1
|
Dai J, Xiao Y, Chen G, Gu Z, Xu K. Anodal transcranial direct current stimulation enhances response inhibition and attention allocation in fencers. PeerJ 2024; 12:e17288. [PMID: 38699193 PMCID: PMC11064870 DOI: 10.7717/peerj.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.
Collapse
Affiliation(s)
- Jiansong Dai
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yang Xiao
- Department of Graduate, Nanjing Sport Institute, Nanjing, China
| | - Gangrui Chen
- Department of Sport Research, Nanjing Sport Institute, Nanjing, China
| | - Zhongke Gu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Kai Xu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
2
|
Rhodes LJ, Borghetti L, Morris MB. Multiscale entropy in a 10-minute vigilance task. Int J Psychophysiol 2024; 198:112323. [PMID: 38428744 DOI: 10.1016/j.ijpsycho.2024.112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Research has shown multiscale entropy, brain signal behavior across time scales, to reliably increase at lower time scales with time-on-task fatigue. However, multiscale entropy has not been examined in short vigilance tasks (i.e., ≤ 10 min). Addressing this gap, we examine multiscale entropy during a 10-minute Psychomotor Vigilance Test (PVT). Thirty-four participants provided neural data while completing the PVT. We compared the first 2 min of the task to the 7th and 8th minutes to avoid end-spurt effects. Results suggested increased multiscale entropy at lower time scales later compared to earlier in the task, suggesting multiscale entropy is a strong marker of time-on-task fatigue onset during short vigils. Separate analyses for Fast and Slow performers reveal differential entropy patterns, particularly over visual cortices. Here, observed brain-behavior linkage between entropy and reaction time for slow performers suggests that entropy assays over sensory cortices might have predictive value for fatigue onset or shifts from on- to off-task states.
Collapse
Affiliation(s)
- L Jack Rhodes
- Ball Aerospace at Wright-Patterson Air Force Base, OH, United States of America.
| | - Lorraine Borghetti
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, United States of America
| | - Megan B Morris
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, United States of America
| |
Collapse
|
3
|
de Souza Moura B, Hu XS, DosSantos MF, DaSilva AF. Study Protocol of tDCS Based Pain Modulation in Head and Neck Cancer Patients Under Chemoradiation Therapy Condition: An fNIRS-EEG Study. Front Mol Neurosci 2022; 15:859988. [PMID: 35721312 PMCID: PMC9200064 DOI: 10.3389/fnmol.2022.859988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple therapeutic strategies have been adopted to reduce pain, odynophagia, and oral mucositis in head and neck cancer patients. Among them, transcranial direct current stimulation (tDCS) represents a unique analgesic modality. However, the details of tDCS mechanisms in pain treatment are still unclear. Aims (1) to study the analgesic effects of a protocol that encompassed supervised-remote and in-clinic tDCS sessions applied in head and neck patients undergoing chemoradiation therapy; (2) to explore the underlining brain mechanisms of such modulation process, using a novel protocol that combined functional near-infrared spectroscopy (fNIRS), and electroencephalograph (EEG), two distinct neuroimaging methods that bring information regarding changes in the hemodynamic as well as in the electrical activity of the brain, respectively. Methods This proof-of-concept study was performed on two subjects. The study protocol included a 7-week-long tDCS stimulation procedure, a pre-tDCS baseline session, and two post-tDCS follow-up sessions. Two types of tDCS devices were used. One was used in the clinical setting and the other remotely. Brain imaging was obtained in weeks 1, 2, 5, 7, 8, and after 1 month. Results The protocol implemented was safe and reliable. Preliminary results of the fNIRS analysis in weeks 2 and 7 showed a decrease in functional connections between the bilateral prefrontal cortex (PFC) and the primary sensory cortex (S1) (p < 0.05, FDR corrected). Changes in EEG power spectra were found in the PFC when comparing the seventh with the first week of tDCS. Conclusion The protocol combining remote and in-clinic administered tDCS and integrated fNIRS and EEG to evaluate the brain activity is feasible. The preliminary results suggest that the mechanisms of tDCS in reducing the pain of head and neck cancer patients may be related to its effects on the connections between the S1 and the PFC.
Collapse
Affiliation(s)
- Brenda de Souza Moura
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Xiao-Su Hu
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marcos F. DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Wang J, Liu Q, Tian F, Zhou S, Parra MA, Wang H, Yu X. Disrupted Spatiotemporal Complexity of Resting-State Electroencephalogram Dynamics Is Associated With Adaptive and Maladaptive Rumination in Major Depressive Disorder. Front Neurosci 2022; 16:829755. [PMID: 35615274 PMCID: PMC9125314 DOI: 10.3389/fnins.2022.829755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 01/10/2023] Open
Abstract
Patients with major depressive disorder (MDD) exhibit abnormal rumination, including both adaptive and maladaptive forms. However, the neural substrates of rumination in depression remain poorly understood. We hypothesize that divergent spatiotemporal complexity of brain oscillations would be associated with the levels of rumination in MDD. We employed the multi-scale entropy (MSE), power and phase-amplitude coupling (PAC) to estimate the complexity of rhythmic dynamics from the eye-closed high-density electroencephalographic (EEG) data in treatment-naive patients with MDD (n = 24) and healthy controls (n = 22). The depressive, brooding, and reflective subscales of the Ruminative Response Scale were assessed. MDD patients showed higher MSE in timescales finer than 5 (cluster P = 0.038) and gamma power (cluster P = 0.034), as well as lower PAC values between alpha/low beta and gamma bands (cluster P = 0.002- 0.021). Higher reflective rumination in MDD was region-specifically associated with the more localized EEG dynamics, including the greater MSE in scales finer than 8 (cluster P = 0.008), power in gamma (cluster P = 0.018) and PAC in low beta-gamma (cluster P = 0.042), as well as weaker alpha-gamma PAC (cluster P = 0.016- 0.029). Besides, the depressive and brooding rumination in MDD showed the lack of correlations with global long-range EEG variables. Our findings support the disturbed neural communications and point to the spatial reorganization of brain networks in a timescale-dependent migration toward local during adaptive and maladaptive rumination in MDD. These findings may provide potential implications on probing and modulating dynamic neuronal fluctuations during the rumination in depression.
Collapse
Affiliation(s)
- Jing Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Qi Liu
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Feng Tian
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
- Department of Psychiatry, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuzhe Zhou
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Mario Alfredo Parra
- School of Psychological Sciences and Health, Department of Psychology, University of Strathclyde, Glasgow, United Kingdom
| | - Huali Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Zhou J, Xuan B. Inhibitory control training and transcranial direct current stimulation of the pre-supplementary motor area: behavioral gains and transfer effects. Exp Brain Res 2022; 240:909-925. [PMID: 35083548 DOI: 10.1007/s00221-021-06297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Inhibitory control is a critical part of executive function and an important cognitive process in daily life. It is currently unclear how to optimally improve inhibitory control ability through behavior training and other interventions. Here, we explored the factors that influence inhibition control training in two experiments, focusing on the gains and transfer effects of training. Experiments 1 and 2 investigated the effects of anodal transcranial direct current stimulation (tDCS) over the pre-supplementary motor area and an increase in training duration on the training effect for inhibitory control, respectively, as well as the transfer effects when participants completed the Stroop and directed forgetting tasks. The results showed a stable training effect in relation to inhibitory control and a transfer effect for the Stroop task. Anodal tDCS in the pre-supplementary motor area could effectively improve inhibitory control ability, but not further enhance the training effect for inhibitory control. Moreover, increasing the training duration did not enhance the training effect for inhibitory control. The addition of tDCS and the extension of training duration failed to enhance the training effect, indicating that there may be a limitation of improvement in inhibitory control. The findings provide evidence regarding the further intervention effects of behavioral training and tDCS.
