1
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
2
|
Rua C, Raman B, Rodgers CT, Newcombe VFJ, Manktelow A, Chatfield DA, Sawcer SJ, Outtrim JG, Lupson VC, Stamatakis EA, Williams GB, Clarke WT, Qiu L, Ezra M, McDonald R, Clare S, Cassar M, Neubauer S, Ersche KD, Bullmore ET, Menon DK, Pattinson K, Rowe JB. Quantitative susceptibility mapping at 7 T in COVID-19: brainstem effects and outcome associations. Brain 2024:awae215. [PMID: 39375207 DOI: 10.1093/brain/awae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 10/09/2024] Open
Abstract
Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.
Collapse
Affiliation(s)
- Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- University of Cambridge Centre for Parkinson-plus, University of Cambridge, Cambridge CB2 0QQ, UK
- Invicro, Invicro London, Burlington Danes Building, Imperial College London, London W12 0NN, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher T Rodgers
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Virginia F J Newcombe
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anne Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Doris A Chatfield
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Joanne G Outtrim
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Victoria C Lupson
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - Lin Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - Martyn Ezra
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - Rory McDonald
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - Stuart Clare
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - Mark Cassar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX3 9DU, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX3 9DU, UK
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Heidelberg 69115, Germany
| | - Edward T Bullmore
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
- Division of Anaesthesia, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Kyle Pattinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| | - James B Rowe
- University of Cambridge Centre for Parkinson-plus, University of Cambridge, Cambridge CB2 0QQ, UK
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
- Cambridge NeuroCOVID Group, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- CITIID-NIHR COVID-19 BioResource Collaboration, University of Cambridge, Cambridge CB2 0QQ, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford OX3 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DA, UK
| |
Collapse
|
3
|
Spence H, Mengoa-Fleming S, Sneddon AA, McNeil CJ, Waiter GD. Associations between sex, systemic iron and inflammatory status and subcortical brain iron. Eur J Neurosci 2024; 60:5069-5085. [PMID: 39113267 DOI: 10.1111/ejn.16467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Brain iron increases in several neurodegenerative diseases are associated with disease progression. However, the causes of increased brain iron remain unclear. This study investigates relationships between subcortical iron, systemic iron and inflammatory status. Brain magnetic resonance imaging (MRI) scans and blood plasma samples were collected from cognitively healthy females (n = 176, mean age = 61.4 ± 4.5 years, age range = 28-72 years) and males (n = 152, mean age = 62.0 ± 5.1 years, age range = 32-74 years). Regional brain iron was quantified using quantitative susceptibility mapping. To assess systemic iron, haematocrit, ferritin and soluble transferrin receptor were measured, and total body iron index was calculated. To assess systemic inflammation, C-reactive protein (CRP), neutrophil:lymphocyte ratio (NLR), macrophage colony-stimulating factor 1 (MCSF), interleukin 6 (IL6) and interleukin 1β (IL1β) were measured. We demonstrated that iron levels in the right hippocampus were higher in males compared with females, while iron in the right caudate was higher in females compared with males. There were no significant associations observed between subcortical iron levels and blood markers of iron and inflammatory status indicating that such blood measures are not markers of brain iron. These results suggest that brain iron may be regulated independently of blood iron and so directly targeting global iron change in the treatment of neurodegenerative disease may have differential impacts on blood and brain iron.
Collapse
Affiliation(s)
- Holly Spence
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stephanie Mengoa-Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Christopher J McNeil
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Kaur H, Alluri RK, Wu K, Kalayjian RC, Bush WS, Palella FJ, Koletar SL, Hileman CO, Erlandson KM, Ellis RJ, Bedimo RJ, Taiwo BO, Tassiopoulos KK, Kallianpur AR. Sex-Biased Associations of Circulating Ferroptosis Inhibitors with Reduced Lipid Peroxidation and Better Neurocognitive Performance in People with HIV. Antioxidants (Basel) 2024; 13:1042. [PMID: 39334701 PMCID: PMC11429126 DOI: 10.3390/antiox13091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis is implicated in viral neuropathogenesis and may underlie HIV-associated neurocognitive impairment (NCI). Emerging data also suggest differences in brain iron transport by sex. We hypothesized that circulating ferritins that inhibit ferroptosis associate with neurocognitive function and NCI in people with HIV (PWH) in a sex-biased manner. Serum ferritin heavy-chain-1 (FTH1), ferritin light-chain (FTL), and urinary F2-isoprostanes (uF2-isoPs, specific lipid peroxidation marker) were quantified in 324 PWH (including 61 women) with serial global (NPZ-4) and domain-specific neurocognitive testing. Biomarker associations with neurocognitive test scores and NCIs were evaluated by multivariable regression; correlations with uF2-isoPs were also assessed. Higher FTL and FTH1 levels were associated with less NCI in all PWH (adjusted odds ratios 0.53, 95% confidence interval (95% CI) 0.36-0.79 and 0.66, 95% CI 0.45-0.97, respectively). In women, higher FTL and FTH1 were also associated with better NPZ-4 (FTL adjusted beta (β) = 0.15, 95% CI 0.02-0.29; FTL-by-sex βinteraction = 0.32, p = 0.047) and domain-specific neurocognitive test scores. Effects on neurocognitive performance persisted for up to 5 years. Levels of both ferritins correlated inversely with uF2-isoPs in women (FTL: rho = -0.47, p < 0.001). Circulating FTL and FTH1 exert sustained, sex-biased neuroprotective effects in PWH, possibly by protecting against iron-mediated lipid peroxidation (ferroptosis). Larger studies are needed to confirm the observed sex differences and further delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ravi K Alluri
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Kunling Wu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Robert C Kalayjian
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank J Palella
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susan L Koletar
- Department of Medicine/Infectious Diseases, The Ohio State University, Columbus, OH 43210, USA
| | - Corrilynn O Hileman
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristine M Erlandson
- Department of Medicine/Infectious Diseases, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California-San Diego, San Diego, CA 92103, USA
| | - Roger J Bedimo
- Medicine/Infectious Diseases Section, VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Babafemi O Taiwo
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Asha R Kallianpur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
5
|
Qiu L, Zhao Z, Bao L. SIPAS: A comprehensive susceptibility imaging process and analysis studio. Neuroimage 2024; 297:120697. [PMID: 38908725 DOI: 10.1016/j.neuroimage.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Quantitative susceptibility mapping (QSM) is a rising MRI-based technology and quite a few QSM-related algorithms have been proposed to reconstruct maps of tissue susceptibility distribution from phase images. In this paper, we develop a comprehensive susceptibility imaging process and analysis studio (SIPAS) that can accomplish reliable QSM processing and offer a standardized evaluation system. Specifically, SIPAS integrates multiple methods for each step, enabling users to select algorithm combinations according to data conditions, and QSM maps could be evaluated by two aspects, including image quality indicators within all voxels and region-of-interest (ROI) analysis. Through a sophisticated design of user-friendly interfaces, the results of each procedure are able to be exhibited in axial, coronal, and sagittal views in real-time, meanwhile ROIs can be displayed in 3D rendering visualization. The accuracy and compatibility of SIPAS are demonstrated by experiments on multiple in vivo human brain datasets acquired from 3T, 5T, and 7T MRI scanners of different manufacturers. We also validate the QSM maps obtained by various algorithm combinations in SIPAS, among which the combination of iRSHARP and SFCR achieves the best results on its evaluation system. SIPAS is a comprehensive, sophisticated, and reliable toolkit that may prompt the QSM application in scientific research and clinical practice.
Collapse
Affiliation(s)
- Lichu Qiu
- Department of Electronic Science, Xiamen University, Xiamen 36100, China
| | - Zijun Zhao
- Department of Electronic Science, Xiamen University, Xiamen 36100, China
| | - Lijun Bao
- Department of Electronic Science, Xiamen University, Xiamen 36100, China.
| |
Collapse
|
6
|
Vymazal J, Rulseh AM. MRI contrast agents and retention in the brain: review of contemporary knowledge and recommendations to the future. Insights Imaging 2024; 15:179. [PMID: 39060665 PMCID: PMC11282029 DOI: 10.1186/s13244-024-01763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Gadolinium-based contrast agents (GBCA) were introduced with high expectations for favorable efficacy, low nephrotoxicity, and minimal allergic-like reactions. Nephrogenic systemic fibrosis and proven gadolinium retention in the body including the brain has led to the restriction of linear GBCAs and a more prudent approach regarding GBCA indication and dosing. In this review, we present the chemical, physical, and clinical aspects of this topic and aim to provide an equanimous and comprehensive summary of contemporary knowledge with a perspective of the future. In the first part of the review, we present various elements and compounds that may serve as MRI contrast agents. Several GBCAs are further discussed with consideration of their relaxivity, chelate structure, and stability. Gadolinium retention in the brain is explored including correlation with the presence of metalloprotein ferritin in the same regions where visible hyperintensity on unenhanced T1-weighted imaging occurs. Proven interaction between ferritin and gadolinium released from GBCAs is introduced and discussed, as well as the interaction of other elements with ferritin; and manganese in patients with impaired liver function or calcium in Fahr disease. We further present the concept that only high-molecular-weight forms of gadolinium can likely visibly change signal intensity on unenhanced T1-weighted imaging. Clinical data are also presented with respect to potential neurological manifestations originating from the deep-brain nuclei. Finally, new contrast agents with relatively high relaxivity and stability are introduced. CRITICAL RELEVANCE STATEMENT: GBCA may accumulate in the brain, especially in ferritin-rich areas; however, no adverse neurological manifestations have been detected in relation to gadolinium retention. KEY POINTS: Gadolinium currently serves as the basis for MRI contrast agents used clinically. No adverse neurological manifestations have been detected in relation to gadolinium retention. Future contrast agents must advance chelate stability and relativity, facilitating lower doses.
