1
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
2
|
Shan Q, Hu Y, Chen S, Tian Y. Nucleus accumbens dichotomically controls social dominance in male mice. Neuropsychopharmacology 2022; 47:776-787. [PMID: 34750567 PMCID: PMC8783020 DOI: 10.1038/s41386-021-01220-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Social dominance versus social submissiveness is a basic behavioral trait of social animals such as human beings and laboratory mice. The brain regions associated with this behavior have been intensely investigated, and early neuroimaging research on human subjects implies that the nucleus accumbens (NAc) might be involved in encoding social dominance. However, the underlying circuitry and synaptic mechanism are largely unknown. In this study, by introducing lesions to both NAc subregions, the shell and core, a causal relationship is established between social dominance and both NAc subregions. A further electrophysiology investigation on the circuitry of these two subregions revealed that the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D1 dopamine receptors in the shell is negatively correlated, and the postsynaptic strength of excitatory synapses onto the medium spiny neurons that express the D2 dopamine receptors in the core is positively correlated, with social dominance. Correspondingly, a DREADD investigation revealed that the activities of these respective medium spiny neurons suppress and promote social dominance. These findings identify a neural substrate for social dominance, implying the potential for a therapeutic strategy for treating related psychiatric disorders.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - You Hu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, 300071, Tianjin, China
| |
Collapse
|
3
|
Felippe RM, Oliveira GM, Barbosa RS, Esteves BD, Gonzaga BMS, Horita SIM, Garzoni LR, Beghini DG, Araújo-Jorge TC, Fragoso VMS. Experimental Social Stress: Dopaminergic Receptors, Oxidative Stress, and c-Fos Protein Are Involved in Highly Aggressive Behavior. Front Cell Neurosci 2021; 15:696834. [PMID: 34489642 PMCID: PMC8418094 DOI: 10.3389/fncel.2021.696834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Aggression is defined as hostile behavior that results in psychological damage, injury and even death among individuals. When aggression presents itself in an exacerbated and constant way, it can be considered escalating or pathological. The association between social stress and the emergence of exacerbated aggressiveness is common and is suggested to be interconnected through very complex neurobiological factors. For example, alterations in the expression of the dopaminergic receptors D1 and D2, reactive oxygen species (ROS) and the c-Fos protein in the cortex have been observed. Our objective was to analyze which factors are involved at the neurobiological level in the highly aggressive response of Swiss Webster adult male mice in a vivarium. In this work, we investigated the relationship among dopaminergic receptors, the production of ROS and the expression of c-Fos. Mice with exacerbated aggression were identified by the model of spontaneous aggression (MSA) based on the grouping of young mice and the regrouping of the same animals in adulthood. During the regrouping, we observed different categories of behavior resulting from social stress, such as (i) highly aggressive animals, (ii) defeated animals, and (iii) harmonic groups. To evaluate the dopaminergic system and the c-Fos protein, we quantified the expression of D1 and D2 dopaminergic receptors by Western blotting and fluorescence immunohistochemistry and that of the c-Fos protein by fluorescence immunohistochemistry. The possible production of ROS was also evaluated through the dihydroethidium (DHE) assay. The results showed that aggressive and subordinate mice showed a reduction in the expression of the D1 receptor, and no significant difference in the expression of the D2 receptor was observed between the groups. In addition, aggressive mice exhibited increased production of ROS and c-Fos protein. Based on our results, we suggest that exacerbated aggression is associated with social stress, dysregulation of the dopaminergic system and exacerbated ROS production, which leads to a state of cellular oxidative stress. The overexpression of c-Fos due to social stress suggests an attempt by the cell to produce antioxidant agents to reduce the toxic cellular concentration of ROS.
Collapse
Affiliation(s)
- Renata M Felippe
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Gabriel M Oliveira
- Laboratory of Cell Biology, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rafaela S Barbosa
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Betina D Esteves
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Beatriz M S Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Samuel I M Horita
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratory on Thymus Research, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana R Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniela G Beghini
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia C Araújo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Viviane M S Fragoso
- Laboratory of Innovations in Therapies, Education and Bioproducts, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Hjorth OR, Frick A, Gingnell M, Hoppe JM, Faria V, Hultberg S, Alaie I, Månsson KNT, Wahlstedt K, Jonasson M, Lubberink M, Antoni G, Fredrikson M, Furmark T. Expression and co-expression of serotonin and dopamine transporters in social anxiety disorder: a multitracer positron emission tomography study. Mol Psychiatry 2021; 26:3970-3979. [PMID: 31822819 DOI: 10.1038/s41380-019-0618-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022]
Abstract
Serotonin and dopamine are putatively involved in the etiology and treatment of anxiety disorders, but positron emission tomography (PET) studies probing the two neurotransmitters in the same individuals are lacking. The aim of this multitracer PET study was to evaluate the regional expression and co-expression of the transporter proteins for serotonin (SERT) and dopamine (DAT) in patients with social anxiety disorder (SAD). Voxel-wise binding potentials (BPND) for SERT and DAT were determined in 27 patients with SAD and 43 age- and sex-matched healthy controls, using the radioligands [11C]DASB (3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile) and [11C]PE2I (N-(3-iodopro-2E-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)nortropane). Results showed that, within transmitter systems, SAD patients exhibited higher SERT binding in the nucleus accumbens while DAT availability in the amygdala, hippocampus, and putamen correlated positively with symptom severity. At a more lenient statistical threshold, SERT and DAT BPND were also higher in other striatal and limbic regions in patients, and correlated with symptom severity, whereas no brain region showed higher binding in healthy controls. Moreover, SERT/DAT co-expression was significantly higher in SAD patients in the amygdala, nucleus accumbens, caudate, putamen, and posterior ventral thalamus, while lower co-expression was noted in the dorsomedial thalamus. Follow-up logistic regression analysis confirmed that SAD diagnosis was significantly predicted by the statistical interaction between SERT and DAT availability, in the amygdala, putamen, and dorsomedial thalamus. Thus, SAD was associated with mainly increased expression and co-expression of the transporters for serotonin and dopamine in fear and reward-related brain regions. Resultant monoamine dysregulation may underlie SAD symptomatology and constitute a target for treatment.
