1
|
Lee PK, Hess JJ, Gomella AA, Loening AM, Hargreaves BA. A diffusion-prepared reduced FOV sequence for prostate MRI near metallic implants. Magn Reson Med 2025; 93:261-275. [PMID: 39221478 DOI: 10.1002/mrm.30280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE To enable diffusion weighted imaging in prostate patients with metallic total hip replacements in clinically feasible scan times for prostate cancer screening, and avoid distortion and dropout artifacts present in the conventionally used Echo Planar Imaging (EPI). METHODS A reduced field of view (FOV) diffusion-prepared sequence that is robust to the B 0 $$ {\kern0em }_0 $$ inhomogeneities produced by total hip replacements was achieved using high radiofrequency (RF) bandwidth pulses and manipulation for stimulated echo pathways. The reduced FOV along the A/P direction was obtained using slice-select gradient reversal, and the prepared magnetization was imaged with a three-dimensional RF-spoiled gradient echo readout. The sequence was validated in phantom experiments, in vivo in healthy volunteers with and without total hip replacements, and in vivo in patients undergoing a standard MRI prostate exam. RESULTS The proposed sequence is robust to shading and distortion artifacts that are encountered by standard diffusion-weighted EPI in the presence of moderate off-resonance. Apparent diffusion coefficient estimates obtained by the proposed sequence were comparable to those obtained with diffusion-weighted EPI. CONCLUSION Acquisition of distortionless diffusion weighted images of the prostate is feasible in patients with total hip replacements on conventional, whole-body 3T MRI, using a b-value of 800s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ and nominal resolution of 1.7× $$ \times $$ 1.7× $$ \times $$ 4 mm3 in scan times of 6 min.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA
| | - Jeremiah J Hess
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
| | | | | | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Hannum AJ, Cork TE, Setsompop K, Ennis DB. Phase stabilization with motion compensated diffusion weighted imaging. Magn Reson Med 2024; 92:2312-2327. [PMID: 38997801 PMCID: PMC11444045 DOI: 10.1002/mrm.30218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE Diffusion encoding gradient waveforms can impart intra-voxel and inter-voxel dephasing owing to bulk motion, limiting achievable signal-to-noise and complicating multishot acquisitions. In this study, we characterize improvements in phase consistency via gradient moment nulling of diffusion encoding waveforms. METHODS Healthy volunteers received neuro (N = 10 $$ N=10 $$ ) and cardiac (N = 10 $$ N=10 $$ ) MRI. Three gradient moment nulling levels were evaluated: compensation for position (M 0 $$ {M}_0 $$ ), position + velocity (M 1 $$ {M}_1 $$ ), and position + velocity + acceleration (M 1 + M 2 $$ {M}_1+{M}_2 $$ ). Three experiments were completed: (Exp-1) Fixed Trigger Delay Neuro DWI; (Exp-2) Mixed Trigger Delay Neuro DWI; and (Exp-3) Fixed Trigger Delay Cardiac DWI. Significant differences (p < 0 . 05 $$ p<0.05 $$ ) of the temporal phase SD between repeated acquisitions and the spatial phase gradient across a given image were assessed. RESULTS M 0 $$ {M}_0 $$ moment nulling was a reference for all measures. In Exp-1, temporal phase SD forG z $$ {G}_z $$ diffusion encoding was significantly reduced withM 1 $$ {M}_1 $$ (35% of t-tests) andM 1 + M 2 $$ {M}_1+{M}_2 $$ (68% of t-tests). The spatial phase gradient was reduced in 23% of t-tests forM 1 $$ {M}_1 $$ and 2% of cases forM 1 + M 2 $$ {M}_1+{M}_2 $$ . In Exp-2, temporal phase SD significantly decreased withM 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling only forG z $$ {G}_z $$ (83% of t-tests), but spatial phase gradient significantly decreased with onlyM 1 $$ {M}_1 $$ (50% of t-tests). In Exp-3,M 1 + M 2 $$ {M}_1+{M}_2 $$ gradient moment nulling significantly reduced temporal phase SD and spatial phase gradients (100% of t-tests), resulting in less signal attenuation and more accurate ADCs. CONCLUSION We characterized gradient moment nulling phase consistency for DWI. Using M1 for neuroimaging and M1 + M2 for cardiac imaging minimized temporal phase SDs and spatial phase gradients.
Collapse
Affiliation(s)
- Ariel J Hannum
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
- Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
| |
Collapse
|
3
|
Ding B, Williams SN, Dragonu I, Liebig P, Allwood-Spiers S, McElhinney P, Gunamony S, Fullerton N, Porter DA. Slice-specific B 1 + shimming improves the repeatability of multishot DWI at 7 T. Magn Reson Med 2024; 92:2560-2570. [PMID: 39091132 DOI: 10.1002/mrm.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Compared with lower field strengths, DWI at 7 T faces the combined challenges of increased distortion and blurring due to B0 inhomogeneity, and increased signal dropouts due to B1 + inhomogeneity. This study addresses the B1 + limitations using slice-specific static parallel transmission (pTx) in a multi-shot, readout-segmented EPI diffusion imaging sequence. METHODS DWI was performed in 7 healthy subjects using MRI at 7 T and readout-segmented EPI. Data were acquired with non-pTx circular-polarized (CP) pulses (CP-DWI) and static pTx pulses (pTx-DWI) using slice-specific B1 + shim coefficients. Each volunteer underwent two scan sessions on the same day, with two runs of each sequence in the first session and one run in the second. The sequences were evaluated by assessing image quality, flip-angle homogeneity, and intrasession and intersession repeatability in ADC estimates. RESULTS pTx-DWI significantly reduced signal voids compared with CP-DWI, particularly in inferior brain regions. The use of pTx also improved RF uniformity and symmetry across the brain. These effects translated into improved intrasession and intersession repeatability for pTx-DWI. Additionally, re-optimizing the pTx pulse between repeat scans did not have a negative effect on ADC repeatability. CONCLUSION The study demonstrates that pTx provides a reproducible image-quality increase in multishot DWI at 7 T. The benefits of pTx also extend to quantitative ADC estimation with regard to the improvement in intrasession and intersession repeatability. Overall, the combination of multishot imaging and pTx can support the development of reliable, high-resolution DWI for clinical studies at 7 T.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul McElhinney
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
| | - Shajan Gunamony
- Imaging Center of Excellence, University of Glasgow, Glasgow, UK
- MR CoilTech Ltd, Glasgow, UK
| | | | | |
Collapse
|
4
|
McElroy S, Tomi-Tricot R, Cleary J, Tan HEI, Kinsella S, Jeljeli S, Goh V, Neji R. 3D distortion-free, reduced FOV diffusion-prepared gradient echo at 3 T. Magn Reson Med 2024. [PMID: 39462469 DOI: 10.1002/mrm.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers. METHODS A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI). Five healthy volunteers were scanned at 3 T using the proposed sequence, DW-SS-EPI, and a clinical diffusion-weighted multi-shot readout-segmented EPI sequence (RESOLVE) for cervical spinal cord imaging. Image quality, perceived SNR, and image distortion were assessed by two expert radiologists. ADC maps were calculated, and ADC values obtained with the proposed sequence were compared to those obtained using DW-SS-EPI and RESOLVE. RESULTS Consistent ADC estimates were measured in the diffusion phantom with the proposed sequence and the conventional DW-SS-EPI sequence, and the ADC values were in close agreement with the reference values provided by the manufacturer of the phantom. In vivo, the proposed sequence demonstrated improved image quality, improved perceived SNR, and reduced perceived distortion compared to DW-SS-EPI, whereas all measures were comparable against RESOLVE. There were no significant differences in ADC values estimated in vivo for each of the sequences. CONCLUSION 3D distortion-free diffusion-prepared imaging can be achieved using the proposed sequence.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Raphael Tomi-Tricot
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare, Courbevoie, France
| | - Jon Cleary
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Shawna Kinsella
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sami Jeljeli
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot echo planar time-resolved imaging for multi-echo functional MRI and distortion-free diffusion imaging. Magn Reson Med 2024. [PMID: 39428674 DOI: 10.1002/mrm.30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To develop a single-shot SNR-efficient distortion-free multi-echo imaging technique for dynamic imaging applications. METHODS Echo planar time-resolved imaging (EPTI) was first introduced as a multi-shot technique for distortion-free multi-echo imaging. This work aims to develop single-shot EPTI (ss-EPTI) to achieve improved robustness to motion/physiological noise, increased temporal resolution, and higher SNR efficiency. A new spatiotemporal encoding that enables reduced phase-encoding blips and minimized echo spacing under the single-shot regime was developed, which improves sampling efficiency and enhances spatiotemporal correlation in the k-TE space for improved reconstruction. A continuous readout with minimized deadtime was employed to optimize SNR efficiency. Moreover, k-TE partial Fourier and simultaneous multi-slice acquisition were integrated for further acceleration. RESULTS ss-EPTI provided distortion-free imaging with densely sampled multi-echo images at standard resolutions (e.g., ˜1.25 to 3 mm) in a single-shot. Improved SNR efficiency was observed in ss-EPTI due to improved motion/physiological-noise robustness and efficient continuous readout. Its ability to eliminate dynamic distortions-geometric changes across dynamics due to field changes induced by physiological variations or eddy currents-further improved the data's temporal stability. For multi-echo fMRI, ss-EPTI's multi-echo images recovered signal dropout in short-T 2 * $$ {\mathrm{T}}_2^{\ast } $$ regions and provided TE-dependent functional information to distinguish non-BOLD noise for further tSNR improvement. For diffusion MRI, it achieved shortened TEs for improved SNR and provided images free from both B0-induced and diffusion-encoding-dependent eddy-current-induced distortions with multi-TE diffusion metrics. CONCLUSION ss-EPTI provides SNR-efficient distortion-free multi-echo imaging with comparable temporal resolutions to ss-EPI, offering a new acquisition tool for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Aliotta E, Paudyal R, Dresner A, Shukla-Dave A, Lee N, Cerviño L, Otazo R, Yu VY. Reduced-distortion diffusion weighted imaging for head and neck radiotherapy. Phys Imaging Radiat Oncol 2024; 32:100653. [PMID: 39399877 PMCID: PMC11466654 DOI: 10.1016/j.phro.2024.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Quantitative Diffusion Weighted Imaging (DWI) has potential value in guiding head and neck (HN) cancer radiotherapy. However, clinical translation has been hindered by severe distortions in standard single-shot Echo-Planar-Imaging (ssEPI) and prolonged scan time and low SNR in Turbo-Spin-Echo (ssTSE) sequences. In this study, we evaluate "multi-shot" (ms) msEPI and msTSE acquisitions in the context of HN radiotherapy. Materials and methods ssEPI, ssTSE, msEPI with 2 and 3 shots (2sEPI, 3sEPI), and msTSE DWI were acquired in a phantom, healthy volunteers (N=10), and patients with HN cancer (N=5) on a 3-Tesla wide-bore MRI in radiotherapy simulation RF coil setup, with matched spatial resolution (2x2x5mm) and b = 0, 200, 800 s/mm2.Geometric distortions measured with deformable vector field (DVF) and contour analysis, apparent diffusion coefficient (ADC) values, and signal-to-noise-ratio efficiency (SNReff) were quantified for all scans. Results All techniques significantly (P<1x10-3) reduced distortions compared with ssEPI (DVFmean = 3.1 ± 1.3 mm). Distortions were marginally lower for msTSE (DVFmean = 1.5 ± 0.6 mm) than ssTSE (1.8 ± 0.9 mm), but were slightly higher with 2sEPI and 3sEPI (2.6 ± 1.0 mm, 2.2 ± 1.0 mm). SNReff reduced with decreasing distortion with ssEPI=21.9 ± 7.9, 2sEPI=15.1 ± 5.0, 3sEPI=12.1 ± 4.5, ssTSE=6.0 ± 1.6, and msTSE=5.7 ± 1.9 for b = 0 images. Phantom ADC values were consistent across all protocols (errors ≤ 0.03x10-3mm2/s), but in vivo ADC values were ∼ 4 % lower with msEPI and ∼ 12 % lower with ssTSE/msTSE compared with ssEPI. Conclusions msEPI and TSE acquisitions exhibited improved geometric distortion at the cost of SNReff and scan time. While msTSE exhibited the least distortion, 3sEPI may offer an appealing middle-ground with improved geometric fidelity but superior efficiency and in vivo ADC quantification.