Collapse
Affiliation(s)
- Jing Zhou
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, China.
| |
Collapse
|
6
|
Lee YJ, Huang SY, Lin CP, Tsai SJ, Yang AC. Alteration of power law scaling of spontaneous brain activity in schizophrenia. Schizophr Res 2021; 238:10-19. [PMID: 34562833 DOI: 10.1016/j.schres.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Nonlinear dynamical analysis has been used to quantify the complexity of brain signal at temporal scales. Power law scaling is a well-validated method in physics that has been used to describe the dynamics of a system in the frequency domain, ranging from noisy oscillation to complex fluctuations. In this research, we investigated the power-law characteristics in a large-scale resting-state fMRI data of schizophrenia and healthy participants derived from Taiwan Aging and Mental Illness cohort. We extracted the power spectral density (PSD) of resting signal by Fourier transform. Power law scaling of PSD was estimated by determining the slope of the regression line fitting to the logarithm of PSD. t-Test was used to assess the statistical difference in power law scaling between schizophrenia and healthy participants. The significant differences in power law scaling were found in six brain regions. Schizophrenia patients have significantly more positive power law scaling (i.e., more homogenous frequency components) at four brain regions: left precuneus, left medial dorsal nucleus, right inferior frontal gyrus, and right middle temporal gyrus and less positive power law scaling (i.e., more dominant at lower frequency range) in bilateral putamen compared with healthy participants. Moreover, significant correlations of power law scaling with the severity of psychosis were found. These findings suggest that schizophrenia has abnormal brain signal complexity linked to psychotic symptoms. The power law scaling represents the dynamical properties of resting-state fMRI signal may serve as a novel functional brain imaging marker for evaluating patients with mental illness.
Collapse
Affiliation(s)
- Yi-Ju Lee
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Su-Yun Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Brain Science and Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Albert C Yang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Laboratory of Precision Psychiatry, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Brain Science and Digital Medicine Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Shen K, McFadden A, McIntosh AR. Signal complexity indicators of health status in clinical EEG. Sci Rep 2021; 11:20192. [PMID: 34642403 PMCID: PMC8511087 DOI: 10.1038/s41598-021-99717-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Brain signal variability changes across the lifespan in both health and disease, likely reflecting changes in information processing capacity related to development, aging and neurological disorders. While signal complexity, and multiscale entropy (MSE) in particular, has been proposed as a biomarker for neurological disorders, most observations of altered signal complexity have come from studies comparing patients with few to no comorbidities against healthy controls. In this study, we examined whether MSE of brain signals was distinguishable across patient groups in a large and heterogeneous set of clinical-EEG data. Using a multivariate analysis, we found unique timescale-dependent differences in MSE across various neurological disorders. We also found MSE to differentiate individuals with non-brain comorbidities, suggesting that MSE is sensitive to brain signal changes brought about by metabolic and other non-brain disorders. Such changes were not detectable in the spectral power density of brain signals. Our findings suggest that brain signal complexity may offer complementary information to spectral power about an individual's health status and is a promising avenue for clinical biomarker development.
Collapse
Affiliation(s)
- Kelly Shen
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada.
| | - Alison McFadden
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Centre, 3560 Bathurst Street, Toronto, ON, M6A 2E1, Canada
- University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Fujiyama H, Tan J, Puri R, Hinder MR. Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision-making and response inhibition: A healthy ageing perspective. Neurobiol Aging 2021; 109:11-21. [PMID: 34634749 DOI: 10.1016/j.neurobiolaging.2021.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
A wide body of literature suggests that transcranial direct current stimulation (tDCS) administered over the prefrontal cortex can improve executive function - including decision-making and inhibitory control - in healthy young adults. However, the effects of tDCS in older adults are largely unknown. Here, using a double-blind, sham-controlled approach, changes in a combined perceptual decision-making and inhibitory control task were assessed before and after the application of tDCS (1 mA, 20 minute) targeting the right inferior frontal gyrus (rIFG) or pre-supplementary motor area (preSMA) in 42 young (18-34 years) and 41 older (60-80 years) healthy adults. Compared to sham stimulation, anodal tDCS over the preSMA improved decision-making speed for both age groups. Furthermore, the inhibitory control performance of older and younger adults was improved by preSMA and rIFG stimulation, respectively. This study provides evidence that tDCS can improve both perceptual decision-making and inhibitory control in healthy older adults, with the causal role of the preSMA and rIFG regions in cognitive control appearing to vary as a function of healthy ageing.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- Psychology, Murdoch University, Western Australia, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Western Australia, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Western Australia, Australia.
| | - Jane Tan
- Action and Cognition Laboratory, Discipline of Psychology, Murdoch University, Perth, Australia
| | - Rohan Puri
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Group, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
9
|
Friehs MA, Frings C, Hartwigsen G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci Biobehav Rev 2021; 128:749-765. [PMID: 34271027 DOI: 10.1016/j.neubiorev.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) is widely used to explore the role of various cortical regions for reactive response inhibition. In recent years, tDCS studies reported polarity-, time- and stimulation-site dependent effects on response inhibition. Given the large parameter space in which study designs, tDCS procedures and task procedures can differ, it is crucial to systematically explore the existing tDCS literature to increase the current understanding of potential modulatory effects and limitations of different approaches. We performed a systematic review on the modulatory effects of tDCS on response inhibition as measured by the Stop-Signal Task. The final dataset shows a large variation in methodology and heterogeneous effects of tDCS on performance. The most consistent result across studies is a performance enhancement due to anodal tDCS over the right prefrontal cortex. Partially sub-optimal choices in study design, methodology and lacking consistency in reporting procedures may impede valid conclusions and obscured the effects of tDCS on response inhibition in some previous studies. Finally, we outline future directions and areas to improve research.
Collapse
Affiliation(s)
| | - Christian Frings
- Trier University, Department of Cognitive Psychology and Methodology, Trier, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive Brain Sciences, Leipzig, Germany
| |
Collapse
|
10
|
Lyu J, Wei Y, Li H, Dong J, Zhang X. The effect of three-circle post standing (Zhanzhuang) qigong on the physical and psychological well-being of college students: A randomized controlled trial. Medicine (Baltimore) 2021; 100:e26368. [PMID: 34128894 PMCID: PMC8213330 DOI: 10.1097/md.0000000000026368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Qigong has a long-term application by integration of mind, breath and body to prevent and cure diseases. Researches show that qigong practice could adjust anxiety, the mechanism may found on brain and heart functions. Currently there are limitations on qigong's anxiety-release mechanism study between mind and body, and existing studies lack of evidence on electrophysiology research. Our objective to analyse qigong's anxiety-release effect and mechanism. METHODS A two-arm randomized clinical trial with 144 qigong naïve anxiety subjects without cerebral or cardiovascular diseases or other severe syndromes will be allocated to either a body and breath regulation group (n = 72) or a body regulation group (n = 72). Participants will conduct three-circle post standing qigong exercise 5 times per week for 8 weeks, while the three-circle post standing qigong combined with abdominal breath regulation (TCPSQ-BR) group will combined with abdominal breath regulation. The primary outcome will be the Self-Rating Anxiety Scale (SAS), and the secondary outcome will be complexity-based measures of heart rate and electroencephalogram (EEG) signals assessed at baseline and 8 weeks. Multiscale entropy analysis will be used as measure of complexity. CONCLUSION This study will be investigate the effects of qigong's anxiety-release by SAS, and will analyze the coordinates of EEG and heart rate variability (HRV) signals before and after three-circle post standing qigong (TCPSQ) practice, and to analyse their synergies by complex signal process method. ETHICS AND TRAIL REGISTRATION The protocol was approved by the institutional review boards of Beijing University of Chinese Medicine (2018BZHYLL0109). This study was registered with the "Chinese Clinical Trail Registry" in the WHO Registry Network (ChiCTR-Bon-17010840).