Collapse
Affiliation(s)
- Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic
| | - Aaron M Rulseh
- Department of Radiology, Na Homolce Hospital, Roentgenova 2, Prague, 150 30, Czech Republic.
| |
Collapse
|
7
|
Fushimi Y, Nakajima S, Sakata A, Okuchi S, Otani S, Nakamoto Y. Value of Quantitative Susceptibility Mapping in Clinical Neuroradiology. J Magn Reson Imaging 2024; 59:1914-1929. [PMID: 37681441 DOI: 10.1002/jmri.29010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Mohammadi S, Ghaderi S, Fatehi F. Putamen iron quantification in diseases with neurodegeneration: a meta-analysis of the quantitative susceptibility mapping technique. Brain Imaging Behav 2024:10.1007/s11682-024-00895-6. [PMID: 38758278 DOI: 10.1007/s11682-024-00895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Quantitative susceptibility mapping (QSM) is an MRI technique that accurately measures iron concentration in brain tissues. This meta-analysis synthesized evidence from 30 studies that used QSM to quantify the iron levels in the putamen. The PRISMA statement was adhered to when conducting the systematic reviews and meta-analyses. We conducted a meta-analysis using a random-effects model, as well as subgroup analyses (disease type, geographic region, field strength, coil, disease type, age, and sex) and sensitivity analysis. A total of 1247 patients and 1035 controls were included in the study. Pooled results showed a standardized mean difference (SMD) of 0.41 (95% CI 0.19 to 0.64), with the strongest effect seen in Alzheimer's disease (AD) at 1.01 (95% CI 0.50 to 1.52). Relapsing-remitting multiple sclerosis (RRMS) also showed increased putaminal iron at 0.37 (95% CI 0.177 to 0.58). No significant differences were observed in Parkinson's disease (PD). No significant differences were found between subgroups based on geographic region, field strength, coil, disease type, age, and sex. The studies revealed significant heterogeneity, with field strength as the primary source, while other factors, such as disease type, location, age, sex, and coil type, may have contributed. The sensitivity analysis showed that these factors did not have a significant influence on the overall results. In summary, this meta-analysis supports abnormalities in putaminal iron content across different diseases with neurodegeneration, especially AD and RRMS, as measured by QSM. This highlights the potential of QSM as an imaging biomarker to better understand disease mechanisms involving disturbances in brain iron homeostasis.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Neurology Department, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
9
|
Thomas GE, Hannaway N, Zarkali A, Shmueli K, Weil RS. Longitudinal Associations of Magnetic Susceptibility with Clinical Severity in Parkinson's Disease. Mov Disord 2024; 39:546-559. [PMID: 38173297 PMCID: PMC11141787 DOI: 10.1002/mds.29702] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dementia is common in Parkinson's disease (PD), but there is wide variation in its timing. A critical gap in PD research is the lack of quantifiable markers of progression, and methods to identify early stages of dementia. Atrophy-based magnetic resonance imaging (MRI) has limited sensitivity in detecting or tracking changes relating to PD dementia, but quantitative susceptibility mapping (QSM), sensitive to brain tissue iron, shows potential for these purposes. OBJECTIVE The objective of the paper is to study, for the first time, the longitudinal relationship between cognition and QSM in PD in detail. METHODS We present a longitudinal study of clinical severity in PD using QSM, including 59 PD patients (without dementia at study onset), and 22 controls over 3 years. RESULTS In PD, increased baseline susceptibility in the right temporal cortex, nucleus basalis of Meynert, and putamen was associated with greater cognitive severity after 3 years; and increased baseline susceptibility in basal ganglia, substantia nigra, red nucleus, insular cortex, and dentate nucleus was associated with greater motor severity after 3 years. Increased follow-up susceptibility in these regions was associated with increased follow-up cognitive and motor severity, with further involvement of hippocampus relating to cognitive severity. However, there were no consistent increases in susceptibility over 3 years. CONCLUSIONS Our study suggests that QSM may predict changes in cognitive severity many months prior to overt cognitive involvement in PD. However, we did not find robust longitudinal changes in QSM over the course of the study. Additional tissue metrics may be required together with QSM for it to monitor progression in clinical practice and therapeutic trials. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Naomi Hannaway
- Dementia Research CentreUCL Institute of NeurologyLondonUK
| | | | - Karin Shmueli
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Rimona S. Weil
- Dementia Research CentreUCL Institute of NeurologyLondonUK
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
- Movement Disorders ConsortiumUniversity College LondonLondonUK
| |
Collapse
|
10
|
Alushaj E, Handfield-Jones N, Kuurstra A, Morava A, Menon RS, Owen AM, Sharma M, Khan AR, MacDonald PA. Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson'sdisease: A 3T and 7T MRI study. Neuroimage Clin 2024; 41:103577. [PMID: 38377722 PMCID: PMC10944193 DOI: 10.1016/j.nicl.2024.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Degeneration in the substantia nigra (SN) pars compacta (SNc) underlies motor symptoms in Parkinson's disease (PD). Currently, there are no neuroimaging biomarkers that are sufficiently sensitive, specific, reproducible, and accessible for routine diagnosis or staging of PD. Although iron is essential for cellular processes, it also mediates neurodegeneration. MRI can localize and quantify brain iron using magnetic susceptibility, which could potentially provide biomarkers of PD. We measured iron in the SNc, SN pars reticulata (SNr), total SN, and ventral tegmental area (VTA), using quantitative susceptibility mapping (QSM) and R2* relaxometry, in PD patients and age-matched healthy controls (HCs). PD patients, diagnosed within five years of participation and HCs were scanned at 3T (22 PD and 23 HCs) and 7T (17 PD and 21 HCs) MRI. Midbrain nuclei were segmented using a probabilistic subcortical atlas. QSM and R2* values were measured in midbrain subregions. For each measure, groups were contrasted, with Age and Sex as covariates, and receiver operating characteristic (ROC) curve analyses were performed with repeated k-fold cross-validation to test the potential of our measures to classify PD patients and HCs. Statistical differences of area under the curves (AUCs) were compared using the Hanley-MacNeil method (QSM versus R2*; 3T versus 7T MRI). PD patients had higher QSM values in the SNc at both 3T (padj = 0.001) and 7T (padj = 0.01), but not in SNr, total SN, or VTA, at either field strength. No significant group differences were revealed using R2* in any midbrain region at 3T, though increased R2* values in SNc at 7T MRI were marginally significant in PDs compared to HCs (padj = 0.052). ROC curve analyses showed that SNc iron measured with QSM, distinguished early PD patients from HCs at the single-subject level with good diagnostic accuracy, using 3T (mean AUC = 0.83, 95 % CI = 0.82-0.84) and 7T (mean AUC = 0.80, 95 % CI = 0.79-0.81) MRI. Mean AUCs reported here are from averages of tests in the hold-out fold of cross-validated samples. The Hanley-MacNeil method demonstrated that QSM outperforms R2* in discriminating PD patients from HCs at 3T, but not 7T. There were no significant differences between 3T and 7T in diagnostic accuracy of QSM values in SNc. This study highlights the importance of segmenting midbrain subregions, performed here using a standardized atlas, and demonstrates high accuracy of SNc iron measured with QSM at 3T MRI in identifying early PD patients. QSM measures of SNc show potential for inclusion in neuroimaging diagnostic biomarkers of early PD. An MRI diagnostic biomarker of PD would represent a significant clinical advance.
Collapse
Affiliation(s)
- Erind Alushaj
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Nicholas Handfield-Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 3K7, Canada; Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada
| | - Alan Kuurstra
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Anisa Morava
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ravi S Menon
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario N6A 3K7, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada
| | - Ali R Khan
- Robarts Research Institute, Western University, London, Ontario N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, Ontario N6A 3K7, Canada
| | - Penny A MacDonald
- Western Institute for Neuroscience, Western University, London, Ontario N6A 3K7, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario N6A 3K7, Canada.
| |
Collapse
|
11
|
Petok JR, Merenstein JL, Bennett IJ. Iron content affects age group differences in associative learning-related fMRI activity. Neuroimage 2024; 285:120478. [PMID: 38036152 DOI: 10.1016/j.neuroimage.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.
Collapse
Affiliation(s)
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside CA, 92521-0426, United States.
| |
Collapse
|
12
|
Madden DJ, Merenstein JL. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. Neuroimage 2023; 282:120401. [PMID: 37802405 PMCID: PMC10797559 DOI: 10.1016/j.neuroimage.2023.120401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain iron is present even among healthy older adults. To better understand the topographical pattern of iron accumulation and its relation to cognitive aging, we conducted an integrative review of 47 QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter nuclei vary with regard to age-related effects, which are most prominent in the putamen, and age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions during healthy aging. The third theme focused on the behavioral relevance of iron content and indicated that higher iron in both deep gray matter and cortical regions was related to decline in fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, suggest that iron interacts with imaging measures of brain function, white matter degradation, and the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new insights into healthy neurocognitive aging.
Collapse
Affiliation(s)
- David J Madden
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, Box 3918, Durham, NC 27710, USA
| |
Collapse
|
13
|
Alushaj E, Hemachandra D, Kuurstra A, Menon RS, Ganjavi H, Sharma M, Kashgari A, Barr J, Reisman W, Khan AR, MacDonald PA. Subregional analysis of striatum iron in Parkinson's disease and rapid eye movement sleep behaviour disorder. Neuroimage Clin 2023; 40:103519. [PMID: 37797434 PMCID: PMC10568416 DOI: 10.1016/j.nicl.2023.103519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
The loss of dopamine in the striatum underlies motor symptoms of Parkinson's disease (PD). Rapid eye movement sleep behaviour disorder (RBD) is considered prodromal PD and has shown similar neural changes in the striatum. Alterations in brain iron suggest neurodegeneration; however, the literature on striatal iron has been inconsistent in PD and scant in RBD. Toward clarifying pathophysiological changes in PD and RBD, and uncovering possible biomarkers, we imaged 26 early-stage PD patients, 16 RBD patients, and 39 age-matched healthy controls with 3 T MRI. We compared mean susceptibility using quantitative susceptibility mapping (QSM) in the standard striatum (caudate, putamen, and nucleus accumbens) and tractography-parcellated striatum. Diffusion MRI permitted parcellation of the striatum into seven subregions based on the cortical areas of maximal connectivity from the Tziortzi atlas. No significant differences in mean susceptibility were found in the standard striatum anatomy. For the parcellated striatum, the caudal motor subregion, the most affected region in PD, showed lower iron levels compared to healthy controls. Receiver operating characteristic curves using mean susceptibility in the caudal motor striatum showed a good diagnostic accuracy of 0.80 when classifying early-stage PD from healthy controls. This study highlights that tractography-based parcellation of the striatum could enhance sensitivity to changes in iron levels, which have not been consistent in the PD literature. The decreased caudal motor striatum iron was sufficiently sensitive to PD, but not RBD. QSM in the striatum could contribute to development of a multivariate or multimodal biomarker of early-stage PD, but further work in larger datasets is needed to confirm its utility in prodromal groups.
