1
|
Choi KM, Lee T, Im CH, Lee SH. Prediction of pharmacological treatment efficacy using electroencephalography-based salience network in patients with major depressive disorder. Front Psychiatry 2024; 15:1469645. [PMID: 39483735 PMCID: PMC11525785 DOI: 10.3389/fpsyt.2024.1469645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Recent resting-state electroencephalogram (EEG) studies have consistently reported an association between aberrant functional brain networks (FBNs) and treatment-resistant traits in patients with major depressive disorder (MDD). However, little is known about the changes in FBNs in response to external stimuli in these patients. This study investigates whether changes in the salience network (SN) could predict responsiveness to pharmacological treatment in resting-state and external stimuli conditions. Methods Thirty-one drug-naïve patients with MDD (aged 46.61 ± 10.05, female 28) and twenty-one healthy controls (aged 43.86 ± 14.14, female 19) participated in the study. After 8 weeks of pharmacological treatment, the patients were divided into non-remitted MDD (nrMDD, n = 14) and remitted-MDD (rMDD, n = 17) groups. EEG data under three conditions (resting-state, standard, and deviant) were analyzed. The SN was constructed with three cortical regions as nodes and weighted phase-lag index as edges, across alpha, low-beta, high-beta, and gamma bands. A repeated measures analysis of the variance model was used to examine the group-by-condition interaction. Machine learning-based classification analyses were also conducted between the nrMDD and rMDD groups. Results A notable group-by-condition interaction was observed in the high-beta band between nrMDD and rMDD. Specifically, patients with nrMDD exhibited hypoconnectivity between the dorsal anterior cingulate cortex and right insula (p = 0.030). The classification analysis yielded a maximum classification accuracy of 80.65%. Conclusion Our study suggests that abnormal condition-dependent changes in the SN could serve as potential predictors of pharmacological treatment efficacy in patients with MDD.
Collapse
Affiliation(s)
- Kang-Min Choi
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- School of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Taegyeong Lee
- School of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- School of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
- Bwave Inc, Goyang, Republic of Korea
| |
Collapse
|
2
|
Zhou Y, Long Y. Sex differences in human brain networks in normal and psychiatric populations from the perspective of small-world properties. Front Psychiatry 2024; 15:1456714. [PMID: 39238939 PMCID: PMC11376280 DOI: 10.3389/fpsyt.2024.1456714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Females and males are known to be different in the prevalences of multiple psychiatric disorders, while the underlying neural mechanisms are unclear. Based on non-invasive neuroimaging techniques and graph theory, many researchers have tried to use a small-world network model to elucidate sex differences in the brain. This manuscript aims to compile the related research findings from the past few years and summarize the sex differences in human brain networks in both normal and psychiatric populations from the perspective of small-world properties. We reviewed published reports examining altered small-world properties in both the functional and structural brain networks between males and females. Based on four patterns of altered small-world properties proposed: randomization, regularization, stronger small-worldization, and weaker small-worldization, we found that current results point to a significant trend toward more regularization in normal females and more randomization in normal males in functional brain networks. On the other hand, there seems to be no consensus to date on the sex differences in small-world properties of the structural brain networks in normal populations. Nevertheless, we noticed that the sample sizes in many published studies are small, and future studies with larger samples are warranted to obtain more reliable results. Moreover, the number of related studies conducted in psychiatric populations is still limited and more investigations might be needed. We anticipate that these conclusions will contribute to a deeper understanding of the sex differences in the brain, which may be also valuable for developing new methods in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Yingying Zhou
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Damiani S, La-Torraca-Vittori P, Tarchi L, Tosi E, Ricca V, Scalabrini A, Politi P, Fusar-Poli P. On the interplay between state-dependent reconfigurations of global signal correlation and BOLD fluctuations: An fMRI study. Neuroimage 2024; 291:120585. [PMID: 38527658 DOI: 10.1016/j.neuroimage.2024.120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The dynamics of global, state-dependent reconfigurations in brain connectivity are yet unclear. We aimed at assessing reconfigurations of the global signal correlation coefficient (GSCORR), a measure of the connectivity between each voxel timeseries and the global signal, from resting-state to a stop-signal task. The secondary aim was to assess the relationship between GSCORR and blood-oxygen-level-dependent (BOLD) activations or deactivation across three different trial-conditions (GO, STOP-correct, and STOP-incorrect). METHODS As primary analysis we computed whole-brain, voxel-wise GSCORR during resting-state (GSCORR-rest) and stop-signal task (GSCORR-task) in 107 healthy subjects aged 21-50, deriving GSCORR-shift as GSCORR-task minus GSCORR-rest. GSCORR-tr and trGSCORR-shift were also computed on the task residual time series to quantify the impact of the task-related activity during the trials. To test the secondary aim, brain regions were firstly divided in one cluster showing significant task-related activation and one showing significant deactivation across the three trial conditions. Then, correlations between GSCORR-rest/task/shift and activation/deactivation in the two clusters were computed. As sensitivity analysis, GSCORR-shift was computed on the same sample after performing a global signal regression and GSCORR-rest/task/shift were correlated with the task performance. RESULTS Sensory and temporo-parietal regions exhibited a negative GSCORR-shift. Conversely, associative regions (ie. left lingual gyrus, bilateral dorsal posterior cingulate gyrus, cerebellum areas, thalamus, posterolateral parietal cortex) displayed a positive GSCORR-shift (FDR-corrected p < 0.05). GSCORR-shift showed similar patterns to trGSCORR-shift (magnitude increased) and after global signal regression (magnitude decreased). Concerning BOLD changes, Brodmann area 6 and inferior parietal lobule showed activation, while posterior parietal lobule, cuneus, precuneus, middle frontal gyrus showed deactivation (FDR-corrected p < 0.05). No correlations were found between GSCORR-rest/task/shift and beta-coefficients in the activation cluster, although negative correlations were observed between GSCORR-task and GO/STOP-correct deactivation (Pearson rho=-0.299/-0.273; Bonferroni-p < 0.05). Weak associations between GSCORR and task performance were observed (uncorrected p < 0.05). CONCLUSION GSCORR state-dependent reconfiguration indicates a reallocation of functional resources to associative areas during stop-signal task. GSCORR, activation and deactivation may represent distinct proxies of brain states with specific neurofunctional relevance.
Collapse
Affiliation(s)
- Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | | | - Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Eleonora Tosi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy; Department of Psychosis Studies, King's College London, London, UK; Outreach and Support in South-London (OASIS) service, South London and Maudlsey (SLaM) NHS Foundation Trust, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| |
Collapse
|
4
|
Van Dyken PC, MacKinley M, Khan AR, Palaniyappan L. Cortical Network Disruption Is Minimal in Early Stages of Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgae010. [PMID: 39144115 PMCID: PMC11207789 DOI: 10.1093/schizbullopen/sgae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Schizophrenia is associated with white matter disruption and topological reorganization of cortical connectivity but the trajectory of these changes, from the first psychotic episode to established illness, is poorly understood. Current studies in first-episode psychosis (FEP) patients using diffusion magnetic resonance imaging (dMRI) suggest such disruption may be detectable at the onset of psychosis, but specific results vary widely, and few reports have contextualized their findings with direct comparison to young adults with established illness. Study Design Diffusion and T1-weighted 7T MR scans were obtained from N = 112 individuals (58 with untreated FEP, 17 with established schizophrenia, 37 healthy controls) recruited from London, Ontario. Voxel- and network-based analyses were used to detect changes in diffusion microstructural parameters. Graph theory metrics were used to probe changes in the cortical network hierarchy and to assess the vulnerability of hub regions to disruption. The analysis was replicated with N = 111 (57 patients, 54 controls) from the Human Connectome Project-Early Psychosis (HCP-EP) dataset. Study Results Widespread microstructural changes were found in people with established illness, but changes in FEP patients were minimal. Unlike the established illness group, no appreciable topological changes in the cortical network were observed in FEP patients. These results were replicated in the early psychosis patients of the HCP-EP datasets, which were indistinguishable from controls in most metrics. Conclusions The white matter structural changes observed in established schizophrenia are not a prominent feature in the early stages of this illness.
Collapse
Affiliation(s)
- Peter C Van Dyken
- Neuroscience Graduate Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael MacKinley
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Ali R Khan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
5
|
Sun M, Gabrielson B, Akhonda MABS, Yang H, Laport F, Calhoun V, Adali T. A Scalable Approach to Independent Vector Analysis by Shared Subspace Separation for Multi-Subject fMRI Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:5333. [PMID: 37300060 PMCID: PMC10256022 DOI: 10.3390/s23115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Joint blind source separation (JBSS) has wide applications in modeling latent structures across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS may not be effective if the data's true latent dimensionality is not adequately modeled, where severe overparameterization may lead to poor separation and time performance. In this paper, we propose a scalable JBSS method by modeling and separating the "shared" subspace from the data. The shared subspace is defined as the subset of latent sources that exists across all datasets, represented by groups of sources that collectively form a low-rank structure. Our method first provides the efficient initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior (IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated regarding whether they are shared, upon which further JBSS is applied separately to the shared and non-shared sources. This provides an effective means to reduce the dimensionality of the problem, improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI datasets, demonstrating that our method can achieve an excellent estimation performance with significantly reduced computational costs.