Collapse
Affiliation(s)
- Eric Aliotta
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Laura Cerviño
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Victoria Y. Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
7
|
Wang Y, Cui Y, Dai J, Ni S, Zhang T, Chen X, Jiang Q, Cheng Y, Ma Y, Li T, Xiao Y. Prospective Comparison of FOCUS MUSE and Single-Shot Echo-Planar Imaging for Diffusion-Weighted Imaging in Evaluating Thyroid-Associated Ophthalmopathy. Korean J Radiol 2024; 25:913-923. [PMID: 39344548 PMCID: PMC11444853 DOI: 10.3348/kjr.2024.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To prospectively compare single-shot (SS) echo-planar imaging (EPI) and field-of-view optimized and constrained undistorted single-shot multiplexed sensitivity-encoding (FOCUS MUSE) for diffusion-weighted imaging (DWI) in evaluating thyroid-associated ophthalmopathy (TAO). MATERIALS AND METHODS SS EPI and FOCUS MUSE DWIs were obtained from 39 patients with TAO (18 male; mean ± standard deviation: 48.3 ± 13.3 years) and 26 healthy controls (9 male; mean ± standard deviation: 43.0 ± 18.5 years). Two radiologists scored the visual image quality using a 4-point Likert scale. The image quality score, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) of extraocular muscles (EOMs) were compared between the two DWIs. Differences in the ADC of EOMs were also evaluated. The performance of discriminating active from inactive TAO was assessed using receiver operating characteristic curves. The correlation between ADC and clinical activity score (CAS) was analyzed using Spearman correlation. RESULTS Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated significantly higher image quality scores (P < 0.001), a higher SNR and CNR on the lateral rectus muscle (LRM) and medial rectus muscle (MRM) (P < 0.05), and a non-significant difference in the ADC of the LRM and MRM. Active TAO showed higher ADC than inactive TAO and healthy controls with both SS EPI and FOCUS MUSE DWIs (P < 0.001). Inactive TAO and healthy controls did not show a significant ADC difference with both DWIs. Compared with SS EPI DWI, FOCUS MUSE DWI demonstrated better discrimination of active from inactive TAO (AUC: 0.925 vs. 0.779; P = 0.007). The ADC was significantly correlated with CAS in SS EPI DWI (r = 0.391, P < 0.001) and FOCUS MUSE DWI (r = 0.645, P < 0.001). CONCLUSION FOCUS MUSE DWI provides better images for evaluating EOMs and better performance in diagnosing active TAO than SS EPI DWI. The application of FOCUS MUSE will facilitate the DWI evaluation of TAO.
Collapse
Affiliation(s)
- YunMeng Wang
- Graduate School of Bengbu Medical University, Bengbu, China
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - YuanYuan Cui
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | | | - ShuangShuang Ni
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - TianRan Zhang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Chen
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - QinLing Jiang
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - YuXin Cheng
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - YiChuan Ma
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Yi Xiao
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
8
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
9
|
Hu Z, Berman AJL, Dong Z, Grissom WA, Reese TG, Wald LL, Wang F, Polimeni JR. Reduced physiology-induced temporal instability achieved with variable-flip-angle fast low-angle excitation echo-planar technique with multishot echo planar time-resolved imaging. Magn Reson Med 2024. [PMID: 39323238 DOI: 10.1002/mrm.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/T 2 * $$ {\mathrm{T}}_2^{\ast } $$ blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.
Collapse
Affiliation(s)
- Zhangxuan Hu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Cleveland, Ohio, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Li Z, Miller KL, Chen X, Chiew M, Wu W. Self-navigated 3D diffusion MRI using an optimized CAIPI sampling and structured low-rank reconstruction estimated navigator. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; PP:1-1. [PMID: 39240738 DOI: 10.1109/tmi.2024.3454994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
3D multi-slab acquisitions are an appealing approach for diffusion MRI because they are compatible with the imaging regime delivering optimal SNR efficiency. In conventional 3D multi-slab imaging, shot-to-shot phase variations caused by motion pose challenges due to the use of multi-shot k-space acquisition. Navigator acquisition after each imaging echo is typically employed to correct phase variations, which prolongs scan time and increases the specific absorption rate (SAR). The aim of this study is to develop a highly efficient, self-navigated method to correct for phase variations in 3D multi-slab diffusion MRI without explicitly acquiring navigators. The sampling of each shot is carefully designed to intersect with the central kz=0 plane of each slab, and the multi-shot sampling is optimized for self-navigation performance while retaining decent reconstruction quality. The kz=0 intersections from all shots are jointly used to reconstruct a 2D phase map for each shot using a structured low-rank constrained reconstruction that leverages the redundancy in shot and coil dimensions. The phase maps are used to eliminate the shot-to-shot phase inconsistency in the final 3D multi-shot reconstruction. We demonstrate the method's efficacy using retrospective simulations and prospectively acquired in-vivo experiments at 1.22 mm and 1.09 mm isotropic resolutions. Compared to conventional navigated 3D multi-slab imaging, the proposed self-navigated method achieves comparable image quality while shortening the scan time by 31.7% and improving the SNR efficiency by 15.5%. The proposed method produces comparable quality of DTI and white matter tractography to conventional navigated 3D multi-slab acquisition with a much shorter scan time.
Collapse
|
11
|
Li J, Xia Y, Dai J, Sun G, Xu M, Lin X, Gu L, Shi J, Liu S, Fan L. Comparison of single-shot, FOCUS single-shot, MUSE, and FOCUS MUSE diffusion weighted imaging for pulmonary lesions: A pilot study. Heliyon 2024; 10:e35203. [PMID: 39170364 PMCID: PMC11336438 DOI: 10.1016/j.heliyon.2024.e35203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Rationale and objectives To compare the performance of SS, FOCUS SS, MUSE, and FOCUS MUSE DWI for pulmonary lesions to obtain a better technique for pulmonary DWI imaging. Materials and methods 44 patients with pulmonary lesions were recruited to perform pulmonary DWI using SS, FOCUS SS, MUSE, and FOCUS MUSE sequences. Then, two radiologists with 12 and 10 years of chest MRI experiences assessed the overall image quality while another two radiologists both with 3 years of experiences evaluated the SNR, DR, and ADC of pulmonary lesions. Using interclass correlation coefficient (ICC) and kappa statistics to assess consistency of readers, Friedman test and Dunn-Bonferroni post hoc were used to calculate the difference between sequences. Mann-Whitney test and ROC curve were used to distinguish malignant from benign lesions. Results All the assessed variables of the four sequences presented good to excellent intra-/inter-observer consistency. Compared with SS, FOCUS SS and MUSE, FOCUS MUSE demonstrated better image quality, including significantly higher 5-point Likert scale score (P < 0.001) and smaller DR (P < 0.001). SNR was comparable among SS, FOCUS SS, and FOCUS MUSE (P > 0.05) while MUSE presented with significantly higher SNR over them (P < 0.01). ADC of malignant was significantly smaller than that of benign for all the four sequences (P < 0.05). ROC analysis showed relatively better diagnostic performance of FOCUS MUSE (AUC = 0.820) over SS (AUC = 0.748), FOCUS SS (AUC = 0.778), and MUSE (AUC = 0.729) in distinguishing malignant from benign lesions. Conclusion FOCUS MUSE possessed sufficient SNR and was better over SS, FOUCS SS, and MUSE for characterizing pulmonary lesions.