Collapse
Affiliation(s)
- Erind Alushaj
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Dimuthu Hemachandra
- Robarts Research Institute, Western University, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Alan Kuurstra
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Ravi S Menon
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Hooman Ganjavi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Manas Sharma
- Department of Radiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Alia Kashgari
- Department of Medicine, Respirology Division, Western University, London, Ontario, Canada
| | - Jennifer Barr
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - William Reisman
- Department of Medicine, Respirology Division, Western University, London, Ontario, Canada
| | - Ali R Khan
- Robarts Research Institute, Western University, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Penny A MacDonald
- Western Institute for Neuroscience, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada.
| |
Collapse
|
14
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. Neurobiol Dis 2023; 185:106252. [PMID: 37536382 DOI: 10.1016/j.nbd.2023.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patients, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron‑sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms affecting receptor expression and long-term potentiation in the limbic subdivision. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
15
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289978. [PMID: 37292704 PMCID: PMC10246056 DOI: 10.1101/2023.05.15.23289978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patient cohort, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns extracted from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron-sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms that affect receptor expression and long-term potentiation. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A. Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M. Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Jäschke D, Steiner KM, Chang DI, Claaßen J, Uslar E, Thieme A, Gerwig M, Pfaffenrot V, Hulst T, Gussew A, Maderwald S, Göricke SL, Minnerop M, Ladd ME, Reichenbach JR, Timmann D, Deistung A. Age-related differences of cerebellar cortex and nuclei: MRI findings in healthy controls and its application to spinocerebellar ataxia (SCA6) patients. Neuroimage 2023; 270:119950. [PMID: 36822250 DOI: 10.1016/j.neuroimage.2023.119950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.
Collapse
Affiliation(s)
- Dominik Jäschke
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel 4031, Switzerland
| | - Katharina M Steiner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen 45147, Germany
| | - Dae-In Chang
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Clinic for Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital of the Ruhr-University Bochum, Bochum 44791, Germany
| | - Jens Claaßen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Fachklinik für Neurologie, MEDICLIN Klinik Reichshof, Reichshof-Eckenhagen 51580, Germany
| | - Ellen Uslar
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Marcus Gerwig
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany
| | - Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Thomas Hulst
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erasmus University College, Rotterdam 3011 HP, the Netherlands
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen 45141, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich 52425, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, Heidelberg University, Heidelberg 69120, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen 45141, Germany
| | - Andreas Deistung
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen 45147, Germany; University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, Halle (Saale) 06120, Germany; Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena 07743, Germany.
| |
Collapse
|
17
|
Martínez M, Ariz M, Alvarez I, Castellanos G, Aguilar M, Hernández-Vara J, Caballol N, Garrido A, Bayés À, Vilas D, Marti MJ, Pastor P, de Solórzano CO, Pastor MA. Brainstem neuromelanin and iron MRI reveals a precise signature for idiopathic and LRRK2 Parkinson's disease. NPJ Parkinsons Dis 2023; 9:62. [PMID: 37061532 PMCID: PMC10105708 DOI: 10.1038/s41531-023-00503-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/24/2023] [Indexed: 04/17/2023] Open
Abstract
Neuromelanin (NM) loss in substantia nigra pars compacta (SNc) and locus coeruleus (LC) reflects neuronal death in Parkinson's disease (PD). Since genetically-determined PD shows varied clinical expressivity, we wanted to accurately quantify and locate brainstem NM and iron, to discover whether specific MRI patterns are linked to Leucine-rich repeat kinase 2 G2019S PD (LRRK2-PD) or idiopathic Parkinson's disease (iPD). A 3D automated MRI atlas-based segmentation pipeline (3D-ABSP) for NM/iron-sensitive MRI images topographically characterized the SNc, LC, and red nucleus (RN) neuronal loss and calculated NM/iron contrast ratio (CR) and normalized volume (nVol). Left-side NM nVol was larger in all groups. PD had lower NM CR and nVol in ventral-caudal SNc, whereas iron increased in lateral, medial-rostral, and caudal SNc. The SNc NM CR reduction was associated with psychiatric symptoms. LC CR and nVol discriminated better among subgroups: LRRK2-PD had similar LC NM CR and nVol as that of controls, and larger LC NM nVol and RN iron CR than iPD. PD showed higher iron SNc nVol than controls, especially among LRRK2-PD. ROC analyses showed an AUC > 0.92 for most pairwise subgroup comparisons, with SNc NM being the best discriminator between HC and PD. NM measures maintained their discriminator power considering the subgroup of PD patients with less than 5 years of disease duration. The SNc iron CR and nVol increase was associated with longer disease duration in PD patients. The 3D-ABSP sensitively identified NM and iron MRI patterns strongly correlated with phenotypic PD features.
Collapse
Affiliation(s)
- Martín Martínez
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain
- School of Education and Psychology, University of Navarra, Pamplona, Spain
| | - Mikel Ariz
- Ciberonc and Solid Tumours and Biomarkers Program, CIMA University of Navarra, Pamplona, Spain
| | - Ignacio Alvarez
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Gabriel Castellanos
- Department of Physiological Sciences, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miquel Aguilar
- Movement Disorders Unit, Neurology, University Hospital Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurology Department, Hospital Universitari Vall D´Hebron, Neurodegenerative Diseases Research Group, Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Núria Caballol
- Department of Neurology, Complex Hospitalari Moisès Broggi, Sant Joan Despí, Barcelona, Spain
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Àngels Bayés
- Parkinson and Movement disorders Unit, Hospital Quirón-Teknon, Barcelona, Spain
| | - Dolores Vilas
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain
| | - Maria Jose Marti
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas: CB06/05/0018-ISCIII), ERN-RND Hospital Clínic i Provincial de Barcelona, Barcelona, Catalonia, Spain
- Department of Medicine & Institut de Neurociències of the University of Barcelona, Barcelona, Catalonia, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Spain.
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Catalonia, Spain.
| | | | - Maria A Pastor
- Neuroimaging Laboratory, University of Navarra, School of Medicine, Pamplona, Spain.
- Neurosciences, School of Medicine, University of Navarra, Pamplona, Spain.
| |
Collapse
|
18
|
Xu X, Zhou M, Wu X, Zhao F, Luo X, Li K, Zeng Q, He J, Cheng H, Guan X, Huang P, Zhang M, Liu K. Increased iron deposition in nucleus accumbens associated with disease progression and chronicity in migraine. BMC Med 2023; 21:136. [PMID: 37024948 PMCID: PMC10080952 DOI: 10.1186/s12916-023-02855-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Migraine is one of the world's most prevalent and disabling diseases. Despite huge advances in neuroimaging research, more valuable neuroimaging markers are still urgently needed to provide important insights into the brain mechanisms that underlie migraine symptoms. We therefore aim to investigate the regional iron deposition in subcortical nuclei of migraineurs as compared to controls and its association with migraine-related pathophysiological assessments. METHODS A total of 200 migraineurs (56 chronic migraine [CM], 144 episodic migraine [EM]) and 41 matched controls were recruited. All subjects underwent MRI and clinical variables including frequency/duration of migraine, intensity of migraine, 6-item Headache Impact Test (HIT-6), Migraine Disability Assessment (MIDAS), and Pittsburgh Sleep Quality Index (PSQI) were recorded. Quantitative susceptibility mapping was employed to quantify the regional iron content in subcortical regions. Associations between clinical variables and regional iron deposition were studied as well. RESULTS Increased iron deposition in the putamen, caudate, and nucleus accumbens (NAC) was observed in migraineurs more than controls. Meanwhile, patients with CM had a significantly higher volume of iron deposits compared to EM in multiple subcortical nuclei, especially in NAC. Volume of iron in NAC can be used to distinguish patients with CM from EM with a sensitivity of 85.45% and specificity of 71.53%. As the most valuable neuroimaging markers in all of the subcortical nuclei, higher iron deposition in NAC was significantly associated with disease progression, and higher HIT-6, MIDAS, and PSQI. CONCLUSIONS These findings provide evidence that iron deposition in NAC may be a biomarker for migraine chronicity and migraine-related dysfunctions, thus may help to understand the underlying vascular and neural mechanisms of migraine. TRIAL REGISTRATION ClinicalTrials.gov, number NCT04939922.
Collapse
Affiliation(s)
- Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Mengting Zhou
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Fangling Zhao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Jiahui He
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Hongrong Cheng
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Li G, Tong R, Zhang M, Gillen KM, Jiang W, Du Y, Wang Y, Li J. Age-dependent changes in brain iron deposition and volume in deep gray matter nuclei using quantitative susceptibility mapping. Neuroimage 2023; 269:119923. [PMID: 36739101 DOI: 10.1016/j.neuroimage.2023.119923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microstructural changes in deep gray matter (DGM) nuclei are related to physiological behavior, cognition, and memory. Therefore, it is critical to study age-dependent trajectories of biomarkers in DGM nuclei for understanding brain development and aging, as well as predicting cognitive or neurodegenerative diseases. OBJECTIVES We aimed to (1) characterize age-dependent trajectories of mean susceptibility, adjusted volume, and total iron content simultaneously in DGM nuclei using quantitative susceptibility mapping (QSM); (2) examine potential contributions of sex related effects to the different age-dependence trajectories of volume and iron deposition; and (3) evaluate the ability of brain age prediction by combining mean magnetic susceptibility and volume of DGM nuclei. METHODS Magnetic susceptibilities and volumetric values of DGM nuclei were obtained from 220 healthy participants (aged 10-70 years) scanned on a 3T MRI system. Regions of interest (ROIs) were drawn manually on the QSM images. Univariate regression analysis between age and each of the MRI measurements in a single ROI was performed. Pearson correlation coefficients were calculated between magnetic susceptibility and adjusted volume in a single ROI. The statistical significance of sex differences in age-dependent trajectories of magnetic susceptibilities and adjusted volumes were determined using one-way ANCOVA. Multiple regression analysis was used to evaluate the ability to estimate brain age using a combination of the mean susceptibilities and adjusted volumes in multiple DGM nuclei. RESULTS Mean susceptibility and total iron content increased linearly, quadratically, or exponentially with age in all six DGM nuclei. Negative linear correlation was observed between adjusted volume and age in the head of the caudate nucleus (CN; R2 = 0.196, p < 0.001). Quadratic relationships were found between adjusted volume and age in the putamen (PUT; R2 = 0.335, p < 0.001), globus pallidus (GP; R2 = 0.062, p = 0.001), and dentate nucleus (DN; R2 = 0.077, p < 0.001). Males had higher mean magnetic susceptibility than females in the PUT (p = 0.001), red nucleus (RN; p = 0.002), and substantia nigra (SN; p < 0.001). Adjusted volumes of the CN (p < 0.001), PUT (p = 0.030), GP (p = 0.007), SN (p = 0.021), and DN (p < 0.001) were higher in females than those in males throughout the entire age range (10-70 years old). The total iron content of females was higher than that of males in the CN (p < 0.001), but lower than that of males in the PUT (p = 0.014) and RN (p = 0.043) throughout the entire age range (10-70 years old). Multiple regression analyses revealed that the combination of the mean susceptibility value of the PUT, and the volumes of the CN and PUT had the strongest associations with brain age (R2 = 0.586). CONCLUSIONS QSM can be used to simultaneously investigate age- and sex- dependent changes in magnetic susceptibility and volume of DGM nuclei, thus enabling a comprehensive understanding of the developmental trajectories of iron accumulation and volume in DGM nuclei during brain development and aging.