Collapse
Affiliation(s)
- Olof R Hjorth
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden.,The Beijer Laboratory, Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Malin Gingnell
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Johanna M Hoppe
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Vanda Faria
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Center for Pain and the Brain, Department of Anesthesiology Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Sara Hultberg
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Iman Alaie
- Department of Neuroscience, Child and Adolescent Psychiatry, Uppsala University, Uppsala, Sweden
| | - Kristoffer N T Månsson
- Centre for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Kurt Wahlstedt
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - My Jonasson
- Department of Surgical Sciences-Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences-Nuclear medicine and PET, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Khalifeh S, Khodagholi F, Zarrindast MR, Alizadeh R, Asadi S, Mohammadi Kamsorkh H, Nasehi M, Ghadami A, Sadat-Shirazi MS. Altered D2 receptor and transcription factor EB expression in offspring of aggressive male rats, along with having depressive and anxiety-like behaviors. Int J Neurosci 2021; 131:789-799. [PMID: 32306793 DOI: 10.1080/00207454.2020.1758086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 10/24/2022]
Abstract
MATERIALS AND METHODS In this study we have evaluated the behavioral mood variations, and expression of DR-D2 and TFEB genes in the amygdala and PFC of aggressive male rats' offspring. RESULTS Anxiety and depression-like behaviors were observed, but intra-ventricle injection of DR-D2 antagonist (Sulpiride) has shown to be efficient in reducing negative behavioral changes in offspring. Furthermore, DR-D2 gene expression was increased in the amygdala and PFC of aggressive male rats' offspring, which the injection of Sulpiride decreased it significantly. TFEB gene expression was also decreased in the amygdala and PFC of aggressive male rats' offspring, but the blockade of DR-D2 had no effect on it. CONCLUSIONS The current data suggests the possible influence of dopaminergic receptors D2 and TFEB genes on the behavioral changes which is modified by having an aggressive father.
Collapse
Affiliation(s)
- Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Alizadeh
- Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sareh Asadi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Ghadami
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
6
|
Amaral IM, Hofer A, El Rawas R. Is It Possible to Shift from Down to Top Rank? A Focus on the Mesolimbic Dopaminergic System and Cocaine Abuse. Biomedicines 2021; 9:biomedicines9080877. [PMID: 34440081 PMCID: PMC8389638 DOI: 10.3390/biomedicines9080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Impaired social behavior is a common feature of many psychiatric disorders, in particular with substance abuse disorders. Switching the preference of the substance-dependent individual toward social interaction activities remains one of the major challenges in drug dependence therapy. However, social interactions yield to the emergence of social ranking. In this review, we provide an overview of the studies that examined how social status can influence the dopaminergic mesolimbic system and how drug-seeking behavior is affected. Generally, social dominance is associated with an increase in dopamine D2/3 receptor binding in the striatum and a reduced behavioral response to drugs of abuse. However, it is not clear whether higher D2 receptor availability is a result of increased D2 receptor density and/or reduced dopamine release in the striatum. Here, we discuss the possibility of a potential shift from down to top rank via manipulation of the mesolimbic system. Identifying the neurobiology underlying a potential rank switch to a resilient phenotype is of particular interest in order to promote a positive coping behavior toward long-term abstinence from drugs of abuse and a protection against relapse to drugs. Such a shift may contribute to a more successful therapeutic approach to cocaine addiction.
Collapse
|
7
|
LeClair KB, Russo SJ. Using social rank as the lens to focus on the neural circuitry driving stress coping styles. Curr Opin Neurobiol 2021; 68:167-180. [PMID: 33930622 DOI: 10.1016/j.conb.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Social hierarchy position in humans is negatively correlated with stress-related psychiatric disease risk. Animal models have largely corroborated human studies, showing that social rank can impact stress susceptibility and is considered to be a major risk factor in the development of psychiatric illness. Differences in stress coping style is one of several factors that mediate this relationship between social rank and stress susceptibility. Coping styles encompass correlated groupings of behaviors associated with differential physiological stress responses. Here, we discuss recent insights from animal models that highlight several neural circuits that can contribute to social rank-associated differences in coping style.
Collapse
Affiliation(s)
- Katherine B LeClair
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
9
|
Clemenza K, Weiss SH, Cheslack K, Kandel DB, Kandel ER, Levine AA. Social isolation is closely linked to a marked reduction in physical activity in male mice. J Neurosci Res 2020; 99:1099-1107. [PMID: 33368537 DOI: 10.1002/jnr.24777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 11/12/2022]
Abstract
The effects of social isolation on an individual's behavior is an important field of research, especially as public health officials encourage social distancing to prevent the spread of pandemic disease. In this study we evaluate the effects of social isolation on physical activity in mice. Utilizing a pixel-based tracking system, we continuously monitored the movement of isolated mice compared with paired cage mates in the home cage environment. We demonstrate that mice that are socially isolated dramatically decrease their movement when separated from their cage mate, and especially in the dark cycle, when mice are normally most active. When isolated mice are re-paired with their original cage mate, this effect is reversed, and mice return to their prior levels of activity. These findings suggest a close link between social isolation and physical activity, and are of particular interest in the wake of coronavirus disease 2019, when many are forced into isolation. Social isolation may affect an individual's overall activity levels in humans too, which may have unintended effects on health that deserve further consideration.