Collapse
|
11
|
Nguyen TV, Balachandran P, Muggleton NG, Liang WK, Juan CH. Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain Sci 2021; 11:brainsci11040478. [PMID: 33918711 PMCID: PMC8070019 DOI: 10.3390/brainsci11040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a “continue go” (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert–Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.
Collapse
Affiliation(s)
- Trung Van Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Neil G. Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Correspondence: ; Tel.: +88-(63)-427-4738; Fax: +88-(63)-426-3502
| |
Collapse
|
12
|
Al-Jawahiri R, Jones M, Milne E. Spontaneous neural activity relates to psychiatric traits in 16p11.2 CNV carriers: An analysis of EEG spectral power and multiscale entropy. J Psychiatr Res 2021; 136:610-618. [PMID: 33158556 DOI: 10.1016/j.jpsychires.2020.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Copy number variations (CNV) at the 16p11.2 chromosomal region are rare high-risk CNVs associated with various clinical features and psychiatric disorders including intellectual disability, developmental delays, and autism spectrum disorder. No study to date has investigated whether spontaneous neural activity is altered for 16p11.2 CNV carriers and whether this relates to psychiatric traits. The aim of this study is to examine the impact of 16p11.2 deletions (del) and duplications (dup) on spontaneous neural activity and its relationship to psychiatric problems. EEG was previously collected as part of the Simons Searchlight initiative. Using spectral power (delta, theta, alpha, and beta frequency bands), complexity index (CI), and multiscale entropy analysis techniques, we analyzed frontal resting-state EEG data collected from 22 16p11.2 del carriers, 14 dup carriers, and 13 controls. We then examined associations between neural activity and psychiatric traits, measured with the Child Behavior Checklist. Results indicated that EEG entropy was higher for del and dup compared to controls, respectively, at all timescales. CI was also higher for del and dup compared to controls. Theta power of 16p11.2 dup carriers was higher than controls. A strong association was found between entropy at higher timescales and anxiety problems. In addition, a strong correlation was found between theta power and pervasive developmental problems. Atypical spontaneous neural activity is implicated in 16p11.2 CNVs. With higher entropy or theta power, psychiatric traits increase in severity. Our findings provide evidence of the link between genotype, neural activity, and phenotypes in 16p11.2 CNVs.
Collapse
Affiliation(s)
- Reem Al-Jawahiri
- Department of Psychology, University of Sheffield, United Kingdom.
| | - Myles Jones
- Department of Psychology, University of Sheffield, United Kingdom
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, United Kingdom
| |
Collapse
|
13
|
Tseng P, Lo YH. Altered EEG Signal Complexity Induced by Hand Proximity: A Multiscale Entropy Approach. Front Neurosci 2020; 14:562132. [PMID: 33132825 PMCID: PMC7578420 DOI: 10.3389/fnins.2020.562132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
Visual short-term memory (VSTM) is an important cognitive function that acts as a temporary storage for visual information. Previous studies have shown that VSTM capacity can be modulated by the location of one’s hands, where hand proximity enhances neural processing and memory of nearby visual stimuli. The present study used traditional event-related potentials (ERP) along with multiscale entropy (MSE) analysis to shed light on the neural mechanism(s) behind such near-hand effect. Participants’ electroencephalogram (EEG) data were recorded as they performed a VSTM task with their hands either proximal or distal to the display. ERP analysis showed altered memory processing in the 400–700 ms time window during memory retrieval period. Importantly, MSE analysis also showed significant EEG difference between hand proximal and distal conditions between scales 10 to 20, and such difference is clustered around the right parietal cortex – a region that is involved in VSTM processing and bimodal hand-eye integration. The implications of higher MSE time scale in the parietal cortex are discussed in the context of signal complexity and its possible relation to cognitive processing. To our knowledge, this study provides the first investigation using MSE to characterize the temporal characteristics and signal complexity behind the effect of hand proximity.
Collapse
Affiliation(s)
- Philip Tseng
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, New Taipei City, Taiwan.,Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hui Lo
- Brain and Consciousness Research Center, TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
14
|
Wang CH, Lin CC, Moreau D, Yang CT, Liang WK. Neural correlates of cognitive processing capacity in elite soccer players. Biol Psychol 2020; 157:107971. [PMID: 33091450 DOI: 10.1016/j.biopsycho.2020.107971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/09/2020] [Accepted: 10/11/2020] [Indexed: 11/27/2022]
Abstract
Although great progress has been made in our understanding of perceptual-cognitive expertise in team sports, the neurocognitive mechanisms underlying such cognitive advantage in the face of multiple, sometimes conflicting, channels of information are not well understood. Two electroencephalographic indices associated with perceptual decisions, the P3 component of event-related potential and alpha inter-trial phase coherence (ITPC), were measured and compared across elite soccer players and non-athletic controls while performing a redundant-target task. Specifically, we adopted an effective diagnostic tool, Systems Factorial Technology, to assess participants' workload capacity. Soccer players exhibited larger workload capacity while making faster decisions compared with controls. Moreover, this larger workload capacity was associated with modulations of P3 and alpha ITPC when processing two targets relative to one target and one distractor, an effect that was not observed in controls. Together, the present findings offer a possible mechanistic explanation of perceptual-cognitive expertise in the context of team sports.
Collapse
Affiliation(s)
- Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, East District, Tainan City, 701, Taiwan, ROC.
| | - Chih-Chun Lin
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, East District, Tainan City, 701, Taiwan, ROC
| | - David Moreau
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Cheng-Ta Yang
- Department of Psychology, National Cheng Kung University, Social Sciences Building, No. 1, University Road, East District, Tainan City, 701, Taiwan, ROC; Institute of Allied Health Sciences, National Cheng Kung University, Social Sciences Building, No. 1, University Road, East District, Tainan City, 701, Taiwan, ROC
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Jhongli, 320, Taiwan, ROC
| |
Collapse
|
15
|
Borgomaneri S, Serio G, Battaglia S. Please, don't do it! Fifteen years of progress of non-invasive brain stimulation in action inhibition. Cortex 2020; 132:404-422. [PMID: 33045520 DOI: 10.1016/j.cortex.2020.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The ability to inhibit prepotent responses is critical for survival. Action inhibition can be investigated using a stop-signal task (SST), designed to provide a reliable measure of the time taken by the brain to suppress motor responses. Here we review the major research advances using the combination of this paradigm with the use of non-invasive brain stimulation techniques in the last fifteen years. We highlight new methodological approaches to understanding and exploiting several processes underlying action control, which is critically impaired in several psychiatric disorders. In this review we present and discuss existing literature demonstrating i) the importance of the use of non-invasive brain stimulation in studying human action inhibition, unveiling the neural network involved ii) the critical role of prefrontal areas, including the pre-supplementary motor area (pre-SMA) and the inferior frontal gyrus (IFG), in inhibitory control iii) the neural and behavioral evidence of proactive and reactive action inhibition. As the main result of this review, the specific literature demonstrated the crucial role of pre-SMA and IFG as evidenced from the field of noninvasive brain stimulation studies. Finally, we discuss the critical questions that remain unanswered about how such non-invasive brain stimulation protocols can be translated to therapeutic treatments.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Gianluigi Serio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Simone Battaglia
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, Campus di Cesena, Cesena, Italy
| |
Collapse
|
16
|
Thunberg C, Messel MS, Raud L, Huster RJ. tDCS over the inferior frontal gyri and visual cortices did not improve response inhibition. Sci Rep 2020; 10:7749. [PMID: 32385323 PMCID: PMC7210274 DOI: 10.1038/s41598-020-62921-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022] Open
Abstract
The ability to cancel an already initiated response is central to flexible behavior. While several different behavioral and neural markers have been suggested to quantify the latency of the stopping process, it remains unclear if they quantify the stopping process itself, or other supporting mechanisms such as visual and/or attentional processing. The present study sought to investigate the contributions of inhibitory and sensory processes to stopping latency markers by combining transcranial direct current stimulation (tDCS), electroencephalography (EEG) and electromyography (EMG) recordings in a within-participant design. Active and sham tDCS were applied over the inferior frontal gyri (IFG) and visual cortices (VC), combined with both online and offline EEG and EMG recordings. We found evidence that neither of the active tDCS condition affected stopping latencies relative to sham stimulation. Our results challenge previous findings suggesting that anodal tDCS over the IFG can reduce stopping latency and demonstrates the necessity of adequate control conditions in tDCS research. Additionally, while the different putative markers of stopping latency showed generally positive correlations with each other, they also showed substantial variation in the estimated latency of inhibition, making it unlikely that they all capture the same construct exclusively.