Collapse
Affiliation(s)
- Jie Li
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Yi Xia
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | | | - GuangYuan Sun
- Department of Thoracic Surgery, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - MeiLing Xu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - XiaoQing Lin
- College of Health Sciences and Engineering, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - LingLing Gu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Jie Shi
- GE Healthcare, Beijing, 100000, China
| | - ShiYuan Liu
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
12
|
Zhao W, Liu Q, Sun J, Pan W, Pylypenko D, Wang W. Evaluating the image quality and local tumor invasion of uterine cancer by MUSE DWI with RPG. Heliyon 2024; 10:e35440. [PMID: 39170139 PMCID: PMC11336590 DOI: 10.1016/j.heliyon.2024.e35440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Diffusion-weighted imaging (DWI) is widely utilized for evaluating uterine diseases. However, the prevalent technique, single-shot echo planar imaging (ssEPI), is hindered by notable image distortion and low spatial resolution. Therefore, optimizing uterine DWI sequences is vital for improving image quality. To investigate the efficacy of multiplexed sensitivity encoding (MUSE) combined with reverse polarity gradient (RPG) in enhancing uterine DWI quality and assessing local invasion in endometrial and cervical cancer, we included 149 patients. Each patient underwent DWI of the uterus using ssEPI, MUSE, and RPG-MUSE techniques. We compared these three sequences regarding image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), geometric distortion rate (GDR), ADC values, accuracy in determining the extent of cancer invasion, and the Area Under the Curve (AUC) for identifying endometrial cancer and benign endometrial lesions using ADC values. The results indicated that RPG-MUSE DWI had less artifacts than MUSE and ssEPI (P < 0.05). Lesions were more apparent in MUSE and RPG-MUSE sequences compared to ssEPI (P < 0.05), with RPG-MUSE providing clearer lesion edges (P < 0.05). Additionally, RPG-MUSE DWI demonstrated higher SNR and CNR than ssEPI and MUSE (P < 0.05), along with a lower GDR (P < 0.05). The ADC values did not show significant differences among the three sequences (P > 0.05). Furthermore, the AUC of the ROC for detecting endometrial cancer and benign endometrial lesions using ADC values showed no significant differences across the sequences (P = 0.7609, 0.7186, and 0.8706, respectively). When combining each DWI sequence with T2WI for FIGO staging, RPG-MUSE and MUSE exhibited better alignment with pathology findings compared to ssEPI (P < 0.05). Overall, RPG-MUSE DWI showed fewer artifacts, higher SNR and CNR, reduced geometric distortion, and clearer lesion visualization compared to ssEPI and MUSE, leading to a more precise assessment of endometrial and cervical cancer invasion extent.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Qing Liu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Jining Sun
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Wenhui Pan
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | | | - Wenjuan Wang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| |
Collapse
|
13
|
Lee PK, Zhou X, Wang N, Syed AB, Brunsing RL, Vasanawala SS, Hargreaves BA. Distortionless, free-breathing, and respiratory resolved 3D diffusion weighted imaging of the abdomen. Magn Reson Med 2024; 92:586-604. [PMID: 38688875 DOI: 10.1002/mrm.30067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE Abdominal imaging is frequently performed with breath holds or respiratory triggering to reduce the effects of respiratory motion. Diffusion weighted sequences provide a useful clinical contrast but have prolonged scan times due to low signal-to-noise ratio (SNR), and cannot be completed in a single breath hold. Echo-planar imaging (EPI) is the most commonly used trajectory for diffusion weighted imaging but it is susceptible to off-resonance artifacts. A respiratory resolved, three-dimensional (3D) diffusion prepared sequence that obtains distortionless diffusion weighted images during free-breathing is presented. Techniques to address the myriad of challenges including: 3D shot-to-shot phase correction, respiratory binning, diffusion encoding during free-breathing, and robustness to off-resonance are described. METHODS A twice-refocused, M1-nulled diffusion preparation was combined with an RF-spoiled gradient echo readout and respiratory resolved reconstruction to obtain free-breathing diffusion weighted images in the abdomen. Cartesian sampling permits a sampling density that enables 3D shot-to-shot phase navigation and reduction of transient fat artifacts. Theoretical properties of a region-based shot rejection are described. The region-based shot rejection method was evaluated with free-breathing (normal and exaggerated breathing), and respiratory triggering. The proposed sequence was compared in vivo with multishot DW-EPI. RESULTS The proposed sequence exhibits no evident distortion in vivo when compared to multishot DW-EPI, robustness to B0 and B1 field inhomogeneities, and robustness to motion from different respiratory patterns. CONCLUSION Acquisition of distortionless, diffusion weighted images is feasible during free-breathing with a b-value of 500 s/mm2, scan time of 6 min, and a clinically viable reconstruction time.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA
| | - Xuetong Zhou
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
| | - Nan Wang
- Radiology, Stanford University, Stanford, California, USA
| | - Ali B Syed
- Radiology, Stanford University, Stanford, California, USA
| | | | | | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
McTavish S, Van AT, Peeters JM, Weiss K, Harder FN, Makowski MR, Braren RF, Karampinos DC. Partial Fourier in the presence of respiratory motion in prostate diffusion-weighted echo planar imaging. MAGMA (NEW YORK, N.Y.) 2024; 37:621-636. [PMID: 38743376 PMCID: PMC11417066 DOI: 10.1007/s10334-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.
Collapse
Affiliation(s)
- Sean McTavish
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Anh T Van
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | | | | | - Felix N Harder
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rickmer F Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
15
|
Lee PK, Zhou X, Hargreaves BA. Robust multishot diffusion-weighted imaging of the abdomen with region-based shot rejection. Magn Reson Med 2024; 92:519-531. [PMID: 38623901 DOI: 10.1002/mrm.30102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/18/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Diffusion-weighted (DW) imaging provides a useful clinical contrast, but is susceptible to motion-induced dephasing caused by the application of strong diffusion gradients. Phase navigators are commonly used to resolve shot-to-shot motion-induced phase in multishot reconstructions, but poor phase estimates result in signal dropout and Apparent Diffusion Coefficient (ADC) overestimation. These artifacts are prominent in the abdomen, a region prone to involuntary cardiac and respiratory motion. To improve the robustness of DW imaging in the abdomen, region-based shot rejection schemes that selectively weight regions where the shot-to-shot phase is poorly estimated were evaluated. METHODS Spatially varying weights for each shot, reflecting both the accuracy of the estimated phase and the degree of subvoxel dephasing, were estimated from the phase navigator magnitude images. The weighting was integrated into a multishot reconstruction using different formulations and phase navigator resolutions and tested with different phase navigator resolutions in multishot DW-echo Planar Imaging acquisitions of the liver and pancreas, using conventional monopolar and velocity-compensated diffusion encoding. Reconstructed images and ADC estimates were compared qualitatively. RESULTS The proposed region-based shot rejection reduces banding and signal dropout artifacts caused by physiological motion in the liver and pancreas. Shot rejection allows conventional monopolar diffusion encoding to achieve median ADCs in the pancreas comparable to motion-compensated diffusion encoding, albeit with a greater spread of ADCs. CONCLUSION Region-based shot rejection is a linear reconstruction that improves the motion robustness of multi-shot DWI and requires no sequence modifications.
Collapse
Affiliation(s)
- Philip K Lee
- Radiology, Stanford University, Stanford, California, USA
| | - Xuetong Zhou
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Radiology, Stanford University, Stanford, California, USA
- Bioengineering, Stanford University, Stanford, California, USA
- Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Michael ES, Hennel F, Pruessmann KP. Motion-compensated diffusion encoding in multi-shot human brain acquisitions: Insights using high-performance gradients. Magn Reson Med 2024; 92:556-572. [PMID: 38441339 DOI: 10.1002/mrm.30069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To evaluate the utility of up to second-order motion-compensated diffusion encoding in multi-shot human brain acquisitions. METHODS Experiments were performed with high-performance gradients using three forms of diffusion encoding motion-compensated through different orders: conventional zeroth-order-compensated pulsed gradients (PG), first-order-compensated gradients (MC1), and second-order-compensated gradients (MC2). Single-shot acquisitions were conducted to correlate the order of motion compensation with resultant phase variability. Then, multi-shot acquisitions were performed at varying interleaving factors. Multi-shot images were reconstructed using three levels of shot-to-shot phase correction: no correction, channel-wise phase correction based on FID navigation, and correction based on explicit phase mapping (MUSE). RESULTS In single-shot acquisitions, MC2 diffusion encoding most effectively suppressed phase variability and sensitivity to brain pulsation, yielding residual variations of about 10° and of low spatial order. Consequently, multi-shot MC2 images were largely satisfactory without phase correction and consistently improved with the navigator correction, which yielded repeatable high-quality images; contrarily, PG and MC1 images were inadequately corrected using the navigator approach. With respect to MUSE reconstructions, the MC2 navigator-corrected images were in close agreement for a standard interleaving factor and considerably more reliable for higher interleaving factors, for which MUSE images were corrupted. Finally, owing to the advanced gradient hardware, the relative SNR penalty of motion-compensated diffusion sensitization was substantially more tolerable than that faced previously. CONCLUSION Second-order motion-compensated diffusion encoding mitigates and simplifies shot-to-shot phase variability in the human brain, rendering the multi-shot acquisition strategy an effective means to circumvent limitations of retrospective phase correction methods.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Tang X, Gao J, Aburas A, Wu D, Chen Z, Chen H, Hu C. Accelerated multi-b-value multi-shot diffusion-weighted imaging based on EPI with keyhole and a low-rank tensor constraint. Magn Reson Imaging 2024; 110:138-148. [PMID: 38641211 DOI: 10.1016/j.mri.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
PURPOSE Multi-Shot (MS) Echo-Planar Imaging (EPI) may improve the in-plane resolution of multi-b-value DWI, yet it also considerably increases the scan time. Here we explored the combination of EPI with Keyhole (EPIK) and a calibrationless reconstruction algorithm for acceleration of multi-b-value MS-DWI. METHODS We firstly analyzed the impact of nonuniform phase accrual in EPIK on the reconstructed image. Based on insights gained from the analysis, we developed a calibrationless reconstruction algorithm based on a Space-Contrast-Coil Locally Low-Rank Tensor (SCC-LLRT) constraint for reconstruction of EPIK-acquired data. We compared the algorithm with a modified SPatial-Angular Locally Low-Rank (SPA-LLR) algorithm through simulations, phantoms, and in vivo study. We then compared EPIK with uniformly undersampled EPI for accelerating multi-b-value DWI in 6 healthy subjects. RESULTS Through theoretical derivations, we found that the reconstruction of EPIK with a SENSE-encoding-based algorithm, such as SPA-LLR, may cause additional aliasing artifacts due to the frequency-dependent distortion of the coil sensitivity. Results from simulations, phantoms, and in vivo study verified the theoretical finding by showing that the calibrationless SCC-LLRT algorithm reduced aliasing artifacts compared with SPA-LLR. Finally, EPIK with SCC-LLRT substantially reduced the ghosting artifacts compared with uniform undersampled multi-b-value DWI, decreasing the fitting errors in ADC (0.05 ± 0.01 vs 0.10 ± 0.01, P < 0.001) and IVIM mapping (0.026 ± 0.004 vs 0.06 ± 0.006, P < 0.001). CONCLUSION The SCC-LLRT algorithm reduced the aliasing artifacts of EPIK by using a calibrationless modeling of the multi-coil data. The dense sampling of k-space center offers EPIK a potential to improve image quality for acceleration of multi-b-value MS-DWI.
