, 339 MCI, and 191 control subjects. Voxel-wise maps of longitudinal volume change were obtained and aligned across subjects. Local volume change was then modeled in terms of diagnostic group and an interaction between group and age, adjusted for total intracranial volume, white-matter hyperintensity volume, and apolipoprotein E genotype. Results were significant at p < 0.05 with family-wise error correction for multiple comparisons. An age-by-group interaction revealed that younger AD patients had significantly faster atrophy rates in the bilateral precuneus, parietal, and superior temporal lobes. These results suggest younger AD patients have predominantly posterior progressive atrophy, unexplained by white-matter hyperintensity, apolipoprotein E, or total intracranial volume. Clinical trials may benefit from adapting outcome measures for patient groups with lower average ages, to capture progressive atrophy in posterior cortices.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Gerard R Ridgway
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sebastien Ourselin
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | | | - M Jorge Cardoso
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
15
|
Fujishima M, Kawaguchi A, Maikusa N, Kuwano R, Iwatsubo T, Matsuda H. Sample Size Estimation for Alzheimer's Disease Trials from Japanese ADNI Serial Magnetic Resonance Imaging. J Alzheimers Dis 2018; 56:75-88. [PMID: 27911297 PMCID: PMC5240548 DOI: 10.3233/jad-160621] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Little is known about the sample sizes required for clinical trials of Alzheimer’s disease (AD)-modifying treatments using atrophy measures from serial brain magnetic resonance imaging (MRI) in the Japanese population. Objective: The primary objective of the present study was to estimate how large a sample size would be needed for future clinical trials for AD-modifying treatments in Japan using atrophy measures of the brain as a surrogate biomarker. Methods: Sample sizes were estimated from the rates of change of the whole brain and hippocampus by the k-means normalized boundary shift integral (KN-BSI) and cognitive measures using the data of 537 Japanese Alzheimer’s Neuroimaging Initiative (J-ADNI) participants with a linear mixed-effects model. We also examined the potential use of ApoE status as a trial enrichment strategy. Results: The hippocampal atrophy rate required smaller sample sizes than cognitive measures of AD and mild cognitive impairment (MCI). Inclusion of ApoE status reduced sample sizes for AD and MCI patients in the atrophy measures. Conclusion: These results show the potential use of longitudinal hippocampal atrophy measurement using automated image analysis as a progression biomarker and ApoE status as a trial enrichment strategy in a clinical trial of AD-modifying treatment in Japanese people.
Collapse
Affiliation(s)
- Motonobu Fujishima
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Diagnostic Radiology, Kojinkai Josai Clinic, Maebashi, Gunma, Japan
| | - Atsushi Kawaguchi
- Center for Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ryozo Kuwano
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center (IBIC), National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Kinnunen KM, Cash DM, Poole T, Frost C, Benzinger TLS, Ahsan RL, Leung KK, Cardoso MJ, Modat M, Malone IB, Morris JC, Bateman RJ, Marcus DS, Goate A, Salloway SP, Correia S, Sperling RA, Chhatwal JP, Mayeux RP, Brickman AM, Martins RN, Farlow MR, Ghetti B, Saykin AJ, Jack CR, Schofield PR, McDade E, Weiner MW, Ringman JM, Thompson PM, Masters CL, Rowe CC, Rossor MN, Ourselin S, Fox NC. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study. Alzheimers Dement 2018; 14:43-53. [PMID: 28738187 PMCID: PMC5751893 DOI: 10.1016/j.jalz.2017.06.2268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.
Collapse
Affiliation(s)
- Kirsi M. Kinnunen
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M. Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Physics and Bioengineering, Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK,Corresponding author. Tel.: +44 203 448 3054; Fax: +44 (0)20 3448 3104.,
| | - Teresa Poole
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Chris Frost
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | | | - R. Laila Ahsan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Kelvin K. Leung
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - M. Jorge Cardoso
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Physics and Bioengineering, Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Marc Modat
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Physics and Bioengineering, Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Ian B. Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel S. Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen P. Salloway
- Department of Neurology, Butler Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Stephen Correia
- Department of Neurology, Butler Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Reisa A. Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmeer P. Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard P. Mayeux
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Adam M. Brickman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Centre for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael W. Weiner
- Department of Radiology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John M. Ringman
- Department of Neurology, Keck USC School of Medicine, Los Angeles, CA, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Colin L. Masters
- The Florey Institute, University of Melbourne, Parkville, VIC, Australia
| | - Christopher C. Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia,Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Martin N. Rossor
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK,Department of Medical Physics and Bioengineering, Translational Imaging Group, Centre for Medical Image Computing, University College London, London, UK
| | - Nick C. Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
17
|
Ledig C, Kamnitsas K, Koikkalainen J, Posti JP, Takala RSK, Katila A, Frantzén J, Ala-Seppälä H, Kyllönen A, Maanpää HR, Tallus J, Lötjönen J, Glocker B, Tenovuo O, Rueckert D. Regional brain morphometry in patients with traumatic brain injury based on acute- and chronic-phase magnetic resonance imaging. PLoS One 2017; 12:e0188152. [PMID: 29182625 PMCID: PMC5705131 DOI: 10.1371/journal.pone.0188152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 11/01/2017] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) is caused by a sudden external force and can be very heterogeneous in its manifestation. In this work, we analyse T1-weighted magnetic resonance (MR) brain images that were prospectively acquired from patients who sustained mild to severe TBI. We investigate the potential of a recently proposed automatic segmentation method to support the outcome prediction of TBI. Specifically, we extract meaningful cross-sectional and longitudinal measurements from acute- and chronic-phase MR images. We calculate regional volume and asymmetry features at the acute/subacute stage of the injury (median: 19 days after injury), to predict the disability outcome of 67 patients at the chronic disease stage (median: 229 days after injury). Our results indicate that small structural volumes in the acute stage (e.g. of the hippocampus, accumbens, amygdala) can be strong predictors for unfavourable disease outcome. Further, group differences in atrophy are investigated. We find that patients with unfavourable outcome show increased atrophy. Among patients with severe disability outcome we observed a significantly higher mean reduction of cerebral white matter (3.1%) as compared to patients with low disability outcome (0.7%).