Collapse
Affiliation(s)
- Christina Thunberg
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
| | - Mari S Messel
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
- Sunnaas Rehabilitation Hospital, Nesodden, Norway
| | - Liisa Raud
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway
- Cognitive Electrophysiology Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway.
- Cognitive Electrophysiology Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
17
|
Jaiswal S, Tsai SY, Juan CH, Muggleton NG, Liang WK. Low delta and high alpha power are associated with better conflict control and working memory in high mindfulness, low anxiety individuals. Soc Cogn Affect Neurosci 2020; 14:645-655. [PMID: 31119291 PMCID: PMC6688451 DOI: 10.1093/scan/nsz038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023] Open
Abstract
Working memory capacity (WMC) can predict conflict control ability. Measures of both abilities are impaired by anxiety, which is often inversely linked with mindfulness. It has been shown that a combination of high mindfulness and low anxiety is associated with better conflict control and WMC. The current study explored the electrophysiology related to such behavioral differences. Two experimental groups, one with high mindfulness and low anxiety (HMLA) and one with low mindfulness and high anxiety (LMHA), performed a color Stroop task and a change detection task, both with simultaneous electroencephalogram (EEG) recording. An advanced EEG analytical approach, Hilbert–Huang transform (HHT) analysis, was employed. This is regarded as a robust method to analyze non-linear and non-stationary signals. Lower delta activity at posterior temporal and occipital regions was seen in the HMLA group for the Stroop conflict conditions and might be generally associated with higher accuracy in this group and indicative of higher attentiveness. Higher accuracy rates and WMC were seen in the HMLA group and might be specifically associated with the higher alpha activity observed in prefrontal cortex, fronto-central and centro-parietal regions in this group. Future studies should explore how mindfulness and anxiety can independently affect these cognitive functions and their associated neurophysiology.
Collapse
Affiliation(s)
- Satish Jaiswal
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Shao-Yang Tsai
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Brain Research Center, National Central University, Taoyuan, Taiwan
| | - Neil G Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Brain Research Center, National Central University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Psychology, Goldsmiths, University of London, London, UK
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.,Brain Research Center, National Central University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Wang CH, Liang WK, Moreau D. Differential Modulation of Brain Signal Variability During Cognitive Control in Athletes with Different Domains of Expertise. Neuroscience 2020; 425:267-279. [DOI: 10.1016/j.neuroscience.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023]
|
19
|
Lefebvre S, Jann K, Schmiesing A, Ito K, Jog M, Schweighofer N, Wang DJJ, Liew SL. Differences in high-definition transcranial direct current stimulation over the motor hotspot versus the premotor cortex on motor network excitability. Sci Rep 2019; 9:17605. [PMID: 31772347 PMCID: PMC6879500 DOI: 10.1038/s41598-019-53985-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/06/2019] [Indexed: 01/07/2023] Open
Abstract
The effectiveness of transcranial direct current stimulation (tDCS) placed over the motor hotspot (thought to represent the primary motor cortex (M1)) to modulate motor network excitability is highly variable. The premotor cortex-particularly the dorsal premotor cortex (PMd)-may be a promising alternative target to reliably modulate motor excitability, as it influences motor control across multiple pathways, one independent of M1 and one with direct connections to M1. This double-blind, placebo-controlled preliminary study aimed to differentially excite motor and premotor regions using high-definition tDCS (HD-tDCS) with concurrent functional magnetic resonance imaging (fMRI). HD-tDCS applied over either the motor hotspot or the premotor cortex demonstrated high inter-individual variability in changes on cortical motor excitability. However, HD-tDCS over the premotor cortex led to a higher number of responders and greater changes in local fMRI-based complexity than HD-tDCS over the motor hotspot. Furthermore, an analysis of individual motor hotspot anatomical locations revealed that, in more than half of the participants, the motor hotspot is not located over anatomical M1 boundaries, despite using a canonical definition of the motor hotspot. This heterogeneity in stimulation site may contribute to the variability of tDCS results. Altogether, these preliminary findings provide new considerations to enhance tDCS reliability.
Collapse
Affiliation(s)
- Stephanie Lefebvre
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Allie Schmiesing
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Kaori Ito
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Mayank Jog
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Schweighofer
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sook-Lei Liew
- Neural Plasticity and Neurorehabilitation Laboratory, Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States.
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Fehring DJ, Illipparampil R, Acevedo N, Jaberzadeh S, Fitzgerald PB, Mansouri FA. Interaction of task-related learning and transcranial direct current stimulation of the prefrontal cortex in modulating executive functions. Neuropsychologia 2019; 131:148-159. [DOI: 10.1016/j.neuropsychologia.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 01/24/2023]
|
21
|
Wang CH, Moreau D, Yang CT, Tsai YY, Lin JT, Liang WK, Tsai CL. Aerobic exercise modulates transfer and brain signal complexity following cognitive training. Biol Psychol 2019; 144:85-98. [PMID: 30943426 DOI: 10.1016/j.biopsycho.2019.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/21/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
Although recent evidence has demonstrated the potent effect of physical exercise to increase the efficacy of cognitive training, the neural mechanisms underlying this causal relationship remain unclear. Here, we used multiscale entropy (MSE) of electroencephalography (EEG)-a measure of brain signal complexity-to address this issue. Young males were randomly assigned to either a 20-day dual n-back training following aerobic exercise or the same training regimen following a reading. A feature binding working memory task with concurrent EEG recording was used to test for transfer effects. Although results revealed weak-to-moderate evidence for exercise-induced facilitation on cognitive training, the combination of cognitive training with exercise resulted in greater transfer gains on conditions involving greater attentional demanding, together with greater increases in cognitive modulation on MSE, compared with the reading condition. Overall, our findings suggest that the addition of antecedent physical exercise to brain training regimen could enable wider, more robust improvements.
Collapse
Affiliation(s)
- Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - David Moreau
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Cheng-Ta Yang
- Department of Psychology, National Cheng Kung University, Social Sciences Building, No. 1, University Road, East District, Tainan City 701, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Tainan
| | - Yun-Yen Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Jui-Tang Lin
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Jhongli 320, Taiwan.
| | - Chia-Liang Tsai
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
22
|
Karabanov AN, Saturnino GB, Thielscher A, Siebner HR. Can Transcranial Electrical Stimulation Localize Brain Function? Front Psychol 2019; 10:213. [PMID: 30837911 PMCID: PMC6389710 DOI: 10.3389/fpsyg.2019.00213] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial electrical stimulation (TES) uses constant (TDCS) or alternating currents (TACS) to modulate brain activity. Most TES studies apply low-intensity currents through scalp electrodes (≤2 mA) using bipolar electrode arrangements, producing weak electrical fields in the brain (<1 V/m). Low-intensity TES has been employed in humans to induce changes in task performance during or after stimulation. In analogy to focal transcranial magnetic stimulation, TES-induced behavioral effects have often been taken as evidence for a causal involvement of the brain region underlying one of the two stimulation electrodes, often referred to as the active electrode. Here, we critically review the utility of bipolar low-intensity TES to localize human brain function. We summarize physiological substrates that constitute peripheral targets for TES and may mediate subliminal or overtly perceived peripheral stimulation during TES. We argue that peripheral co-stimulation may contribute to the behavioral effects of TES and should be controlled for by "sham" TES. We discuss biophysical properties of TES, which need to be considered, if one wishes to make realistic assumptions about which brain regions were preferentially targeted by TES. Using results from electric field calculations, we evaluate the validity of different strategies that have been used for selective spatial targeting. Finally, we comment on the challenge of adjusting the dose of TES considering dose-response relationships between the weak tissue currents and the physiological effects in targeted cortical areas. These considerations call for caution when attributing behavioral effects during or after low-intensity TES studies to a specific brain region and may facilitate the selection of best practices for future TES studies.