Collapse
Affiliation(s)
- Xin Tang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; United Imaging Healthcare Co. Ltd, Shanghai, China
| | - Juan Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ahmed Aburas
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wu
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuo Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Chen
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Stout J, Anderson RJ, Mahzarnia A, Han Z, Beck K, Browndyke J, Johnson K, O’Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599407. [PMID: 38979335 PMCID: PMC11230216 DOI: 10.1101/2024.06.24.599407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, and shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics such as diastolic blood pressure were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Zay Han
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Richard J O’Brien
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Alexandra Badea
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| |
Collapse
|
19
|
Chen X, Wu W, Chiew M. Motion compensated structured low-rank reconstruction for 3D multi-shot EPI. Magn Reson Med 2024; 91:2443-2458. [PMID: 38361309 DOI: 10.1002/mrm.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Meyer NK, In MH, Black DF, Campeau NG, Welker KM, Huston J, Halverson MA, Bernstein MA, Trzasko JD. Model-based iterative reconstruction for direct imaging with point spread function encoded echo planar MRI. Magn Reson Imaging 2024; 109:189-202. [PMID: 38490504 PMCID: PMC11075760 DOI: 10.1016/j.mri.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. METHODS An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. RESULTS Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. CONCLUSIONS A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.
Collapse
Affiliation(s)
- Nolan K Meyer
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Norbert G Campeau
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria A Halverson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Martinez JA, Yu VY, Tringale KR, Otazo R, Cohen O. Phase-sensitive deep reconstruction method for rapid multiparametric MR fingerprinting and quantitative susceptibility mapping in the brain. Magn Reson Imaging 2024; 109:147-157. [PMID: 38513790 PMCID: PMC11042874 DOI: 10.1016/j.mri.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION This study explores the potential of Magnetic Resonance Fingerprinting (MRF) with a novel Phase-Sensitivity Deep Reconstruction Network (PS-DRONE) for simultaneous quantification of T1, T2, Proton Density, B1+, phase and quantitative susceptibility mapping (QSM). METHODS Data were acquired at 3 T in vitro and in vivo using an optimized EPI-based MRF sequence. Phantom experiments were conducted using a standardized phantom for T1 and T2 maps and a custom-made agar-based gadolinium phantom for B1 and QSM maps. In vivo experiments included five healthy volunteers and one patient diagnosed with brain metastasis. PSDRONE maps were compared to reference maps obtained through standard imaging sequences. RESULTS Total scan time was 2 min for 32 slices and a resolution of [1 mm, 1 mm, 4.5 mm]. The reconstruction of T1, T2, Proton Density, B1+ and phase maps were reconstructed within 1 s. In the phantoms, PS-DRONE analysis presented accurate and strongly correlated T1 and T2 maps (r = 0.99) compared to the reference maps. B1 maps from PS-DRONE showed slightly higher values, though still correlated (r = 0.6) with the reference. QSM values showed a small bias but were strongly correlated (r = 0.99) with reference data. In the in vivo analysis, PS-DRONE-derived T1 and T2 values for gray and white matter matched reference values in healthy volunteers. PS-DRONE B1 and QSM maps showed strong correlations with reference values. CONCLUSION The PS-DRONE network enables concurrent acquisition of T1, T2, PD, B1+, phase and QSM maps, within 2 min of acquisition time and 1 s of reconstruction time.
Collapse
Affiliation(s)
- Jessica A Martinez
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA.
| | - Victoria Y Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ouri Cohen
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| |
Collapse
|
22
|
Qiu Z, Hu S, Zhao W, Sakaie K, Sun JE, Griswold MA, Jones DK, Ma D. Self-calibrated subspace reconstruction for multidimensional MR fingerprinting for simultaneous relaxation and diffusion quantification. Magn Reson Med 2024; 91:1978-1993. [PMID: 38102776 PMCID: PMC10950540 DOI: 10.1002/mrm.29969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE To propose a new reconstruction method for multidimensional MR fingerprinting (mdMRF) to address shading artifacts caused by physiological motion-induced measurement errors without navigating or gating. METHODS The proposed method comprises two procedures: self-calibration and subspace reconstruction. The first procedure (self-calibration) applies temporally local matrix completion to reconstruct low-resolution images from a subset of under-sampled data extracted from the k-space center. The second procedure (subspace reconstruction) utilizes temporally global subspace reconstruction with pre-estimated temporal subspace from low-resolution images to reconstruct aliasing-free, high-resolution, and time-resolved images. After reconstruction, a customized outlier detection algorithm was employed to automatically detect and remove images corrupted by measurement errors. Feasibility, robustness, and scan efficiency were evaluated through in vivo human brain imaging experiments. RESULTS The proposed method successfully reconstructed aliasing-free, high-resolution, and time-resolved images, where the measurement errors were accurately represented. The corrupted images were automatically and robustly detected and removed. Artifact-free T1, T2, and ADC maps were generated simultaneously. The proposed reconstruction method demonstrated robustness across different scanners, parameter settings, and subjects. A high scan efficiency of less than 20 s per slice has been achieved. CONCLUSION The proposed reconstruction method can effectively alleviate shading artifacts caused by physiological motion-induced measurement errors. It enables simultaneous and artifact-free quantification of T1, T2, and ADC using mdMRF scans without prospective gating, with robustness and high scan efficiency.
Collapse
Affiliation(s)
- Zhilang Qiu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Siyuan Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Jessie E.P. Sun
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Mark A. Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, United States
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
23
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Bao Q, Liu X, Xu J, Xia L, Otikovs M, Xie H, Liu K, Zhang Z, Zhou X, Liu C. Unsupervised deep learning model for correcting Nyquist ghosts of single-shot spatiotemporal encoding. Magn Reson Med 2024; 91:1368-1383. [PMID: 38073072 DOI: 10.1002/mrm.29925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To design an unsupervised deep learning (DL) model for correcting Nyquist ghosts of single-shot spatiotemporal encoding (SPEN) and evaluate the model for real MRI applications. METHODS The proposed method consists of three main components: (1) an unsupervised network that combines Residual Encoder and Restricted Subspace Mapping (RERSM-net) and is trained to generate a phase-difference map based on the even and odd SPEN images; (2) a spin physical forward model to obtain the corrected image with the learned phase difference map; and (3) cycle-consistency loss that is explored for training the RERSM-net. RESULTS The proposed RERSM-net could effectively generate smooth phase difference maps and correct Nyquist ghosts of single-shot SPEN. Both simulation and real in vivo MRI experiments demonstrated that our method outperforms the state-of-the-art SPEN Nyquist ghost correction method. Furthermore, the ablation experiments of generating phase-difference maps show the advantages of the proposed unsupervised model. CONCLUSION The proposed method can effectively correct Nyquist ghosts for the single-shot SPEN sequence.
Collapse
Affiliation(s)
- Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Xinjie Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyun Xu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Liyang Xia
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | | | - Han Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Kewen Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Zhi Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Wuhan, China
| |
Collapse
|
25
|
Engel M, Mueller L, Döring A, Afzali M, Jones DK. Maximizing SNR per unit time in diffusion MRI with multiband T-Hex spirals. Magn Reson Med 2024; 91:1323-1336. [PMID: 38156527 PMCID: PMC10953427 DOI: 10.1002/mrm.29953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
PURPOSE The characterization of tissue microstructure using diffusion MRI (dMRI) signals is rapidly evolving, with increasing sophistication of signal representations and microstructure models. However, this progress often requires signals to be acquired with very high b-values (e.g., b > 30 ms/μm2 ), along many directions, and using multiple b-values, leading to long scan times and extremely low SNR in dMRI images. The purpose of this work is to boost the SNR efficiency of dMRI by combining three particularly efficient spatial encoding techniques and utilizing a high-performance gradient system (Gmax ≤ 300 mT/m) for efficient diffusion encoding. METHODS Spiral readouts, multiband imaging, and sampling on tilted hexagonal grids (T-Hex) are combined and implemented on a 3T MRI system with ultra-strong gradients. Image reconstruction is performed through an iterative cg-SENSE algorithm incorporating static off-resonance distributions and field dynamics as measured with an NMR field camera. Additionally, T-Hex multiband is combined with a more conventional EPI-readout and compared with state-of-the-art blipped-CAIPIRINHA sampling. The advantage of the proposed approach is furthermore investigated for clinically available gradient performance and diffusion kurtosis imaging. RESULTS High fidelity in vivo images with b-values up to 40 ms/μm2 are obtained. The approach provides superior SNR efficiency over other state-of-the-art multiband diffusion readout schemes. CONCLUSION The demonstrated gains hold promise for the widespread dissemination of advanced microstructural scans, especially in clinical populations.
Collapse
Affiliation(s)
- Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Lars Mueller
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - André Döring
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| |
Collapse
|
26
|
Zhao W, Ju S, Yang H, Wang Q, Fang L, Pylypenko D, Wang W. Improved Value of Multiplexed Sensitivity Encoding DWI with Reversed Polarity Gradients in Diagnosing Prostate Cancer: A Comparison Study with Single-Shot DWI and MUSE DWI. Acad Radiol 2024; 31:909-920. [PMID: 37778902 DOI: 10.1016/j.acra.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the value of multiplexed sensitivity encoding with reversed polarity gradients in improving the quality of diffusion-weighted imaging (DWI) images of the prostate and the diagnostic efficacy of prostate cancer. MATERIALS AND METHODS Seventy-three patients with prostate disease underwent multiplexed sensitivity encoding with reversed polarity gradients (RPG-MUSE), multiplexed sensitivity encoding (MUSE), and single-shot echo-planar imaging (ssEPI) DWI. Three radiologists performed a qualitative image analysis of the three DWI sequences. Qualitative image analysis included artifact minimization, anatomical detail, and sharpness of prostate edges. Two radiologists measured the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), geometric distortion rate, and the apparent diffusion coefficient (ADC) values of the prostate disease tissue. Two radiologists jointly performed Prostate Imaging Reporting and Data System scoring of prostate lesions and compared the diagnostic efficacy of the three DWI sequences for prostate cancer. RESULTS There was good agreement among radiologists in the evaluation and measurement of the three DWI sequence images (intraclass correlation coefficient >0.75, P < 0.05). The RPG-MUSE DWI images were rated higher than those of MUSE and ssEPI in terms of artifact minimization, anatomical details, and sharpness of prostate edges (P < 0.05). The SNR and CNR of the RPG-MUSE DWI images were higher than those of MUSE and ssEPI (P < 0.05), and the geometric distortion rate was lower than that of the other two sequences (P < 0.05). There were no statistical differences in ADC values between the three DWI sequences (P > 0.05). The diagnostic efficacy of RPG-MUSE and MUSE DWI was higher than that of ssEPI (P < 0.017). CONCLUSION RPG-MUSE can reduce the artifacts and geometric distortion in DWI images of the prostate, improve the SNR and CNR of the images, improve the clarity of anatomical details and boundaries without affecting the measurement of ADC values, has the potential to improve the diagnostic efficacy of prostate lesions, and facilitates the clear display and accurate assessment of prostate lesions.