Collapse
Affiliation(s)
- Mingyu Sun
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Ben Gabrielson
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Mohammad Abu Baker Siddique Akhonda
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Hanlu Yang
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| | - Francisco Laport
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
- CITIC Research Center, University of A Coruña, 15008 A Coruña, Spain
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA;
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA; (B.G.); (M.A.B.S.A.); (H.Y.); (F.L.)
| |
Collapse
|
6
|
Gao Z, Xiao Y, Zhu F, Tao B, Yu W, Lui S. The whole-brain connectome landscape in patients with schizophrenia: a systematic review and meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev 2023; 148:105144. [PMID: 36990373 DOI: 10.1016/j.neubiorev.2023.105144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The alterations of connectome in schizophrenia have been reported, but the results remain inconsistent. We conducted a systematic review and random-effects meta-analysis on structural or functional connectome MRI studies comparing global graph theoretical characteristics between schizophrenia and healthy controls. Meta-regression and subgroup analyses were performed to examine confounding effects. Based on the included 48 studies, Structural connectome in schizophrenia showed a significant decrease in segregation (lower clustering coefficient and local efficiency, Hedge's g= -0.352 and -0.864, respectively) and integration (higher characteristic path length and lower global efficiency, Hedge's g= 0.532 and -0.577 respectively). The functional connectome showed no difference between groups except γ. Moderator analysis indicated that clinical and methodological factors exerted a potential effect on the graph theoretical characteristics. Our analysis revealed a weaker small-worldization trend in structural connectome of schizophrenia. For the relatively unchanged functional connectome, more homogenous and high-quality studies are warranted to elucidate whether the change was blurred by heterogeneity or the presentation of pathophysiological reconfiguration.
Collapse
|
7
|
Riedel P, Lee J, Watson CG, Jimenez AM, Reavis EA, Green MF. Reorganization of the functional connectome from rest to a visual perception task in schizophrenia and bipolar disorder. Psychiatry Res Neuroimaging 2022; 327:111556. [PMID: 36327867 PMCID: PMC10611423 DOI: 10.1016/j.pscychresns.2022.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Functional connectome organization is altered in schizophrenia (SZ) and bipolar disorder (BD). However, it remains unclear whether network reorganization during a task relative to rest is also altered in these disorders. This study examined connectome organization in patients with SZ (N = 43) and BD (N = 42) versus healthy controls (HC; N = 39) using fMRI data during a visual object-perception task and at rest. Graph analyses were conducted for the whole-brain network using indices selected a priori: three reflecting network segregation (clustering coefficient, local efficiency, modularity), two reflecting integration (characteristic path length, global efficiency). Group differences were limited to network segregation and were more evident in SZ (clustering coefficient, modularity) than in BD (clustering coefficient) compared to HC. State differences were found across groups for segregation (local efficiency) and integration (characteristic path length). There was no group-by-state interaction for any graph index. In summary, aberrant network organization compared to HC was confirmed, and was more evident in SZ than in BD. Yet, reorganization was largely intact in both disorders. These findings help to constrain models of dysconnection in SZ and BD, suggesting that the extent of functional dysconnectivity in these disorders tends to persist across changes in mental state.
Collapse
Affiliation(s)
- Philipp Riedel
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Würzburger Straße 35, Dresden 01187, Germany.
| | - Junghee Lee
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles VA Healthcare System, Bldg. 210, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA; Department of Psychiatry and Behavioral Neurobiology, School of Medicine, The University of Alabama at Birmingham, SC 560, 1720 2nd Ave S, Birmingham, AL 35294-0017, USA
| | - Christopher G Watson
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Amy M Jimenez
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles VA Healthcare System, Bldg. 210, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles VA Healthcare System, Bldg. 210, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Michael F Green
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA; Desert Pacific Mental Illness Research, Education, and Clinical Center, Greater Los Angeles VA Healthcare System, Bldg. 210, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
8
|
Wang Y, Hu X, Li Y. Investigating cognitive flexibility deficit in schizophrenia using task-based whole-brain functional connectivity. Front Psychiatry 2022; 13:1069036. [PMID: 36479558 PMCID: PMC9719952 DOI: 10.3389/fpsyt.2022.1069036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cognitive flexibility is a core cognitive control function supported by the brain networks of the whole-brain. Schizophrenic patients show deficits in cognitive flexibility in conditions such as task-switching. A large number of neuroimaging studies have revealed abnormalities in local brain activations associated with deficits in cognitive flexibility in schizophrenia, but the relationship between impaired cognitive flexibility and the whole-brain functional connectivity (FC) pattern is unclear. Method We investigated the task-based functional connectivity of the whole-brain in patients with schizophrenia and healthy controls during task-switching. Multivariate pattern analysis (MVPA) was utilized to investigate whether the FC pattern can be used as a feature to discriminate schizophrenia patients from healthy controls. Graph theory analysis was further used to quantify the degrees of integration and segregation in the whole-brain networks to interpret the different reconfiguration patterns of brain networks in schizophrenia patients and healthy controls. Results The results showed that the FC pattern classified schizophrenia patients and healthy controls with significant accuracy. Moreover, the altered whole-brain functional connectivity pattern was driven by a lower degree of network integration and segregation in schizophrenia, indicating that both global and local information transfers at the entire-network level were less efficient in schizophrenia patients than in healthy controls during task-switching processing. Conclusion These results investigated the group differences in FC profiles during task-switching and not only elucidated that FC patterns are changed in schizophrenic patients, suggesting that task-based FC could be used as a potential neuromarker to discriminate schizophrenia patients from healthy controls in cognitive flexibility but also provide increased insight into the brain network organization that may contribute to impaired cognitive flexibility.
Collapse
Affiliation(s)
- Yanqing Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xueping Hu
- School of Linguistic Science and Art, Jiangsu Normal University, Xuzhou, China
- Key Laboratory of Language and Cognitive Neuroscience of Jiangsu Province, Collaborative Innovation Center for Language Ability, Xuzhou, China
| | - Yilu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Damiani S, Tarchi L, La-Torraca-Vittori P, Scalabrini A, Castellini G, Ricca V, Fusar-Poli P, Politi P. State-dependent reductions of local brain connectivity in schizophrenia and their relation to performance and symptoms: A functional magnetic resonance imaging study. Psychiatry Res Neuroimaging 2022; 326:111541. [PMID: 36122541 DOI: 10.1016/j.pscychresns.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/01/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Abstract
State-dependent reallocation of cognitive resources is impaired in schizophrenia and may be underlined by alterations in brain local-connectivity. Increasing evidence suggests local connectivity reductions from rest to task in healthy individuals, while insufficient information is available for schizophrenia spectrum. Resting-state and stop-signal task fMRI scans of 107 healthy controls and 32 patients with DSM-IV-TR schizophrenia or schizoaffective disorder were analyzed. As primary aim we measured within-group shifts in local-connectivity from rest to task as voxel-wise Regional Homogeneity (ReHo-shift). Secondary aims were to test: i) Between-groups differences in ReHo-rest, ReHo-task and ReHo-shift; ii) ReHo covariations with task performance (=shorter reaction times) and severity of symptoms (SAPS/SANS scores). Age, sex, and education were accounted for as covariates. Motion, global-signal-regression, antipsychotic dosage and smoothing associations with ReHo were evaluated. Rest-to-task ReHo reductions occurred in both groups on a whole-brain level (False-Discovery-Rate p=0.05). Trends of greater ReHo reductions in patients versus controls were observed. Controls performed better than patients (p<0.001). ReHo negatively correlated with performance in both groups. ReHo-shift predicted worse performance in controls, but better performance in patients (uncorrected p=0.05). ReHo reductions correlated with severity of symptoms. State-dependent reconfigurations in local-connectivity provide new links between neurobiology and behavioral/clinical features of the schizophrenia spectrum.
Collapse
Affiliation(s)
- Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy.
| | - Livio Tarchi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy; Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | | | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, BG, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, FI, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy; Department of Psychosis Studies, Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; National Institute for Health Research, Maudsley Biomedical Research Centre, London, UK
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
10
|
Lei D, Li W, Tallman MJ, Strakowski SM, DelBello MP, Rodrigo Patino L, Fleck DE, Lui S, Gong Q, Sweeney JA, Strawn JR, Nery FG, Welge JA, Rummelhoff E, Adler CM. Changes in the structural brain connectome over the course of a nonrandomized clinical trial for acute mania. Neuropsychopharmacology 2022; 47:1961-1968. [PMID: 35585125 PMCID: PMC9485114 DOI: 10.1038/s41386-022-01328-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Disrupted topological organization of brain functional networks has been widely reported in bipolar disorder. However, the potential clinical implications of structural connectome abnormalities have not been systematically investigated. The present study included 109 unmedicated subjects with acute mania who were assigned to 8 weeks of treatment with quetiapine or lithium and 60 healthy controls. High resolution 3D-T1 weighted magnetic resonance images (MRI) were collected from both groups at baseline, week 1 and week 8. Brain networks were constructed based on the similarity of morphological features across brain regions and analyzed using graph theory approaches. At baseline, individuals with bipolar disorder illness showed significantly lower clustering coefficient (Cp) (p = 0.012) and normalized characteristic path length (λ) (p = 0.004) compared to healthy individuals, as well as differences in nodal centralities across multiple brain regions. No baseline or post-treatment differences were identified between drug treatment conditions, so change after treatment were considered in the combined treatment groups. Relative to healthy individuals, differences in Cp, λ and cingulate gyrus nodal centrality were significantly reduced with treatment; changes in these parameters correlated with changes in Young Mania Rating Scale scores. Baseline structural connectome matrices significantly differentiated responder and non-responder groups at 8 weeks with 74% accuracy. Global and nodal network alterations evident at baseline were normalized with treatment and these changes associated with symptomatic improvement. Further, baseline structural connectome matrices predicted treatment response. These findings suggest that structural connectome abnormalities are clinically significant and may be useful for predicting clinical outcome of treatment and tracking drug effects on brain anatomy in bipolar disorder. CLINICAL TRIALS REGISTRATION Name: Functional and Neurochemical Brain Changes in First-episode Bipolar Mania Following Successful Treatment with Lithium or Quetiapine. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00609193. Name: Neurofunctional and Neurochemical Markers of Treatment Response in Bipolar Disorder. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER NCT00608075.