Collapse
Affiliation(s)
- Kelly Clemenza
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Shira H Weiss
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Keely Cheslack
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Denise B Kandel
- Department of Psychiatry and Mailman School of Public Health, Columbia University, New York State Psychiatric Institute, New York, NY, USA
| | - Eric R Kandel
- Kavli Institute for Brain Science, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY, USA.,Department of Neuroscience, Columbia University, New York, NY, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Amir A Levine
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
10
|
Desormeaux C, Demars F, Davenas E, Jay TM, Lavergne F. Selective activation of D1 dopamine receptors exerts antidepressant-like activity in rats. J Psychopharmacol 2020; 34:1443-1448. [PMID: 33256509 DOI: 10.1177/0269881120959613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder is a common illness that severely decreases psychosocial functioning. Due to the major limitations of current treatments including response failure, it is crucial to develop better therapy strategies. Evidence suggests that dopamine dysregulation might play a major role in major depressive disorder physiopathology. AIMS This study investigates whether the dopamine D1 receptor agonist A77636 modulates antidepressant-like activity in rats. METHODS Rats were injected with an acute single dose of A77636 (0.75, 1.5 or 3 mg/kg), a potent and selective dopamine D1-like receptor agonist. Their locomotor activity, social interactions and behavioural response to the forced swim test were analysed 30 min after the injection. RESULTS During the forced swim test, the D1 agonist dose dependently reduced the immobility while the time of bursting was increased. Social interactions were significantly increased in the animals exposed to 3 mg/kg of A77636 whereas no significant changes were measured in general motor activity. CONCLUSIONS The present results provide evidence that pharmacological modulation of D1 receptor by the selective agonist A77636 induces antidepressant-like effects in rats, which encourages further studies regarding D1-specific modulation in major depressive disorder treatment.
Collapse
Affiliation(s)
- Cleo Desormeaux
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Fanny Demars
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Elisabeth Davenas
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Therese M Jay
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Francis Lavergne
- Pathophysiology of Psychiatric Disorders, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|
11
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
12
|
Spangenberg H, Ramklint M, Ramirez A. Long-term stability of personality traits in a clinical psychiatric sample. Nord J Psychiatry 2019; 73:309-316. [PMID: 31304872 DOI: 10.1080/08039488.2019.1623316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: The aim of this study was to describe personality traits in psychiatric patients and to investigate whether these traits are stable over 13 years. Methods: A total of 95 individuals who were patients at a psychiatric outpatients' clinic in 2003 completed the Swedish universities Scales of Personality (SSP). Scores from 2003 were compared with SSP scores from 2016. Based on the current score on the comprehensive psychopathological rating scale - self rating for affective disorders (CPRS-S-A), the participants were divided into two groups representing 'good' and 'poor' current mental states, to investigate the effect of current mental state on reports of personality traits. Results: Out of 13 personality traits, 11 showed a significant change in mean T-score over the study interval. The group with lower CPRS-S-A scores showed a significant change in T-score for 10 traits, whereas in the group with higher CPRS-S-A scores only 3 traits showed a significant change. Conclusions: The findings support the theory that personality is changeable over the course of life, also in psychiatric patients. We do not know if persisting psychiatric symptoms halter change or if deviant personality traits cause psychiatric symptoms to continue.
Collapse
Affiliation(s)
- Hanna Spangenberg
- a Department of Neuroscience, Akademiska sjukhuset, Uppsala University , Uppsala , Sweden
| | - Mia Ramklint
- a Department of Neuroscience, Akademiska sjukhuset, Uppsala University , Uppsala , Sweden
| | - Adriana Ramirez
- a Department of Neuroscience, Akademiska sjukhuset, Uppsala University , Uppsala , Sweden
| |
Collapse
|
13
|
Takeuchi S, Hida H, Uchida M, Naruse R, Yoshimi A, Kitagaki S, Ozaki N, Noda Y. Blonanserin ameliorates social deficit through dopamine-D 3 receptor antagonism in mice administered phencyclidine as an animal model of schizophrenia. Neurochem Int 2019; 128:127-134. [PMID: 30998952 DOI: 10.1016/j.neuint.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
Blonanserin differs from other antipsychotic drugs, such as risperidone and olanzapine, and exhibits a higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effect of blonanserin on the social deficit observed in an animal model of schizophrenia and sought to elucidate the molecular mechanism underlying its action. Mice received phencyclidine (PCP: 10 mg/kg/day, s.c.), a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, once a day for 14 consecutive days. We then evaluated the sociability, using a social interaction test, and the expression of GluN1 subunit, an essential subunit of the NMDA receptors, in these mice. Blonanserin significantly ameliorated the PCP-induced social deficit, whereas olanzapine and haloperidol did not. This effect of blonanserin was antagonized by 7-OH-DPAT, a dopamine-D3 receptor agonist, and SCH23390, a dopamine-D1 receptor antagonist. However, the ameliorating effect of blonanserin was not inhibited by DOI, a serotonin 5-HT2A receptor agonist. The PCP-induced social deficit was also ameliorated by U99194, a dopamine-D3 receptor antagonist and SKF38393, a dopamine-D1 receptor agonist, being effects antagonized by 7-OH-DPAT or SCH23390. Blonanserin significantly inhibited the decrease in the phosphorylation levels of GluN1 at Ser897 by protein kinase A (PKA) in the prefrontal cortex (PFC) in PCPadministered mice. These results suggest that activation of NMDA receptors due to Ser897-phosphorylation of GluN1 subunit, which is a step linked to dopamine-D1 receptor-PKA signaling through dopamine-D3 receptor antagonism in the PFC, is required for the ameliorating effect of blonanserin on the PCP-induced social deficit. These findings also provide in vivo evidence that blonanserin antagonism of the dopamine-D3 receptors may be useful as a novel treatment strategy and that the dopamine-D3 receptors can be a novel therapeutic target molecule for the social deficit observed in schizophrenia.