Collapse
Affiliation(s)
- Christian Ledig
- Imperial College London, Department of Computing, London, United Kingdom
- * E-mail:
| | | | - Juha Koikkalainen
- Combinostics, Tampere, Finland
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Jussi P. Posti
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Riikka S. K. Takala
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Ari Katila
- Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
| | - Janek Frantzén
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
- Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland
| | - Henna Ala-Seppälä
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Anna Kyllönen
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | | | - Jussi Tallus
- Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Jyrki Lötjönen
- Combinostics, Tampere, Finland
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Ben Glocker
- Imperial College London, Department of Computing, London, United Kingdom
| | - Olli Tenovuo
- Department of Clinical Medicine, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland
| | - Daniel Rueckert
- Imperial College London, Department of Computing, London, United Kingdom
| |
Collapse
|
18
|
Dieleman N, Koek HL, Hendrikse J. Short-term mechanisms influencing volumetric brain dynamics. NEUROIMAGE-CLINICAL 2017; 16:507-513. [PMID: 28971004 PMCID: PMC5609861 DOI: 10.1016/j.nicl.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/28/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
With the use of magnetic resonance imaging (MRI) and brain analysis tools, it has become possible to measure brain volume changes up to around 0.5%. Besides long-term brain changes caused by atrophy in aging or neurodegenerative disease, short-term mechanisms that influence brain volume may exist. When we focus on short-term changes of the brain, changes may be either physiological or pathological. As such determining the cause of volumetric dynamics of the brain is essential. Additionally for an accurate interpretation of longitudinal brain volume measures by means of neurodegeneration, knowledge about the short-term changes is needed. Therefore, in this review, we discuss the possible mechanisms influencing brain volumes on a short-term basis and set-out a framework of MRI techniques to be used for volumetric changes as well as the used analysis tools. 3D T1-weighted images are the images of choice when it comes to MRI of brain volume. These images are excellent to determine brain volume and can be used together with an analysis tool to determine the degree of volume change. Mechanisms that decrease global brain volume are: fluid restriction, evening MRI measurements, corticosteroids, antipsychotics and short-term effects of pathological processes like Alzheimer's disease, hypertension and Diabetes mellitus type II. Mechanisms increasing the brain volume include fluid intake, morning MRI measurements, surgical revascularization and probably medications like anti-inflammatory drugs and anti-hypertensive medication. Exercise was found to have no effect on brain volume on a short-term basis, which may imply that dehydration caused by exercise differs from dehydration by fluid restriction. In the upcoming years, attention should be directed towards studies investigating physiological short-term changes within the light of long-term pathological changes. Ultimately this may lead to a better understanding of the physiological short-term effects of pathological processes and may aid in early detection of these diseases. Fluid-restriction, evening MRI, corticosteroids, & antipsychotics decrease volume Fluid-intake, morning MRI, surgical revascularization & medications increase volume Short-term changes within the light of long-term pathological changes should be investigated Short-term changes may introduce bias in longitudinal data
Collapse
Affiliation(s)
- Nikki Dieleman
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Huiberdina L Koek
- Department of Geriatrics, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
19
|
Fiford CM, Manning EN, Bartlett JW, Cash DM, Malone IB, Ridgway GR, Lehmann M, Leung KK, Sudre CH, Ourselin S, Biessels GJ, Carmichael OT, Fox NC, Cardoso MJ, Barnes J. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus 2017; 27:249-262. [PMID: 27933676 PMCID: PMC5324634 DOI: 10.1002/hipo.22690] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Emily N Manning
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | | | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Ian B Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Gerard R Ridgway
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, United Kingdom.,Wellcome Trust Centre for Neuroimaging, London, United Kingdom
| | - Manja Lehmann
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Kelvin K Leung
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Carole H Sudre
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus University Medical Center Utrecht, The Netherlands
| | | | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - M Jorge Cardoso
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
20
|
Fully automated grey and white matter spinal cord segmentation. Sci Rep 2016; 6:36151. [PMID: 27786306 PMCID: PMC5082365 DOI: 10.1038/srep36151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/06/2016] [Indexed: 12/03/2022] Open
Abstract
Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS.
Collapse
|
21
|
Prados F, Cardoso MJ, Kanber B, Ciccarelli O, Kapoor R, Gandini Wheeler-Kingshott CAM, Ourselin S. A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis. Neuroimage 2016; 139:376-384. [PMID: 27377222 PMCID: PMC4988790 DOI: 10.1016/j.neuroimage.2016.06.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis lesions influence the process of image analysis, leading to tissue segmentation problems and biased morphometric estimates. Existing techniques try to reduce this bias by filling all lesions as normal-appearing white matter on T1-weighted images, considering each time-point separately. However, due to lesion segmentation errors and the presence of structures adjacent to the lesions, such as the ventricles and deep grey matter nuclei, filling all lesions with white matter-like intensities introduces errors and artefacts. In this paper, we present a novel lesion filling strategy inspired by in-painting techniques used in computer graphics applications for image completion. The proposed technique uses a five-dimensional (5D), patch-based (multi-modality and multi-time-point), Non-Local Means algorithm that fills lesions with the most plausible texture. We demonstrate that this strategy introduces less bias, fewer artefacts and spurious edges than the current, publicly available techniques. The proposed method is modality-agnostic and can be applied to multiple time-points simultaneously. In addition, it preserves anatomical structures and signal-to-noise characteristics even when the lesions are neighbouring grey matter or cerebrospinal fluid, and avoids excess of blurring or rasterisation due to the choice of the segmentation plane, shape of the lesions, and their size and/or location.
Collapse
Affiliation(s)
- Ferran Prados
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, 1st Floor, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK.
| | - Manuel Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Baris Kanber
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, 1st Floor, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK
| | - Raju Kapoor
- Department of Neuroinflammation, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, 1st Floor, Russell Square House, 10-12 Russell Square, London WC1B 5EH, UK; Brain MRI 3T Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London, WC1E 6BT, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
22
|
Aksman LM, Lythgoe DJ, Williams SCR, Jokisch M, Mönninghoff C, Streffer J, Jöckel KH, Weimar C, Marquand AF. Making use of longitudinal information in pattern recognition. Hum Brain Mapp 2016; 37:4385-4404. [PMID: 27451934 PMCID: PMC5111621 DOI: 10.1002/hbm.23317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022] Open
Abstract
Longitudinal designs are widely used in medical studies as a means of observing within-subject changes over time in groups of subjects, thereby aiming to improve sensitivity for detecting disease effects. Paralleling an increased use of such studies in neuroimaging has been the adoption of pattern recognition algorithms for making individualized predictions of disease. However, at present few pattern recognition methods exist to make full use of neuroimaging data that have been collected longitudinally, with most methods relying instead on cross-sectional style analysis. This article presents a principal component analysis-based feature construction method that uses longitudinal high-dimensional data to improve predictive performance of pattern recognition algorithms. The method can be applied to data from a wide range of longitudinal study designs and permits an arbitrary number of time-points per subject. We apply the method to two longitudinal datasets, one containing subjects with mild cognitive impairment along with healthy controls, the other with early dementia subjects and healthy controls. Across both datasets, we show improvements in predictive accuracy relative to cross-sectional classifiers for discriminating disease subjects from healthy controls on the basis of whole-brain structural magnetic resonance image-based voxels. In addition, we can transfer longitudinal information from one set of subjects to make disease predictions in another set of subjects. The proposed method is simple and, as a feature construction method, flexible with respect to the choice of classifier and image registration algorithm. Hum Brain Mapp 37:4385-4404, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leon M Aksman
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Mönninghoff
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Streffer
- Janssen-Pharmaceutical Companies of Johnson & Johnson, Janssen Research and Development, Beerse, Belgium
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Germany
| | - Christian Weimar
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andre F Marquand
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Arguillère S, Miller MI, Younes L. Diffeomorphic Surface Registration with Atrophy Constraints. SIAM JOURNAL ON IMAGING SCIENCES 2016; 9:975-1003. [PMID: 35646228 PMCID: PMC9148198 DOI: 10.1137/15m104431x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diffeomorphic registration using optimal control on the diffeomorphism group and on shape spaces has become widely used since the development of the large deformation diffeomorphic metric mapping (LDDMM) algorithm. More recently, a series of algorithms involving sub-Riemannian constraints have been introduced in which the velocity fields that control the shapes in the LDDMM framework are constrained in accordance with a specific deformation model. Here, we extend this setting by considering, for the first time, inequality constraints in order to estimate surface deformations that only allow for atrophy, introducing for this purpose an algorithm that uses the augmented Lagrangian method. We prove the existence of solutions of the associated optimal control problem and the consistency of our approximation scheme. These developments are illustrated by numerical experiments on simulated and real data.