Collapse
Affiliation(s)
- Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA.
| | - Wenbin Li
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
- Department of the Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R. China
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry & Behavioral Sciences, Dell Medical School of The University of Texas at Austin, Austin, 78712, TX, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - L Rodrigo Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Emily Rummelhoff
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, 45219, OH, USA
| |
Collapse
|
11
|
Interindividual variability of functional connectome in schizophrenia. Schizophr Res 2021; 235:65-73. [PMID: 34329851 DOI: 10.1016/j.schres.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a complex psychiatric disorder that displays an outstanding interindividual variability in clinical manifestation and neurobiological substrates. A better characterization and quantification of this heterogeneity could guide the search for both common abnormalities (linked to lower intersubject variability) and the presence of biological subtypes (leading to a greater heterogeneity across subjects). In the current study, we address interindividual variability in functional connectome by means of resting-state fMRI in a large sample of patients with schizophrenia and healthy controls. Among the different metrics of distance/dissimilarity used to assess variability, geodesic distance showed robust results to head motion. The main findings of the current study point to (i) a higher between subject heterogeneity in the functional connectome of patients, (ii) variable levels of heterogeneity throughout the cortex, with greater variability in frontoparietal and default mode networks, and lower variability in the salience network, and (iii) an association of whole-brain variability with levels of clinical symptom severity and with topological properties of brain networks, suggesting that the average functional connectome overrepresents those patients with lower functional integration and with more severe clinical symptoms. Moreover, after performing a graph theoretical analysis of brain networks, we found that patients with more severe clinical symptoms had decreased connectivity at both whole-brain level and within the salience network, and that patients with higher negative symptoms had large-scale functional integration deficits.
Collapse
|
12
|
Long Q, Bhinge S, Calhoun VD, Adali T. Relationship between Dynamic Blood-Oxygen-Level-Dependent Activity and Functional Network Connectivity: Characterization of Schizophrenia Subgroups. Brain Connect 2021; 11:430-446. [PMID: 33724055 DOI: 10.1089/brain.2020.0815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aim: In this work, we propose the novel use of adaptively constrained independent vector analysis (acIVA) to effectively capture the temporal and spatial properties of dynamic blood-oxygen-level-dependent (BOLD) activity (dBA), and we efficiently quantify the spatial property of dBA (sdBA). We also propose to incorporate dBA into the study of brain dynamics to gain insight into activity-connectivity co-evolution patterns. Introduction: Studies of the dynamics of the human brain using functional magnetic resonance imaging (fMRI) have enabled the identification of unique functional network connectivity (FNC) states and provided new insights into mental disorders. There is evidence showing that both BOLD activity, which is captured by fMRI, and FNC are related to mental and cognitive processes. However, a few studies have evaluated the inter-relationships of these two domains of function. Moreover, the identification of subgroups of schizophrenia has gained significant clinical importance due to a need to study the heterogeneity of schizophrenia. Methods: We design a simulation study to verify the effectiveness of acIVA and apply acIVA to the dynamic study of resting-state fMRI data collected from individuals with schizophrenia and healthy controls (HCs) to investigate the relationship between dBA and dynamic FNC (dFNC). Results: The simulation study demonstrates that acIVA accurately captures the spatial variability and provides an efficient quantification of sdBA. The fMRI analysis yields synchronized sdBA-temporal property of dBA (tdBA) patterns and shows that the dBA and dFNC are significantly correlated in the spatial domain. Using these dynamic features, we identify schizophrenia subgroups with significant differences in terms of their clinical symptoms. Conclusion: We find that brain function is abnormally organized in schizophrenia compared with HCs since there are less synchronized sdBA-tdBA patterns in schizophrenia and schizophrenia prefers a component that merges multiple brain regions. Identification of schizophrenia subgroups using dynamic features inspires the use of neuroimaging in studying the heterogeneity of disorders. Impact statement This work introduces the use of joint blind source separation for the study of brain dynamics to enable efficient quantification of the spatial property of dynamic blood-oxygen-level-dependent (BOLD) activity to provide insight into the relationship of dynamic BOLD activity and dynamic functional network connectivity. The identification of subgroups of schizophrenia using dynamic features allows the study of heterogeneity of schizophrenia, emphasizing the importance of functional magnetic resonance imaging analysis in the study of brain activity and functional connectivity to gain a better understanding of the human brain, especially the brain with a mental disorder.
Collapse
Affiliation(s)
- Qunfang Long
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Suchita Bhinge
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico, USA.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico, USA.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Yang J, Ouyang X, Tao H, Pu W, Fan Z, Zeng C, Huang X, Chen X, Liu J, Liu Z, Palaniyappan L. Connectomic signatures of working memory deficits in depression, mania, and euthymic states of bipolar disorder. J Affect Disord 2020; 274:190-198. [PMID: 32469803 DOI: 10.1016/j.jad.2020.05.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Working memory (WM) deficit is a feature persistently reported across mania, depression, and euthymic periods of bipolar disorder (BD). WM capacity relates to distributed brain regions that are systemically organized at the connectome level. It is not clear whether the same disruption of this network-level organization underlies the WM impairment seen in different phases of BD. METHODS We used graph theory to examine the topology of the functional connectome in different granularity in 143 subjects (72 with BD [32 depression; 15 mania; 25 euthymic] and 71 healthy controls) during a n-back task. Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. RESULTS Altered topological properties characterised by an increase in small-worldness of the whole-brain connectome, were specific for bipolar depressed, but not in manic and euthymic states. Depressed subjects showed a shift in the distribution of the number of connections per brain region (degree) within the connectome during WM task. Increased small-worldness related to worse WM accuracy in patients with more severe depression, anxiety and illness burden. LIMITATIONS We used only 2-back load, limiting our ability to study the parametric effects of task demand. CONCLUSIONS We demonstrate a putative state-dependent mechanistic link between connectome topology, hub re-distribution and impaired n-back performance in bipolar disorder. The aberrant task-dependent modulation of the connectome relates to worse WM performance especially when anxiety and depression are prominent in BD.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Xuan Ouyang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Haojuan Tao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, PR China; Medical Psychological Institute of Central South University, Changsha, PR China
| | - Zebin Fan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Can Zeng
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaojun Huang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xudong Chen
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Jun Liu
- Department of Radiology, the Second Xiangya hospital, Central South University, Changsha, PR China.
| | - Zhening Liu
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Lena Palaniyappan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China; Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
14
|
Yang J, Pu W, Wu G, Chen E, Lee E, Liu Z, Palaniyappan L. Connectomic Underpinnings of Working Memory Deficits in Schizophrenia: Evidence From a replication fMRI study. Schizophr Bull 2020; 46:916-926. [PMID: 32016430 PMCID: PMC7345823 DOI: 10.1093/schbul/sbz137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Working memory (WM) deficit is a key feature of schizophrenia that relates to a generalized neural inefficiency of extensive brain areas. To date, it remains unknown how these distributed regions are systemically organized at the connectome level and how the disruption of such organization brings about the WM impairment seen in schizophrenia. METHODS We used graph theory to examine the neural efficiency of the functional connectome in different granularity in 155 patients with schizophrenia and 96 healthy controls during a WM task. These analyses were repeated in another independent dataset (81 patients and 54 controls). Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. A machine-learning approach was adopted to study the ability of multivariate connectome features from one dataset to discriminate patients from controls in the second dataset. RESULTS Small-worldness of the whole-brain connectome was significantly increased in schizophrenia during the WM task; this increase is related to better (though subpar) WM accuracy in patients with more severe negative symptom burden. There was a shift in the degree distribution to a more homogeneous form in patients. The machine-learning approach classified a new set of patients from controls with 84.3% true-positivity rate for schizophrenia and 71.6% overall accuracy. CONCLUSIONS We demonstrate a putative mechanistic link between connectome topology, hub redistribution, and impaired n-back performance in schizophrenia. The task-dependent modulation of the connectome relates to, but remains inefficient in, improving the performance above par in the presence of severe negative symptoms.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Medical Psychological Institute of Central South University, Changsha, P.R. China
| | - Guowei Wu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhening Liu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Lena Palaniyappan
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
15
|
Zhao Z, Wang C, Yuan Q, Zhao J, Ren Q, Xu Y, Li J, Yu Y. Dynamic changes of brain networks during feedback-related processing of reinforcement learning in schizophrenia. Brain Res 2020; 1746:146979. [PMID: 32544500 DOI: 10.1016/j.brainres.2020.146979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022]
Abstract
Previous studies have reported that schizophrenia (SZ) patients showed selective reinforcement learning deficits and abnormal feedback-related event-related potential (ERP) components. However, how the brain networks and their topological properties evolve over time during transient feedback-related cognition processing in SZ patients has not been investigated so far. In this paper, using publicly available feedback-related ERP data which were recorded from SZ patients and healthy controls (HC) when they performed a reinforcement learning task, we carried out an event-related network analysis where topology of brain functional networks was characterized with some graph measures including clustering coefficient (C), global efficiency (Eglobal) and local efficiency (Elocal) on a millisecond timescale. Our results showed that the brain functional networks displayed rapid rearrangements of topological properties during transient feedback-related cognition process for both two groups. More importantly, we found that SZ patients exhibited significantly reduced theta-band (time window of 170-350 ms after stimuli onset) brain functional connectivity strength, Eglobal, Elocal and C in response to negative feedback stimuli compared to HC group. The network based statistic (NBS) analysis detected one significantly decreased theta-band subnetwork in SZ patients mainly involving in frontal-occipital and temporal-occipital connections compared to HC group. In addition, clozapine treatment seemed to greatly reduce theta-band power and topological measures of brain networks in SZ patients. Finally, the theta-band power, graph measures and functional connectivity were extracted to train a support vector machine classifier for classification of HC from SZ, or Cloz + SZ or Cloz- SZ, and a relatively good classification accuracy of 84.48%, 89.47% and 78.26% was obtained, respectively. The above results suggested a less optimal organization of theta-band brain network in SZ patients, and studying the topological parameters of brain networks evolve over time during transient feedback-related processing could be useful for understanding the pathophysiologic mechanisms underlying reinforcement learning deficits in SZ patients.