Collapse
Affiliation(s)
- Saori Takeuchi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Mizuki Uchida
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Ryo Naruse
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Shinji Kitagaki
- Department of Medical Chemistry, Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Faculty of Pharmacy, Meijo University, Nagoya, 468-8503, Japan; Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan.
| |
Collapse
|
14
|
Single-Photon Emission Computed Tomography and Positron Emission Tomography Studies of Antisocial Personality Disorder and Aggression: a Targeted Review. Curr Psychiatry Rep 2019; 21:24. [PMID: 30852703 PMCID: PMC6440931 DOI: 10.1007/s11920-019-1011-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW This paper aims to provide a comprehensive discussion of single-photon emission computed tomography (SPECT) and positron emission tomography (PET) studies of antisocial personality disorder (ASPD) and aggression. RECENT FINDINGS Among ASPD males with high impulsivity, the density of brainstem serotonin (5-HT) transporters shows a relationship with impulsivity, aggression, and ratings of childhood trauma. 5-HT1B receptor (R) binding in the striatum, anterior cingulate cortex, and orbitofrontal cortex (OFC) correlated with anger, aggression, and psychopathic traits in another study of violent offenders, most of whom were diagnosed with ASPD. Finally, the density of monoamine oxidase-A (MAO-A), a mitochondrial enzyme that degrades 5-HT, norepinephrine, and dopamine (DA), was reported as lower in the OFC and ventral striatum of ASPD. Among non-clinical populations, 5-HT4R binding, as an index of low cerebral 5-HT levels, has been associated with high trait aggression, but only in males. Furthermore, evidence suggests that individuals with high-activity MAO-A genetic variants compared with low-activity MAO-A allelic variants release more DA in the ventral caudate and putamen when exposed to violent imagery. There are very few PET or SPECT studies that exclusively sample individuals with ASPD. However, among ASPD samples, there is evidence of regional serotonergic abnormalities in the brain and alteration of neural MAO-A levels. Future studies should consider employing additional molecular probes that could target alternative neurotransmitter systems to investigate ASPD. Furthermore, examining different typologies of aggression in clinical and non-clinical populations using SPECT/PET is another important area to pursue and could shed light on the neurochemical origins of these traits in ASPD.
Collapse
|
15
|
Caravaggio F, Plavén-Sigray P, Matheson GJ, Plitman E, Chakravarty MM, Borg J, Graff-Guerrero A, Cervenka S. Trait impulsivity is not related to post-commissural putamen volumes: A replication study in healthy men. PLoS One 2018; 13:e0209584. [PMID: 30571791 PMCID: PMC6301704 DOI: 10.1371/journal.pone.0209584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/07/2018] [Indexed: 01/18/2023] Open
Abstract
High levels of trait impulsivity are considered a risk factor for substance abuse and drug addiction. We recently found that non-planning trait impulsivity was negatively correlated with post-commissural putamen volumes in men, but not women, using the Karolinska Scales of Personality (KSP). Here, we attempted to replicate this finding in an independent sample using an updated version of the KSP: the Swedish Universities Scales of Personality (SSP). Data from 88 healthy male participants (Mean Age: 28.16±3.34), who provided structural T1-weighted magnetic resonance images (MRIs) and self-reported SSP impulsivity scores, were analyzed. Striatal sub-region volumes were acquired using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Contrary to our previous findings trait impulsivity measured using SSP was not a significant predictor of post-commissural putamen volumes (β = .14, df = 84, p = .94). A replication Bayes Factors analysis strongly supported this null result. Consistent with our previous findings, secondary exploratory analyses found no relationship between ventral striatum volumes and SSP trait impulsivity (β = -.05, df = 84, p = .28). An exploratory analysis of the other striatal compartments showed that there were no significant associations with trait impulsivity. While we could not replicate our previous findings in the current sample, we believe this work will aide future studies aimed at establishing meaningful brain biomarkers for addiction vulnerability in healthy humans.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| |
Collapse
|
16
|
Eddy CM, Cook JL. Emotions in action: The relationship between motor function and social cognition across multiple clinical populations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:229-244. [PMID: 29857027 DOI: 10.1016/j.pnpbp.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Clare M Eddy
- National Centre for Mental Health and College of Medical and Dental Sciences, BSMHFT, University of Birmingham, Birmingham, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
Farde L, Plavén-Sigray P, Borg J, Cervenka S. Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170156. [PMID: 29483342 PMCID: PMC5832682 DOI: 10.1098/rstb.2017.0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography has, for 30 years, been used in numerous case-control studies searching for hypothesized differences in the density of neuroreceptor or transporter proteins in psychiatric disorders such as schizophrenia and depression. In most cases, the results have not been conclusive. One reason could be the sizeable interindividual variability in biochemical markers, which in twin studies have shown to emanate from both environmental and genetic factors, leading to low statistical power for the detection of group effects. On the other hand, the same interindividual variability has served as an opportunity for correlative studies on the biological underpinning of behaviour. Using this approach, a series of studies has linked markers for the dopamine and serotonin system to personality traits associated with psychiatric conditions. Based on increasing evidence for the view that many psychopathological states represent extremes of a continuum rather than distinct categories, this research strategy may lead to new biological insights about the vulnerability to and pathophysiology of major psychiatric disorders.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- Precision Medicine and Genomics, AstraZeneca, PET Science Centre, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| |
Collapse
|
18
|
Plavén-Sigray P, Matheson GJ, Gustavsson P, Stenkrona P, Halldin C, Farde L, Cervenka S. Is dopamine D1 receptor availability related to social behavior? A positron emission tomography replication study. PLoS One 2018; 13:e0193770. [PMID: 29543812 PMCID: PMC5854259 DOI: 10.1371/journal.pone.0193770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/19/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Associations between dopamine receptor levels and pro- and antisocial behavior have previously been demonstrated in human subjects using positron emission tomography (PET) and self-rated measures of personality traits. So far, only one study has focused on the dopamine D1-receptor (D1-R), finding a positive correlation with the trait social desirability, which is characterized by low dominant and high affiliative behavior, while physical aggression showed a negative correlation. The aim of the present study was to replicate these previous findings using a new independent sample of subjects. MATERIALS AND METHODS Twenty-six healthy males were examined with the radioligand [11C]SCH-23390, and completed the Swedish universities Scales of Personality (SSP) which includes measures of social desirability and physical trait aggression. The simplified reference tissue model with cerebellum as reference region was used to calculate BPND values in the whole striatum and limbic striatum. The two regions were selected since they showed strong association between D1-R availability and personality scores in the previous study. Pearson's correlation coefficients and replication Bayes factors were then employed to assess the replicability and robustness of previous results. RESULTS There were no significant correlations (all p values > 0.3) between regional BPND values and personality scale scores. Replication Bayes factors showed strong to moderate evidence in favor no relationship between D1-receptor availability and social desirability (striatum BF01 = 12.4; limbic striatum BF01 = 7.2) or physical aggression scale scores (limbic striatum BF01 = 3.3), compared to the original correlations. DISCUSSION We could not replicate the previous findings of associations between D1-R availability and either pro- or antisocial behavior as measured using the SSP. Rather, there was evidence in favor of failed replications of associations between BPND and scale scores. Potential reasons for these results are restrictive variance in both PET and personality outcomes due to high sample homogeneity, or that the previous findings were false positives.