Collapse
Affiliation(s)
- Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Guilherme Bicalho Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
24
|
Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia 2018; 118:107-114. [DOI: 10.1016/j.neuropsychologia.2018.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 12/18/2022]
|
25
|
Wang DJJ, Jann K, Fan C, Qiao Y, Zang YF, Lu H, Yang Y. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity. Front Neurosci 2018; 12:352. [PMID: 29896081 PMCID: PMC5986880 DOI: 10.3389/fnins.2018.00352] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing—increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.
Collapse
Affiliation(s)
- Danny J J Wang
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kay Jann
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chang Fan
- Laboratory of FMRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Qiao
- Department of Psychology, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yu-Feng Zang
- Department of Psychology, Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
26
|
Zhang Y, Zhang S, Ide JS, Hu S, Zhornitsky S, Wang W, Dong G, Tang X, Li CSR. Dynamic network dysfunction in cocaine dependence: Graph theoretical metrics and stop signal reaction time. NEUROIMAGE-CLINICAL 2018; 18:793-801. [PMID: 29876265 PMCID: PMC5988015 DOI: 10.1016/j.nicl.2018.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/09/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023]
Abstract
Graphic theoretical metrics have become increasingly popular in characterizing functional connectivity of neural networks and how network connectivity is compromised in neuropsychiatric illnesses. Here, we add to this literature by describing dynamic network connectivities of 78 cocaine dependent (CD) and 85 non-drug using healthy control (HC) participants who underwent fMRI during performance of a stop signal task (SST). Compared to HC, CD showed prolonged stop signal reaction time (SSRT), consistent with deficits in response inhibition. In graph theoretical analysis of dynamic functional connectivity, we examined temporal flexibility and spatiotemporal diversity of 14 networks covering the whole brain. Temporal flexibility quantifies how frequently a brain region interacts with regions of other communities across time, with high temporal flexibility indicating that a region interacts predominantly with regions outside its own community. Spatiotemporal diversity quantifies how uniformly a brain region interacts with regions in other communities over time, with high spatiotemporal diversity indicating that the interactions are more evenly distributed across communities. Compared to HC, CD exhibited decreased temporal flexibility and increased spatiotemporal diversity in the great majority of neural networks. The graph metric measures of the default mode network negatively correlated with SSRT in CD but not HC. The findings are consistent with diminished temporal flexibility and a compensatory increase in spatiotemporal diversity, in association with impairment of a critical executive function, in cocaine addiction. More broadly, the findings suggest that graph theoretical metrics provide new insights for connectivity analyses to elucidate network dysfunction that may elude conventional measures. Cocaine addiction (CA) is associated with prolonged stop signal reaction time (SSRT). CA is associated with decreased temporal flexibility (TF) of neural networks. CA is associated with increased spatial temporal diversity (STD) of neural networks. The TF and STD of default mode network correlated negatively with SSRT in CA. Dynamic connectivity captures network dysfunction in link with inhibition deficits in CA.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Psychology, State University of New York, Oswego, NY, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Guozhao Dong
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
27
|
Tseng P, Iu KC, Juan CH. The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci Rep 2018; 8:349. [PMID: 29321584 PMCID: PMC5762658 DOI: 10.1038/s41598-017-18449-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Visual working memory (VWM) refers to people's ability to maintain and manipulate visual information on line. Its capacity varies between individuals, and neuroimaging studies have suggested a link between one's VWM capacity and theta power in the parietal cortex. However, it is unclear how the parietal cortices communicate with each other in order to support VWM processing. In two experiments we employed transcranial alternate current stimulation (tACS) to use frequency-specific (6 Hz) alternating current to modulate theta oscillation between the left and right parietal cortex with either in-phase (0° difference, Exp 1), anti-phase (180° difference, Exp 2), or sham sinusoidal current stimulation. In Experiment 1, in-phase theta tACS induced an improved VWM performance, but only in low-performers, whereas high-performers suffered a marginally-significant VWM impairment. In Experiment 2, anti-phase theta tACS did not help the low-performers, but significantly impaired high-performers' VWM capacity. These results not only provide causal evidence for theta oscillation in VWM processing, they also highlight the intricate interaction between tACS and individual differences-where the same protocol that enhances low-performers' VWM can backfire for the high-performers. We propose that signal complexity via coherent timing and phase synchronization within the bilateral parietal network is crucial for successful VWM functioning.
Collapse
Affiliation(s)
- Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei City, Taiwan.
- TMU - Research Center of Brain and Consciousness, Taipei Medical University, Taipei City, Taiwan.
- Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Kai-Chi Iu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
28
|
Low I, Wei SY, Lee PS, Li WC, Lee LC, Hsieh JC, Chen LF. Neuroimaging Studies of Primary Dysmenorrhea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:179-199. [DOI: 10.1007/978-981-13-1756-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Leshikar ED, Leach RC, McCurdy MP, Trumbo MC, Sklenar AM, Frankenstein AN, Matzen LE. Transcranial direct current stimulation of dorsolateral prefrontal cortex during encoding improves recall but not recognition memory. Neuropsychologia 2017; 106:390-397. [DOI: 10.1016/j.neuropsychologia.2017.10.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
|
30
|
Entropy of Entropy: Measurement of Dynamical Complexity for Biological Systems. ENTROPY 2017. [DOI: 10.3390/e19100550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Ellison A, Ball KL, Lane AR. The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode. Front Neurosci 2017; 11:520. [PMID: 28983233 PMCID: PMC5613168 DOI: 10.3389/fnins.2017.00520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022] Open
Abstract
We investigated the role of reference electrode placement (ipsilateral v contralateral frontal pole) on conjunction visual search task performance when the transcranial direct current stimulation (tDCS) cathode is placed over right posterior parietal cortex (rPPC) and over right frontal eye fields (rFEF), both of which have been shown to be causally involved in the processing of this task using TMS. This resulted in four experimental manipulations in which sham tDCS was applied in week one followed by active tDCS the following week. Another group received sham stimulation in both sessions to investigate practice effects over 1 week in this task. Results show that there is no difference between effects seen when the anode is placed ipsi or contralaterally. Cathodal stimulation of rPPC increased search times straight after stimulation similarly for ipsi and contralateral references. This finding does not extend to rFEF stimulation. However, for both sites and both montages, practice effects as seen in the sham/sham condition were negated. This can be taken as evidence that for this task, reference placement on either frontal pole is not important, but also that care needs to be taken when contextualizing tDCS “effects” that may not be immediately apparent particularly in between-participant designs.