Collapse
Affiliation(s)
- Gaiying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Rui Tong
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Miao Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Kelly M Gillen
- Department of Radiology, Weill Medical College of Cornell University, 407 East 61st St., New York, New York, United States 10065
| | - Wenqing Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, China 200030
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Shanghai, China 200030
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, 407 East 61st St., New York, New York, United States 10065
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062; Institute of Brain and Education Innovation, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062.
| |
Collapse
|
20
|
Zhang Y, Huang P, Wang X, Xu Q, Liu Y, Jin Z, Li Y, Cheng Z, Tang R, Chen S, He N, Yan F, Haacke EM. Visualizing the deep cerebellar nuclei using quantitative susceptibility mapping: An application in healthy controls, Parkinson's disease patients and essential tremor patients. Hum Brain Mapp 2023; 44:1810-1824. [PMID: 36502376 PMCID: PMC9921226 DOI: 10.1002/hbm.26178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/14/2022] Open
Abstract
The visualization and identification of the deep cerebellar nuclei (DCN) (dentate [DN], interposed [IN] and fastigial nuclei [FN]) are particularly challenging. We aimed to visualize the DCN using quantitative susceptibility mapping (QSM), predict the contrast differences between QSM and T2* weighted imaging, and compare the DCN volume and susceptibility in movement disorder populations and healthy controls (HCs). Seventy-one Parkinson's disease (PD) patients, 39 essential tremor patients, and 80 HCs were enrolled. The PD patients were subdivided into tremor dominant (TD) and postural instability/gait difficulty (PIGD) groups. A 3D strategically acquired gradient echo MR imaging protocol was used for each subject to obtain the QSM data. Regions of interest were drawn manually on the QSM data to calculate the volume and susceptibility. Correlation analysis between the susceptibility and either age or volume was performed and the intergroup differences of the volume and magnetic susceptibility in all the DCN structures were evaluated. For the most part, all the DCN structures were clearly visualized on the QSM data. The susceptibility increased as a function of volume for both the HC group and disease groups in the DN and IN (p < .001) but not the FN (p = .74). Only the volume of the FN in the TD-PD group was higher than that in the HCs (p = .012), otherwise, the volume and susceptibility among these four groups did not differ significantly. In conclusion, QSM provides clear visualization of the DCN structures. The results for the volume and susceptibility of the DCN can be used as baseline references in future studies of movement disorders.
Collapse
Affiliation(s)
- Youmin Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinhui Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Yu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijia Jin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zenghui Cheng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongbiao Tang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA.,Department of Radiology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
21
|
Flores S, Chen CD, Su Y, Dincer A, Keefe SJ, McKay NS, Paulick AM, Perez-Carrillo GG, Wang L, Hornbeck RC, Goyal M, Vlassenko A, Schwarz S, Nickels ML, Wong DF, Tu Z, McConathy JE, Morris JC, Benzinger TLS, Gordon BA. Investigating Tau and Amyloid Tracer Skull Binding in Studies of Alzheimer Disease. J Nucl Med 2023; 64:287-293. [PMID: 35953305 PMCID: PMC9902848 DOI: 10.2967/jnumed.122.263948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Off-target binding of [18F]flortaucipir (FTP) can complicate quantitative PET analyses. An underdiscussed off-target region is the skull. Here, we characterize how often FTP skull binding occurs, its influence on estimates of Alzheimer disease pathology, its potential drivers, and whether skull uptake is a stable feature across time and tracers. Methods: In 313 cognitively normal and mildly impaired participants, CT scans were used to define a skull mask. This mask was used to quantify FTP skull uptake. Skull uptake of the amyloid-β PET tracers [18F]florbetapir and [11C]Pittsburgh compound B (n = 152) was also assessed. Gaussian mixture modeling defined abnormal levels of skull binding for each tracer. We examined the relationship of continuous bone uptake to known off-target binding in the basal ganglia and choroid plexus as well as skull density measured from the CT. Finally, we examined the confounding effect of skull binding on pathologic quantification. Results: We found that 50 of 313 (∼16%) FTP scans had high levels of skull signal. Most were female (n = 41, 82%), and in women, lower skull density was related to higher FTP skull signal. Visual reads by a neuroradiologist revealed a significant relationship with hyperostosis; however, only 21% of women with high skull binding were diagnosed with hyperostosis. FTP skull signal did not substantially correlate with other known off-target regions. Skull uptake was consistent over longitudinal FTP scans and across tracers. In amyloid-β-negative, but not -positive, individuals, FTP skull binding impacted quantitative estimates in temporal regions. Conclusion: FTP skull binding is a stable, participant-specific phenomenon and is unrelated to known off-target regions. Effects were found primarily in women and were partially related to lower bone density. The presence of [11C]Pittsburgh compound B skull binding suggests that defluorination does not fully explain FTP skull signal. As signal in skull bone can impact quantitative analyses and differs across sex, it should be explicitly addressed in studies of aging and Alzheimer disease.
Collapse
Affiliation(s)
- Shaney Flores
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles D Chen
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, Arizona
| | - Aylin Dincer
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah J Keefe
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole S McKay
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Angela M Paulick
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Liang Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Russ C Hornbeck
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Manu Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| | - Andrei Vlassenko
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Sally Schwarz
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael L Nickels
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dean F Wong
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| | - Brian A Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri;
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
22
|
Chen Y, Gong T, Sun C, Yang A, Gao F, Chen T, Chen W, Wang G. Regional age-related changes of neuromelanin and iron in the substantia nigra based on neuromelanin accumulation and iron deposition. Eur Radiol 2023; 33:3704-3714. [PMID: 36680605 DOI: 10.1007/s00330-023-09411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To investigate age-related neuromelanin signal variation and iron content changes in the subregions of substantia nigra (SN) using magnetization transfer contrast neuromelanin-sensitive multi-echo fast field echo sequence in a normal population. METHODS In this prospective study, 115 healthy volunteers between 20 and 86 years of age were recruited and scanned using 3.0-T MRI. We manually delineated neuromelanin accumulation and iron deposition regions in neuromelanin image and quantitative susceptibility mapping, respectively. We calculated the overlap region using the two measurements mentioned above. Partial correlation analysis was used to evaluate the correlations between volume, contrast ratio (CR), susceptibility of three subregions of SN, and age. Curve estimation models were used to find the best regression model. RESULTS CR increased with age (r = 0.379, p < 0.001; r = 0.371, p < 0.001), while volume showed an age-related decline (r = -0.559, p < 0.001; r = -0.410, p < 0.001) in the neuromelanin accumulation and overlap regions. Cubic polynomial regression analysis found a small increase in neuromelanin accumulation volume with age until 34, followed by a significant decrease until the 80 s (R2 = 0.358, p < 0.001). No significant correlations were found between susceptibility and age in any subregion. No correlation was found between CR and susceptibility in the overlap region. CONCLUSIONS Our results indicated that CR increased with age, while volume showed an age-related decline in the overlap region. We further found that the neuromelanin accumulation region volume increased until the 30 s and decreased into the 80 s. This study may provide a reference for future neurodegenerative elucidations of substantia nigra. KEY POINTS • Our results define the regional changes in neuromelanin and iron in the substantia nigra with age in the normal population, especially in the overlap region. • The contrast ratio increased with age in the neuromelanin accumulation and overlap regions, and volume showed an age-related decline, while contrast ratio and volume do not affect each other indirectly. • The contrast ratio of hyperintense neuromelanin in the overlap region was unaffected by iron content.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tong Chen
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | | | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China. .,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
23
|
Li JT, Qu Y, Gao HL, Li JY, Qin QX, Wang DL, Zhao JW, Mao ZJ, Min Z, Xiong YJ, Xue Z. A nomogram based on iron metabolism can help identify apathy in patients with Parkinson's disease. Front Aging Neurosci 2023; 14:1062964. [PMID: 36742206 PMCID: PMC9892642 DOI: 10.3389/fnagi.2022.1062964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023] Open
Abstract
Backgrounds Apathy is common in Parkinson's disease (PD) but difficult to identify. Growing evidence suggests that abnormal iron metabolism is associated with apathy in PD. We aimed to investigate the clinical features and iron metabolism of apathetic patients with PD, and construct a nomogram for predicting apathy in PD. Methods Data of 201 patients with PD were analyzed. Demographic data, Apathy Scale (AS) assessments, and serum iron metabolism parameters were obtained. Spearman correlations were used to assess relationships between AS scores and iron metabolism parameters, separately for male and female patients. Additionally, a nomograph for detecting apathetic patients with PD was built based on the results of logistic regression analysis. Results The serum transferrin (TRF, p < 0.0024) concentration and total iron binding capacity (TIBC, p < 0.0024) were lower in the apathetic group after Bonferroni correction, and they were negatively associated with AS scores in male participants with PD (TRF, r = -0.27, p = 0.010; TIBC, r = -0.259, p = 0.014). The nomogram was developed by incorporating the following five parameters: age, sex, serum iron concentration, TIBC and Hamilton Depression Rating Scale (HAMD) scores, which showed good discrimination and calibration, with a consistency index of 0.799 (95% confidence interval = 0.732-0.865). Conclusion Abnormal iron metabolism may contribute to apathy in PD, especially among men. TIBC levels in combination with HAMD scores can be effectively used for the prediction of apathetic patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zheng Xue
- *Correspondence: Yong-jie Xiong, ; Zheng Xue,
| |
Collapse
|
24
|
Sharma B, Beaudin AE, Cox E, Saad F, Nelles K, Gee M, Frayne R, Gobbi DG, Camicioli R, Smith EE, McCreary CR. Brain iron content in cerebral amyloid angiopathy using quantitative susceptibility mapping. Front Neurosci 2023; 17:1139988. [PMID: 37139529 PMCID: PMC10149796 DOI: 10.3389/fnins.2023.1139988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Cerebral amyloid angiopathy (CAA) is a small vessel disease that causes covert and symptomatic brain hemorrhaging. We hypothesized that persons with CAA would have increased brain iron content detectable by quantitative susceptibility mapping (QSM) on magnetic resonance imaging (MRI), and that higher iron content would be associated with worse cognition. Methods Participants with CAA (n = 21), mild Alzheimer's disease with dementia (AD-dementia; n = 14), and normal controls (NC; n = 83) underwent 3T MRI. Post-processing QSM techniques were applied to obtain susceptibility values for regions of the frontal and occipital lobe, thalamus, caudate, putamen, pallidum, and hippocampus. Linear regression was used to examine differences between groups, and associations with global cognition, controlling for multiple comparisons using the false discovery rate method. Results No differences were found between regions of interest in CAA compared to NC. In AD, the calcarine sulcus had greater iron than NC (β = 0.99 [95% CI: 0.44, 1.53], q < 0.01). However, calcarine sulcus iron content was not associated with global cognition, measured by the Montreal Cognitive Assessment (p > 0.05 for all participants, NC, CAA, and AD). Discussion After correcting for multiple comparisons, brain iron content, measured via QSM, was not elevated in CAA compared to NC in this exploratory study.