Collapse
Affiliation(s)
- Wenjing Zhao
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.)
| | - Shiying Ju
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.)
| | - Hongyang Yang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.)
| | - Qi Wang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.)
| | - Longjiang Fang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.)
| | | | - Wenjuan Wang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, China (W.Z., S.J., H.Y., Q.W., L.F., W.W.).
| |
Collapse
|
27
|
Wang X, Wang P, Zhang H, Wang X, Shi J, Hu S. Multiplexed sensitivity-encoding versus single-shot echo-planar imaging: a comparative study for diffusion-weighted imaging of the thyroid lesions. Jpn J Radiol 2024; 42:268-275. [PMID: 37819591 DOI: 10.1007/s11604-023-01500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To compare multiplexed sensitivity-encoding diffusion-weighted magnetic resonance imaging (MUSE-DWI) and conventional DWI (cDWI) techniques in thyroid MRI. MATERIALS AND METHODS Nineteen patients who underwent thyroid MRI using both MUSE-DWI and cDWI at a 3.0 T MRI system were enrolled. Qualitative parameters (image quality, thyroid contour, and lesion conspicuity) and quantitative parameters (signal-to-noise ratio (SNR), lesion-to-thyroid contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC)) were compared between the two sequences. In addition, ADC values derived from MUSE-DWI and cDWI were separately compared between benign and malignant lesions. RESULTS MUSE-DWI outperformed cDWI in terms of image quality, thyroid contour, and lesion conspicuity. Significantly, higher signal-to-noise ratio (SNR) in both the thyroid and its lesion were found in MUSE-DWI than those in cDWI (both P < 0.05). The lesion-to-thyroid contrast-to-noise ratio (CNR) values were also significantly higher in MUSE-DWI than those in cDWI (P < 0.05). The apparent diffusion coefficient (ADC) of the thyroid in MUSE-DWI was significantly lower than that in cDWI (P < 0.05). The ADC of the lesion in MUSE-DWI was also significantly lower than that in cDWI (P < 0.05). In addition, ADC values derived from MUSE-DWI and cDWI were significantly higher in benign lesions than malignant lesions (P < 0.05). CONCLUSION Compared with cDWI, MUSE-DWI can improve the image quality, thyroid contour sharpness, lesion conspicuity, SNR in both the thyroid and its lesions, and enhancing the CNR between lesions and thyroid.
Collapse
Affiliation(s)
- Xiuyu Wang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China
| | - Xian Wang
- Department of Radiology, Affiliated Renmin Hospital, Jiangsu University, No.8, Dianli Road, Zhenjiang, 212000, Jiangsu, China
| | - Jie Shi
- GE Healthcare, Beijing, 100000, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No.1000, Hefeng Road, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
28
|
Chen S, Chu ML, Liang L, Liu YJ, Chen NK, Wang H, Juan CJ, Chang HC. Highly accelerated multi-shot intravoxel incoherent motion diffusion-weighted imaging in brain enabled by parametric POCS-based multiplexed sensitivity encoding. NMR IN BIOMEDICINE 2024; 37:e5063. [PMID: 37871617 DOI: 10.1002/nbm.5063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Mei-Lan Chu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Liyuan Liang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Chun-Jung Juan
- Department of Medical Imaging, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Multi-Scale Medical Robotics Center, Shatin, Hong Kong
| |
Collapse
|
29
|
Mao L, Li Y, Cui B, Lu L, Dou W, Pylypenko D, Zhu J, Li H. Multiparametric MRI for Staging of Bowel Inflammatory Activity in Crohn's Disease with MUSE-IVIM and DCE-MRI: A Preliminary Study. Acad Radiol 2024; 31:880-888. [PMID: 37730492 DOI: 10.1016/j.acra.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate if the combination of multishot diffusion imaging-based multiplexed sensitivity encoding intravoxel incoherent motion (MUSE-IVIM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is feasible for staging Crohn's disease (CD) activity. MATERIALS AND METHODS A total of 65 CD patients were enrolled and analyzed in this retrospective study. The simplified endoscopic score for Crohn's disease (SES-CD) and magnetic resonance index of activity (MaRIA) were used as the reference. The MUSE-IVIM and DCE-MRI data were acquired at 3.0-T MRI scanner and processed by two radiologists. Three MUSE-IVIM parameters: fast apparent diffusion coefficient (ADCfast), slow apparent diffusion coefficient (ADCslow), and the fractional perfusion (Fraction of ADCfast), as well as four DCE-MRI parameters: volume transfer constant (Ktrans), rate constant (Kep), extravascular extracellular volume fraction (Ve), and plasma volume fraction (Vp) were generated. Intraclass correlation coefficient (ICC), non-parametric test (Kruskal-Wallis H and Mann-Whitney U), logistic regression, receiver operating characteristic analysis, Delong test, and Spearman's correlation test were performed. RESULTS According to SES-CD, 116 ileocolonic segments with CD lesions were identified as: inactive, mild, and moderate to severe. With multivariable logistic regression analysis, ADCfast (p < 0.001), Fraction of ADCfast (p = 0.005), Ktrans (p < 0.001) and Kep (p = 0.003) were identified as significant factors for differentiating among the three groups. Binary logistic analyses identified ADCfast (p = 0.001), Ktrans (p = 0.014), and Kep (p = 0.029) as independent predictors for the active status. The combination of ADCfast, Ktrans, and Kep performed better than MaRIA score (p = 0.028), for differentiating inactive and active status. MaRIA score was positively correlated with ADCfast (p < 0.001), Ktrans (p < 0.001), Kep (p < 0.001), and Ve (p = 0.001), however, negatively correlated with Fraction of ADCfast (p < 0.001). CONCLUSION The combination of MUSE-IVIM and DCE-MRI has been demonstrated to accurately stage inflammatory activity in CD.
Collapse
Affiliation(s)
- Liangqiang Mao
- Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Li
- Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Bota Cui
- Department of Gastroenterology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, PR China
| | | | - Jianguo Zhu
- Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Haige Li
- Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
30
|
Patriat R, Palnitkar T, Chandrasekaran J, Sretavan K, Braun H, Yacoub E, McGovern RA, Aman J, Cooper SE, Vitek JL, Harel N. DiMANI: diffusion MRI for anatomical nuclei imaging-Application for the direct visualization of thalamic subnuclei. Front Hum Neurosci 2024; 18:1324710. [PMID: 38439939 PMCID: PMC10910100 DOI: 10.3389/fnhum.2024.1324710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
The thalamus is a centrally located and heterogeneous brain structure that plays a critical role in various sensory, motor, and cognitive processes. However, visualizing the individual subnuclei of the thalamus using conventional MRI techniques is challenging. This difficulty has posed obstacles in targeting specific subnuclei for clinical interventions such as deep brain stimulation (DBS). In this paper, we present DiMANI, a novel method for directly visualizing the thalamic subnuclei using diffusion MRI (dMRI). The DiMANI contrast is computed by averaging, voxelwise, diffusion-weighted volumes enabling the direct distinction of thalamic subnuclei in individuals. We evaluated the reproducibility of DiMANI through multiple approaches. First, we utilized a unique dataset comprising 8 scans of a single participant collected over a 3-year period. Secondly, we quantitatively assessed manual segmentations of thalamic subnuclei for both intra-rater and inter-rater reliability. Thirdly, we qualitatively correlated DiMANI imaging data from several patients with Essential Tremor with the localization of implanted DBS electrodes and clinical observations. Lastly, we demonstrated that DiMANI can provide similar features at 3T and 7T MRI, using varying numbers of diffusion directions. Our results establish that DiMANI is a reproducible and clinically relevant method to directly visualize thalamic subnuclei. This has significant implications for the development of new DBS targets and the optimization of DBS therapy.
Collapse
Affiliation(s)
- Rémi Patriat
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Tara Palnitkar
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Jayashree Chandrasekaran
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Karianne Sretavan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Henry Braun
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Robert A. McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Aman
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Scott E. Cooper
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Jerrold L. Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Ramos-Llordén G, Park DJ, Kirsch JE, Scholz A, Keil B, Maffei C, Lee HH, Bilgic B, Edlow BL, Mekkaoui C, Yendiki A, Witzel T, Huang SY. Eddy current-induced artifact correction in high b-value ex vivo human brain diffusion MRI with dynamic field monitoring. Magn Reson Med 2024; 91:541-557. [PMID: 37753621 PMCID: PMC10842131 DOI: 10.1002/mrm.29873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.