Collapse
Affiliation(s)
- Sylvain Arguillère
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218
| | - Michael I Miller
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218
| | - Laurent Younes
- Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
24
|
Tsai RM, Lobach I, Bang J, Whitwell JL, Senjem ML, Jack CR, Rosen H, Miller B, Boxer AL. Clinical correlates of longitudinal brain atrophy in progressive supranuclear palsy. Parkinsonism Relat Disord 2016; 28:29-35. [PMID: 27132501 DOI: 10.1016/j.parkreldis.2016.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/25/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022]
Abstract
INTRODUCTION There are no effective treatments for progressive supranuclear palsy (PSP). Volumetric MRI (vMRI) may be a useful surrogate outcome measure in PSP clinical trials. The goal of the study was to evaluate the potential of vMRI to correlate with clinical outcomes from an international clinical trial population. METHODS PSP patients (n = 198) from the AL-108-231 trial who had high quality vMRI and Progressive Supranuclear Palsy Rating Scale (PSPRS), Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Schwab and England Activities of Daily Living (SEADL), Color Trails Test, Geriatric Depression Screen (GDS) and one year Clinician Global Impression of Change (CGIC) data from the baseline and 52 week visits were included. Linear regression was used to relate baseline values and annual clinical rating scale changes to annual regional vMRI changes (whole brain, ventricular, midbrain and superior cerebellar peduncle volumes). RESULTS Effect sizes (Cohen's d) measuring disease progression over one year were largest for vMRI (midbrain [1.27] and ventricular volume [1.31]) but similar to PSPRS (1.26). After multiple comparison adjustment, annual changes in PSPRS, RBANS, SEADL, Color Trails Test, GDS and one year CGIC were modestly correlated with annual vMRI changes (p < 0.05). Baseline neuropsychological status on RBANS (p = 0.019) and Color Trails (p < 0.01) predicted annual midbrain atrophy rates. CONCLUSION Standard vMRI measurements are sensitive to disease progression in large, multicenter PSP clinical trials, but are not well correlated with clinical changes. vMRI changes may be useful as supportive endpoints in PSP trials.
Collapse
Affiliation(s)
- Richard M Tsai
- Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA.
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, Division of Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Jee Bang
- Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | - Howard Rosen
- Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Jack CR, Barnes J, Bernstein MA, Borowski BJ, Brewer J, Clegg S, Dale AM, Carmichael O, Ching C, DeCarli C, Desikan RS, Fennema-Notestine C, Fjell AM, Fletcher E, Fox NC, Gunter J, Gutman BA, Holland D, Hua X, Insel P, Kantarci K, Killiany RJ, Krueger G, Leung KK, Mackin S, Maillard P, Malone IB, Mattsson N, McEvoy L, Modat M, Mueller S, Nosheny R, Ourselin S, Schuff N, Senjem ML, Simonson A, Thompson PM, Rettmann D, Vemuri P, Walhovd K, Zhao Y, Zuk S, Weiner M. Magnetic resonance imaging in Alzheimer's Disease Neuroimaging Initiative 2. Alzheimers Dement 2016; 11:740-56. [PMID: 26194310 DOI: 10.1016/j.jalz.2015.05.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders. METHODS We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2). We also review plans for the future-ADNI-3. RESULTS Contributions of the MRI core include creating standardized acquisition protocols and quality control methods; examining the effect of technical features of image acquisition and analysis on outcome metrics; deriving sample size estimates for future trials based on those outcomes; and piloting the potential utility of MR perfusion, diffusion, and functional connectivity measures in multicenter clinical trials. DISCUSSION Over the past decade the MRI core of ADNI has fulfilled its mandate of improving methods for clinical trials in AD and will continue to do so in the future.