Collapse
Affiliation(s)
- Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
- * E-mail:
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Petter Gustavsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
- PET imaging Centre, Precision Medicine and Genomics, IMED Biotech unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE, Stockholm, Sweden
| |
Collapse
|
19
|
Fagerberg T, Söderman E, Petter Gustavsson J, Agartz I, Jönsson EG. Stability of personality traits over a five-year period in Swedish patients with schizophrenia spectrum disorder and non-psychotic individuals: a study using the Swedish universities scales of personality. BMC Psychiatry 2018; 18:54. [PMID: 29486736 PMCID: PMC6389041 DOI: 10.1186/s12888-018-1617-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Personality is considered as an important aspect in persons with psychotic disorders. Several studies have investigated personality in schizophrenia. However, no study has investigated stability of personality traits exceeding three years in patients with schizophrenia. This study aims to investigate the stability of personality traits over a five-year period among patients with schizophrenia and non-psychotic individuals and to evaluate case-control differences. METHODS Patients with psychotic disorders (n = 36) and non-psychotic individuals (n = 76) completed Swedish universities Scales of Personality (SSP) at two occasions five years apart. SSP scores were analysed for effect of time and case-control differences by multiple analysis of covariance (MANCOVA) and within-subjects correlation. RESULTS MANCOVA within-subjects analysis did not show any effect of time. Thus, SSP mean scale scores did not significantly vary during the five-year interval. Within subject correlations (Spearman) ranged 0.30-0.68 and 0.54-0.75 for the different SSP scales in patients and controls, respectively. Patients scored higher than controls in SSP scales Somatic Trait Anxiety, Psychic Trait Anxiety, Stress Susceptibility, Lack of Assertiveness, Detachment, Embitterment, and Mistrust. CONCLUSION The stability of the SSP personality trait was reasonably high among patients with psychotic disorder, although lower than among non-psychotic individuals, which is in accordance with previous research.
Collapse
Affiliation(s)
- Tomas Fagerberg
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Erik Söderman
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - J. Petter Gustavsson
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Agartz
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Erik G. Jönsson
- Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Centre for Psychiatric Research, Psychiatry Section, Karolinska Institutet and Hospital, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
da Cunha-Bang S, Fisher PM, Hjordt LV, Perfalk E, Beliveau V, Holst K, Knudsen GM. Men with high serotonin 1B receptor binding respond to provocations with heightened amygdala reactivity. Neuroimage 2018; 166:79-85. [DOI: 10.1016/j.neuroimage.2017.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022] Open
|
21
|
Plavén-Sigray P, Hedman E, Victorsson P, Matheson GJ, Forsberg A, Djurfeldt DR, Rück C, Halldin C, Lindefors N, Cervenka S. Extrastriatal dopamine D2-receptor availability in social anxiety disorder. Eur Neuropsychopharmacol 2017; 27:462-469. [PMID: 28377075 DOI: 10.1016/j.euroneuro.2017.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/18/2017] [Indexed: 12/13/2022]
Abstract
Alterations in the dopamine system are hypothesized to influence the expression of social anxiety disorder (SAD) symptoms. However, molecular imaging studies comparing dopamine function between patients and control subjects have yielded conflicting results. Importantly, while all previous investigations focused on the striatum, findings from activation and blood flow studies indicate that prefrontal and limbic brain regions have a central role in the pathophysiology. The objective of this study was to investigate extrastriatal dopamine D2-receptor (D2-R) availability in SAD. We examined 12 SAD patients and 16 healthy controls using positron emission tomography and the high-affinity D2-R radioligand [11C]FLB457. Parametric images of D2-R binding potential were derived using the Logan graphical method with cerebellum as reference region. Two-tailed one-way independent ANCOVAs, with age as covariate, were used to examine differences in D2-R availability between groups using both region-based and voxel-wise analyses. The region-based analysis showed a medium effect size of higher D2-R levels in the orbitofrontal cortex (OFC) in patients, although this result did not remain significant after correction for multiple comparisons. The voxel-wise comparison revealed elevated D2-R availability in patients within OFC and right dorsolateral prefrontal cortex after correction for multiple comparisons. These preliminary results suggest that an aberrant extrastriatal dopamine system may be part of the disease mechanism in SAD.
Collapse
Affiliation(s)
- Pontus Plavén-Sigray
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden.
| | - Erik Hedman
- Stockholm Health Care Services, Stockholm County Council, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pauliina Victorsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Anton Forsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Diana R Djurfeldt
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Nils Lindefors
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Sweden
| |
Collapse
|
22
|
Yamaguchi Y, Atsumi T, Poirot R, Lee YA, Kato A, Goto Y. Dopamine-dependent visual attention preference to social stimuli in nonhuman primates. Psychopharmacology (Berl) 2017; 234:1113-1120. [PMID: 28154891 PMCID: PMC5352745 DOI: 10.1007/s00213-017-4544-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 11/23/2022]
Abstract
RATIONALE Dopamine (DA) plays a central role in reward processing. Accumulating evidence suggests that social interaction and social stimuli have rewarding properties that activate the DA reward circuits. However, few studies have attempted to investigate how DA is involved in the processing of social stimuli. OBJECTIVES In this study, we investigated the effects of pharmacological manipulations of DA D1 and D2 receptors on social vs. nonsocial visual attention preference in macaques. METHODS Japanese macaques were subjected to behavioral tests in which visual attention toward social (monkey faces with and without affective expressions) and nonsocial stimuli was examined, with D1 and D2 antagonist administration. RESULTS The macaques exhibited significantly longer durations of gazing toward the images with social cues than did those with nonsocial cues. Both D1 and D2 antagonist administration decreased duration of gazing toward the social images with and without affective valences. In addition, although D1 antagonist administration increased the duration of gazing toward the nonsocial images, D2 antagonism had no effect. CONCLUSIONS These results suggest that both D1 and D2 receptors may have roles in the processing of social signals but through separate mechanisms.