Collapse
Affiliation(s)
- Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Daniel J. Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John E. Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Baldingerstrasse 1, 35043, Marburg, Germany
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
32
|
Wang W, Dou B, Wang Q, Li H, Li C, Zhao W, Fang L, Pylypenko D, Chu Y. Comparison of MUSE-DWI and conventional DWI in the application of invasive breast cancer and malignancy grade prediction: A comparative study. Heliyon 2024; 10:e24379. [PMID: 38304790 PMCID: PMC10830508 DOI: 10.1016/j.heliyon.2024.e24379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Objective To compare MUSE-DWI with conventional DWI in assessing lesions of invasive breast cancer and evaluating the ADC values for preoperative histological grading. Methods A retrospective analysis was conducted on 63 lesions confirmed as invasive breast cancer by surgical or biopsy pathology. Preoperatively, all patients underwent MUSE-DWI, conventional DWI, and dynamic contrast-enhanced (DCE) scans. Two radiologists with over 5 years of experience (intermediate and senior levels, respectively) subjectively evaluated the images for clarity, image artifacts, and distortion. Objective evaluation included signal-to-noise ratio (SNR) of lesions and fibrous tissue, as well as the ADC values of both imaging techniques. Due to the limited number of cases classified as grade I and the insignificant difference in disease-specific survival and recurrence scores between grades I and II tumors, grades I and II were grouped as low-grade, while grade III was classified as high-grade. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of ADC values in preoperatively predicting the grading of invasive breast cancer. Results The SNR and subjective quality scores of MUSE-DWI images were significantly higher than those of conventional DWI (p < 0.05). For the same case, the ADC values of MUSE-DWI were lower than those of conventional DWI. The AUC values for predicting the grading of invasive breast cancer were 0.849 for MUSE-DWI and 0.801 for conventional DWI. Conclusion Compared to conventional DWI, MUSE-DWI significantly reduces artifacts and distortions, greatly improving image quality. Moreover, MUSE-DWI demonstrates higher diagnostic efficacy for preoperative histological grading of invasive breast cancer.
Collapse
Affiliation(s)
| | - Bowen Dou
- Weifang Medical University, Weifang, 261053, China
| | - Qi Wang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Haogang Li
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Changshuai Li
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Wenjing Zhao
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | - Longjiang Fang
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| | | | - Yujing Chu
- Department of Radiology, Weifang People's Hospital, Weifang, Shandong, 261041, China
| |
Collapse
|
33
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot Echo Planar Time-resolved Imaging for multi-echo functional MRI and distortion-free diffusion imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577002. [PMID: 38328081 PMCID: PMC10849706 DOI: 10.1101/2024.01.24.577002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
Affiliation(s)
- Koji Kamagata
- From the Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan (K.K., C.A., W.U., K.T., Y.S., A.H., S.F., T.A., A.W., S.A.); Faculty of Health Data Science, Juntendo University, Chiba, Japan (C.A., S.A.); Department of Radiology, Alfred Health, Melbourne, Victoria, Australia (M.L.); Department of Radiology, University of Tokyo, Tokyo, Japan (S.F.); Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan (M.H., K.K.); Melbourne Neuropsychiatry Center, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia (A.Z.); and Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia (A.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Alus O, El Homsi M, Golia Pernicka JS, Rodriguez L, Mazaheri Y, Kee Y, Petkovska I, Otazo R. Convolutional network denoising for acceleration of multi-shot diffusion MRI. Magn Reson Imaging 2024; 105:108-113. [PMID: 37820978 PMCID: PMC11138874 DOI: 10.1016/j.mri.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Multi-shot echo planar imaging is a promising technique to reduce geometric distortions and increase spatial resolution in diffusion-weighted MRI (DWI), at the expense of increased scan time. Moreover, performing DWI in the body requires multiple repetitions to obtain sufficient signal-to-noise ratio, which further increases the scan time. This work proposes to reduce the number of repetitions and perform denoising of high b-value images using a convolutional network denoising trained on single-shot DWI to accelerate the acquisition of multi-shot DWI. Convolutional network denoising is demonstrated to accelerate the acquisition of 2-shot DWI by a factor of 4 compared to the clinical standard on patients with rectal cancer. Image quality was evaluated using qualitative scores from expert body radiologists between accelerated and non-accelerated acquisition. Additionally, the effect of convolutional network denoising on each image quality score was analyzed using a Wilcoxon signed-rank test. Convolutional network denoising would enable to increase the number of shots without increasing scan time for significant geometric artifact reduction and spatial resolution increase.
Collapse
Affiliation(s)
- Or Alus
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria El Homsi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lee Rodriguez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yousef Mazaheri
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Youngwook Kee
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iva Petkovska
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
36
|
Dong Y, Koolstra K, Li Z, Riedel M, van Osch MJP, Börnert P. Structured low-rank reconstruction for navigator-free water/fat separated multi-shot diffusion-weighted EPI. Magn Reson Med 2024; 91:205-220. [PMID: 37753595 DOI: 10.1002/mrm.29848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Multi-shot diffusion-weighted EPI allows an increase in image resolution and reduced geometric distortions and can be combined with chemical-shift encoding (Dixon) to separate water/fat signals. However, such approaches suffer from physiological motion-induced shot-to-shot phase variations. In this work, a structured low-rank-based navigator-free algorithm is proposed to address the challenge of simultaneously separating water/fat signals and correcting for physiological motion-induced shot-to-shot phase variations in multi-shot EPI-based diffusion-weighted MRI. THEORY AND METHODS We propose an iterative, model-based reconstruction pipeline that applies structured low-rank regularization to estimate and eliminate the shot-to-shot phase variations in a data-driven way, while separating water/fat images. The algorithm is tested in different anatomies, including head-neck, knee, brain, and prostate. The performance is validated in simulations and in-vivo experiments in comparison to existing approaches. RESULTS In-vivo experiments and simulations demonstrated the effectiveness of the proposed algorithm compared to extra-navigated and an alternative self-navigation approach. The proposed algorithm demonstrates the capability to reconstruct in the multi-shot/Dixon hybrid space domain under-sampled datasets, using the same number of acquired EPI shots compared to conventional fat-suppression techniques but eliminating fat signals through chemical-shift encoding. In addition, partial Fourier reconstruction can also be achieved by using the concept of virtual conjugate coils in conjunction with the proposed algorithm. CONCLUSION The proposed algorithm effectively eliminates the shot-to-shot phase variations and separates water/fat images, making it a promising solution for future DWI on different anatomies.
Collapse
Affiliation(s)
- Yiming Dong
- C.J. Gorter MRI Center, Department of Radiology, LUMC, Leiden, The Netherlands
| | | | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | | | - Peter Börnert
- C.J. Gorter MRI Center, Department of Radiology, LUMC, Leiden, The Netherlands
- Philips Research Hamburg, Hamburg, Germany
| |
Collapse
|
37
|
Tounekti S, Alizadeh M, Middleton D, Harrop JS, Hiba B, Krisa L, Mekkaoui C, Mohamed FB. Metal artifact reduction around cervical spine implant using diffusion tensor imaging at 3T: A phantom study. Magn Reson Imaging 2024; 105:57-66. [PMID: 37939969 PMCID: PMC10841892 DOI: 10.1016/j.mri.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Diffusion MRI continues to play a key role in non-invasively assessing spinal cord integrity and pre-operative injury evaluation. However, post-operative Diffusion Tensor Imaging (DTI) acquisition of patients with metal implants results in severe geometric distortion. We propose and demonstrate a method to alleviate the technical challenges facing the acquisition of DTI on post-operative cases and longitudinal evaluation of therapeutics. MATERIAL AND METHODS The described technique is based on the combination of the reduced Field-Of-View (rFOV) strategy and the phase segmented EPI, termed rFOV-PS-EPI. A custom-built phantom based on a cervical spine model with metal implants was used to collect DTI data at 3 Tesla scanner using: rFOV-PS-EPI, reduced Field-Of-View single-shot EPI (rFOV-SS-EPI), and conventional full FOV techniques including SS-EPI, PS-EPI, and readout-segmented EPI (RS-EPI). Geometric distortion, SNR, and signal void were assessed to evaluate images and compare the sequences. A two-sample t-test was performed with p-value of 0.05 or less to indicate statistical significance. RESULTS The reduced FOV techniques showed better capability to reduce distortions compared to the Full FOV techniques. The rFOV-PS-EPI method provided DTI images of the phantom at the level of the hardware whereas the conventional rFOV-SS-EPI is useful only when the metal is approximately 20 mm away. In addition, compared to the rFOV-SS-EPI technique, the suggested approach produced smaller signal voids area as well as significantly reduced geometric distortion in Circularity (p < 0.005) and Eccentricity (p < 0.005) measurements. No statistically significant differences were found for these geometric distortion measurements between the rFOV-PS-EPI DTI sequence and conventional structural T2 images (p > 0.05). CONCLUSION The combination of rFOV and a phase-segmented acquisition approach is effective for reducing metal-induced distortions in DTI scan on spinal cord with metal hardware at 3 T.
Collapse
Affiliation(s)
- Slimane Tounekti
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mahdi Alizadeh
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Devon Middleton
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - James S Harrop
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bassem Hiba
- Institut des Sciences Cognitives, CNRS UMR 5229, Université Lyon 1, Lyon, France
| | - Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Choukri Mekkaoui
- Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Feroze B Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Yoon D, Lutz AM. Diffusion Tensor Imaging of Peripheral Nerves: Current Status and New Developments. Semin Musculoskelet Radiol 2023; 27:641-648. [PMID: 37935210 DOI: 10.1055/s-0043-1775742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Diffusion tensor imaging (DTI) is an emerging technique for peripheral nerve imaging that can provide information about the microstructural organization and connectivity of these nerves and complement the information gained from anatomical magnetic resonance imaging (MRI) sequences. With DTI it is possible to reconstruct nerve pathways and visualize the three-dimensional trajectory of nerve fibers, as in nerve tractography. More importantly, DTI allows for quantitative evaluation of peripheral nerves by the calculation of several important parameters that offer insight into the functional status of a nerve. Thus DTI has a high potential to add value to the work-up of peripheral nerve pathologies, although it is more technically demanding. Peripheral nerves pose specific challenges to DTI due to their small diameter and DTI's spatial resolution, contrast, location, and inherent field inhomogeneities when imaging certain anatomical locations. Numerous efforts are underway to resolve these technical challenges and thus enable wider acceptance of DTI in peripheral nerve MRI.