Collapse
Affiliation(s)
- Breni Sharma
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Andrew E. Beaudin
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Emily Cox
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Feryal Saad
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
| | - Krista Nelles
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Myrlene Gee
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Richard Frayne
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, University of Calgary, Calgary, AB, Canada
| | - David G. Gobbi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Calgary Image Processing and Analysis Centre, University of Calgary, Calgary, AB, Canada
| | - Richard Camicioli
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Eric E. Smith
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- *Correspondence: Eric E. Smith,
| | - Cheryl R. McCreary
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Seaman Family MR Research Centre, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Alvarez-Sanchez N, Dunn SE. Potential biological contributers to the sex difference in multiple sclerosis progression. Front Immunol 2023; 14:1175874. [PMID: 37122747 PMCID: PMC10140530 DOI: 10.3389/fimmu.2023.1175874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease that targets the myelin sheath of central nervous system (CNS) neurons leading to axon injury, neuronal death, and neurological progression. Though women are more highly susceptible to developing MS, men that develop this disease exhibit greater cognitive impairment and accumulate disability more rapidly than women. Magnetic resonance imaging and pathology studies have revealed that the greater neurological progression seen in males correlates with chronic immune activation and increased iron accumulation at the rims of chronic white matter lesions as well as more intensive whole brain and grey matter atrophy and axon loss. Studies in humans and in animal models of MS suggest that male aged microglia do not have a higher propensity for inflammation, but may become more re-active at the rim of white matter lesions as a result of the presence of pro-inflammatory T cells, greater astrocyte activation or iron release from oligodendrocytes in the males. There is also evidence that remyelination is more efficient in aged female than aged male rodents and that male neurons are more susceptible to oxidative and nitrosative stress. Both sex chromosome complement and sex hormones contribute to these sex differences in biology.
Collapse
Affiliation(s)
- Nuria Alvarez-Sanchez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
| | - Shannon E. Dunn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Immunology, 1 King’s College Circle, Toronto, ON, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
- *Correspondence: Shannon E. Dunn,
| |
Collapse
|
26
|
Luo J, Collingwood JF. Effective R 2 relaxation rate, derived from dual-contrast fast-spin-echo MRI, enables detection of hemisphere differences in iron level and dopamine function in Parkinson's disease and healthy individuals. J Neurosci Methods 2022; 382:109708. [PMID: 36089168 DOI: 10.1016/j.jneumeth.2022.109708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Clinical estimates of brain iron concentration are achievable with quantitative transverse relaxation rate R2, via time-consuming multiple spin-echo (SE) sequences. The objective of this study was to investigate whether quantitative iron-sensitive information may be derived from 3.0 T dual-contrast fast-spin-echo (FSE) sequences (typically employed in anatomical non-quantitative evaluations), as a routinely-collected alternative to evaluate iron levels in healthy (HC) and Parkinson's disease (PD) brains. NEW METHOD MRI 3.0 T FSE data from the Parkinson's Progression Markers Initiative (PPMI) (12 PD, 12 age- and gender-matched HC subjects) were cross-sectionally and longitudinally evaluated. A new measure, 'effective R2', was calculated for bilateral subcortical grey matter (caudate nucleus, putamen, globus pallidus, red nucleus, substantia nigra). Linear regression analysis was performed to correlate 'effective R2' with models of age-dependent brain iron concentration and striatal dopamine transporter (DaT) receptor binding ratio. RESULTS Effective R2 was strongly correlated with estimated brain iron concentration. In PD, putaminal effective R2 difference was observed between the hemispheres contra-/ipsi-lateral to the predominantly symptomatic side at onset. This hemispheric difference was correlated with the putaminal DaT binding ratios in PD. COMPARISON WITH EXISTING METHOD(S) Effective R2, derived from rapid dual-contrast FSE sequences, showed viability as an alternative to R2 from SE sequences. Linear correlation of effective R2 with estimated iron concentration was comparable to documented iron-dependent R2. The effective R2 correlation coefficient was consistent with theoretical R2 iron-dependence at 3.0 T. CONCLUSIONS Effective R2 has clinical potential as a fast quantitative method, as an alternative to R2, to aid evaluation of brain iron levels and DaT function.
Collapse
Affiliation(s)
- Jierong Luo
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
27
|
Naji N, Lauzon ML, Seres P, Stolz E, Frayne R, Lebel C, Beaulieu C, Wilman AH. Multisite reproducibility of quantitative susceptibility mapping and effective transverse relaxation rate in deep gray matter at 3 T using locally optimized sequences in 24 traveling heads. NMR IN BIOMEDICINE 2022; 35:e4788. [PMID: 35704837 DOI: 10.1002/nbm.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Iron concentration in the human brain plays a crucial role in several neurodegenerative diseases and can be monitored noninvasively using quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2 *) mapping from multiecho T2 *-weighted images. Large population studies enable better understanding of pathologies and can benefit from pooling multisite data. However, reproducibility may be compromised between sites and studies using different hardware and sequence protocols. This work investigates QSM and R2 * reproducibility at 3 T using locally optimized sequences from three centers and two vendors, and investigates possible reduction of cross-site variability through postprocessing approaches. Twenty-four healthy subjects traveled between three sites and were scanned twice at each site. Scan-rescan measurements from seven deep gray matter regions were used for assessing within-site and cross-site reproducibility using intraclass correlation coefficient (ICC) and within-subject standard deviation (SDw) measures. In addition, multiple QSM and R2 * postprocessing options were investigated with the aim to minimize cross-site sequence-related variations, including: mask generation approach, echo-timing selection, harmonizing spatial resolution, field map estimation, susceptibility inversion method, and linear field correction for magnitude images. The same-subject cross-site region of interest measurements for QSM and R2 * were highly correlated (R2 ≥ 0.94) and reproducible (mean ICC of 0.89 and 0.82 for QSM and R2 *, respectively). The mean cross-site SDw was 4.16 parts per billion (ppb) for QSM and 1.27 s-1 for R2 *. For within-site measurements of QSM and R2 *, the mean ICC was 0.97 and 0.87 and mean SDw was 2.36 ppb and 0.97 s-1 , respectively. The precision level is regionally dependent and is reduced in the frontal lobe, near brain edges, and in white matter regions. Cross-site QSM variability (mean SDw) was reduced up to 46% through postprocessing approaches, such as masking out less reliable regions, matching available echo timings and spatial resolution, avoiding the use of the nonconsistent magnitude contrast between scans in field estimation, and minimizing streaking artifacts.
Collapse
Affiliation(s)
- Nashwan Naji
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - M Louis Lauzon
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Stolz
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Hagberg GE, Eckstein K, Tuzzi E, Zhou J, Robinson S, Scheffler K. Phase-based masking for quantitative susceptibility mapping of the human brain at 9.4T. Magn Reson Med 2022; 88:2267-2276. [PMID: 35754142 PMCID: PMC7613679 DOI: 10.1002/mrm.29368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop improved tissue masks for QSM. METHODS Masks including voxels at the brain surface were automatically generated from the magnitude alone (MM) or combined with test functions from the first (PG) or second (PB) derivative of the sign of the wrapped phase. Phase images at 3T and 9.4T were simulated at different TEs and used to generate a mask, PItoh , with between-voxel phase differences less than π. MM, PG, and PB were compared with PItoh . QSM were generated from 3D multi-echo gradient-echo data acquired at 9.4T (21 subjects aged: 20-56y), and from the QSM2016 challenge 3T data using different masks, unwrapping, background removal, and dipole inversion algorithms. QSM contrast was quantified using age-based iron concentrations. RESULTS Close to air cavities, phase wraps became denser with increasing field and echo time, yielding increased values of the test functions. Compared with PItoh , PB had the highest Dice coefficient, while PG had the lowest and MM the highest percentage of voxels outside PItoh. Artifacts observed in QSM at 9.4T with MM were mitigated by stronger background filters but yielded a reduced QSM contrast. With PB, QSM contrast was greater and artifacts diminished. Similar results were obtained with challenge data, evidencing larger effects of mask close to air cavities. CONCLUSION Automatic, phase-based masking founded on the second derivative of the sign of the wrapped phase, including cortical voxels at the brain surface, was able to mitigate artifacts and restore QSM contrast across cortical and subcortical brain regions.
Collapse
Affiliation(s)
- Gisela E. Hagberg
- Department for Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
- High Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Korbinian Eckstein
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- High Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Elisa Tuzzi
- Department for Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
- High Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jiazheng Zhou
- Department for Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
- High Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Simon Robinson
- Department of Neurology, Medical University of Graz, Graz, Austria
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
- High Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
29
|
Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Exp Brain Res 2022; 240:3271-3288. [PMID: 36301336 DOI: 10.1007/s00221-022-06484-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Dopamine-related abnormalities in the basal ganglia have been implicated in attention-deficit/hyperactivity disorder (ADHD). Iron plays a critical role in supporting dopaminergic function, and reduced brain iron and serum ferritin levels have been linked to ADHD symptom severity in children. Furthermore, the basal ganglia is a central brain region implicated in ADHD psychopathology and involved in motor and reward functions as well as emotional responding. The present study repurposed diffusion tensor imaging (DTI) to examine effects of an ADHD diagnosis and sex on iron deposition within the basal ganglia in children ages 8-12 years. We further explored associations between brain iron levels and ADHD symptom severity and affective symptoms. We observed reduced iron levels in children with ADHD in the bilateral limbic region of the striatum, as well as reduced levels of iron-deposition in males in the sensorimotor striatal subregion, regardless of diagnosis. Across the whole sample, iron-deposition increased with age in all regions. Brain-behavior analyses revealed that, across diagnostic groups, lower tissue-iron levels in bilateral limbic striatum correlated with greater ADHD symptom severity, whereas lower tissue-iron levels in the left limbic striatum only correlated with anxious, depressive and affective symptom severity. This study sheds light on the neurobiological underpinnings of ADHD, specifically highlighting the localization of tissue-iron deficiency in limbic regions, and providing support for repurposing DTI for brain iron analyses. Our findings highlight the need for further investigation of iron as a biomarker in the diagnosis and treatment of ADHD and sex differences.