Collapse
Affiliation(s)
- Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China.
| | - Chang Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Qingli Yuan
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Junqiang Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Qiongqiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China
| | - Jie Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China; Engineering Technology Research Center of Neurosense and Control of Xinxiang City, Xinxiang 453003, PR China; Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang 453003, PR China.
| |
Collapse
|
16
|
Independent vector analysis for common subspace analysis: Application to multi-subject fMRI data yields meaningful subgroups of schizophrenia. Neuroimage 2020; 216:116872. [PMID: 32353485 DOI: 10.1016/j.neuroimage.2020.116872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022] Open
Abstract
The extraction of common and distinct biomedical signatures among different populations allows for a more detailed study of the group-specific as well as distinct information of different populations. A number of subspace analysis algorithms have been developed and successfully applied to data fusion, however they are limited to joint analysis of only a couple of datasets. Since subspace analysis is very promising for analysis of multi-subject medical imaging data as well, we focus on this problem and propose a new method based on independent vector analysis (IVA) for common subspace extraction (IVA-CS) for multi-subject data analysis. IVA-CS leverages the strength of IVA in identification of a complete subspace structure across multiple datasets along with an efficient solution that uses only second-order statistics. We propose a subset analysis approach within IVA-CS to mitigate issues in estimation in IVA due to high dimensionality, both in terms of components estimated and the number of datasets. We introduce a scheme to determine a desirable size for the subset that is high enough to exploit the dependence across datasets and is not affected by the high dimensionality issue. We demonstrate the success of IVA-CS in extracting complex subset structures and apply the method to analysis of functional magnetic resonance imaging data from 179 subjects and show that it successfully identifies shared and complementary brain patterns from patients with schizophrenia (SZ) and healthy controls group. Two components with linked resting-state networks are identified to be unique to the SZ group providing evidence of functional dysconnectivity. IVA-CS also identifies subgroups of SZs that show significant differences in terms of their brain networks and clinical symptoms.
Collapse
|
17
|
Khajehpour H, Makkiabadi B, Ekhtiari H, Bakht S, Noroozi A, Mohagheghian F. Disrupted resting-state brain functional network in methamphetamine abusers: A brain source space study by EEG. PLoS One 2019; 14:e0226249. [PMID: 31825996 PMCID: PMC6906079 DOI: 10.1371/journal.pone.0226249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023] Open
Abstract
This study aimed to examine the effects of chronic methamphetamine use on the topological organization of whole-brain functional connectivity network (FCN) by reconstruction of neural-activity time series at resting-state. The EEG of 36 individuals with methamphetamine use disorder (IWMUD) and 24 normal controls (NCs) were recorded, pre-processed and source-reconstructed using standardized low-resolution tomography (sLORETA). The brain FCNs of participants were constructed and between-group differences in network topological properties were investigated using graph theoretical analysis. IWMUD showed decreased characteristic path length, increased clustering coefficient and small-world index at delta and gamma frequency bands compared to NCs. Moreover, abnormal changes in inter-regional connectivity and network hubs were observed in all the frequency bands. The results suggest that the IWMUD and NCs have distinct FCNs at all the frequency bands, particularly at the delta and gamma bands, in which deviated small-world brain topology was found in IWMUD.
Collapse
Affiliation(s)
- Hassan Khajehpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research (LIBR), Tulsa, OK, United States of America
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sepideh Bakht
- Department of Cognitive Psychology, Institute for Cognitive Sciences Studies (ICSS), Tehran, Iran
| | - Alireza Noroozi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fahimeh Mohagheghian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
18
|
Lombardi A, Guaragnella C, Amoroso N, Monaco A, Fazio L, Taurisano P, Pergola G, Blasi G, Bertolino A, Bellotti R, Tangaro S. Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes. Neuroimage 2019; 195:150-164. [DOI: 10.1016/j.neuroimage.2019.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023] Open
|
19
|
Abstract
Psychiatric disorders are disturbances of cognitive and behavioral processes mediated by the brain. Emerging evidence suggests that accurate biomarkers for psychiatric disorders might benefit from incorporating information regarding multiple brain regions and their interactions with one another, rather than considering local perturbations in brain structure and function alone. Recent advances in the field of applied mathematics generally - and network science specifically - provide a language to capture the complexity of interacting brain regions, and the application of this language to fundamental questions in neuroscience forms the emerging field of network neuroscience. This chapter provides an overview of the use and utility of network neuroscience for building biomarkers in psychiatry. The chapter begins with an overview of the theoretical frameworks and tools that encompass network neuroscience before describing applications of network neuroscience to the study of schizophrenia and major depressive disorder. With reference to work on genetic, molecular, and environmental correlates of network neuroscience features, the promises and challenges of network neuroscience for providing tools that aid in the diagnosis and the evaluation of treatment response in psychiatric disorders are discussed.
Collapse
|
20
|
Gomez-Pilar J, Poza J, Gómez C, Northoff G, Lubeiro A, Cea-Cañas BB, Molina V, Hornero R. Altered predictive capability of the brain network EEG model in schizophrenia during cognition. Schizophr Res 2018; 201:120-129. [PMID: 29764760 DOI: 10.1016/j.schres.2018.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/10/2018] [Accepted: 04/29/2018] [Indexed: 12/21/2022]
Abstract
The study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain; INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Alba Lubeiro
- Psychiatry Department, University Hospital of Valladolid, Valladolid, Spain
| | | | - Vicente Molina
- INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain; Psychiatry Department, University Hospital of Valladolid, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, E.T.S. Ingenieros de Telecomunicación, University of Valladolid, Valladolid, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Valladolid, Spain; INCYL, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
21
|
Suo X, Lei D, Li L, Li W, Dai J, Wang S, He M, Zhu H, Kemp GJ, Gong Q. Psychoradiological patterns of small-world properties and a systematic review of connectome studies of patients with 6 major psychiatric disorders. J Psychiatry Neurosci 2018; 43:427. [PMID: 30375837 PMCID: PMC6203546 DOI: 10.1503/jpn.170214] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/07/2018] [Accepted: 01/28/2018] [Indexed: 02/05/2023] Open
Abstract
Background Brain connectome research based on graph theoretical analysis shows that small-world topological properties play an important role in the structural and functional alterations observed in patients with psychiatric disorders. However, the reported global topological alterations in small-world properties are controversial, are not consistently conceptualized according to agreed-upon criteria, and are not critically examined for consistent alterations in patients with each major psychiatric disorder. Methods Based on a comprehensive PubMed search, we systematically reviewed studies using noninvasive neuroimaging data and graph theoretical approaches for 6 major psychiatric disorders: schizophrenia, major depressive disorder (MDD), attention-deficit/hyperactivity disorder (ADHD), bipolar disorder (BD), obsessive–compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). Here, we describe the main patterns of altered small-world properties and then systematically review the evidence for these alterations in the structural and functional connectome in patients with these disorders. Results We selected 40 studies of schizophrenia, 33 studies of MDD, 5 studies of ADHD, 5 studies of BD, 7 studies of OCD and 5 studies of PTSD. The following 4 patterns of altered small-world properties are defined from theperspectives of segregation and integration: "regularization," "randomization," "stronger small-worldization" and "weaker small-worldization." Although more differences than similarities are noted in patients with these disorders, a prominent trend is the structural regularization versus functional randomization in patients with schizophrenia. Limitations Differences in demographic and clinical characteristics, preprocessing steps and analytical methods can produce contradictory results, increasing the difficulty of integrating results across different studies. Conclusion Four psychoradiological patterns of altered small-world properties are proposed. The analysis of altered smallworld properties may provide novel insights into the pathophysiological mechanisms underlying psychiatric disorders from a connectomic perspective. In future connectome studies, the global network measures of both segregation and integration should be calculated to fully evaluate altered small-world properties in patients with a particular disease.