Collapse
Affiliation(s)
- Yoshie Yamaguchi
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Takeshi Atsumi
- Department of Rehabilitation for Brain Functions, Research Institute of Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-8555, Japan
| | - Romain Poirot
- Ecole Nationale Veterinaire de Toulouse, 31076, Toulouse, France
| | - Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Gyounbuk, 38430, South Korea
| | - Akemi Kato
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
23
|
Liu J, Raine A. Nutritional status and social behavior in preschool children: the mediating effects of neurocognitive functioning. MATERNAL & CHILD NUTRITION 2017; 13:e12321. [PMID: 27133006 PMCID: PMC5675074 DOI: 10.1111/mcn.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/27/2022]
Abstract
Early malnutritional status has been associated with reduced cognitive ability in childhood. However, there are almost no studies on the effect of malnutrition on positive social behavior, and no tests of possible mediating mechanisms. This study tests the hypothesis that poor nutritional status is associated with impaired social functioning in childhood, and that neurocognitive ability mediates this relationship. We assessed 1553 male and female 3-year-olds from a birth cohort on measures of malnutrition, social behavior and verbal and spatial neurocognitive functions. Children with indicators of malnutrition showed impaired social behavior (p < .0001) as compared with children in the control group with adequate nutritional status. These associations even persisted after controlling for social adversity and parental education. Findings were not moderated by gender or ethnicity, and there was no interaction effect with parental education. A dose-response relationship was observed between degree of malnutrition and degree of social behavior, with increased malnutrition associated with more impaired social behavior. Neurocognitive ability was found to mediate the nutrition-social behavior relationship. The mediation effect of neurocognitive functioning suggests that poor nutrition negatively impacts brain areas that play important roles in developing positive social behavior. Findings suggest that reducing poor nutrition, alternatively promoting good nutrition, may help promote positive social behavior in early childhood during a critical period for social and neurocognitive development, with implications for improving positive health in adulthood.
Collapse
Affiliation(s)
- Jianghong Liu
- School of NursingUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Adrian Raine
- Departments of Criminology, Psychiatry and PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
24
|
The Roles of Dopamine D2 Receptor in the Social Hierarchy of Rodents and Primates. Sci Rep 2017; 7:43348. [PMID: 28233850 PMCID: PMC5324123 DOI: 10.1038/srep43348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/24/2017] [Indexed: 01/22/2023] Open
Abstract
Dopamine (DA) plays significant roles in regulation of social behavior. In social groups of humans and other animals, social hierarchy exists, which is determined by several behavioral characteristics such as aggression and impulsivity as well as social affiliations. In this study, we investigated the effects of pharmacological blockade of DA D2 receptor on social hierarchy of Japanese macaque and mouse social groups. We found acute administration of the D2 antagonist, sulpiride, in socially housed Japanese macaques attenuated social dominance when the drug was given to high social class macaques. A similar attenuation of social dominance was observed in high social class mice with D2 antagonist administration. In contrast, D2 antagonist administration in low social class macaque resulted in more stable social hierarchy of the group, whereas such effect was not observed in mouse social group. These results suggest that D2 receptor signaling may play important roles in establishment and maintenance of social hierarchy in social groups of several species of animals.
Collapse
|
25
|
Yamaguchi Y, Lee YA, Kato A, Goto Y. The Roles of Dopamine D1 Receptor on the Social Hierarchy of Rodents and Nonhuman Primates. Int J Neuropsychopharmacol 2016; 20:324-335. [PMID: 27927739 PMCID: PMC5409125 DOI: 10.1093/ijnp/pyw106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/18/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although dopamine has been suggested to play a role in mediating social behaviors of individual animals, it is not clear whether such dopamine signaling contributes to attributes of social groups such as social hierarchy. METHODS In this study, the effects of the pharmacological manipulation of dopamine D1 receptor function on the social hierarchy and behavior of group-housed mice and macaques were investigated using a battery of behavioral tests. RESULTS D1 receptor blockade facilitated social dominance in mice at the middle, but not high or low, social rank in the groups without altering social preference among mates. In contrast, the administration of a D1 receptor antagonist in a macaque did not affect social dominance of the drug-treated animal; however, relative social dominance relationships between the drug-treated and nontreated subjects were altered indirectly through alterations of social affiliative relationships within the social group. CONCLUSIONS These results suggest that dopamine D1 receptor signaling may be involved in social hierarchy and social relationships within a group, which may differ between rodents and primates.