Collapse
Affiliation(s)
- Amanda Ellison
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| | - Keira L Ball
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| | - Alison R Lane
- Cognitive Neuroscience Research Unit, Department of Psychology, Durham UniversityDurham, United Kingdom.,Wolfson Research Institute for Health and Wellbeing, Durham UniversityDurham, United Kingdom
| |
Collapse
|
32
|
Bender AD, Filmer HL, Dux PE. Transcranial direct current stimulation of superior medial frontal cortex disrupts response selection during proactive response inhibition. Neuroimage 2017; 158:455-465. [DOI: 10.1016/j.neuroimage.2016.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022] Open
|
33
|
Juan CH, Tseng P, Hsu TY. Elucidating and Modulating the Neural Correlates of Visuospatial Working Memory via Noninvasive Brain Stimulation. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2017. [DOI: 10.1177/0963721416677095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Visuospatial working memory refers to the short-term memory mechanism that enables humans to remember visual information across visual blackout periods such as eyeblinks or eye movements. In recent years, neuroscientific studies have made great progress in uncovering the brain regions that support visuospatial working memory. In this review, we focus on the role of the posterior parietal cortex in forming and maintaining visual information, and use it as an example to highlight how noninvasive brain-stimulation techniques, particularly transcranial magnetic, direct current, and alternating current stimulation, can shed light on this topic because of their unique strengths in modulating brain activities.
Collapse
Affiliation(s)
- Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University
| | - Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University
- TMU - Research Center for Brain and Consciousness, Taipei Medical University
- Shuang-Ho Hospital, Taipei Medical University
| | - Tzu-Yu Hsu
- TMU - Research Center for Brain and Consciousness, Taipei Medical University
- Shuang-Ho Hospital, Taipei Medical University
- Graduate Institute of Health and Biotechnology Law, Taipei Medical University
| |
Collapse
|
34
|
Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. Neuroimage 2017; 149:210-219. [DOI: 10.1016/j.neuroimage.2017.01.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/06/2023] Open
|
35
|
Oscillatory brain activity changes by anodal tDCS - An ECoG study on anesthetized beagles. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5258-5261. [PMID: 28269450 DOI: 10.1109/embc.2016.7591913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Measuring neuronal activity of transcranial direct current stimulation (tDCS) is essential for investigating tDCS in stimuli or after stimuli effects. The aim of this study was to investigate the oscillatory changes from anodal tDCS using electrocorticography (ECoG) on beagles. We applied 2 mA anodal tDCS and monitored the ECoG signals (32 channels, 512 Hz sampling rate) for 15 minutes in three anesthetized beagles. Then, we compared the power changes before, during, and after tDCS in six different bands (delta, theta, alpha, beta, low-gamma, and mid-gamma bands). The significantly increasing oscillatory changes from the mid-frequency bands (theta, alpha, and beta bands) to the high-frequency bands (low-gamma and mid-gamma bands) were observed. The results suggest that anodal tDCS may modulate high-frequency bands in the focal area of the cortex, which is relevant to electroencephalogram (EEG) studies.
Collapse
|
36
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Effects of prefrontal bipolar and high-definition transcranial direct current stimulation on cortical reactivity and working memory in healthy adults. Neuroimage 2017; 152:142-157. [PMID: 28274831 DOI: 10.1016/j.neuroimage.2017.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a well-recognised neuromodulatory technology which has been shown to induce short-lasting changes in motor-cortical excitability. The recent and rapid expansion of tDCS into the cognitive domain, however, necessitates deeper mechanistic understanding of its neurophysiological effects over non-motor brain regions. The present study utilised transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) to probe the immediate and longer-term effects of both a bipolar (BP-tDCS) and more focal 4×1 High-Definition tDCS (HD-tDCS) montage applied over the left DLPFC on TMS-evoked potentials (TEPs) and oscillations in 19 healthy adult participants. 2-back working memory (WM) performance was also assessed as a marker of cognitive function. Region of interest (ROI) analyses taken from the F1 electrode directly adjacent to the stimulation site revealed increased P60 TEP amplitudes at this location 5min following BP-tDCS and 30min following HD-tDCS. Further global cluster based analyses of all scalp electrodes revealed widespread neuromodulatory changes following HD-tDCS, but not BP-tDCS, both five and 30min after stimulation, with reductions also detected in both beta and gamma oscillatory power over parieto-occipital channels 30min after stimulation. No significant changes in WM performance were observed following either HD-tDCS or BP-tDCS. This study highlights the capacity for single-session prefrontal anodal tDCS montages to modulate neurophysiological processes, as assessed with TMS-EEG.
Collapse
Affiliation(s)
- Aron T Hill
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia.
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| |
Collapse
|
37
|
Chen NF, Lo CM, Liu TL, Cheng SK. Source memory performance is modulated by transcranial direct current stimulation over the left posterior parietal cortex. Neuroimage 2016; 139:462-469. [DOI: 10.1016/j.neuroimage.2016.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022] Open
|
38
|
Wu YJ, Tseng P, Huang HW, Hu JF, Juan CH, Hsu KS, Lin CC. The Facilitative Effect of Transcranial Direct Current Stimulation on Visuospatial Working Memory in Patients with Diabetic Polyneuropathy: A Pre-post Sham-Controlled Study. Front Hum Neurosci 2016; 10:479. [PMID: 27733822 PMCID: PMC5039168 DOI: 10.3389/fnhum.2016.00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus can lead to diabetic polyneuropathy (DPN) and cognitive deficits that manifest as peripheral and central neuropathy, respectively. In this study we investigated the relationship between visuospatial working memory (VSWM) capacity and DPN severity, and attempted to improve VSWM in DPN patients via the use of transcranial direct current stimulation (tDCS). Sixteen DPN patients and 16 age- and education-matched healthy control subjects received Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) and Montreal Cognitive Assessment (MOCA) for baseline cognitive assessment. A forward- and backward-recall computerized Corsi block tapping task (CBT), both with and without a concurrent motor interference task was used to measure VSWM capacity. Each DPN patient underwent a pre-treatment CBT, followed by tDCS or sham treatment, then a post-treatment CBT on two separate days. We found that although patients with severe DPN (Dyck’s grade 2a or 2b) showed comparable general intelligence scores on WAIS-IV as their age- and education-matched healthy counterparts, they nonetheless showed mild cognitive impairment (MCI) on MOCA and working memory deficit on digit-span test of WAIS-IV. Furthermore, patients’ peripheral nerve conduction velocity (NCV) was positively correlated with their VSWM span in the most difficult CBT condition that involved backward-recall with motor interference such that patients with worse NCV also had lower VSWM span. Most importantly, anodal tDCS over the right DLPFC was able to improve low-performing patients’ VSWM span to be on par with the high-performers, thereby eliminating the correlation between NCV and VSWM. In summary, these findings suggest that (1) MCI and severe peripheral neuropathy can coexist with unequal severity in diabetic patients, (2) the positive correlation of VSWM and NCV suggests a link between peripheral and central neuropathies, and (3) anodal tDCS over the right DLPFC can improve DPN patients’ VSWM, particularly for the low-performing patients.
Collapse
Affiliation(s)
- Yi-Jen Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical UniversityTaipei, Taiwan; Brain and Consciousness Research Center, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
| | - Han-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Jon-Fan Hu
- Department of Psychology and Institute of Cognitive Science, College of Social Sciences, National Cheng Kung University Tainan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University Jhongli, Taiwan
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Chou-Ching Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan
| |
Collapse
|
39
|
Tseng P, Chang YT, Chang CF, Liang WK, Juan CH. The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci Rep 2016; 6:32138. [PMID: 27573864 PMCID: PMC5004173 DOI: 10.1038/srep32138] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/03/2016] [Indexed: 11/09/2022] Open
Abstract
How does the brain enable us to remember two or more object representations in visual working memory (VWM) without confusing them? This "gluing" process, or feature binding, refers to the ability to join certain features together while keeping them segregated from others. Recent neuroimaging research has reported higher BOLD response in the left temporal and parietal cortex during a binding-VWM task. However, less is known about how the two regions work in synchrony to support such process. In this study, we applied transcranial alternating current stimulation (tACS) over the left temporal and parietal cortex in gamma and theta frequency, with a phase difference of either 0° (in-phase) or 180° (anti-phase) to account for the different ways through which neural synchronization may occur. We found no facilitatory or inhibitory effect from sham, theta, and in-phase gamma stimulation. Importantly, there was an enhancement effect from anti-phase gamma tACS that was binding-specific, and such effect was only apparent in low-performing individuals who had room for improvement. Together, these results demonstrate that binding-VWM is supported by a temporally-precise oscillatory mechanism within the gamma frequency range, and that the advantageous 180°-apart phase relationship also implies a possible temporal driver-to-receiver time-lag between the temporal and parietal cortex.