Collapse
Affiliation(s)
- Xueling Suo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Du Lei
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Wenbin Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Song Wang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Hongyan Zhu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041 China (Suo, Lei, Li, Gong); the Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK (Lei); the Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, Sichuan, China (Dai, Wang, He); the Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China (Zhu); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK (Kemp); and the Department of Psychology, School of Public Administration, Sichuan University, Chengdu, Sichuan, China (Gong)
| |
Collapse
|
22
|
Long Q, Bhinge S, Levin-Schwartz Y, Boukouvalas Z, Calhoun VD, Adalı T. The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics. Hum Brain Mapp 2018; 40:489-504. [PMID: 30240499 DOI: 10.1002/hbm.24389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/30/2018] [Accepted: 08/23/2018] [Indexed: 11/07/2022] Open
Abstract
Data-driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data-driven methods that are based on two different forms of diversity-statistical properties of the data-statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity.
Collapse
Affiliation(s)
- Qunfang Long
- Department of CSEE, University of Maryland Baltimore County, Baltimore, Maryland
| | - Suchita Bhinge
- Department of CSEE, University of Maryland Baltimore County, Baltimore, Maryland
| | - Yuri Levin-Schwartz
- Department of EMPH, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zois Boukouvalas
- Department of ENME, University of Maryland College Park, College Park, Maryland
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of ECE, University of New Mexico, Albuquerque, New Mexico
| | - Tülay Adalı
- Department of CSEE, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
23
|
Altered Small-World Networks in First-Episode Schizophrenia Patients during Cool Executive Function Task. Behav Neurol 2018; 2018:2191208. [PMID: 30254708 PMCID: PMC6145160 DOI: 10.1155/2018/2191208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 01/25/2023] Open
Abstract
At present, little is known about brain functional connectivity and its small-world topologic properties in first-episode schizophrenia (SZ) patients during cool executive function task. In this paper, the Trail Making Test-B (TMT-B) task was used to evaluate the cool executive function of first-episode SZ patients and electroencephalography (EEG) data were recorded from 14 first-episode SZ patients and 14 healthy controls during this cool executive function task. Brain functional connectivity between all pairs of EEG channels was constructed based on mutual information (MI) analysis. The constructed brain functional networks were filtered by three thresholding schemes: absolute threshold, mean degree, and a novel data-driven scheme based on orthogonal minimal spanning trees (OMST), and graph theory was then used to study the topographical characteristics of the filtered brain graphs. Results indicated that the graph theoretical measures of the theta band showed obvious difference between SZ patients and healthy controls. In the theta band, the characteristic path length was significantly longer and the cluster coefficient was significantly smaller in the SZ patients for a wide range of absolute threshold T. However, the cluster coefficient showed no significant changes, and the characteristic path length was still significantly longer in SZ patients when calculated as a function of mean degree K. Interestingly, we also found that only the characteristic path length was significantly longer in SZ patients compared with healthy controls after using the OMST scheme. Pearson correlation analysis showed that the characteristic path length was positively correlated with executive time of TMT-B for the combined SZ patients and healthy controls (r = 0.507, P = 0.006), but not for SZ patients alone (r = 0.072, P = 0.612). The above results suggested a less optimal organization of the brain network and could be useful for understanding the pathophysiologic mechanisms underlying cool executive dysfunction in first-episode SZ patients.
Collapse
|
24
|
Gomez-Pilar J, de Luis-García R, Lubeiro A, de la Red H, Poza J, Núñez P, Hornero R, Molina V. Relations between structural and EEG-based graph metrics in healthy controls and schizophrenia patients. Hum Brain Mapp 2018; 39:3152-3165. [PMID: 29611297 DOI: 10.1002/hbm.24066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Our aim was to assess structural and functional networks in schizophrenia patients; and the possible prediction of the latter based on the former. The possible dependence of functional network properties on structural alterations has not been analyzed in schizophrenia. We applied averaged path-length (PL), clustering coefficient, and density (D) measurements to data from diffusion magnetic resonance and electroencephalography in 39 schizophrenia patients and 79 controls. Functional data were collected for the global and theta frequency bands during an odd-ball task, prior to stimulus delivery and at the corresponding processing window. Connectivity matrices were constructed from tractography and registered cortical segmentations (structural) and phase-locking values (functional). Both groups showed a significant electroencephalographic task-related modulation (change between prestimulus and response windows) in the global and theta bands. Patients showed larger structural PL and prestimulus density in the global and theta bands, and lower PL task-related modulation in the theta band. Structural network values predicted prestimulus global band values in controls and global band task-related modulation in patients. Abnormal functional values found in patients (prestimulus density in the global and theta bands and task-related modulation in the theta band) were not predicted by structural data in this group. Structural and functional network abnormalities respectively predicted cognitive performance and positive symptoms in patients. Taken together, the alterations in the structural and functional theta networks in the patients and the lack of significant relations between these alterations, suggest that these types of network abnormalities exist in different groups of schizophrenia patients.
Collapse
Affiliation(s)
- Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Rodrigo de Luis-García
- Imaging Processing Laboratory, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Alba Lubeiro
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain
| | - Henar de la Red
- Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain.,IMUVA, Mathematics Research Institute, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Psychiatry Department, School of Medicine, University of Valladolid, Av. Ramón y Cajal, 7, Valladolid, 47005, Spain.,Psychiatry Service, Clinical Hospital of Valladolid, Ramón y Cajal, 3, Valladolid, 47003, Spain.,Neurosciences Institute of Castilla y León (INCYL), Pintor Fernando Gallego, 1, 37007 University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
25
|
Functional EEG network analysis in schizophrenia: Evidence of larger segregation and deficit of modulation. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:116-123. [PMID: 28336496 DOI: 10.1016/j.pnpbp.2017.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Higher mental functions depend on global cerebral functional coordination. Our aim was to study fast modulation of functional networks in schizophrenia that has not been previously assessed. METHODS Graph-theory was used to analyze the electroencephalographic (EEG) activity during an odd-ball task in 57 schizophrenia patients (18 first episode patients, FEPs) and 59 healthy controls. Clustering coefficient (CLC), characteristic path length (PL) and small-worldness (SW) were computed at baseline ([-300 0] ms prior to stimulus delivery) and response ([150 450] ms post-stimulus) windows. Clinical and cognitive assessments were performed. RESULTS CLC, PL and SW showed a significant modulation between baseline and response in controls but not in patients. Patients obtained higher CLC and SW at baseline, lower CLC and higher PL at response, and diminished modulation of CLC and SW as compared to controls. In patients, CLC and SW modulation were inversely associated to cognitive performance in executive tasks and directly associated to working memory. Similar patterns were observed in FEPs. CLC and SW during the baseline were inversely associated to their respective modulation magnitudes. CONCLUSIONS Our results are coherent with a hyper-segregated network at baseline (higher CLC) and a decreased modulation of the functional connectivity during cognition in schizophrenia.
Collapse
|
26
|
Peeters SCT, Gronenschild EHBM, van Amelsvoort T, van Os J, Marcelis M, Kahn R, Wiersma D, Bruggeman R, Cahn W, de Haan L, Meijer C, Myin-Germeys I. Reduced specialized processing in psychotic disorder: a graph theoretical analysis of cerebral functional connectivity. Brain Behav 2016; 6:e00508. [PMID: 27688938 PMCID: PMC5036431 DOI: 10.1002/brb3.508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Previous research has shown that the human brain can be represented as a complex functional network that is characterized by specific topological properties, such as clustering coefficient, characteristic path length, and global/local efficiency. Patients with psychotic disorder may have alterations in these properties with respect to controls, indicating altered efficiency of network organization. This study examined graph theoretical changes in relation to differential genetic risk for the disorder and aimed to identify clinical correlates. METHODS Anatomical and resting-state MRI brain scans were obtained from 73 patients with psychotic disorder, 83 unaffected siblings, and 72 controls. Topological measures (i.e., clustering coefficient, characteristic path length, and small-worldness) were used as dependent variables in a multilevel random regression analysis to investigate group differences. In addition, associations with (subclinical) psychotic/cognitive symptoms were examined. RESULTS Patients had a significantly lower clustering coefficient compared to siblings and controls, with no difference between the latter groups. No group differences were observed for characteristic path length and small-worldness. None of the topological properties were associated with (sub)clinical psychotic and cognitive symptoms. CONCLUSIONS The reduced ability for specialized processing (reflected by a lower clustering coefficient) within highly interconnected brain regions observed in the patient group may indicate state-related network alterations. There was no evidence for an intermediate phenotype and no evidence for psychopathology-related alterations.