Collapse
Affiliation(s)
- Yoshie Yamaguchi
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Gyeounbuk, South Korea
| | - Akemi Kato
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
26
|
Straulino E, Scaravilli T, Bulgheroni M, D'Amico E, Castiello U. It's all in the type of the task: Dopamine modulates kinematic patterns during competitive vs. cooperative interaction in Parkinson's disease. Neuropsychologia 2016; 93:106-115. [PMID: 27756693 DOI: 10.1016/j.neuropsychologia.2016.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Increasing evidence suggests that a dysfunctional dopaminergic system affects the ability to socially interact. Since Parkinson's disease (PD) provides a model for assessing dopaminergic dysfunctions in humans, our study was designed to investigate social interactions in PD patients receiving dopamine replacement therapy (Levodopa=l-Dopa) and in neurologically healthy controls. We focused on the kinematics of one action, reaching to grasp a wooden block, which was performed within the context of two basic modes of social cognition, namely cooperation and competition. During the cooperative tasks, two participants were instructed to reach and grasp their respective objects and to cooperate in forming a specific configuration on the working table. During the competitive tasks, two participants were instructed to compete to place their own object at the bottom of a tower to be built on the working table. PD patients' ability to modulate motor patterning depending on the intention motivating the action they were about to perform was evaluated in both "on" (with l-Dopa) and "off" (without l-Dopa) states. Study results revealed that both the healthy controls and the 'on' PD patients had distinct kinematic patterns for cooperative and competitive actions and that these differed from patterns mirroring similar actions performed by those same participants in non social conditions. The kinematic patterns of the healthy controls and the 'on' patients were highly correlated during the cooperative tasks. The 'off' PD patients were, instead, unable to differentiate between isolated and social conditions. These results support the hypothesis that dopaminergic neurotransmission is involved in shaping the mechanisms underlying social interactions.
Collapse
Affiliation(s)
- Elisa Straulino
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Tomaso Scaravilli
- Unità Operativa di Neurologia Ospedale di Dolo USL13, Venezia, Italy
| | | | | | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia, 8, 35131 Padova, Italy; Cognitive Neuroscience Center, University of Padova, Italy; Centro Linceo Interdisciplinare Beniamino Segre, Accademia dei Lincei, Roma.
| |
Collapse
|
27
|
Fagerberg T, Söderman E, Gustavsson JP, Agartz I, Jönsson EG. Personality traits in established schizophrenia: aspects of usability and differences between patients and controls using the Swedish universities Scales of Personality. Nord J Psychiatry 2016; 70:462-9. [PMID: 27103375 PMCID: PMC4926784 DOI: 10.3109/08039488.2016.1159331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Personality is considered as an important aspect that can affect symptoms and social function in persons with schizophrenia. The personality questionnaire Swedish universities Scales of Personality (SSP) has not previously been used in psychotic disorder. AIMS To investigate if SSP has a similar internal consistency and factor structure in a psychosis population as among healthy controls and if patients with psychotic disorders differ from non-psychotic individuals in their responses to the SSP. METHODS Patients with psychotic disorders (n = 107) and healthy controls (n = 119) completed SSP. SSP scores were analyzed for internal consistency and case-control differences by Cronbach's alfa and multiple analysis of covariance, respectively. RESULTS Internal consistencies among patients were overall similar to that of controls. The patients scored significantly higher in seven (Somatic trait anxiety, Psychic trait anxiety, Stress susceptibility, Lack of assertiveness, Detachment, Embitterment, Mistrust) and lower in three (Physical trait aggression, Verbal trait aggression, Adventure seeking) of the 13 scales of the inventory. In three scales (Impulsiveness, Social desirability and Trait irritability) there was no significant difference between the scoring of patients and healthy controls. CONCLUSION The reliability estimates suggest that SSP can be used by patients with psychotic disorders in stable remission. Patients score higher on neuroticism-related scales and lower on aggression-related scales than controls, which is in accordance with earlier studies where other personality inventories were used.
Collapse
Affiliation(s)
- Tomas Fagerberg
- a Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Psychiatry Section , Karolinska Institutet and Hospital , Stockholm , Sweden
| | - Erik Söderman
- a Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Psychiatry Section , Karolinska Institutet and Hospital , Stockholm , Sweden
| | - J Petter Gustavsson
- b Division of Psychology, Department of Clinical Neuroscience , Karolinska Institutet , Stockholm , Sweden
| | - Ingrid Agartz
- a Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Psychiatry Section , Karolinska Institutet and Hospital , Stockholm , Sweden ;,c NORMENT, KG Jebsen Centre for Psychosis Research , Institute of Clinical Medicine. Psychiatry section, University of Oslo , Norway ;,d Department of Psychiatric Research , Diakonhjemmet Hospital , Oslo , Norway
| | - Erik G Jönsson
- a Human Brain Informatics (HUBIN), Department of Clinical Neuroscience, Psychiatry Section , Karolinska Institutet and Hospital , Stockholm , Sweden ;,c NORMENT, KG Jebsen Centre for Psychosis Research , Institute of Clinical Medicine. Psychiatry section, University of Oslo , Norway
| |
Collapse
|
28
|
Goto Y, Lee YA, Yamaguchi Y, Jas E. Biological mechanisms underlying evolutionary origins of psychotic and mood disorders. Neurosci Res 2016; 111:13-24. [PMID: 27230505 DOI: 10.1016/j.neures.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 02/07/2023]
Abstract
Psychotic and mood disorders are brain dysfunctions that are caused by gene environment interactions. Although these disorders are disadvantageous and involve behavioral phenotypes that decrease the reproductive success of afflicted individuals in the modern human society, the prevalence of these disorders have remained constant in the population. Here, we propose several biological mechanisms by which the genes associated with psychotic and mood disorders could be selected for in specific environmental conditions that provide evolutionary bases for explanations of when, why, and where these disorders emerged and have been maintained in humans. We discuss the evolutionary origins of psychotic and mood disorders with specific focuses on the roles of dopamine and serotonin in the conditions of social competitiveness/hierarchy and maternal care and other potential mechanisms, such as social network homophily and symbiosis.