Collapse
Affiliation(s)
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | | | | | - James Brewer
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Shona Clegg
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Anders M Dale
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Owen Carmichael
- Department of Neurology, University of California at Davis, Davis, CA, USA
| | - Christopher Ching
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Rahul S Desikan
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Anders M Fjell
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Evan Fletcher
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Jeff Gunter
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Boris A Gutman
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dominic Holland
- Department of Neuroscience, University of California at San Diego, La Jolla, CA, USA
| | - Xue Hua
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Philip Insel
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ron J Killiany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Kelvin K Leung
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Scott Mackin
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, USA; Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Ian B Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
| | - Linda McEvoy
- Department of Radiology, University of California at San Diego, La Jolla, CA, USA
| | - Marc Modat
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Susanne Mueller
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Rachel Nosheny
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, Institute of Neurology, University College London, London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Norbert Schuff
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Alix Simonson
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Paul M Thompson
- Department of Neurology, Imaging Genetics Center, Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, USA
| | - Dan Rettmann
- MR Applications and Workflow, GE Healthcare, Rochester, MN, USA
| | | | | | | | - Samantha Zuk
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Weiner
- Department of Radiology and Biomedical Imaging, Center for Imaging of Neurodegenerative Diseases, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry, University of California at San Francisco, San Francisco, CA, USA; Department of Radiology, University of California at San Francisco, San Francisco, CA, USA; Department of Medicine, University of California at San Francisco, San Francisco, CA, USA; Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Newcombe VFJ, Correia MM, Ledig C, Abate MG, Outtrim JG, Chatfield D, Geeraerts T, Manktelow AE, Garyfallidis E, Pickard JD, Sahakian BJ, Hutchinson PJA, Rueckert D, Coles JP, Williams GB, Menon DK. Dynamic Changes in White Matter Abnormalities Correlate With Late Improvement and Deterioration Following TBI: A Diffusion Tensor Imaging Study. Neurorehabil Neural Repair 2016; 30:49-62. [PMID: 25921349 DOI: 10.1177/1545968315584004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is not a single insult with monophasic resolution, but a chronic disease, with dynamic processes that remain active for years. We aimed to assess patient trajectories over the entire disease narrative, from ictus to late outcome. METHODS Twelve patients with moderate-to-severe TBI underwent magnetic resonance imaging in the acute phase (within 1 week of injury) and twice in the chronic phase of injury (median 7 and 21 months), with some undergoing imaging at up to 2 additional time points. Longitudinal imaging changes were assessed using structural volumetry, deterministic tractography, voxel-based diffusion tensor analysis, and region of interest analyses (including corpus callosum, parasagittal white matter, and thalamus). Imaging changes were related to behavior. RESULTS Changes in structural volumes, fractional anisotropy, and mean diffusivity continued for months to years postictus. Changes in diffusion tensor imaging were driven by increases in both axial and radial diffusivity except for the earliest time point, and were associated with changes in reaction time and performance in a visual memory and learning task (paired associates learning). Dynamic structural changes after TBI can be detected using diffusion tensor imaging and could explain changes in behavior. CONCLUSIONS These data can provide further insight into early and late pathophysiology, and begin to provide a framework that allows magnetic resonance imaging to be used as an imaging biomarker of therapy response. Knowledge of the temporal pattern of changes in TBI patient populations also provides a contextual framework for assessing imaging changes in individuals at any given time point.
Collapse
Affiliation(s)
| | | | | | - Maria G Abate
- University of Cambridge, Cambridge, UK Gerardo Hospital, Monza, Milan, Italy
| | | | | | - Thomas Geeraerts
- University of Cambridge, Cambridge, UK University Hospital of Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ziegler G, Penny WD, Ridgway GR, Ourselin S, Friston KJ. Estimating anatomical trajectories with Bayesian mixed-effects modeling. Neuroimage 2015; 121:51-68. [PMID: 26190405 PMCID: PMC4607727 DOI: 10.1016/j.neuroimage.2015.06.094] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/04/2015] [Accepted: 06/30/2015] [Indexed: 01/29/2023] Open
Abstract
We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individual and ensemble average changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inversion uses Expectation Maximization (EM), while voxelwise (empirical) priors on the size of individual differences are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models with varying combinations of model order for fixed and random effects using model evidence. We validate the model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- G Ziegler
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; Dementia Research Centre, Institute of Neurology, University College London, UK.
| | - W D Penny
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK
| | - G R Ridgway
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; FMRIB, Nuffield Dept. of Clinical Neurosciences, University of Oxford, UK
| | - S Ourselin
- Dementia Research Centre, Institute of Neurology, University College London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, UK
| | - K J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK
| |
Collapse
|
28
|
Assessing atrophy measurement techniques in dementia: Results from the MIRIAD atrophy challenge. Neuroimage 2015; 123:149-64. [PMID: 26275383 PMCID: PMC4634338 DOI: 10.1016/j.neuroimage.2015.07.087] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 01/18/2023] Open
Abstract
Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated “direct” measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24 months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: − 1.4% to − 2.2% (AD) and − 0.35% to − 0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: − 1.5% to − 7.0% (AD) and − 0.4% to − 1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12 month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods. We compared numerous brain atrophy measurement techniques using multiple metrics. Each participant produced measures on the exact same dataset, blinded to disease. A central statistical analysis using linear mixed effect models was performed. Head to head comparisons for each region were performed using sample size estimates. Brain and ventricle measures were more consistent across groups than for hippocampi.
Collapse
|
29
|
Nakamura K, Brown RA, Narayanan S, Collins DL, Arnold DL. Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations. Neuroimage 2015; 118:126-32. [PMID: 26049148 DOI: 10.1016/j.neuroimage.2015.05.077] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/10/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023] Open
Abstract
We investigated fluctuations in brain volume throughout the day using statistical modeling of magnetic resonance imaging (MRI) from large populations. We applied fully automated image analysis software to measure the brain parenchymal fraction (BPF), defined as the ratio of the brain parenchymal volume and intracranial volume, thus accounting for variations in head size. The MRI data came from serial scans of multiple sclerosis (MS) patients in clinical trials (n=755, 3269 scans) and from subjects participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI, n=834, 6114 scans). The percent change in BPF was modeled with a linear mixed effect (LME) model, and the model was applied separately to the MS and ADNI datasets. The LME model for the MS datasets included random subject effects (intercept and slope over time) and fixed effects for the time-of-day, time from the baseline scan, and trial, which accounted for trial-related effects (for example, different inclusion criteria and imaging protocol). The model for ADNI additionally included the demographics (baseline age, sex, subject type [normal, mild cognitive impairment, or Alzheimer's disease], and interaction between subject type and time from baseline). There was a statistically significant effect of time-of-day on the BPF change in MS clinical trial datasets (-0.180 per day, that is, 0.180% of intracranial volume, p=0.019) as well as the ADNI dataset (-0.438 per day, that is, 0.438% of intracranial volume, p<0.0001), showing that the brain volume is greater in the morning. Linearly correcting the BPF values with the time-of-day reduced the required sample size to detect a 25% treatment effect (80% power and 0.05 significance level) on change in brain volume from 2 time-points over a period of 1year by 2.6%. Our results have significant implications for future brain volumetric studies, suggesting that there is a potential acquisition time bias that should be randomized or statistically controlled to account for the day-to-day brain volume fluctuations.