Collapse
Affiliation(s)
- Sanne C T Peeters
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands; Faculty of Psychology and Educational Sciences Open University of the Netherlands Heerlen The Netherlands
| | - Ed H B M Gronenschild
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Jim van Os
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands; Department of Psychosis Studies Institute of Psychiatry King's Health Partners King's College London London UK
| | - Machteld Marcelis
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands; Institute for Mental Health Care Eindhoven (GGzE) Eindhoven The Netherlands
| | | | - Rene Kahn
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Durk Wiersma
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Richard Bruggeman
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Carin Meijer
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| | - Inez Myin-Germeys
- Department of Psychiatry & Neuropsychology School for Mental Health and Neuroscience EURON Maastricht University Medical Center PO Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
27
|
Kambeitz J, Kambeitz-Ilankovic L, Cabral C, Dwyer DB, Calhoun VD, van den Heuvel MP, Falkai P, Koutsouleris N, Malchow B. Aberrant Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis. Schizophr Bull 2016; 42 Suppl 1:S13-21. [PMID: 27460615 PMCID: PMC4960431 DOI: 10.1093/schbul/sbv174] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Findings from multiple lines of research provide evidence of aberrant functional brain connectivity in schizophrenia. By using graph-analytical measures, recent studies indicate that patients with schizophrenia exhibit changes in the organizational principles of whole-brain networks and that these changes relate to cognitive symptoms. However, there has not been a systematic investigation of functional brain network changes in schizophrenia to test the consistency of these changes across multiple studies. A comprehensive literature search was conducted to identify all available functional graph-analytical studies in patients with schizophrenia. Effect size measures were derived from each study and entered in a random-effects meta-analytical model. All models were tested for effects of potential moderator variables as well as for the presence of publication bias. The results of a total of n = 13 functional neuroimaging studies indicated that brain networks in patients with schizophrenia exhibit significant decreases in measures of local organization (g = -0.56, P = .02) and significant decreases in small-worldness (g = -0.65, P = .01) whereas global short communication paths seemed to be preserved (g = 0.26, P = .32). There was no evidence for a publication bias or moderator effects. The present meta- analysis demonstrates significant changes in whole brain network architecture associated with schizophrenia across studies.
Collapse
Affiliation(s)
- Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany;
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Carlos Cabral
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vince D Calhoun
- The Mind Research Network & Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
28
|
Tang Y, Long J, Wang W, Liao J, Xie H, Zhao G, Zhang H. Aberrant functional brain connectome in people with antisocial personality disorder. Sci Rep 2016; 6:26209. [PMID: 27257047 PMCID: PMC4891727 DOI: 10.1038/srep26209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD.
Collapse
Affiliation(s)
- Yan Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China.,Biomedical Engineering Laboratory, School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
| | - Jun Long
- School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Jian Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Hua Xie
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Guihu Zhao
- Biomedical Engineering Laboratory, School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhang
- Biomedical Engineering Laboratory, School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
29
|
Modulation of brain network parameters associated with subclinical psychotic symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:54-62. [PMID: 26615765 DOI: 10.1016/j.pnpbp.2015.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Static deficits in small-world properties of brain networks have been described in clinical psychosis, but task-related modulation of network properties has been scarcely studied. Our aim was to assess the modulation of those properties and its association with subclinical psychosis and cognition in the general population. METHOD Closeness centrality and small-worldness were compared between pre-stimulus baseline and response windows of an odd-ball task in 200 healthy individuals. The correlation between modulation of network parameters and clinical (scores in the Community Assessment of Psychological Experiences) and cognitive measures (performance in the dimensions included in the Brief Assessment of Cognition in Schizophrenia battery) was analyzed, as well as between these measures and the corresponding network parameters during baseline and response windows during task performance. RESULTS In the theta band, closeness centrality decreased and small-worldness increased in the response window. Centrality and small-worldness modulation were, respectively, directly and inversely associated with subclinical symptoms. CONCLUSIONS A widespread modulation of network properties in theta band was observed, with a transient increase of small-worldness during the response window, compatible with a transiently more integrated cortical activity associated to cognition. This supports the relevance of electroencephalography to study of normal and altered cognition and its substrates. A relative deficit in the ability to reorganize brain networks may contribute to subclinical psychotic symptoms.
Collapse
|
30
|
Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia. Sci Rep 2016; 6:23577. [PMID: 27032817 PMCID: PMC4817042 DOI: 10.1038/srep23577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/08/2016] [Indexed: 01/24/2023] Open
Abstract
Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions.
Collapse
|
31
|
Gopal S, Miller RL, Michael A, Adali T, Cetin M, Rachakonda S, Bustillo JR, Cahill N, Baum SA, Calhoun VD. Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis. Schizophr Bull 2016; 42:152-60. [PMID: 26106217 PMCID: PMC4681547 DOI: 10.1093/schbul/sbv085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects.
Collapse
Affiliation(s)
- Shruti Gopal
- Chester F. Carlson Center of Imaging Science, Rochester Institute of Technology, Rochester, NY; The Mind Research Network, Albuquerque, NM;
| | | | | | - Tulay Adali
- Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD
| | - Mustafa Cetin
- Department of Computer Science, University of New Mexico, Albuquerque, NM
| | | | - Juan R. Bustillo
- Department of Psychiatry, University of New Mexico, Albuquerque, NM
| | - Nathan Cahill
- Center for Applied and Computational Mathematics in the School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY
| | - Stefi A. Baum
- Chester F. Carlson Center of Imaging Science, Rochester Institute of Technology, Rochester, NY
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM;,Department of Computer Science, University of New Mexico, Albuquerque, NM;,Department of Psychiatry, University of New Mexico, Albuquerque, NM;,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| |
Collapse
|
32
|
Lerman-Sinkoff DB, Barch DM. Network community structure alterations in adult schizophrenia: identification and localization of alterations. Neuroimage Clin 2015; 10:96-106. [PMID: 26793435 PMCID: PMC4683428 DOI: 10.1016/j.nicl.2015.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/30/2015] [Accepted: 11/15/2015] [Indexed: 11/17/2022]
Abstract
A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks.
Collapse
Affiliation(s)
- Dov B. Lerman-Sinkoff
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr., Saint Louis, MO 63130, United States
- Medical Scientist Training Program, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
| | - Deanna M. Barch
- Neuroscience Program, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
- Department of Psychological & Brain Sciences, Washington University in St. Louis, 1 Brookings Dr., Saint Louis, MO 63130, United States
- Department of Psychiatry & Radiology, Washington University in St. Louis, 660 S. Euclid Ave., Saint Louis, MO 63110, United States
| |
Collapse
|
33
|
Peeters S, Simas T, Suckling J, Gronenschild E, Patel A, Habets P, van Os J, Marcelis M. Semi-metric analysis of the functional brain network: Relationship with familial risk for psychotic disorder. NEUROIMAGE-CLINICAL 2015; 9:607-16. [PMID: 26740914 PMCID: PMC4644247 DOI: 10.1016/j.nicl.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/26/2022]
Abstract
Background Dysconnectivity in schizophrenia can be understood in terms of dysfunctional integration of a distributed network of brain regions. Here we propose a new methodology to analyze complex networks based on semi-metric behavior, whereby higher levels of semi-metricity may represent a higher level of redundancy and dispersed communication. It was hypothesized that individuals with (increased risk for) psychotic disorder would have more semi-metric paths compared to controls and that this would be associated with symptoms. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 unaffected siblings and 72 controls. Semi-metric percentages (SMP) at the whole brain, hemispheric and lobar level were the dependent variables in a multilevel random regression analysis to investigate group differences. SMP was further examined in relation to symptomatology (i.e., psychotic/cognitive symptoms). Results At the whole brain and hemispheric level, patients had a significantly higher SMP compared to siblings and controls, with no difference between the latter. In the combined sibling and control group, individuals with high schizotypy had intermediate SMP values in the left hemisphere with respect to patients and individuals with low schizotypy. Exploratory analyses in patients revealed higher SMP in 12 out of 42 lobar divisions compared to controls, of which some were associated with worse PANSS symptomatology (i.e., positive symptoms, excitement and emotional distress) and worse cognitive performance on attention and emotion processing tasks. In the combined group of patients and controls, working memory, attention and social cognition were associated with higher SMP. Discussion The results are suggestive of more dispersed network communication in patients with psychotic disorder, with some evidence for trait-based network alterations in high-schizotypy individuals. Dispersed communication may contribute to the clinical phenotype in psychotic disorder. In addition, higher SMP may contribute to neuro- and social cognition, independent of psychosis risk. Higher SMP was observed at whole brain and hemispheric level in psychotic disorder. In patients, lobar SMP was associated with psychotic and cognitive symptoms. Trait-based SMP alterations were observed in high schizotypy individuals.
Collapse
Affiliation(s)
- Sanne Peeters
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616 (Vijv1), 6200 MD Maastricht, The Netherlands; Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands
| | - Tiago Simas
- Behavioral and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, United Kingdom
| | - John Suckling
- Behavioral and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, United Kingdom; Cambridge and Peterborough Foundation NHS Trust. Cambridge, United Kingdom
| | - Ed Gronenschild
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616 (Vijv1), 6200 MD Maastricht, The Netherlands
| | - Ameera Patel
- Behavioral and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, United Kingdom
| | - Petra Habets
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616 (Vijv1), 6200 MD Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616 (Vijv1), 6200 MD Maastricht, The Netherlands; King's College London, King's Health Partners, Department of Psychosis Studies Institute of Psychiatry, London, United Kingdom
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University Medical Centre, PO Box 616 (Vijv1), 6200 MD Maastricht, The Netherlands; Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands
| | | |
Collapse
|
34
|
Wen X, Zhang D, Liang B, Zhang R, Wang Z, Wang J, Liu M, Huang R. Reconfiguration of the Brain Functional Network Associated with Visual Task Demands. PLoS One 2015; 10:e0132518. [PMID: 26146993 PMCID: PMC4493060 DOI: 10.1371/journal.pone.0132518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/15/2015] [Indexed: 11/19/2022] Open
Abstract
Neuroimaging studies have demonstrated that the topological properties of resting-state brain functional networks are modulated through task performances. However, the reconfiguration of functional networks associated with distinct degrees of task demands is not well understood. In the present study, we acquired fMRI data from 18 healthy adult volunteers during resting-state (RS) and two visual tasks (i.e., visual stimulus watching, VSW; and visual stimulus decision, VSD). Subsequently, we constructed the functional brain networks associated with these three conditions and analyzed the changes in the topological properties (e.g., network efficiency, wiring-cost, modularity, and robustness) among them. Although the small-world attributes were preserved qualitatively across the functional networks of the three conditions, changes in the topological properties were also observed. Compared with the resting-state, the functional networks associated with the visual tasks exhibited significantly increased network efficiency and wiring-cost, but decreased modularity and network robustness. The changes in the task-related topological properties were modulated according to the task complexity (i.e., from RS to VSW and VSD). Moreover, at the regional level, we observed that the increased nodal efficiencies in the visual and working memory regions were positively associated with the increase in task complexity. Together, these results suggest that the increased efficiency of the functional brain network and higher wiring-cost were observed to afford the demands of visual tasks. These observations provide further insights into the mechanisms underlying the reconfiguration of the brain network during task performance.