Collapse
|
30
|
Yang L, Cho J, Chen T, Gillen KM, Li J, Zhang Q, Guo L, Wang Y. Oxygen extraction fraction (OEF) assesses cerebral oxygen metabolism of deep gray matter in patients with pre-eclampsia. Eur Radiol 2022; 32:6058-6069. [PMID: 35348866 DOI: 10.1007/s00330-022-08713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objective of this study was to compare oxygen extraction fraction (OEF) values in the deep gray matter (GM) of pre-eclampsia (PE) patients, pregnant healthy controls (PHCs), and non-pregnant healthy controls (NPHCs) to explore their brain oxygen metabolism differences in GM. METHODS Forty-seven PE patients, forty NPHCs, and twenty-one PHCs were included. Brain OEF values were computed from quantitative susceptibility mapping (QSM) plus quantitative blood oxygen level-dependent magnitude (QSM + qBOLD = QQ)-based mapping. One-way ANOVA was used to compare mean OEF values in the three groups. The area under the curve of the mean OEF value in each region of interest was estimated using a receiver operating characteristic curve analysis. RESULTS We found that the mean OEF values in the thalamus, putamen, caudate nucleus, pallidum, and substantia nigra were significantly different in these three groups (F = 5.867, p = 0.004; F = 5.142, p = 0007; F = 6.158, p = 0.003; F = 6.319, p = 0.003; F = 5.491, p = 0.005). The mean OEF values for these 5 regions were higher in PE patients than in NPHCs and in PHCs (p < 0.05). The AUC of these ROIs ranged from 0.673 to 0.692 (p < 0.01) and cutoff values varied from 35.1 to 36.6%, indicating that the OEF values could discriminate patients with and without PE. Stepwise multivariate analysis revealed that the OEF values correlated with hematocrit in pregnant women (r = 0.353, p = 0.003). CONCLUSION OEF values in the brains of pregnant women can be measured in clinical practice using QQ-based OEF mapping for noninvasive assessment of hypertensive disorders. KEY POINTS • Pre-eclampsia is a hypertensive disorder associated with abnormalities in brain oxygen extraction. • Oxygen extraction fraction (OEF) is an indicator of brain tissue viability and function. QQ-based mapping of OEF is a new MRI technique that can noninvasively quantify brain oxygen metabolism. • OEF values in the brains of pregnant women can be measured for noninvasive assessment of hypertensive disorders in clinical practice.
Collapse
Affiliation(s)
- Linfeng Yang
- Jinan Maternity and Child Care Hospital, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 2 Jian-guo Xiao Jing-san Road, Jinan, 250001, Shandong, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Tao Chen
- Jinan Maternity and Child Care Hospital, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 2 Jian-guo Xiao Jing-san Road, Jinan, 250001, Shandong, China
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xicheng District, Beijing, 100050, China
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, Shandong, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, 407 East 61st Street, New York, NY, 10065, USA
| |
Collapse
|
31
|
Xu J, Xu G, Fang J. Association between iron exposures and stroke in adults: Results from National Health and Nutrition Examination Survey during 2007-2016 in United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1925-1934. [PMID: 34003723 DOI: 10.1080/09603123.2021.1926440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The available findings on the association between iron status and risk of stroke remain controversial. We used multivariable logistic regression and restricted cubic spline models to explore the association between iron exposures and risk of stroke in the US National Health and Nutrition Examination Survey (NHANES 2007-2016, n = 24,627). A total of 941 (3.82%) stroke cases were identified in this study. In women, the ORs with 95% CIs of prevalence of stroke were 0.92 (0.65-1.28), 0.66 (0.44-0.98) and 0.72 (0.49-1.08) across quartiles 2-4 compared with quartile 1 of iron intake, respectively. An inverse and L-shaped association between iron intake and risk of stroke in women was observed, and the curve plateaued at 20 mg/day. However, neither serum iron concentrations nor iron intake were significantly associated with riskof stroke in men. Our study found that iron intake was inversely associated with risk of stroke in a sex-dependent fashion.
Collapse
Affiliation(s)
- Jingang Xu
- Department of Neurosurgery, Dongyang People's Hospital, Zhejiang, China
| | - Guofeng Xu
- Department of Neurosurgery, Dongyang People's Hospital, Zhejiang, China
| | - Junkang Fang
- Department of Neurosurgery, Dongyang People's Hospital, Zhejiang, China
| |
Collapse
|
32
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
33
|
Sobolewski M, Conrad K, Marvin E, Eckard M, Goeke CM, Merrill AK, Welle K, Jackson BP, Gelein R, Chalupa D, Oberdörster G, Cory-Slechta DA. The potential involvement of inhaled iron (Fe) in the neurotoxic effects of ultrafine particulate matter air pollution exposure on brain development in mice. Part Fibre Toxicol 2022; 19:56. [PMID: 35945578 PMCID: PMC9364598 DOI: 10.1186/s12989-022-00496-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.
Collapse
Affiliation(s)
- Marissa Sobolewski
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Katherine Conrad
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Elena Marvin
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Matthew Eckard
- grid.262333.50000000098205004Department of Psychology, Radford University, Radford, VA 24142 USA
| | - Calla M. Goeke
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Alyssa K. Merrill
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Kevin Welle
- grid.412750.50000 0004 1936 9166Proteomics Core, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Brian P. Jackson
- grid.254880.30000 0001 2179 2404Department of Earth Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Robert Gelein
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - David Chalupa
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Günter Oberdörster
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - Deborah A. Cory-Slechta
- grid.412750.50000 0004 1936 9166Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642 USA
| |
Collapse
|
34
|
Tu J, Yan J, Liu J, Liu D, Wang X, Gao F. Iron deposition in the precuneus is correlated with mild cognitive impairment in patients with cerebral microbleeds: A quantitative susceptibility mapping study. Front Neurosci 2022; 16:944709. [PMID: 36003962 PMCID: PMC9395124 DOI: 10.3389/fnins.2022.944709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to define whether mild cognitive impairment (MCI) is associated with iron deposition in rich-club nodes distant from cerebral microbleeds (CMBs) in patients with cerebral small vessel disease (CSVD). Methods A total of 64 participants underwent magnetic resonance imaging (MRI) scanning and were separated into three groups, namely, CMB(+), CMB(–), and healthy controls (HCs). We compared their characteristics and susceptibility values of rich-club nodes [e.g., superior frontal gyrus (SFG), precuneus, superior occipital gyrus (SOG), thalamus, and putamen]. We then divided the CMB(+) and CMB(–) groups into subgroups of patients with or without MCI. Then, we analyzed the relationship between iron deposition and MCI by comparing the susceptibility values of rich-club nodes. We assessed cognitive functions using the Montreal Cognitive Assessment (MoCA) and quantified iron content using quantitative susceptibility mapping (QSM). Results In the putamen, the CMB(+) and CMB(–) groups had significantly different susceptibility values. Compared with the HCs, the CMB(+) and CMB(–) groups had significantly different susceptibility values for the SFG and SOG. In addition, we found significant differences in the putamen susceptibility values of the CMB(+)MCI(+) group and the two CMB(–) groups. The CMB(+)MCI(+) and CMB(+)MCI(–) groups had significantly different precuneus susceptibility values. The binary logistic regression analysis revealed that only higher susceptibility values of precuneus were associated with a cognitive decline in patients with CMBs, and it indicated statistical significance. Conclusion Iron deposition in the precuneus is an independent risk factor for MCI in patients with CMBs. CMBs might influence iron content in remote rich-club nodes and be relevant to MCI.
Collapse
Affiliation(s)
- Jing Tu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Jin Yan
- Department of Radiology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Juan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dandan Liu
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiaomeng Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Fei Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
- *Correspondence: Fei Gao
| |
Collapse
|
35
|
Jing XZ, Yuan XZ, Li GY, Chen JL, Wu R, Yang LL, Zhang SY, Wang XP, Li JQ. Increased Magnetic Susceptibility in the Deep Gray Matter Nuclei of Wilson's Disease: Have We Been Ignoring Atrophy? Front Neurosci 2022; 16:794375. [PMID: 35720701 PMCID: PMC9198485 DOI: 10.3389/fnins.2022.794375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Histopathological studies in Wilson's disease (WD) have revealed increased copper and iron concentrations in the deep gray matter nuclei. However, the commonly used mean bulk susceptibility only reflects the regional metal concentration rather than the total metal content, and regional atrophy may affect the assessment of mean bulk susceptibility. Our study aimed to quantitatively assess the changes of metal concentration and total metal content in deep gray matter nuclei by quantitative susceptibility mapping to distinguish patients with neurological and hepatic WD from healthy controls. Methods Quantitative susceptibility maps were obtained from 20 patients with neurological WD, 10 patients with hepatic WD, and 25 healthy controls on a 3T magnetic resonance imaging system. Mean bulk susceptibility, volumes, and total susceptibility of deep gray matter nuclei in different groups were compared using a linear regression model. The area under the curve (AUC) was calculated by receiver characteristic curve to analyze the diagnostic capability of mean bulk susceptibility and total susceptibility. Results Mean bulk susceptibility and total susceptibility of multiple deep gray matter nuclei in patients with WD were higher than those in healthy controls. Compared with patients with hepatic WD, patients with neurological WD had higher mean bulk susceptibility but similar total susceptibility in the head of the caudate nuclei, globus pallidus, and putamen. Mean bulk susceptibility of putamen demonstrated the best diagnostic capability for patients with neurological WD, the AUC was 1, and the sensitivity and specificity were all equal to 1. Total susceptibility of pontine tegmentum was most significant for the diagnosis of patients with hepatic WD, the AUC was 0.848, and the sensitivity and specificity were 0.7 and 0.96, respectively. Conclusion Brain atrophy may affect the assessment of mean bulk susceptibility in the deep gray matter nuclei of patients with WD, and total susceptibility should be an additional metric for total metal content assessment. Mean bulk susceptibility and total susceptibility of deep gray matter nuclei may be helpful for the early diagnosis of WD.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Gai-Ying Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jia-Lin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Rong Wu
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Li Yang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, China
| | - Xiao-Ping Wang
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
36
|
Persson N, Andersson M. Hippocampal volume, and the anterior-posterior sub regions relates to recall and recognition over five years: Bidirectional brain-behaviour associations. Neuroimage 2022; 256:119239. [PMID: 35462034 DOI: 10.1016/j.neuroimage.2022.119239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Longitudinal studies of brain-behavior links between episodic memory (EM) and the hippocampus (HC), including anterior-posterior subregions, are few. This study assessed brain-cognition relationships between HC volumes, including the anterior-posterior subregions, item recall, and recognition, in 358 adults (52%♀; 20-80 yrs. at baseline, 221 returned at follow-up). Bivariate latent change score models assessed mean change, variance, and bidirectional associations between the hippocampal regions and the EM tasks. The influence of chronological age, sex, and education were included as covariates. The results showed that: larger baseline HC volume slowed subsequent decline in EM scores; higher associative memory scores at offset mitigated five-year HC volume loss; larger anterior HC volumes slowed decline in recognition memory, while larger posterior volumes mitigated decline in recall scores; the volume of the anterior HC was not associated with change in recall scores; and posterior HC volume did not predict change in recognition memory scores. The covariates examined - age, sex, and education- had some cross-sectional influence, but only limited longitudinal effects. The results explain the bidirectional associations in brain-cognition links, and how the distinct sub-regional HC correlates for recall and recognition, respectively. These results also shed light on potential links between maintained brain volumes and restored cognitive functions during the aging process.