Collapse
Affiliation(s)
- Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, ND20, Cleveland, OH 44195, USA.
| | - Robert A Brown
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada; NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Douglas L Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada; NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| | | |
Collapse
|
30
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Green RC, Harvey D, Jack CR, Jagust W, Luthman J, Morris JC, Petersen RC, Saykin AJ, Shaw L, Shen L, Schwarz A, Toga AW, Trojanowski JQ. 2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimers Dement 2015; 11:e1-120. [PMID: 26073027 PMCID: PMC5469297 DOI: 10.1016/j.jalz.2014.11.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2013] [Indexed: 01/18/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse Cedarbaum
- Neurology Early Clinical Development, Biogen Idec, Cambridge, MA, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Johan Luthman
- Neuroscience Clinical Development, Neuroscience & General Medicine Product Creation Unit, Eisai Inc., Philadelphia, PA, USA
| | - John C Morris
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Schwarz
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Leung KK, Malone IM, Ourselin S, Gunter JL, Bernstein MA, Thompson PM, Jack CR, Weiner MW, Fox NC. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement. Neuroimage 2015; 107:46-53. [PMID: 25481794 PMCID: PMC4300278 DOI: 10.1016/j.neuroimage.2014.11.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 11/14/2014] [Accepted: 11/22/2014] [Indexed: 11/30/2022] Open
Abstract
Stable MR acquisition is essential for reliable measurement of brain atrophy in longitudinal studies. One attractive recent advance in MRI is to speed up acquisition using parallel imaging (e.g. reducing volumetric T1-weighted acquisition scan times from around 9 to 5 min). In some studies, a decision to change to an accelerated acquisition may have been deliberately taken, while in others repeat scans may occasionally be accidentally acquired with an accelerated acquisition. In ADNI, non-accelerated and accelerated scans were acquired in the same scanning session on each individual. We investigated the impact on brain atrophy as measured by k-means normalized boundary shift integral (KN-BSI) and deformation-based morphometry when changing from non-accelerated to accelerated MRI acquisitions over a 12-month interval using scans of 422 subjects from ADNI. KN-BSIs were calculated using both a non-accelerated baseline scan and non-accelerated 12-month scans (i.e. consistent acquisition), and a non-accelerated baseline scan and an accelerated 12-month scan (i.e. changed acquisition). Fluid-based non-rigid registration was also performed on those scans to estimate the brain atrophy rate. We found that the effect on KN-BSI and fluid-based non-rigid registration depended on the scanner manufacturer. For KN-BSI, in Philips and Siemens scanners, the change had very little impact on the measured atrophy rate (increase of 0.051% in Philips and -0.035% in Siemens from consistent acquisition to changed acquisition), whereas, in GE, the change caused a mean reduction of 0.65% in the brain atrophy rate. This is likely due to the difference in tissue contrast between gray matter and cerebrospinal fluid in the non-accelerated and accelerated scans in GE, which uses IR-FSPGR instead of MP-RAGE. For fluid-based non-rigid registration, the change caused a mean increase of 0.29% in the brain atrophy rate in the changed acquisition compared with consistent acquisition in Philips, whereas in GE and Siemens, the change had less impact on the mean atrophy rate (increase of 0.18% in GE and 0.049% in Siemens). Moving from non-accelerated baseline scans to accelerated scans for follow-up may have surprisingly little effect on computed atrophy rates depending on the exact sequence details and the scanner manufacturer; even accidentally inconsistent scans of this nature may still be useful.
Collapse
Affiliation(s)
- Kelvin K Leung
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Ian M Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sebastien Ourselin
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Centre for Medical Image Computing, University College London, WC1E 6BT London, UK
| | | | | | - Paul M Thompson
- Department of Neurology, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA; Department of Psychiatry, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA; Department of Radiology, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA; Department of Engineering, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA; Department of Pediatrics and Ophthalmology, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA; Imaging Genetics Center, USC Keck School of Medicine, University of Southern California, 2001 N. Soto Street, Los Angeles, CA 90033, USA
| | | | - Michael W Weiner
- Department of Radiology, University of California San Francisco, CA, USA; Magnetic Resonance Imaging Unit, San Francisco Veterans Affairs Hospital San Francisco, CA, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
32
|
Datteri RD, Liu Y, D'Haese PF, Dawant BM. Validation of a nonrigid registration error detection algorithm using clinical MRI brain data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:86-96. [PMID: 25095252 PMCID: PMC4280312 DOI: 10.1109/tmi.2014.2344911] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Identification of error in nonrigid registration is a critical problem in the medical image processing community. We recently proposed an algorithm that we call "Assessing Quality Using Image Registration Circuits" (AQUIRC) to identify nonrigid registration errors and have tested its performance using simulated cases. In this paper, we extend our previous work to assess AQUIRC's ability to detect local nonrigid registration errors and validate it quantitatively at specific clinical landmarks, namely the anterior commissure and the posterior commissure. To test our approach on a representative range of error we utilize five different registration methods and use 100 target images and nine atlas images. Our results show that AQUIRC's measure of registration quality correlates with the true target registration error (TRE) at these selected landmarks with an R(2)=0.542. To compare our method to a more conventional approach, we compute local normalized correlation coefficient (LNCC) and show that AQUIRC performs similarly. However, a multi-linear regression performed with both AQUIRC's measure and LNCC shows a higher correlation with TRE than correlations obtained with either measure alone, thus showing the complementarity of these quality measures. We conclude the paper by showing that the AQUIRC algorithm can be used to reduce registration errors for all five algorithms.
Collapse
|
33
|
Prados F, Cardoso MJ, Leung KK, Cash DM, Modat M, Fox NC, Wheeler-Kingshott CAM, Ourselin S. Measuring brain atrophy with a generalized formulation of the boundary shift integral. Neurobiol Aging 2015; 36 Suppl 1:S81-90. [PMID: 25264346 PMCID: PMC4288791 DOI: 10.1016/j.neurobiolaging.2014.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Abstract
Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region.
Collapse
Affiliation(s)
- Ferran Prados
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.
| | - Manuel Jorge Cardoso
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Kelvin K Leung
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - David M Cash
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Marc Modat
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | - Sebastien Ourselin
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Bioengineering, University College London, London, UK; Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
34
|
Gutman BA, Wang Y, Yanovsky I, Hua X, Toga AW, Jack CR, Weiner MW, Thompson PM. Empowering imaging biomarkers of Alzheimer's disease. Neurobiol Aging 2015; 36 Suppl 1:S69-80. [PMID: 25260848 PMCID: PMC4268333 DOI: 10.1016/j.neurobiolaging.2014.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/18/2023]
Abstract
In a previous report, we proposed a method for combining multiple markers of atrophy caused by Alzheimer's disease into a single atrophy score that is more powerful than any one feature. We applied the method to expansion rates of the lateral ventricles, achieving the most powerful ventricular atrophy measure to date. Here, we expand our method's application to tensor-based morphometry measures. We also combine the volumetric tensor-based morphometry measures with previously computed ventricular surface measures into a combined atrophy score. We show that our atrophy scores are longitudinally unbiased with the intercept bias estimated at 2 orders of magnitude below the mean atrophy of control subjects at 1 year. Both approaches yield the most powerful biomarker of atrophy not only for ventricular measures but also for all published unbiased imaging measures to date. A 2-year trial using our measures requires only 31 (22, 43) Alzheimer's disease subjects or 56 (44, 64) subjects with mild cognitive impairment to detect 25% slowing in atrophy with 80% power and 95% confidence.