Collapse
Affiliation(s)
- Xue Wen
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Delong Zhang
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine Postdoctoral Mobile Research Station, Guangzhou, China
| | - Bishan Liang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Zengjian Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Junjing Wang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
| | - Ming Liu
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
- * E-mail: (ML); (RH)
| | - Ruiwang Huang
- Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, South China Normal University, Guangzhou, China
- * E-mail: (ML); (RH)
| |
Collapse
|
35
|
Quantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis. NEUROIMAGE-CLINICAL 2015; 8:298-304. [PMID: 26106554 PMCID: PMC4474175 DOI: 10.1016/j.nicl.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/01/2023]
Abstract
The assessment of neuroplasticity after stroke through functional magnetic resonance imaging (fMRI) analysis is a developing field where the objective is to better understand the neural process of recovery and to better target rehabilitation interventions. The challenge in this population stems from the large amount of individual spatial variability and the need to summarize entire brain maps by generating simple, yet discriminating features to highlight differences in functional connectivity. Independent vector analysis (IVA) has been shown to provide superior performance in preserving subject variability when compared with widely used methods such as group independent component analysis. Hence, in this paper, graph-theoretical (GT) analysis is applied to IVA-generated components to effectively exploit the individual subjects' connectivity to produce discriminative features. The analysis is performed on fMRI data collected from individuals with chronic stroke both before and after a 6-week arm and hand rehabilitation intervention. Resulting GT features are shown to capture connectivity changes that are not evident through direct comparison of the group t-maps. The GT features revealed increased small worldness across components and greater centrality in key motor networks as a result of the intervention, suggesting improved efficiency in neural communication. Clinically, these results bring forth new possibilities as a means to observe the neural processes underlying improvements in motor function. IVA is used to capture subject variability, which is considerable in stroke data. We quantify post-rehabilitation improvements using graph-theoretical features. Motor recovery shown through centrality calculations and task correlation Graph theory is shown to discriminate between groups better than t-maps.
Collapse
|
36
|
Abstract
Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.
Collapse
|
37
|
Wang J, Cao H, Liao Y, Liu W, Tan L, Tang Y, Chen J, Xu X, Li H, Luo C, Liu C, Ries Merikangas K, Calhoun V, Tang J, Shugart YY, Chen X. Three dysconnectivity patterns in treatment-resistant schizophrenia patients and their unaffected siblings. NEUROIMAGE-CLINICAL 2015; 8:95-103. [PMID: 26106532 PMCID: PMC4473730 DOI: 10.1016/j.nicl.2015.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 01/17/2023]
Abstract
Among individuals diagnosed with schizophrenia, approximately 20%–33% are recognized as treatment-resistant schizophrenia (TRS) patients. These TRS patients suffer more severely from the disease but struggle to benefit from existing antipsychotic treatments. A few recent studies suggested that schizophrenia may be caused by impaired synaptic plasticity that manifests as functional dysconnectivity in the brain, however, few of those studies focused on the functional connectivity changes in the brains of TRS groups. In this study, we compared the whole brain connectivity variations in TRS patients, their unaffected siblings, and healthy controls. Connectivity network features between and within the 116 automated anatomical labeling (AAL) brain regions were calculated and compared using maps created with three contrasts: patient vs. control, patient vs. sibling, and sibling vs. control. To evaluate the predictive power of the selected features, we performed a multivariate classification approach. We also evaluated the influence of six important clinical measures (e.g. age, education level) on the connectivity features. This study identified abnormal significant connectivity changes of three patterns in TRS patients and their unaffected siblings: 1) 69 patient-specific connectivity (PCN); 2) 102 shared connectivity (SCN); and 3) 457 unshared connectivity (UCN). While the first two patterns were widely reported by previous non-TRS specific studies, we were among the first to report widespread significant connectivity differences between TRS patient groups and their healthy sibling groups. Observations of this study may provide new insights for the understanding of the neurophysiological mechanisms of TRS. We first compared global functional connectivity in treatment-resistant schizophrenia and their unaffected siblings. Widespread unshared significant functional connectivity in unaffected siblings of treatment-resistant schizophrenia We studied the association of brain connectivity to clinical measures.
Collapse
Affiliation(s)
- Jicai Wang
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China ; Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Hongbao Cao
- Unit on Statistical Genomics, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Yanhui Liao
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Weiqing Liu
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China ; Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Liwen Tan
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Jindong Chen
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Haijun Li
- Department of radiology, the first people's hospital of Kunming, Kunming, Yunnan province, China, 650011
| | - Chunrong Luo
- Department of radiology, the first people's hospital of Kunming, Kunming, Yunnan province, China, 650011
| | - Chunyu Liu
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Kathleen Ries Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Vince Calhoun
- Mind Research Network, Albuquerque, NM 87131, USA ; Department of Electrical and Computer Engineering at the University of New Mexico, Albuquerque, NM 87106, USA
| | - Jinsong Tang
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China ; Unit on Statistical Genomics, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Yin Yao Shugart
- Unit on Statistical Genomics, National Institute of Mental Health, NIH, Bethesda 20892, USA
| | - Xiaogang Chen
- Institute of Mental Health, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, China ; State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China ; National Technology of Institute of Psychiatry, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
38
|
Laney J, Westlake KP, Ma S, Woytowicz E, Calhoun VD, Adalı T. Capturing subject variability in fMRI data: A graph-theoretical analysis of GICA vs. IVA. J Neurosci Methods 2015; 247:32-40. [PMID: 25797843 DOI: 10.1016/j.jneumeth.2015.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies using simulated functional magnetic resonance imaging (fMRI) data show that independent vector analysis (IVA) is a superior solution for capturing spatial subject variability when compared with the widely used group independent component analysis (GICA). Retaining such variability is of fundamental importance for identifying spatially localized group differences in intrinsic brain networks. NEW METHODS Few studies on capturing subject variability and order selection have evaluated real fMRI data. Comparison of multivariate components generated by multiple algorithms is not straightforward. The main difficulties are finding concise methods to extract meaningful features and comparing multiple components despite lack of a ground truth. In this paper, we present a graph-theoretical (GT) approach to effectively compare the ability of multiple multivariate algorithms to capture subject variability for real fMRI data for effective group comparisons. The GT approach is applied to components generated from fMRI data, collected from individuals with stroke, before and after a rehabilitation intervention. COMPARISON WITH EXISTING METHOD IVA is compared with widely used GICA for the purpose of group discrimination in terms of GT features. In addition, masks are applied for motor related components generated by both algorithms. CONCLUSIONS Results show that IVA better captures subject variability producing more activated voxels and generating components with less mutual information in the spatial domain than Group ICA. IVA-generated components result in smaller p-values and clearer trends in GT features.
Collapse
Affiliation(s)
- Jonathan Laney
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| | - Kelly P Westlake
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sai Ma
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tülay Adalı
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
39
|
Simpson SL, Laurienti PJ. A two-part mixed-effects modeling framework for analyzing whole-brain network data. Neuroimage 2015; 113:310-9. [PMID: 25796135 DOI: 10.1016/j.neuroimage.2015.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022] Open
Abstract
Whole-brain network analyses remain the vanguard in neuroimaging research, coming to prominence within the last decade. Network science approaches have facilitated these analyses and allowed examining the brain as an integrated system. However, statistical methods for modeling and comparing groups of networks have lagged behind. Fusing multivariate statistical approaches with network science presents the best path to develop these methods. Toward this end, we propose a two-part mixed-effects modeling framework that allows modeling both the probability of a connection (presence/absence of an edge) and the strength of a connection if it exists. Models within this framework enable quantifying the relationship between an outcome (e.g., disease status) and connectivity patterns in the brain while reducing spurious correlations through inclusion of confounding covariates. They also enable prediction about an outcome based on connectivity structure and vice versa, simulating networks to gain a better understanding of normal ranges of topological variability, and thresholding networks leveraging group information. Thus, they provide a comprehensive approach to studying system level brain properties to further our understanding of normal and abnormal brain function.
Collapse
Affiliation(s)
- Sean L Simpson
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA; Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Paul J Laurienti
- Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
40
|
Abstract
The Kraepelinian dichotomy between schizophrenia (SZ) and bipolar disorder (BD) is being challenged by recent epidemiological and biological studies. We performed a comparative review of neuroimaging features in both conditions at several scales: whole-brain and regional volumes, brain activity, connectivity, and networks. Structural volumetric neuroimaging studies suggest a common pattern of volume decreases, but networks studies reveal a clearer distinction between BD and SZ with an altered connectivity generalized to all brain networks in SZ and restricted to limbic, paralimbic, and interhemispheric networks in BD.