Collapse
Affiliation(s)
- Ninni Persson
- Department of Psychology, Uppsala University, Uppsala, Sweden; Institute for Globally Distributed Open Research and Education (IGDORE), Sweden.
| | - Micael Andersson
- Department of Radiation Sciences, Umeå University Hospital, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Reith TP, Prah MA, Choi EJ, Lee J, Wujek R, Al-Gizawiy M, Chitambar CR, Connelly JM, Schmainda KM. Basal Ganglia Iron Content Increases with Glioma Severity Using Quantitative Susceptibility Mapping: A Potential Biomarker of Tumor Severity. Tomography 2022; 8:789-797. [PMID: 35314642 PMCID: PMC8938779 DOI: 10.3390/tomography8020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Gliomas have been found to alter iron metabolism and transport in ways that result in an expansion of their intracellular iron compartments to support aggressive tumor growth. This study used deep neural network trained quantitative susceptibility mapping to assess basal ganglia iron concentrations in glioma patients. MATERIALS AND METHODS Ninety-two patients with brain lesions were initially enrolled in this study and fifty-nine met the inclusion criteria. Susceptibility-weighted images were collected at 3.0 T and used to construct quantitative susceptibility maps via a deep neural network-based method. The regions of interest were manually drawn within basal ganglia structures and the mean voxel intensities were extracted and averaged across multiple slices. One-way ANCOVA tests were conducted to compare the susceptibility values of groups of patients based on tumor grade while controlling for age, sex, and tumor type. RESULTS The mean basal ganglia susceptibility for patients with grade IV tumors was higher than that for patients with grade II tumors (p = 0.00153) and was also higher for patients with grade III tumors compared to patients with grade II tumors (p = 0.020), after controlling for age, sex, and tumor type. Patient age influenced susceptibility values (p = 0.00356), while sex (p = 0.69) and tumor type (p = 0.11) did not. CONCLUSIONS The basal ganglia iron content increased with glioma severity. Basal ganglia iron levels may thus be a useful biomarker in glioma prognosis and treatment, especially with regard to iron-based cancer therapies.
Collapse
Affiliation(s)
- Thomas P. Reith
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Melissa A. Prah
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Eun-Jung Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (E.-J.C.); (J.L.)
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea; (E.-J.C.); (J.L.)
| | - Robert Wujek
- Medical College of Wisconsin, Biomedical Engineering, Marquette University, 1515 W. Wisconsin Ave., Milwaukee, WI 53233, USA;
| | - Mona Al-Gizawiy
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
| | - Christopher R. Chitambar
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
- Medical College of Wisconsin, Hematology & Oncology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Jennifer M. Connelly
- Medical College of Wisconsin, Neurology & Neurosurgery, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;
| | - Kathleen M. Schmainda
- Medical College of Wisconsin, Biophysics, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA; (T.P.R.); (M.A.P.); (M.A.-G.); (C.R.C.)
- Medical College of Wisconsin, Radiology, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
38
|
Cho J, Nguyen TD, Huang W, Sweeney EM, Luo X, Kovanlikaya I, Zhang S, Gillen KM, Spincemaille P, Gupta A, Gauthier SA, Wang Y. Brain oxygen extraction fraction mapping in patients with multiple sclerosis. J Cereb Blood Flow Metab 2022; 42:338-348. [PMID: 34558996 PMCID: PMC9122515 DOI: 10.1177/0271678x211048031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We aimed to demonstrate the feasibility of whole brain oxygen extraction fraction (OEF) mapping for measuring lesion specific and regional OEF abnormalities in multiple sclerosis (MS) patients. In 22 MS patients and 11 healthy controls (HC), OEF and neural tissue susceptibility (χn) maps were computed from MRI multi-echo gradient echo data. In MS patients, 80 chronic active lesions with hyperintense rim on quantitative susceptibility mapping were identified, and the mean OEF and χn within the rim and core were compared using linear mixed-effect model analysis. The rim showed higher OEF and χn than the core: relative to their adjacent normal appearing white matter, OEF contrast = -6.6 ± 7.0% vs. -9.8 ± 7.8% (p < 0.001) and χn contrast = 33.9 ± 20.3 ppb vs. 25.7 ± 20.5 ppb (p = 0.017). Between MS and HC, OEF and χn were compared using a linear regression model in subject-based regions of interest. In the whole brain, compared to HC, MS had lower OEF, 30.4 ± 3.3% vs. 21.4 ± 4.4% (p < 0.001), and higher χn, -23.7 ± 7.0 ppb vs. -11.3 ± 7.7 ppb (p = 0.018). Our feasibility study suggests that OEF may serve as a useful quantitative marker of tissue oxygen utilization in MS.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Weiyuan Huang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Elizabeth M Sweeney
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Xianfu Luo
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Shun Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Susan A Gauthier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.,Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
39
|
Magnetic susceptibility in the deep gray matter may be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping study. Neuroradiology 2022; 64:1331-1342. [PMID: 34981175 DOI: 10.1007/s00234-021-02859-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To examine the relationship between apolipoprotein E gene (APOE) mutation status and iron accumulation in the deep gray matter of subjects with cognitive symptoms using quantitative susceptibility mapping (QSM). METHODS A total of 105 patients with cognitive symptoms were enrolled. QSM data were generated from 3D gradient-echo data using an STI Suite algorithm. A region of interest-based analysis with QSM was performed in the deep gray matter. Differences between APOE4 carriers and non-carriers were assessed by analysis of covariance. Multiple regression analysis was performed to identify the factors associated with magnetic susceptibility. RESULTS Clinical characters such as age, education, MMSE, vascular risk burden, and systolic blood pressure differ between APOE4 carrier and non-carrier groups. The APOE4 carrier group had higher magnetic susceptibility values than the non-carrier group, with significant differences in the caudate (p = 0.004), putamen (p < 0.0001), and globus pallidus (p < 0.0001) which imply higher iron accumulation. In a multiple regression analysis, APOE4 status was found to be a predictor of magnetic susceptibility value in the globus pallidus (p = 0.03); age for magnetic susceptibility value in the caudate nucleus (p = 0.0064); and age and hippocampal atrophy for magnetic susceptibility value in the putamen (p < 0.05). CONCLUSION Our study demonstrates that magnetic susceptibility in globus pallidus is related to APOE4 status while those of caudate and putamen are related to other factors including age. It suggests that brain iron accumulation in the deep gray matter is modulated by APOE4 and age with differential regional predilection.