Collapse
Affiliation(s)
- Boris A Gutman
- USC Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Igor Yanovsky
- UCLA Joint Institute for Regional Earth System Science and Engineering, Los Angeles, CA, USA
| | - Xue Hua
- USC Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael W Weiner
- Department of Radiology and Biomedical Imaging, UC San Francisco, San Francisco, CA, USA; Department of Medicine, UC San Francisco, San Francisco, CA, USA; Department of Psychiatry, UC San Francisco, San Francisco, CA, USA
| | - Paul M Thompson
- USC Imaging Genetics Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Simulating neurodegeneration through longitudinal population analysis of structural and diffusion weighted MRI data. ACTA ACUST UNITED AC 2014. [PMID: 25320782 DOI: 10.1007/978-3-319-10443-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neuroimaging biomarkers play a prominent role for disease diagnosis or tracking neurodegenerative processes. Multiple methods have been proposed by the community to extract robust disease specific markers from various imaging modalities. Evaluating the accuracy and robustness of developed methods is difficult due to the lack of a biologically realistic ground truth. We propose a proof-of-concept method for a patient- and disease-specific brain neurodegeneration simulator. The proposed scheme, based on longitudinal multi-modal data, has been applied to a population of normal controls and patients diagnosed with Alzheimer's disease or frontotemporal dementia. We simulated follow-up images from baseline scans and compared them to real repeat images. Additionally, simulated maps of volume change are generated, which can be compared to maps estimated from real longitudinal data. The results indicate that the proposed simulator reproduces realistic patient-specific patterns of longitudinal brain change for the given populations.
Collapse
|
36
|
Kehoe EG, McNulty JP, Mullins PG, Bokde ALW. Advances in MRI biomarkers for the diagnosis of Alzheimer's disease. Biomark Med 2014; 8:1151-69. [DOI: 10.2217/bmm.14.42] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With the prevalence of Alzheimer's disease (AD) predicted to increase substantially over the coming decades, the development of effective biomarkers for the early detection of the disease is paramount. In this short review, the main neuroimaging techniques which have shown potential as biomarkers for AD are introduced, with a focus on MRI. Structural MRI measures of the hippocampus and medial temporal lobe are still the most clinically validated biomarkers for AD, but newer techniques such as functional MRI and diffusion tensor imaging offer great scope in tracking changes in the brain, particularly in functional and structural connectivity, which may precede gray matter atrophy. These new advances in neuroimaging methods require further development and crucially, standardization; however, before they are used as biomarkers to aid in the diagnosis of AD.
Collapse
Affiliation(s)
- Elizabeth G Kehoe
- The Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Jonathan P McNulty
- School of Medicine & Medical Science, University College Dublin, Dublin, Ireland
| | | | - Arun L W Bokde
- The Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
- Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Modat M, Cash DM, Daga P, Winston GP, Duncan JS, Ourselin S. Global image registration using a symmetric block-matching approach. J Med Imaging (Bellingham) 2014; 1:024003. [PMID: 26158035 PMCID: PMC4478989 DOI: 10.1117/1.jmi.1.2.024003] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 11/14/2022] Open
Abstract
Most medical image registration algorithms suffer from a directionality bias that has been shown to largely impact subsequent analyses. Several approaches have been proposed in the literature to address this bias in the context of nonlinear registration, but little work has been done for global registration. We propose a symmetric approach based on a block-matching technique and least-trimmed square regression. The proposed method is suitable for multimodal registration and is robust to outliers in the input images. The symmetric framework is compared with the original asymmetric block-matching technique and is shown to outperform it in terms of accuracy and robustness. The methodology presented in this article has been made available to the community as part of the NiftyReg open-source package.
Collapse
Affiliation(s)
- Marc Modat
- University College London, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, Malet Place, London WC1E 6BT, United Kingdom
- University College London, Dementia Research Centre, Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - David M. Cash
- University College London, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, Malet Place, London WC1E 6BT, United Kingdom
- University College London, Dementia Research Centre, Institute of Neurology, London, WC1N 3BG, United Kingdom
| | - Pankaj Daga
- University College London, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, Malet Place, London WC1E 6BT, United Kingdom
| | - Gavin P. Winston
- University College London, Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, United Kingdom
| | - John S. Duncan
- University College London, Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, United Kingdom
| | - Sébastien Ourselin
- University College London, Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, Malet Place, London WC1E 6BT, United Kingdom
- University College London, Dementia Research Centre, Institute of Neurology, London, WC1N 3BG, United Kingdom
| |
Collapse
|
38
|
Manning EN, Barnes J, Cash DM, Bartlett JW, Leung KK, Ourselin S, Fox NC. APOE ε4 is associated with disproportionate progressive hippocampal atrophy in AD. PLoS One 2014; 9:e97608. [PMID: 24878738 PMCID: PMC4039513 DOI: 10.1371/journal.pone.0097608] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate whether APOE ε4 carriers have higher hippocampal atrophy rates than non-carriers in Alzheimer's disease (AD), mild cognitive impairment (MCI) and controls, and if so, whether higher hippocampal atrophy rates are still observed after adjusting for concurrent whole-brain atrophy rates. Methods MRI scans from all available visits in ADNI (148 AD, 307 MCI, 167 controls) were used. MCI subjects were divided into “progressors” (MCI-P) if diagnosed with AD within 36 months or “stable” (MCI-S) if a diagnosis of MCI was maintained. A joint multi-level mixed-effect linear regression model was used to analyse the effect of ε4 carrier-status on hippocampal and whole-brain atrophy rates, adjusting for age, gender, MMSE and brain-to-intracranial volume ratio. The difference in hippocampal rates between ε4 carriers and non-carriers after adjustment for concurrent whole-brain atrophy rate was then calculated. Results Mean adjusted hippocampal atrophy rates in ε4 carriers were significantly higher in AD, MCI-P and MCI-S (p≤0.011, all tests) compared with ε4 non-carriers. After adjustment for whole-brain atrophy rate, the difference in mean adjusted hippocampal atrophy rate between ε4 carriers and non-carriers was reduced but remained statistically significant in AD and MCI-P. Conclusions These results suggest that the APOE ε4 allele drives atrophy to the medial-temporal lobe region in AD.
Collapse
Affiliation(s)
- Emily N. Manning
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
- * E-mail:
| | - Josephine Barnes
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - David M. Cash
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Jonathan W. Bartlett
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kelvin K. Leung
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Nick C. Fox
- Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
39
|
Redolfi A, Bosco P, Manset D, Frisoni GB. Brain investigation and brain conceptualization. FUNCTIONAL NEUROLOGY 2014; 28:175-90. [PMID: 24139654 DOI: 10.11138/fneur/2013.28.3.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The brain of a patient with Alzheimer's disease (AD) undergoes changes starting many years before the development of the first clinical symptoms. The recent availability of large prospective datasets makes it possible to create sophisticated brain models of healthy subjects and patients with AD, showing pathophysiological changes occurring over time. However, these models are still inadequate; representations are mainly single-scale and they do not account for the complexity and interdependence of brain changes. Brain changes in AD patients occur at different levels and for different reasons: at the molecular level, changes are due to amyloid deposition; at cellular level, to loss of neuron synapses, and at tissue level, to connectivity disruption. All cause extensive atrophy of the whole brain organ. Initiatives aiming to model the whole human brain have been launched in Europe and the US with the goal of reducing the burden of brain diseases. In this work, we describe a new approach to earlier diagnosis based on a multimodal and multiscale brain concept, built upon existing and well-characterized single modalities.