Collapse
Affiliation(s)
- Yukiori Goto
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| | - Young-A Lee
- Department of Food Science & Nutrition, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 712-702, Republic of Korea
| | - Yoshie Yamaguchi
- Cognition and Learning Section, Department of Cognitive Science, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Emanuel Jas
- Graduate School of Natural Sciences, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
29
|
Homberg JR, Olivier JDA, VandenBroeke M, Youn J, Ellenbroek AK, Karel P, Shan L, van Boxtel R, Ooms S, Balemans M, Langedijk J, Muller M, Vriend G, Cools AR, Cuppen E, Ellenbroek BA. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Dis Model Mech 2016; 9:1147-1158. [PMID: 27483345 PMCID: PMC5087833 DOI: 10.1242/dmm.024752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/04/2016] [Indexed: 01/25/2023] Open
Abstract
Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1 receptor (Drd1). Because current Drd1 receptor agonists are not Drd1 selective, pharmacological tools are not sufficient to delineate the role of the Drd1. Here, we describe a novel rat model with a genetic mutation in Drd1 in which we measured basic behavioural phenotypes and social cognition. The I116S mutation was predicted to render the receptor less stable. In line with this computational prediction, this Drd1 mutation led to a decreased transmembrane insertion of Drd1, whereas Drd1 expression, as measured by Drd1 mRNA levels, remained unaffected. Owing to decreased transmembrane Drd1 insertion, the mutant rats displayed normal basic motoric and neurological parameters, as well as locomotor activity and anxiety-like behaviour. However, measures of social cognition like social interaction, scent marking, pup ultrasonic vocalizations and sociability, were strongly reduced in the mutant rats. This profile of the Drd1 mutant rat offers the field of neuroscience a novel genetic rat model to study a series of psychiatric disorders including schizophrenia, autism, depression, bipolar disorder and drug addiction.
Collapse
Affiliation(s)
- Judith R Homberg
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jocelien D A Olivier
- Department of Neurobiology, Unit Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Marie VandenBroeke
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Jiun Youn
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Arabella K Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| | - Peter Karel
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ling Shan
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Ruben van Boxtel
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Sharon Ooms
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Monique Balemans
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Jacqueline Langedijk
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Mareike Muller
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Gert Vriend
- CMBI, Radboud University Nijmegen Medical Centre, Geert Grooteplein 26-28, Nijmegen 6525 GA, The Netherlands
| | - Alexander R Cools
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen 6525 EZ, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, Utrecht 3584 CT, The Netherlands
| | - Bart A Ellenbroek
- Victoria University of Wellington, School of Psychology, PO Box 600, Wellington 6040, New Zealand
| |
Collapse
|
30
|
Straulino E, Scaravilli T, Castiello U. Dopamine depletion affects communicative intentionality in Parkinson's disease patients: Evidence from action kinematics. Cortex 2016; 77:84-94. [DOI: 10.1016/j.cortex.2016.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
31
|
Yamaguchi Y, Lee YA, Goto Y. Dopamine in socioecological and evolutionary perspectives: implications for psychiatric disorders. Front Neurosci 2015; 9:219. [PMID: 26136653 PMCID: PMC4468839 DOI: 10.3389/fnins.2015.00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Dopamine (DA) transmission in brain areas such as the prefrontal cortex (PFC) and nucleus accumbens (NAcc) plays important roles in cognitive and affective function. As such, DA deficits have been implicated in a number of psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder (ADHD). Accumulating evidence suggests that DA is also involved in social behavior of animals and humans. Although most animals organize and live in social groups, how the DA system functions in such social groups of animals, and its dysfunction causes compromises in the groups has remained less understood. Here we propose that alterations of DA signaling and associated genetic variants and behavioral phenotypes, which have been normally considered as “deficits” in investigation at an individual level, may not necessarily yield disadvantages, but even work advantageously, depending on social contexts in groups. This hypothesis could provide a novel insight into our understanding of the biological mechanisms of psychiatric disorders, and a potential explanation that disadvantageous phenotypes associated with DA deficits in psychiatric disorders have remained in humans through evolution.
Collapse
Affiliation(s)
- Yoshie Yamaguchi
- Section of Cognition and Learning, Department of Cognitive Science, Primate Research Institute, Kyoto University Inuyama, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu Gyeongsan-Si, Korea
| | - Yukiori Goto
- Section of Cognition and Learning, Department of Cognitive Science, Primate Research Institute, Kyoto University Inuyama, Japan
| |
Collapse
|
32
|
de Kwaasteniet BP, Pinto C, Ruhé EHG, van Wingen GA, Booij J, Denys D. Striatal dopamine D2/3 receptor availability in treatment resistant depression. PLoS One 2014; 9:e113612. [PMID: 25411966 PMCID: PMC4239080 DOI: 10.1371/journal.pone.0113612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022] Open
Abstract
Several studies demonstrated improvement of depressive symptoms in treatment resistant depression (TRD) after administering dopamine agonists which suggest abnormal dopaminergic neurotransmission in TRD. However, the role of dopaminergic signaling through measurement of striatal dopamine D(2/3) receptor (D2/3R) binding has not been investigated in TRD subjects. We used [(123)I]IBZM single photon emission computed tomography (SPECT) to investigate striatal D2/3R binding in TRD. We included 6 severe TRD patients, 11 severe TRD patients on antipsychotics (TRD AP group) and 15 matched healthy controls. Results showed no significant difference (p = 0.75) in striatal D2/3R availability was found between TRD patients and healthy controls. In the TRD AP group D2/3R availability was significantly decreased (reflecting occupancy of D2/3Rs by antipsychotics) relative to TRD patients and healthy controls (p<0.001) but there were no differences in clinical symptoms between TRD AP and TRD patients. This preliminary study therefore does not provide evidence for large differences in D2/3 availability in severe TRD patients and suggests this TRD subgroup is not characterized by altered dopaminergic transmission. Atypical antipsychotics appear to have no clinical benefit in severe TRD patients who remain depressed, despite their strong occupancy of D2/3Rs.
Collapse
Affiliation(s)
- Bart P. de Kwaasteniet
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| | - Chedwa Pinto
- Department of Psychiatry, MC groep, Lelystad, the Netherlands
| | - Eric H. G. Ruhé
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
- University of Groningen, University Medical Center Groningen, Mood and Anxiety Disorders, Department of Psychiatry, Groningen, the Netherlands
| | - Guido A. van Wingen
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan Booij
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
- Department of Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
- Brain Imaging Center, Academic Medical Center, Amsterdam, the Netherlands
- The Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|