Collapse
Affiliation(s)
- Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taiwan
- Brain & Consciousness Research Center, Shuang-Ho Hospital, Taipei Medical University, Taiwan
| | - Yu-Ting Chang
- Brain & Consciousness Research Center, Shuang-Ho Hospital, Taipei Medical University, Taiwan
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| |
Collapse
|
40
|
Hu J, Lee D, Hu S, Zhang S, Chao H, Li CSR. Individual variation in the neural processes of motor decisions in the stop signal task: the influence of novelty seeking and harm avoidance personality traits. Brain Struct Funct 2016; 221:2607-18. [PMID: 25989852 PMCID: PMC4654717 DOI: 10.1007/s00429-015-1061-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 05/07/2015] [Indexed: 01/06/2023]
Abstract
Personality traits contribute to variation in human behavior, including the propensity to take risk. Extant work targeted risk-taking processes with an explicit manipulation of reward, but it remains unclear whether personality traits influence simple decisions such as speeded versus delayed responses during cognitive control. We explored this issue in an fMRI study of the stop signal task, in which participants varied in response time trial by trial, speeding up and risking a stop error or slowing down to avoid errors. Regional brain activations to speeded versus delayed motor responses (risk-taking) were correlated to novelty seeking (NS), harm avoidance (HA) and reward dependence (RD), with age and gender as covariates, in a whole brain regression. At a corrected threshold, the results showed a positive correlation between NS and risk-taking responses in the dorsomedial prefrontal, bilateral orbitofrontal, and frontopolar cortex, and between HA and risk-taking responses in the parahippocampal gyrus and putamen. No regional activations varied with RD. These findings demonstrate that personality traits influence the neural processes of executive control beyond behavioral tasks that involve explicit monetary reward. The results also speak broadly to the importance of characterizing inter-subject variation in studies of cognition and brain functions.
Collapse
Affiliation(s)
- Jianping Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
- School of Psychology, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Dianne Lee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
- Radiology and Imaging Sciences, National Institutes of Health/Clinical Center, Bethesda, MD, 20892, USA
| | - Sien Hu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Herta Chao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06519, USA
- Medical Service, VA Connecticut Health Care Systems, West Haven, CT, 06516, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06519, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06519, USA.
- Connecticut Mental Health Center, S112, 34 Park Street, New Haven, CT, 06519-1109, USA.
| |
Collapse
|
41
|
Cathodal transcranial direct current stimulation over posterior parietal cortex enhances distinct aspects of visual working memory. Neuropsychologia 2016; 87:35-42. [PMID: 27143222 PMCID: PMC4915336 DOI: 10.1016/j.neuropsychologia.2016.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/02/2022]
Abstract
In this study, we investigated the effects of tDCS over the posterior parietal cortex (PPC) during a visual working memory (WM) task, which probes different sources of response error underlying the precision of WM recall. In two separate experiments, we demonstrated that tDCS enhanced WM precision when applied bilaterally over the PPC, independent of electrode configuration. In a third experiment, we demonstrated with unilateral electrode configuration over the right PPC, that only cathodal tDCS enhanced WM precision and only when baseline performance was low. Looking at the effects on underlying sources of error, we found that cathodal stimulation enhanced the probability of correct target response across all participants by reducing feature-misbinding. Only for low-baseline performers, cathodal stimulation also reduced variability of recall. We conclude that cathodal- but not anodal tDCS can improve WM precision by preventing feature-misbinding and hereby enhancing attentional selection. For low-baseline performers, cathodal tDCS also protects the memory trace. Furthermore, stimulation over bilateral PPC is more potent than unilateral cathodal tDCS in enhancing general WM precision. Despite multiple studies, reported effects of tDCS on cognitive processes have remained variable. We employ a WM task that probes different underlying sources of error to test effect of tDCS separately. tDCS applied bilaterally to the PPC boosts WM precision. Unilateral stimulation indicates this is caused by cathodal- rather than anodal stimulation. Improvement relies particularly on enhanced selective attention as well as memory trace protection.
Collapse
|
42
|
de Hollander G, Labruna L, Sellaro R, Trutti A, Colzato LS, Ratcliff R, Ivry RB, Forstmann BU. Transcranial Direct Current Stimulation Does Not Influence the Speed-Accuracy Tradeoff in Perceptual Decision-making: Evidence from Three Independent Studies. J Cogn Neurosci 2016; 28:1283-94. [PMID: 27054398 DOI: 10.1162/jocn_a_00967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In perceptual decision-making tasks, people balance the speed and accuracy with which they make their decisions by modulating a response threshold. Neuroimaging studies suggest that this speed-accuracy tradeoff is implemented in a corticobasal ganglia network that includes an important contribution from the pre-SMA. To test this hypothesis, we used anodal transcranial direct current stimulation (tDCS) to modulate neural activity in pre-SMA while participants performed a simple perceptual decision-making task. Participants viewed a pattern of moving dots and judged the direction of the global motion. In separate trials, they were cued to either respond quickly or accurately. We used the diffusion decision model to estimate the response threshold parameter, comparing conditions in which participants received sham or anodal tDCS. In three independent experiments, we failed to observe an influence of tDCS on the response threshold. Additional, exploratory analyses showed no influence of tDCS on the duration of nondecision processes or on the efficiency of information processing. Taken together, these findings provide a cautionary note, either concerning the causal role of pre-SMA in decision-making or on the utility of tDCS for modifying response caution in decision-making tasks.
Collapse
|
43
|
Farzan F, Pascual-Leone A, Schmahmann JD, Halko M. Enhancing the Temporal Complexity of Distributed Brain Networks with Patterned Cerebellar Stimulation. Sci Rep 2016; 6:23599. [PMID: 27009405 PMCID: PMC4806366 DOI: 10.1038/srep23599] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that sensory, motor, cognitive and affective processes map onto specific, distributed neural networks. Cerebellar subregions are part of these networks, but how the cerebellum is involved in this wide range of brain functions remains poorly understood. It is postulated that the cerebellum contributes a basic role in brain functions, helping to shape the complexity of brain temporal dynamics. We therefore hypothesized that stimulating cerebellar nodes integrated in different networks should have the same impact on the temporal complexity of cortical signals. In healthy humans, we applied intermittent theta burst stimulation (iTBS) to the vermis lobule VII or right lateral cerebellar Crus I/II, subregions that prominently couple to the dorsal-attention/fronto-parietal and default-mode networks, respectively. Cerebellar iTBS increased the complexity of brain signals across multiple time scales in a network-specific manner identified through electroencephalography (EEG). We also demonstrated a region-specific shift in power of cortical oscillations towards higher frequencies consistent with the natural frequencies of targeted cortical areas. Our findings provide a novel mechanism and evidence by which the cerebellum contributes to multiple brain functions: specific cerebellar subregions control the temporal dynamics of the networks they are engaged in.