Collapse
|
40
|
Dwyer MG, Bergsland N, Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. Neuroimage 2014; 90:207-17. [DOI: 10.1016/j.neuroimage.2013.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
|
41
|
Nakamura K, Guizard N, Fonov VS, Narayanan S, Collins DL, Arnold DL. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. Neuroimage Clin 2013; 4:10-7. [PMID: 24266007 PMCID: PMC3830061 DOI: 10.1016/j.nicl.2013.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing-remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4-5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials.
Collapse
Affiliation(s)
- Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Nicolas Guizard
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Vladimir S. Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| | - D. Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Douglas L. Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| |
Collapse
|
42
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Liu E, Morris JC, Petersen RC, Saykin AJ, Schmidt ME, Shaw L, Shen L, Siuciak JA, Soares H, Toga AW, Trojanowski JQ. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 2013; 9:e111-94. [PMID: 23932184 DOI: 10.1016/j.jalz.2013.05.1769] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2013] [Indexed: 01/19/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The study aimed to enroll 400 subjects with early mild cognitive impairment (MCI), 200 subjects with early AD, and 200 normal control subjects; $67 million funding was provided by both the public and private sectors, including the National Institute on Aging, 13 pharmaceutical companies, and 2 foundations that provided support through the Foundation for the National Institutes of Health. This article reviews all papers published since the inception of the initiative and summarizes the results as of February 2011. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimers Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, CSF biomarkers, and clinical tests; (4) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects, and are leading candidates for the detection of AD in its preclinical stages; (5) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Baseline cognitive and/or MRI measures generally predicted future decline better than other modalities, whereas MRI measures of change were shown to be the most efficient outcome measures; (6) the confirmation of the AD risk loci CLU, CR1, and PICALM and the identification of novel candidate risk loci; (7) worldwide impact through the establishment of ADNI-like programs in Europe, Asia, and Australia; (8) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker data with clinical data from ADNI to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (9) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world. The ADNI study was extended by a 2-year Grand Opportunities grant in 2009 and a renewal of ADNI (ADNI-2) in October 2010 through to 2016, with enrollment of an additional 550 participants.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Alzheimer's disease (AD) has a slow onset, so it is challenging to distinguish brain changes in healthy elderly persons from incipient AD. One-year brain changes with a distinct frontotemporal pattern have been shown in older adults. However, it is not clear to what extent these changes may have been affected by undetected, early AD. To address this, we estimated 1-year atrophy by magnetic resonance imaging (MRI) in 132 healthy elderly persons who had remained free of diagnosed mild cognitive impairment or AD for at least 3 years. We found significant volumetric reductions throughout the brain. The sample was further divided into low-risk groups based on clinical, biomarker, genetic, or cognitive criteria. Although sample sizes varied, significant reductions were observed in all groups, with rates and topographical distribution of atrophy comparable to that of the full sample. Volume reductions were especially pronounced in the default mode network, closely matching the previously described frontotemporal pattern of changes in healthy aging. Atrophy in the hippocampus predicted change in memory, with no additional default mode network contributions. In conclusion, reductions in regional brain volumes can be detected over the course of 1 year even in older adults who are unlikely to be in a presymptomatic stage of AD.
Collapse
|
44
|
Wang Y, Li G, Nie J, Yap PT, Guo L, Shen D. Consistent 4D Brain Extraction of Serial Brain MR Images. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8669:10.1117/12.2006651. [PMID: 25089172 PMCID: PMC4116794 DOI: 10.1117/12.2006651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Accurate and consistent skull stripping of serial brain MR images is of great importance in longitudinal studies that aim to detect subtle brain morphological changes. To avoid inconsistency and the potential bias introduced by independently performing skull-stripping for each time-point image, we propose an effective method that is capable of skull-stripping serial brain MR images simultaneously. Specifically, all serial images of the same subject are first affine aligned in a groupwise manner to a common space to avoid any potential bias introduced by asymmetric transforms. A brain probability map, which encapsulates prior information gathered from a population of real brain MR images, is then warped to the aligned serial images for guiding skull-stripping via a deformable surface method. In particular, the same initial surface meshes representing the initial brain surfaces are first placed on all aligned serial images, and then all these surface meshes are simultaneously evolved to the respective target brain boundaries, driven by the intensity-based force, the force from the probability map, as well as the force from the spatial and temporal smoothness. Especially, imposing the temporal smoothness helps achieve longitudinally consistent results. Evaluations on 20 subjects, each with 4 time points, from the ADNI database indicate that our method gives more accurate and consistent result compared with 3D skull-stripping method. To better show the advantages of our 4D brain extraction method over the 3D method, we compute the Dice ratio in a ring area (±5mm) surrounding the ground-truth brain boundary, and our 4D method achieves around 3% improvement over the 3D method. In addition, our 4D method also gives smaller mean and maximal surface-to-surface distance measurements, with reduced variances.
Collapse
Affiliation(s)
- Yaping Wang
- School of Automation, Northwestern Polytechnical University, Xi’an, P.R. China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Jingxin Nie
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi’an, P.R. China
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
45
|
Ashburner J, Ridgway GR. Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 2013; 6:197. [PMID: 23386806 PMCID: PMC3564017 DOI: 10.3389/fnins.2012.00197] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/22/2012] [Indexed: 11/15/2022] Open
Abstract
This technology report describes the longitudinal registration approach that we intend to incorporate into SPM12. It essentially describes a group-wise intra-subject modeling framework, which combines diffeomorphic and rigid-body registration, incorporating a correction for the intensity inhomogeneity artifact usually seen in MRI data. Emphasis is placed on achieving internal consistency and accounting for many of the mathematical subtleties that most implementations overlook. The implementation was evaluated using examples from the OASIS Longitudinal MRI Data in Non-demented and Demented Older Adults.