Collapse
|
41
|
Wang Y, Nelissen N, Adamczuk K, De Weer AS, Vandenbulcke M, Sunaert S, Vandenberghe R, Dupont P. Reproducibility and robustness of graph measures of the associative-semantic network. PLoS One 2014; 9:e115215. [PMID: 25500823 PMCID: PMC4264875 DOI: 10.1371/journal.pone.0115215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/19/2014] [Indexed: 01/25/2023] Open
Abstract
Graph analysis is a promising tool to quantify brain connectivity. However, an essential requirement is that the graph measures are reproducible and robust. We have studied the reproducibility and robustness of various graph measures in group based and in individual binary and weighted networks derived from a task fMRI experiment during explicit associative-semantic processing of words and pictures. The nodes of the network were defined using an independent study and the connectivity was based on the partial correlation of the time series between any pair of nodes. The results showed that in case of binary networks, global graph measures exhibit a good reproducibility and robustness for networks which are not too sparse and these figures of merit depend on the graph measure and on the density of the network. Furthermore, group based binary networks should be derived from groups of sufficient size and the lower the density the more subjects are required to obtain robust values. Local graph measures are very variable in terms of reproducibility and should be interpreted with care. For weighted networks, we found good reproducibility (average test-retest variability <5% and ICC values >0.4) when using subject specific networks and this will allow us to relate network properties to individual subject information.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalie Nelissen
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Katarzyna Adamczuk
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - An-Sofie De Weer
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Psychiatry Department, University Hospitals Leuven, Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Institute for Neuroscience and Disease, Leuven, Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center (MIRC), University of Leuven and University Hospitals Leuven, Leuven, Belgium
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Institute for Neuroscience and Disease, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Institute for Neuroscience and Disease, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center (MIRC), University of Leuven and University Hospitals Leuven, Leuven, Belgium
- Alzheimer Research Centre KU Leuven, Leuven Institute for Neuroscience and Disease, Leuven, Belgium
- * E-mail:
| |
Collapse
|
42
|
Yaesoubi M, Miller RL, Calhoun VD. Mutually temporally independent connectivity patterns: a new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender. Neuroimage 2014; 107:85-94. [PMID: 25485713 DOI: 10.1016/j.neuroimage.2014.11.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 02/05/2023] Open
Abstract
Functional connectivity analysis of the human brain is an active area in fMRI research. It focuses on identifying meaningful brain networks that have coherent activity either during a task or in the resting state. These networks are generally identified either as collections of voxels whose time series correlate strongly with a pre-selected region or voxel, or using data-driven methodologies such as independent component analysis (ICA) that compute sets of maximally spatially independent voxel weightings (component spatial maps (SMs)), each associated with a single time course (TC). Studies have shown that regardless of the way these networks are defined, the activity coherence among them has a dynamic nature which is hard to estimate with global coherence analysis such as correlation or mutual information. Sliding window analyses in which functional network connectivity (FNC) is estimated separately at each time window is one of the more widely employed approaches to studying the dynamic nature of functional network connectivity (dFNC). Observed FNC patterns are summarized and replaced with a smaller set of prototype connectivity patterns ("states" or "components"), and then a dynamical analysis is applied to the resulting sequences of prototype states. In this work we are looking for a small set of connectivity patterns whose weighted contributions to the dynamically changing dFNCs are independent of each other in time. We discuss our motivation for this work and how it differs from existing approaches. Also, in a group analysis based on gender we show that males significantly differ from females by occupying significantly more combinations of these connectivity patterns over the course of the scan.
Collapse
Affiliation(s)
- Maziar Yaesoubi
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA; Dept. of ECE, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Robyn L Miller
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA
| | - Vince D Calhoun
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, USA; Dept. of ECE, MSC01 1100, 1 University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
43
|
Wu X, Yu X, Yao L, Li R. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state. Front Comput Neurosci 2014; 8:118. [PMID: 25309414 PMCID: PMC4174036 DOI: 10.3389/fncom.2014.00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/05/2014] [Indexed: 11/17/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states.
Collapse
Affiliation(s)
- Xia Wu
- College of Information Science and Technology, Beijing Normal University Beijing, China ; State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences Shanghai, China
| | - Xinyu Yu
- College of Information Science and Technology, Beijing Normal University Beijing, China
| | - Li Yao
- College of Information Science and Technology, Beijing Normal University Beijing, China ; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Beijing, China
| | - Rui Li
- Center on Aging Psychology, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
44
|
Jiang T, Zhou Y, Liu B, Liu Y, Song M. Brainnetome-wide association studies in schizophrenia: The advances and future. Neurosci Biobehav Rev 2013; 37:2818-35. [DOI: 10.1016/j.neubiorev.2013.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
|
45
|
Yu Q, Sui J, Kiehl KA, Pearlson G, Calhoun VD. State-related functional integration and functional segregation brain networks in schizophrenia. Schizophr Res 2013; 150:450-8. [PMID: 24094882 PMCID: PMC3839349 DOI: 10.1016/j.schres.2013.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 01/20/2023]
Abstract
Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder.
Collapse
Affiliation(s)
- Qingbao Yu
- The Mind Research Network, Albuquerque, NM 87106, USA.
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Kent A. Kiehl
- The Mind Research Network, Albuquerque, NM 87106, USA,Dept. of Psychology, University of New Mexico, Albuquerque, NM 87106, USA
| | - Godfrey Pearlson
- Olin Neuropsychiatry Research Center, Hartford, CT 06106, USA,Dept. of Psychiatry, Yale University, New Haven, CT 06520, USA,Dept. of Neurobiology, Yale University, New Haven, CT 06520, USA
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA,Olin Neuropsychiatry Research Center, Hartford, CT 06106, USA,Dept. of Psychiatry, Yale University, New Haven, CT 06520, USA,Dept. of ECE, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
46
|
Cao H, Plichta MM, Schäfer A, Haddad L, Grimm O, Schneider M, Esslinger C, Kirsch P, Meyer-Lindenberg A, Tost H. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state. Neuroimage 2013; 84:888-900. [PMID: 24055506 DOI: 10.1016/j.neuroimage.2013.09.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/23/2013] [Accepted: 09/05/2013] [Indexed: 01/08/2023] Open
Abstract
The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies.
Collapse
Affiliation(s)
- Hengyi Cao
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Turner JA, Damaraju E, van Erp TGM, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, Bustillo J, McEwen S, Potkin SG, Fbirn, Calhoun VD. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013; 7:137. [PMID: 23964193 PMCID: PMC3737471 DOI: 10.3389/fnins.2013.00137] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023] Open
Abstract
Background: This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) between patients with schizophrenia (SZ) and healthy controls (HC). Methods: Eyes-closed resting fMRI scans (5:38 min; n = 306, 146 SZ) were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01–0.08 Hz) was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter (WM) and cerebral spinal fluid (CSF) signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results: Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions: SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fALFF measures, but does not affect the pattern of case/control differences.
Collapse
Affiliation(s)
- Jessica A Turner
- Mind Research Network Albuquerque, NM, USA ; Department of Psychiatry, University of New Mexico Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lohmann G, Stelzer J, Neumann J, Ay N, Turner R. “More Is Different” in Functional Magnetic Resonance Imaging: A Review of Recent Data Analysis Techniques. Brain Connect 2013; 3:223-39. [DOI: 10.1089/brain.2012.0133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Gabriele Lohmann
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Johannes Stelzer
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jane Neumann
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- IFB Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Nihat Ay
- Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany
- Santa Fe Institute, Santa Fe, New Mexico
| | - Robert Turner
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
49
|
Ahmadlou M, Ahmadi K, Rezazade M, Azad-Marzabadi E. Global organization of functional brain connectivity in methamphetamine abusers. Clin Neurophysiol 2013; 124:1122-31. [DOI: 10.1016/j.clinph.2012.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 11/29/2022]
|
50
|
Fogelson N, Li L, Li Y, Fernandez-Del-Olmo M, Santos-Garcia D, Peled A. Functional connectivity abnormalities during contextual processing in schizophrenia and in Parkinson's disease. Brain Cogn 2013; 82:243-53. [PMID: 23721994 DOI: 10.1016/j.bandc.2013.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/09/2023]
Abstract
Functional connectivity was evaluated in patients with schizophrenia (SC) and in patients with Parkinson's disease (PD) during the performance of a local contextual processing paradigm, to investigate the proposition that functional disconnection is involved with contextual processing deficits in these populations. To this end, we utilized event-related EEG signals, synchronization likelihood and graph theoretical analysis. Local context was defined as the occurrence of a predictive sequence of stimuli before the presentation of a target event. In the SC patients, we observed a decrease in path length (L) in the beta band, for the predictive sequence and for predicted and random targets, compared with controls. These abnormalities were associated with weaker frontal-temporal-parietal connections. In the PD patients we found longer L (theta band) for predicted targets, and higher cluster coefficients for both the predictive sequence (theta band) and predicted targets (alpha and theta bands), compared with controls. Detection of predicted targets was associated with weaker frontal-parietal connections in PD. No group differences were found for randomized standard stimuli in both SC and PD patients. These findings provide evidence of task-specific functional connectivity abnormalities within frontal networks during local contextual processing.
Collapse
Affiliation(s)
- Noa Fogelson
- Department of Psychology, University of A Coruña, La Coruña, Spain.
| | | | | | | | | | | |
Collapse
|