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Amelie M Lutz
- Department of Radiology, Kantonal Hospital Thurgau, Muensterlingen, Switzerland
| |
Collapse
|
39
|
Li Z, Ooi MB, Murchison JA, Karis JP. Rapid T 2 ∗ -weighted MRI using multishot EPI with retrospective motion and phase correction in the emergency department. Magn Reson Med 2023; 90:2500-2509. [PMID: 37668095 DOI: 10.1002/mrm.29809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE Brain MRI is increasingly used in the emergency department (ED), whereT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI is an essential tool for detecting hemorrhage and stroke. The goal of this study was to develop a rapidT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI technique capable of correcting motion-induced artifacts, thereby simultaneously improving scan time and motion robustness for ED applications. METHODS A 2D gradient-echo (GRE)-based multishot EPI (msEPI) technique was implemented using a navigator echo for estimating motion-induced errors. Bulk rigid head motion and phase errors were retrospectively corrected using an iterative conjugate gradient approach in the reconstruction pipeline. Three volunteers and select patients were imaged at 3 T and/or 1.5 T with an approximately 1-min full-brain protocol using the proposed msEPI technique and compared to an approximately 3-min standard-of-care GRE protocol to examine its performance. RESULTS Data from volunteers demonstrated that in-plane motion artifacts could be effectively corrected with the proposed msEPI technique, and through-plane motion artifacts could be mitigated. Patient images were qualitatively reviewed by one radiologist without a formal statistical analysis. These results suggested the proposed technique could correct motion-induced artifacts in the clinical setting. In addition, the conspicuity of susceptibility-related lesions using the proposed msEPI technique was comparable, or improved, compared to GRE. CONCLUSION A 1-min full-brainT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI technique was developed using msEPI with a navigator echo to correct motion-induced errors. Preliminary clinical results suggest faster scans and improved motion robustness and lesion conspicuity make msEPI a competitive alternative to traditionalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted MRI techniques for brain studies in the ED.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | - James A Murchison
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - John P Karis
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
40
|
Madden DJ, Merenstein JL. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. Neuroimage 2023; 282:120401. [PMID: 37802405 PMCID: PMC10797559 DOI: 10.1016/j.neuroimage.2023.120401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA
| |
Collapse
|
41
|
Li H, Zu T, Chen R, Ba R, Hsu YC, Sun Y, Zhang Y, Wu D. 3D diffusion MRI with twin navigator-based GRASE and comparison with 2D EPI for tractography in the human brain. Magn Reson Med 2023; 90:1969-1978. [PMID: 37345706 DOI: 10.1002/mrm.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/13/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE 3D pulse sequences enable high-resolution acquisition with a high SNR and ideal slice profiles, which, however, is particularly difficult for diffusion MRI (dMRI) due to the additional phase errors from diffusion encoding. METHODS We proposed a twin navigator-based 3D diffusion-weighted gradient spin-echo (GRASE) sequence to correct the phase errors between shots and between odd and even spin echoes for human whole-brain acquisition. We then compared the SNR of 3D GRASE and 2D simultaneous multi-slice EPI within the same acquisition time. We further tested the performance of 2D versus 3D acquisition at equivalent SNR on fiber tracking and microstructural mapping, using the diffusion tensor and high-order fiber orientation density-based metrics. RESULTS The proposed twin navigator approach removed multi-shot phase errors to some extent in the whole brain dMRI, and the 2D navigator performed better than the 1D navigator. Comparisons of SNR between the 2D simultaneous multi-slice EPI and 3D GRASE sequences demonstrated that the SNR of the GRASE sequence was 1.4-1.5-fold higher than the EPI sequence at an equivalent scan time. More importantly, we found a significantly higher fiber cross-section in the cerebrospinal tract, as well as richer subcortical fibers (U-fibers) using the 3D GRASE sequence compared to 2D EPI. CONCLUSION The twin navigator-based 3D diffusion-weighted-GRASE sequence minimized the multishot phase error and effectively improved the SNR for whole-brain dMRI acquisition. We found differences in fiber tracking and microstructural mapping between 2D and 3D acquisitions, possibly due to the different slice profiles.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare China, Shanghai, People's Republic of China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare China, Shanghai, People's Republic of China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
42
|
Nakamoto A, Onishi H, Tsuboyama T, Fukui H, Ota T, Yano K, Kiso K, Honda T, Tarewaki H, Koyama Y, Tatsumi M, Tomiyama N. High-resolution Diffusion-weighted Imaging of the Prostate Using Multiplexed Sensitivity-encoding: Comparison with the Conventional and Reduced Field-of-view Techniques. Magn Reson Med Sci 2023:mp.2023-0039. [PMID: 37899224 DOI: 10.2463/mrms.mp.2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
PURPOSE To compare objective and subjective image quality, lesion conspicuity, and apparent diffusion coefficient (ADC) of high-resolution multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) with conventional DWI (c-DWI) and reduced FOV DWI (rFOV-DWI) in prostate MRI. METHODS Forty-seven patients who underwent prostate MRI, including c-DWI, rFOV-DWI, and MUSE-DWI, were retrospectively evaluated. SNR and ADC of normal prostate tissue and contrast-to-noise ratio (CNR) and ADC of prostate cancer (PCa) were measured and compared between the three sequences. Image quality and lesion conspicuity were independently graded by two radiologists using a 5-point scale and compared between the three sequences. RESULTS The SNR of normal prostate tissue was significantly higher with rFOV-DWI than with the other two DWI techniques (P ≤ 0.01). The CNR of the PCa was significantly higher with rFOV-DWI than with MUSE-DWI (P < 0.05). The ADC of normal prostate tissue measured by rFOV-DWI was lower than that measured by MUSE-DWI and c-DWI (P < 0.01), while there was no difference in the ADC of cancers. In the qualitative analysis, MUSE-DWI showed significantly higher scores than rFOV-DWI and c-DWI for visibility of anatomy and overall image quality in both readers, and significantly higher scores for distortion in one of the two readers (P < 0.001). There was no difference in lesion conspicuity between the three sequences. CONCLUSION High-resolution MUSE-DWI showed higher image quality and reduced distortion compared to c-DWI, while maintaining a wide FOV and similar ADC quantification, although no difference in lesion conspicuity was observed.
Collapse
Affiliation(s)
- Atsushi Nakamoto
- Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine
| | - Hiromitsu Onishi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Takahiro Tsuboyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Hideyuki Fukui
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Takashi Ota
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Keigo Yano
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Kengo Kiso
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Toru Honda
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Hiroyuki Tarewaki
- Division of Radiology, Department of Medical Technology, Osaka University Hospital
| | - Yoshihiro Koyama
- Division of Radiology, Department of Medical Technology, Osaka University Hospital
| | - Mitsuaki Tatsumi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine
| |
Collapse
|
43
|
Moran CJ, Middione MJ, Mazzoli V, McKay-Nault JA, Guidon A, Waheed U, Rosen EL, Poplack SP, Rosenberg J, Ennis DB, Hargreaves BA, Daniel BL. Multishot Diffusion-Weighted MRI of the Breasts in the Supine vs. Prone Position. J Magn Reson Imaging 2023; 58:951-962. [PMID: 36583628 PMCID: PMC10310889 DOI: 10.1002/jmri.28582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) may allow for breast cancer screening MRI without a contrast injection. Multishot methods improve prone DWI of the breasts but face different challenges in the supine position. PURPOSE To establish a multishot DWI (msDWI) protocol for supine breast MRI and to evaluate the performance of supine vs. prone msDWI. STUDY TYPE Prospective. POPULATION Protocol optimization: 10 healthy women (ages 22-56), supine vs. prone: 24 healthy women (ages 22-62) and five women (ages 29-61) with breast tumors. FIELD STRENGTH/SEQUENCE 3-T, protocol optimization msDWI: free-breathing (FB) 2-shots, FB 4-shots, respiratory-triggered (RT) 2-shots, RT 4-shots, supine vs. prone: RT 4-shot msDWI, T2-weighted fast-spin echo. ASSESSMENT Protocol optimization and supine vs. prone: three observers performed an image quality assessment of sharpness, aliasing, distortion (vs. T2), perceived SNR, and overall image quality (scale of 1-5). Apparent diffusion coefficients (ADCs) in fibroglandular tissue (FGT) and breast tumors were measured. STATISTICAL TESTS Effect of study variables on dichotomized ratings (4/5 vs. 1/2/3) and FGT ADCs were assessed with mixed-effects logistic regression. Interobserver agreement utilized Gwet's agreement coefficient (AC). Lesion ADCs were assessed by Bland-Altman analysis and concordance correlation (ρc ). P value <0.05 was considered statistically significant. RESULTS Protocol optimization: 4-shots significantly improved sharpness and distortion; RT significantly improved sharpness, aliasing, perceived SNR, and overall image quality. FGT ADCs were not significantly different between shots (P = 0.812), FB vs. RT (P = 0.591), or side (P = 0.574). Supine vs. prone: supine images were rated significantly higher for sharpness, aliasing, and overall image quality. FGT ADCs were significantly higher supine; lesion ADCs were highly correlated (ρc = 0.92). DATA CONCLUSION Based on image quality, supine msDWI outperformed prone msDWI. Lesion ADCs were highly correlated between the two positions, while FGT ADCs were higher in the supine position. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
| | | | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Arnaud Guidon
- Global MR Application and Workflow, GE Healthcare, Boston, Massachusetts, USA
| | - Uzma Waheed
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Eric L. Rosen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Steven P. Poplack
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jarrett Rosenberg
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Brian A. Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Bruce L. Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
44
|
Wang J, Geng W, Wu J, Kang T, Wu Z, Lin J, Yang Y, Cai C, Cai S. Intravoxel incoherent motion magnetic resonance imaging reconstruction from highly under-sampled diffusion-weighted PROPELLER acquisition data via physics-informed residual feedback unrolled network. Phys Med Biol 2023; 68:175022. [PMID: 37541226 DOI: 10.1088/1361-6560/aced77] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Abstract
Objective. The acquisition of diffusion-weighted images for intravoxel incoherent motion (IVIM) imaging is time consuming. This work aims to accelerate the scan through a highly under-sampling diffusion-weighted turbo spin echo PROPELLER (DW-TSE-PROPELLER) scheme and to develop a reconstruction method for accurate IVIM parameter mapping from the under-sampled data.Approach.The proposed under-sampling DW-TSE-PROPELLER scheme for IVIM imaging is that a few blades perb-value are acquired and rotated along theb-value dimension to cover high-frequency information. A physics-informed residual feedback unrolled network (PIRFU-Net) is proposed to directly estimate distortion-free and artifact-free IVIM parametric maps (i.e., the perfusion-free diffusion coefficientDand the perfusion fractionf) from highly under-sampled DW-TSE-PROPELLER data. PIRFU-Net used an unrolled convolution network to explore data redundancy in the k-q space to remove under-sampling artifacts. An empirical IVIM physical constraint was incorporated into the network to ensure that the signal evolution curves along theb-value follow a bi-exponential decay. The residual between the realistic and estimated measurements was fed into the network to refine the parametric maps. Meanwhile, the use of synthetic training data eliminated the need for genuine DW-TSE-PROPELLER data.Main results.The experimental results show that the DW-TSE-PROPELLER acquisition was six times faster than full k-space coverage PROPELLER acquisition and within a clinically acceptable time. Compared with the state-of-the-art methods, the distortion-freeDandfmaps estimated by PIRFU-Net were more accurate and had better-preserved tissue boundaries on a simulated human brain and realistic phantom/rat brain/human brain data.Significance.Our proposed method greatly accelerates IVIM imaging. It is capable of directly and simultaneously reconstructing distortion-free, artifact-free, and accurateDandfmaps from six-fold under-sampled DW-TSE-PROPELLER data.