Collapse
Affiliation(s)
- John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology London, UK
| | | |
Collapse
|
46
|
Leung KK, Bartlett JW, Barnes J, Manning EN, Ourselin S, Fox NC. Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration. Neurology 2013; 80:648-54. [PMID: 23303849 DOI: 10.1212/wnl.0b013e318281ccd3] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kelvin K Leung
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | | | | | |
Collapse
|
47
|
Gutman BA, Hua X, Rajagopalan P, Chou YY, Wang Y, Yanovsky I, Toga AW, Jack CR, Weiner MW, Thompson PM. Maximizing power to track Alzheimer's disease and MCI progression by LDA-based weighting of longitudinal ventricular surface features. Neuroimage 2013; 70:386-401. [PMID: 23296188 DOI: 10.1016/j.neuroimage.2012.12.052] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/15/2012] [Accepted: 12/18/2012] [Indexed: 01/20/2023] Open
Abstract
We propose a new method to maximize biomarker efficiency for detecting anatomical change over time in serial MRI. Drug trials using neuroimaging become prohibitively costly if vast numbers of subjects must be assessed, so it is vital to develop efficient measures of brain change. A popular measure of efficiency is the minimal sample size (n80) needed to detect 25% change in a biomarker, with 95% confidence and 80% power. For multivariate measures of brain change, we can directly optimize n80 based on a Linear Discriminant Analysis (LDA). Here we use a supervised learning framework to optimize n80, offering two alternative solutions. With a new medial surface modeling method, we track 3D dynamic changes in the lateral ventricles in 2065 ADNI scans. We apply our LDA-based weighting to the results. Our best average n80-in two-fold nested cross-validation-is 104 MCI subjects (95% CI: [94,139]) for a 1-year drug trial, and 75AD subjects [64,102]. This compares favorably with other MRI analysis methods. The standard "statistical ROI" approach applied to the same ventricular surfaces requires 165 MCI or 94AD subjects. At 2 years, the best LDA measure needs only 67 MCI and 52AD subjects, versus 119 MCI and 80AD subjects for the stat-ROI method. Our surface-based measures are unbiased: they give no artifactual additive atrophy over three time points. Our results suggest that statistical weighting may boost efficiency of drug trials that use brain maps.
Collapse
Affiliation(s)
- Boris A Gutman
- Imaging Genetics Center, Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Holland D, McEvoy LK, Desikan RS, Dale AM. Enrichment and stratification for predementia Alzheimer disease clinical trials. PLoS One 2012; 7:e47739. [PMID: 23082203 PMCID: PMC3474753 DOI: 10.1371/journal.pone.0047739] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/17/2012] [Indexed: 01/09/2023] Open
Abstract
The tau and amyloid pathobiological processes underlying Alzheimer disease (AD) progresses slowly over periods of decades before clinical manifestation as mild cognitive impairment (MCI), then more rapidly to dementia, and eventually to end-stage organ failure. The failure of clinical trials of candidate disease modifying therapies to slow disease progression in patients already diagnosed with early AD has led to increased interest in exploring the possibility of early intervention and prevention trials, targeting MCI and cognitively healthy (HC) populations. Here, we stratify MCI individuals based on cerebrospinal fluid (CSF) biomarkers and structural atrophy risk factors for the disease. We also stratify HC individuals into risk groups on the basis of CSF biomarkers for the two hallmark AD pathologies. Results show that the broad category of MCI can be decomposed into subsets of individuals with significantly different average regional atrophy rates. By thus selectively identifying individuals, combinations of these biomarkers and risk factors could enable significant reductions in sample size requirements for clinical trials of investigational AD-modifying therapies, and provide stratification mechanisms to more finely assess response to therapy. Power is sufficiently high that detecting efficacy in MCI cohorts should not be a limiting factor in AD therapeutics research. In contrast, we show that sample size estimates for clinical trials aimed at the preclinical stage of the disorder (HCs with evidence of AD pathology) are prohibitively large. Longer natural history studies are needed to inform design of trials aimed at the presymptomatic stage.
Collapse
Affiliation(s)
- Dominic Holland
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA.
| | | | | | | |
Collapse
|
49
|
Rates of decline in Alzheimer disease decrease with age. PLoS One 2012; 7:e42325. [PMID: 22876315 PMCID: PMC3410919 DOI: 10.1371/journal.pone.0042325] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/05/2012] [Indexed: 12/22/2022] Open
Abstract
Age is the strongest risk factor for sporadic Alzheimer disease (AD), yet the effects of age on rates of clinical decline and brain atrophy in AD have been largely unexplored. Here, we examined longitudinal rates of change as a function of baseline age for measures of clinical decline and structural MRI-based regional brain atrophy, in cohorts of AD, mild cognitive impairment (MCI), and cognitively healthy (HC) individuals aged 65 to 90 years (total n = 723). The effect of age was modeled using mixed effects linear regression. There was pronounced reduction in rates of clinical decline and atrophy with age for AD and MCI individuals, whereas HCs showed increased rates of clinical decline and atrophy with age. This resulted in convergence in rates of change for HCs and patients with advancing age for several measures. Baseline cerebrospinal fluid densities of AD-relevant proteins, Aβ1–42, tau, and phospho-tau181p (ptau), showed a similar pattern of convergence with advanced age across cohorts, particularly for ptau. In contrast, baseline clinical measures did not differ by age, indicating uniformity of clinical severity at baseline. These results imply that the phenotypic expression of AD is relatively mild in individuals older than approximately 85 years, and this may affect the ability to distinguish AD from normal aging in the very old. Our findings show that inclusion of older individuals in clinical trials will substantially reduce the power to detect disease-modifying therapeutic effects, leading to dramatic increases in required clinical trial sample sizes with age of study sample.
Collapse
|
50
|
Cortical folding analysis on patients with Alzheimer's disease and mild cognitive impairment. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2012; 15:289-96. [PMID: 23286142 DOI: 10.1007/978-3-642-33454-2_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cortical thinning is a widely used and powerful biomarker for measuring disease progression in Alzheimer's disease (AD). However, there has been little work on the effect of atrophy on the cortical folding patterns. In this study, we examined whether the cortical folding could be used as a biomarker of AD. Cortical folding metrics were computed on 678 patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. For each subject, the boundary between grey matter and white matter was extracted using a level set technique. At each point on the boundary two metrics characterising folding, curvedness and shape index, were generated. Joint histograms using these metrics were calculated for five regions of interest (ROIs): frontal, temporal, occipital, and parietal lobes as well as the cingulum. Pixelwise statistical maps were generated from the joint histograms using permutations tests. In each ROI, a significant reduction was observed between controls and AD in areas associated with the sulcal folds, suggesting a sulcal opening associated with neurodegeneration. When comparing to MCI patients, the regions of significance were smaller but overlapping with those regions found comparing controls to AD. It indicates that the differences in cortical folding are progressive and can be detected before formal diagnosis of AD. Our preliminary analysis showed a viable signal in the cortical folding patterns for Alzheimer's disease that should be explored further.
Collapse
|