Collapse
Affiliation(s)
- Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, ON, M6J 1H4, Canada
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MA 02114, USA
| | - Mark Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA
| |
Collapse
|
44
|
Otal B, Dutta A, Foerster Á, Ripolles O, Kuceyeski A, Miranda PC, Edwards DJ, Ilić TV, Nitsche MA, Ruffini G. Opportunities for Guided Multichannel Non-invasive Transcranial Current Stimulation in Poststroke Rehabilitation. Front Neurol 2016; 7:21. [PMID: 26941708 PMCID: PMC4764713 DOI: 10.3389/fneur.2016.00021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
Stroke is a leading cause of serious long-term disability worldwide. Functional outcome depends on stroke location, severity, and early intervention. Conventional rehabilitation strategies have limited effectiveness, and new treatments still fail to keep pace, in part due to a lack of understanding of the different stages in brain recovery and the vast heterogeneity in the poststroke population. Innovative methodologies for restorative neurorehabilitation are required to reduce long-term disability and socioeconomic burden. Neuroplasticity is involved in poststroke functional disturbances and also during rehabilitation. Tackling poststroke neuroplasticity by non-invasive brain stimulation is regarded as promising, but efficacy might be limited because of rather uniform application across patients despite individual heterogeneity of lesions, symptoms, and other factors. Transcranial direct current stimulation (tDCS) induces and modulates neuroplasticity, and has been shown to be able to improve motor and cognitive functions. tDCS is suited to improve poststroke rehabilitation outcomes, but effect sizes are often moderate and suffer from variability. Indeed, the location, extent, and pattern of functional network connectivity disruption should be considered when determining the optimal location sites for tDCS therapies. Here, we present potential opportunities for neuroimaging-guided tDCS-based rehabilitation strategies after stroke that could be personalized. We introduce innovative multimodal intervention protocols based on multichannel tDCS montages, neuroimaging methods, and real-time closed-loop systems to guide therapy. This might help to overcome current treatment limitations in poststroke rehabilitation and increase our general understanding of adaptive neuroplasticity leading to neural reorganization after stroke.
Collapse
Affiliation(s)
| | - Anirban Dutta
- INRIA (Sophia Antipolis), Université Montpellier, Montpellier, France
| | | | | | - Amy Kuceyeski
- Department of Radiology, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Pedro C. Miranda
- Institute of Biophysics and Biomedical Engineering (IBEB), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dylan J. Edwards
- Non-Invasive Brain Stimulation and Human Motor Control Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, USA
| | - Tihomir V. Ilić
- Department of Clinical Neurophysiology, Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Michael A. Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Giulio Ruffini
- Neuroelectrics Barcelona, Barcelona, Spain
- Starlab Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Enhancing switching abilities: Improving practice effect by stimulating the dorsolateral pre frontal cortex. Neuroscience 2016; 313:92-8. [DOI: 10.1016/j.neuroscience.2015.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/26/2015] [Accepted: 11/20/2015] [Indexed: 02/02/2023]
|
46
|
Cai Y, Li S, Liu J, Li D, Feng Z, Wang Q, Chen C, Xue G. The Role of the Frontal and Parietal Cortex in Proactive and Reactive Inhibitory Control: A Transcranial Direct Current Stimulation Study. J Cogn Neurosci 2016; 28:177-86. [DOI: 10.1162/jocn_a_00888] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Mounting evidence suggests that response inhibition involves both proactive and reactive inhibitory control, yet its underlying neural mechanisms remain elusive. In particular, the roles of the right inferior frontal gyrus (IFG) and inferior parietal lobe (IPL) in proactive and reactive inhibitory control are still under debate. This study aimed at examining the causal role of the right IFG and IPL in proactive and reactive inhibitory control, using transcranial direct current stimulation (tDCS) and the stop signal task. Twenty-two participants completed three sessions of the stop signal task, under anodal tDCS in the right IFG, the right IPL, or the primary visual cortex (VC; 1.5 mA for 15 min), respectively. The VC stimulation served as the active control condition. The tDCS effect for each condition was calculated as the difference between pre- and post-tDCS performance. Proactive control was indexed by the RT increase for go trials (or preparatory cost), and reactive control by the stop signal RT. Compared to the VC stimulation, anodal stimulation of the right IFG, but not that of the IPL, facilitated both proactive and reactive control. However, the facilitation of reactive control was not mediated by the facilitation of proactive control. Furthermore, tDCS did not affect the intraindividual variability in go RT. These results suggest a causal role of the right IFG, but not the right IPL, in both reactive and proactive inhibitory control.
Collapse
|
47
|
Lee HW, Lu MS, Chen CY, Muggleton NG, Hsu TY, Juan CH. Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behav Brain Res 2016; 296:459-467. [DOI: 10.1016/j.bbr.2015.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|
48
|
Multi-Scale Entropy Analysis of Body Sway for Investigating Balance Ability During Exergame Play Under Different Parameter Settings. ENTROPY 2015. [DOI: 10.3390/e17117608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Wu Q, Chang CF, Xi S, Huang IW, Liu Z, Juan CH, Wu Y, Fan J. A critical role of temporoparietal junction in the integration of top-down and bottom-up attentional control. Hum Brain Mapp 2015; 36:4317-33. [PMID: 26308973 DOI: 10.1002/hbm.22919] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 11/07/2022] Open
Abstract
Information processing can be biased toward behaviorally relevant and salient stimuli by top-down (goal-directed) and bottom-up (stimulus-driven) attentional control processes respectively. However, the neural basis underlying the integration of these processes is not well understood. We employed functional magnetic resonance imaging (fMRI) and transcranial direct-current stimulation (tDCS) in humans to examine the brain mechanisms underlying the interaction between these two processes. We manipulated the cognitive load involved in top-down processing and stimulus surprise involved in bottom-up processing in a factorial design by combining a majority function task and an oddball paradigm. We found that high cognitive load and high surprise level were associated with prolonged reaction time compared to low cognitive load and low surprise level, with a synergistic interaction effect, which was accompanied by a greater deactivation of bilateral temporoparietal junction (TPJ). In addition, the TPJ displayed negative functional connectivity with right middle occipital gyrus, which is involved in bottom-up processing (modulated by the interaction effect), and the right frontal eye field (FEF), which is involved in top-down control. The enhanced negative functional connectivity between the TPJ and right FEF was accompanied by a larger behavioral interaction effect across subjects. Application of cathodal tDCS over the right TPJ eliminated the interaction effect. These results suggest that the TPJ plays a critical role in processing bottom-up information for top-down control of attention.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Psychology, Peking University, Beijing, China
| | - Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Sisi Xi
- Department of Psychology, Peking University, Beijing, China
| | - I-Wen Huang
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Yanhong Wu
- Department of Psychology, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
| |
Collapse
|
50
|
Yu J, Tseng P, Hung DL, Wu SW, Juan CH. Brain stimulation improves cognitive control by modulating medial-frontal activity and preSMA-vmPFC functional connectivity. Hum Brain Mapp 2015; 36:4004-15. [PMID: 26248582 DOI: 10.1002/hbm.22893] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/13/2015] [Accepted: 06/27/2015] [Indexed: 01/24/2023] Open
Abstract
Previous research has demonstrated that brain stimulation can improve inhibitory control. However, the neural mechanisms underlying such artificially induced improvement remain unclear. In this study, by coupling anodal transcranial direct current stimulation (atDCS) with functional MRI, we found that atDCS over preSMA effectively improved stopping speed, which was associated with increased BOLD response in the preSMA and ventromedial prefrontal cortex (vmPFC). Furthermore, such atDCS-induced BOLD increase in vmPFC was positively correlated with participants' improvement in stopping efficiency, and the functional connectivity between preSMA and vmPFC increased during successful stop. These results suggest that the rapid behavioral improvement from preSMA brain stimulation involves modulated medial-frontal activity and preSMA-vmPFC functional connectivity.
Collapse
Affiliation(s)
- Jiaxin Yu
- Institute of Neuroscience, National Yang-Ming University, Taipei City, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Philip Tseng
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Center, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Daisy L Hung
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| | - Shih-Wei Wu
- Institute of Neuroscience, National Yang-Ming University, Taipei City, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taiwan
| |
Collapse
|