Collapse
Affiliation(s)
- Jiechao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wenhua Geng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jian Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Taishan Kang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Zhigang Wu
- Clinical & Technical Solutions, Philips Healthcare, Shenzhen, 518000, People's Republic of China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361004, People's Republic of China
| | - Yu Yang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005, People's Republic of China
| |
Collapse
|
45
|
Zhang W, Liu N, Zhao Y, Yao C, Yang D, Yang C, Sun H, Wei X, Sweeney JA, Liang H, Zhang M, Gong Q, Lui S. The acute effects of repetitive transcranial magnetic stimulation on laminar diffusion anisotropy of neocortical gray matter. MedComm (Beijing) 2023; 4:e335. [PMID: 37560755 PMCID: PMC10407029 DOI: 10.1002/mco2.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used to treat neuropsychiatric disorders. Inhibitory and excitatory regimens have been both adopted but the exact mechanism of action remains unclear, and investigating their differential effects on laminar diffusion profiles of neocortex may add important evidence. Twenty healthy participants were randomly assigned to receive a low-frequency/inhibitory or high-frequency/excitatory rTMS targeting the left dorsolateral prefrontal cortex (DLPFC). With the brand-new submillimeter diffusion tensor imaging of whole brain and specialized surface-based laminar analysis, fractional anisotropy (FA) and mean diffusion (MD) profiles of cortical layers at different cortical depths were characterized before/after rTMS. Inhibitory and excitatory rTMS both showed impacts on diffusion metrics of somatosensory, limbic, and sensory regions, but different patterns of changes were observed-increased FA with inhibitory rTMS, whereas decreased FA with excitatory rTMS. More importantly, laminar analysis indicated laminar specificity of changes in somatosensory regions during different rTMS patterns-inhibitory rTMS affected the superficial layers contralateral to the DLPFC, while excitatory rTMS led to changes in the intermediate/deep layers bilateral to the DLPFC. These findings provide novel insights into acute neurobiological effects on diffusion profiles of rTMS that may add critical evidence relevant to different protocols of rTMS on neocortex.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Naici Liu
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Youjin Zhao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Chenyang Yao
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Dan Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
| | - Chengmin Yang
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Hui Sun
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Xia Wei
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - John A. Sweeney
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | | | | | - Qiyong Gong
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Department of RadiologyWest China Xiamen Hospital of Sichuan UniversityXiamenFujianChina
| | - Su Lui
- Department of Radiologyand Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- Huaxi MR Research Center (HMRRC)West China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| |
Collapse
|
46
|
Merenstein JL, Zhao J, Mullin HA, Rudolph MD, Song AW, Madden DJ. High-resolution multi-shot diffusion imaging of structural networks in healthy neurocognitive aging. Neuroimage 2023; 275:120191. [PMID: 37244322 PMCID: PMC10482115 DOI: 10.1016/j.neuroimage.2023.120191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Healthy neurocognitive aging has been associated with the microstructural degradation of white matter pathways that connect distributed gray matter regions, assessed by diffusion-weighted imaging (DWI). However, the relatively low spatial resolution of standard DWI has limited the examination of age-related differences in the properties of smaller, tightly curved white matter fibers, as well as the relatively more complex microstructure of gray matter. Here, we capitalize on high-resolution multi-shot DWI, which allows spatial resolutions < 1 mm3 to be achieved on clinical 3T MRI scanners. We assessed whether traditional diffusion tensor-based measures of gray matter microstructure and graph theoretical measures of white matter structural connectivity assessed by standard (1.5 mm3 voxels, 3.375 μl volume) and high-resolution (1 mm3 voxels, 1μl volume) DWI were differentially related to age and cognitive performance in 61 healthy adults 18-78 years of age. Cognitive performance was assessed using an extensive battery comprising 12 separate tests of fluid (speed-dependent) cognition. Results indicated that the high-resolution data had larger correlations between age and gray matter mean diffusivity, but smaller correlations between age and structural connectivity. Moreover, parallel mediation models including both standard and high-resolution measures revealed that only the high-resolution measures mediated age-related differences in fluid cognition. These results lay the groundwork for future studies planning to apply high-resolution DWI methodology to further assess the mechanisms of both healthy aging and cognitive impairment.
Collapse
Affiliation(s)
- Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Jiayi Zhao
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hollie A Mullin
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Marc D Rudolph
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
47
|
Liao C, Yarach U, Cao X, Iyer SS, Wang N, Kim TH, Tian Q, Bilgic B, Kerr AB, Setsompop K. High-fidelity mesoscale in-vivo diffusion MRI through gSlider-BUDA and circular EPI with S-LORAKS reconstruction. Neuroimage 2023; 275:120168. [PMID: 37187364 PMCID: PMC10451786 DOI: 10.1016/j.neuroimage.2023.120168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE To develop a high-fidelity diffusion MRI acquisition and reconstruction framework with reduced echo-train-length for less T2* image blurring compared to typical highly accelerated echo-planar imaging (EPI) acquisitions at sub-millimeter isotropic resolution. METHODS We first proposed a circular-EPI trajectory with partial Fourier sampling on both the readout and phase-encoding directions to minimize the echo-train-length and echo time. We then utilized this trajectory in an interleaved two-shot EPI acquisition with reversed phase-encoding polarity, to aid in the correction of off-resonance-induced image distortions and provide complementary k-space coverage in the missing partial Fourier regions. Using model-based reconstruction with structured low-rank constraint and smooth phase prior, we corrected the shot-to-shot phase variations across the two shots and recover the missing k-space data. Finally, we combined the proposed acquisition/reconstruction framework with an SNR-efficient RF-encoded simultaneous multi-slab technique, termed gSlider, to achieve high-fidelity 720 µm and 500 µm isotropic resolution in-vivo diffusion MRI. RESULTS Both simulation and in-vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide distortion-corrected diffusion imaging at the mesoscale with markedly reduced T2*-blurring. The in-vivo results of 720 µm and 500 µm datasets show high-fidelity diffusion images with reduced image blurring and echo time using the proposed approaches. CONCLUSIONS The proposed method provides high-quality distortion-corrected diffusion-weighted images with ∼40% reduction in the echo-train-length and T2* blurring at 500µm-isotropic-resolution compared to standard multi-shot EPI.
Collapse
Affiliation(s)
- Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Uten Yarach
- Radiologic Technology Department, Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| | - Siddharth Srinivasan Iyer
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Tae Hyung Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Department of Computer Engineering, Hongik University, Seoul, South Korea
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Adam B Kerr
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA; Stanford Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
48
|
Feizollah S, Tardif CL. High-resolution diffusion-weighted imaging at 7 Tesla: single-shot readout trajectories and their impact on signal-to-noise ratio, spatial resolution and accuracy. Neuroimage 2023; 274:120159. [PMID: 37150332 DOI: 10.1016/j.neuroimage.2023.120159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6-1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures.
Collapse
Affiliation(s)
- Sajjad Feizollah
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, 3801 Rue University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Duff Medical Building, 3775 Rue University, Suite 316, Montreal, QC, Canada.
| |
Collapse
|
49
|
Takemura H, Liu W, Kuribayashi H, Miyata T, Kida I. Evaluation of simultaneous multi-slice readout-segmented diffusion-weighted MRI acquisition in human optic nerve measurements. Magn Reson Imaging 2023; 102:103-114. [PMID: 37149064 DOI: 10.1016/j.mri.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) is the only available method to measure the tissue properties of white matter tracts in living human brains and has opened avenues for neuroscientific and clinical studies on human white matter. However, dMRI using conventional simultaneous multi-slice (SMS) single-shot echo planar imaging (ssEPI) still presents challenges in the analyses of some specific white matter tracts, such as the optic nerve, which are heavily affected by susceptibility-induced artifacts. In this study, we evaluated dMRI data acquired by using SMS readout-segmented EPI (rsEPI), which aims to reduce susceptibility-induced artifacts by dividing the acquisition space into multiple segments along the readout direction to reduce echo spacing. To this end, we acquired dMRI data from 11 healthy volunteers by using SMS ssEPI and SMS rsEPI, and then compared the dMRI data of the human optic nerve between the SMS ssEPI and SMS rsEPI datasets by visual inspection of the datasets and statistical comparisons of fractional anisotropy (FA) values. In comparison with the SMS ssEPI data, the SMS rsEPI data showed smaller susceptibility-induced distortion and exhibited a significantly higher FA along the optic nerve. In summary, this study demonstrates that despite its prolonged acquisition time, SMS rsEPI is a promising approach for measuring the tissue properties of the optic nerve in living humans and will be useful for future neuroscientific and clinical investigations of this pathway.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Japan.
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | - Toshikazu Miyata
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ikuhiro Kida
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
50
|
Chen Z, Liao C, Cao X, Poser BA, Xu Z, Lo WC, Wen M, Cho J, Tian Q, Wang Y, Feng Y, Xia L, Chen W, Liu F, Bilgic B. 3D-EPI blip-up/down acquisition (BUDA) with CAIPI and joint Hankel structured low-rank reconstruction for rapid distortion-free high-resolution T 2 * mapping. Magn Reson Med 2023; 89:1961-1974. [PMID: 36705076 PMCID: PMC10072851 DOI: 10.1002/mrm.29578] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitativeT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permitsT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. ForT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS The proposed technique enables rapid 3D distortion-free high-resolution imaging andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brainT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.
Collapse
Affiliation(s)
- Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Benedikt A. Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Science, Guangzhou, China
| | | | - Manyi Wen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Yaohui Wang
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|