Collapse
|
40
|
Dimov AV, Nguyen TD, Spincemaille P, Sweeney EM, Zinger N, Kovanlikaya I, Kopell BH, Gauthier SA, Wang Y. Global cerebrospinal fluid as a zero-reference regularization for brain quantitative susceptibility mapping. J Neuroimaging 2022; 32:141-147. [PMID: 34480496 PMCID: PMC8752493 DOI: 10.1111/jon.12923] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The objective ofthis study was to demonstrate a global cerebrospinal fluid (CSF) method for a consistent and automated zero referencing of brain quantitative susceptibility mapping (QSM). METHODS Whole brain CSF mask was automatically segmented by thresholding the gradient echo transverse relaxation ( R2∗) map, and regularization was employed to enforce uniform susceptibility distribution within the CSF volume in the field-to-susceptibility inversion. This global CSF regularization method was compared with a prior ventricular CSF regularization. Both reconstruction methods were compared in a repeatability study of 12 healthy subjects using t-test on susceptibility measurements, and in patient studies of 17 multiple sclerosis (MS) and 10 Parkinson's disease (PD) patients using Wilcoxon rank-sum test on radiological scores. RESULTS In scan-rescan experiments, global CSF regularization provided more consistent CSF volume as well as higher repeatability of QSM measurements than ventricular CSF regularization with a smaller bias: -2.7 parts per billion (ppb) versus -0.13 ppb (t-test p<0.05) and a narrower 95% limits of agreement: [-7.25, 6.99] ppb versus [-16.60, 11.19 ppb] (f-test p<0.05). In PD and MS patients, global CSF regularization reduced smoothly varying shadow artifacts and significantly improved the QSM quality score (p<0.001). CONCLUSIONS The proposed whole brain CSF method for QSM zero referencing improves repeatability and image quality of brain QSM compared to the ventricular CSF method.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | | | | | - Nicole Zinger
- Department of Neurology, Weill Cornell Medicine, New York, USA
| | | | - Brian H. Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
41
|
Li KR, Avecillas-Chasin J, Nguyen TD, Gillen KM, Dimov A, Chang E, Skudin C, Kopell BH, Wang Y, Shtilbans A. Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease. J Neuroimaging 2021; 32:363-371. [PMID: 34904328 DOI: 10.1111/jon.12957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Excessive brain iron deposition is involved in Parkinson's disease (PD) pathogenesis. However, the correlation of iron accumulation in various brain nuclei is not well-established in different stages of the disease. This cross-sectional study aims to evaluate quantitative susceptibility mapping (QSM) as an imaging technique to measure brain iron accumulation in PD patients in different stages compared to healthy controls. METHODS Ninety-six PD patients grouped by their Hoehn and Yahr (H&Y) stages and 31 healthy controls were included in this analysis. The magnetic susceptibility values of the substantia nigra (SN), red nucleus (RN), caudate, putamen, and globus pallidus were obtained and compared. RESULTS Iron level was increased in the SN of PD patients in all stages versus controls (p < .001), with no significant difference within stages. Iron in the RN was significantly increased in stage II versus controls (p = .013) and combined stages III and IV versus controls (p < .001). The iron levels in caudate, putamen, and globus pallidus were not different between any groups. CONCLUSIONS Our data suggest iron accumulation occurs early in the disease course and only in the SN and RN of these patients. This is a large cross-sectional study of brain iron deposition in PD patients according to H&Y staging. Prospective studies are warranted to further validate QSM as a method to follow brain iron, which could serve as a disease biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Kailyn R Li
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA.,MD Program, Weill Cornell Medicine, New York, New York, USA
| | | | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Kelly M Gillen
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Eileen Chang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Carly Skudin
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Brian H Kopell
- Department of Neurosurgery, Mount Sinai Hospital, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Alexander Shtilbans
- Department of Neurology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA.,Department of Neurology, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
42
|
Raab P, Ropele S, Bültmann E, Salcher R, Lanfermann H, Wattjes MP. Analysis of deep grey nuclei susceptibility in early childhood: a quantitative susceptibility mapping and R2* study at 3 Tesla. Neuroradiology 2021; 64:1021-1031. [PMID: 34787698 PMCID: PMC9005446 DOI: 10.1007/s00234-021-02846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/24/2021] [Indexed: 11/18/2022]
Abstract
Purpose Aging is the most significant determinant for brain iron accumulation in the deep grey matter. Data on brain iron evolution during brain maturation in early childhood are limited. The purpose of this study was to investigate age-related iron deposition in the deep grey matter in children using quantitative susceptibility (QSM) and R2* mapping. Methods We evaluated brain MRI scans of 74 children (age 6–154 months, mean 40 months). A multi-echo gradient-echo sequence obtained at 3 Tesla was used for the QSM and R2* calculation. Susceptibility of the pallidum, head of caudate nucleus, and putamen was correlated with age and compared between sexes. Results Susceptibility changes in all three nuclei correlated with age (correlation coefficients for QSM/R2*: globus pallidus 0.955/0.882, caudate nucleus 0.76/0.65, and putamen 0.643/0.611). During the first 2 years, the R2* values increased more rapidly than the QSM values, indicating a combined effect of iron deposition and myelination, followed by a likely dominating effect of iron deposition. There was no significant gender difference. Conclusion QSM and R2* can monitor myelin maturation processes and iron accumulation in the deep grey nuclei of the brain in early life and may be a promising tool for the detection of deviations of this normal process. Susceptibility in the deep nuclei is almost similar early after birth and increases more quickly in the pallidum. The combined use of QSM and R2* analysis is beneficial.
Collapse
Affiliation(s)
- Peter Raab
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Stefan Ropele
- Clinical Department of Neurology, Medical University of Graz, Graz, Austria
| | - Eva Bültmann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Rolf Salcher
- Clinic for Laryngology, Rhinology and Otology, Hannover Medical School, Hannover, Germany
| | - Heinrich Lanfermann
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
43
|
Xie H, Zhuang H, Guo Y, Sharma RD, Zhang Q, Li J, Lu S, Xu L, Chan Q, Yoneda T, Spincemaille P, Zhang H, Guo H, Prince MR, Yu C, Wang Y. The appearance of magnetic susceptibility objects in SWI phase depends on object size: Comparison with QSM and CT. Clin Imaging 2021; 82:67-72. [PMID: 34798560 DOI: 10.1016/j.clinimag.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE Tissue magnetic susceptibility sign can potentially be detected on susceptibility weighted imaging (SWI) phase (SW-P). This study aims to investigate its performance for depicting brain susceptibility structures. METHODS A simulation was performed to depict magnetic susceptibility structures of various geometries on SW-P and quantitative susceptibility mapping (QSM). Brain MRI was performed on 25 subjects using SWI on a 3 T MRI system. QSM was generated from the same data. SW-P and QSM were analyzed according to radiological assessment for depicting globus pallidus nuclei, optic radiation white matter tracts, and lateral ventricular choroid plexus calcifications. In 11 of these subjects, CT was available and correlated with SW-P and QSM to assess their performance in quantifying calcifications in the choroid plexus. RESULTS In simulation, the appearance of a sphere on SW-P ranged from centric nodule to mixed positive and negative values as the diameter increased. Large cylinders also appeared as mixed positive and negative values. In comparison, QSM correctly depicted the susceptibility distribution of all magnetic structures. On human brain images, SW-P depicted the globus pallidus and optic radiation with mixed positive and negative values, consistent with simulation, and small choroid plexus calcifications as either mixed positive and negative values or as centric nodules; QSM depicted all structures as solid structures with the expected signs. For measuring calcification in the choroid plexus, QSM vs CT linear regression had a higher coefficient of determination compared to SW-P vs CT and SW-P vs QSM. CONCLUSION Appearance of susceptibility sources on SW-P changes with object size. This problem can be overcome using QSM.
Collapse
Affiliation(s)
- Hong Xie
- Department of Radiology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei Province, China
| | - Hangwei Zhuang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yihao Guo
- Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ria D Sharma
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Qihao Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Jiahao Li
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Shimin Lu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Xu
- Department of Radiology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei Province, China
| | | | - Tetsuya Yoneda
- Department of Medical Imaging Sciences, Kumamoto University, Kumamoto, Japan
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Honglei Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Chengxin Yu
- Department of Radiology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei Province, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
44
|
Li X, Fischer H, Manzouri A, Månsson KNT, Li TQ. A Quantitative Data-Driven Analysis Framework for Resting-State Functional Magnetic Resonance Imaging: A Study of the Impact of Adult Age. Front Neurosci 2021; 15:768418. [PMID: 34744623 PMCID: PMC8565286 DOI: 10.3389/fnins.2021.768418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The objective of this study is to introduce a new quantitative data-driven analysis (QDA) framework for the analysis of resting-state fMRI (R-fMRI) and use it to investigate the effect of adult age on resting-state functional connectivity (RFC). Whole-brain R-fMRI measurements were conducted on a 3T clinical MRI scanner in 227 healthy adult volunteers (N = 227, aged 18-76 years old, male/female = 99/128). With the proposed QDA framework we derived two types of voxel-wise RFC metrics: the connectivity strength index and connectivity density index utilizing the convolutions of the cross-correlation histogram with different kernels. Furthermore, we assessed the negative and positive portions of these metrics separately. With the QDA framework we found age-related declines of RFC metrics in the superior and middle frontal gyri, posterior cingulate cortex (PCC), right insula and inferior parietal lobule of the default mode network (DMN), which resembles previously reported results using other types of RFC data processing methods. Importantly, our new findings complement previously undocumented results in the following aspects: (1) the PCC and right insula are anti-correlated and tend to manifest simultaneously declines of both the negative and positive connectivity strength with subjects' age; (2) separate assessment of the negative and positive RFC metrics provides enhanced sensitivity to the aging effect; and (3) the sensorimotor network depicts enhanced negative connectivity strength with the adult age. The proposed QDA framework can produce threshold-free and voxel-wise RFC metrics from R-fMRI data. The detected adult age effect is largely consistent with previously reported studies using different R-fMRI analysis approaches. Moreover, the separate assessment of the negative and positive contributions to the RFC metrics can enhance the RFC sensitivity and clarify some of the mixed results in the literature regarding to the DMN and sensorimotor network involvement in adult aging.
Collapse
Affiliation(s)
- Xia Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, Stockholm, Sweden
| | | | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Centre of Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tie-Qiang Li
- Institute of Informatics Engineering, China Jiliang University, Hangzhou, China.,Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Solna, Sweden.,Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
45
|
Yoshida A, Ye FQ, Yu DK, Leopold DA, Hikosaka O. Visualization of iron-rich subcortical structures in non-human primates in vivo by quantitative susceptibility mapping at 3T MRI. Neuroimage 2021; 241:118429. [PMID: 34311068 PMCID: PMC11479656 DOI: 10.1016/j.neuroimage.2021.118429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging (MRI) is now an essential tool in the field of neuroscience involving non-human primates (NHP). Structural MRI scanning using T1-weighted (T1w) or T2-weighted (T2w) images provides anatomical information, particularly for experiments involving deep structures such as the basal ganglia and cerebellum. However, for certain subcortical structures, T1w and T2w image contrasts are insufficient for their detection of important anatomical details. To better visualize such structures in the macaque brain, we applied a relatively new method called quantitative susceptibility mapping (QSM), which enhances tissue contrast based on the local tissue magnetic susceptibility. The QSM significantly improved the visualization of important structures, including the ventral pallidum (VP), globus pallidus external and internal segments (GPe and GPi), substantia nigra (SN), subthalamic nucleus (STN) in the basal ganglia and the dentate nucleus (DN) in the cerebellum. We quantified this the contrast enhancement by systematically comparing of contrast-to-noise ratios (CNRs) of QSM images relative to the corresponding T1w and T2w images. In addition, QSM values of some structures were correlated to the age of the macaque subjects. These results identify the QSM method as a straightforward and useful tool for clearly visualizing details of subcortical structures that are invisible with more traditional scanning sequences.
Collapse
Affiliation(s)
- Atsushi Yoshida
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David K Yu
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute for Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States; Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, United States
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
46
|
Burgetova R, Dusek P, Burgetova A, Pudlac A, Vaneckova M, Horakova D, Krasensky J, Varga Z, Lambert L. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis. Quant Imaging Med Surg 2021; 11:3906-3919. [PMID: 34476177 DOI: 10.21037/qims-21-87] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Background Iron accumulates in brain tissue in healthy subjects during aging. Our goal was to conduct a detailed analysis of iron deposition patterns in the cerebral deep grey matter and cortex using region-based and whole-brain analyses of brain magnetic susceptibility. Methods Brain MRI was performed in 95 healthy individuals aged between 21 and 58 years on a 3T scanner. MRI protocol included T1-weighted (T1W) magnetization-prepared rapid acquisition with gradient echo images and 3D flow-compensated multi-echo gradient-echo images for quantitative susceptibility mapping (QSM). In the region-based analysis, QSM and T1W images entered an automated multi-atlas segmentation pipeline and regional mean bulk susceptibility values were calculated. The whole-brain analysis included a non-linear transformation of QSM images to the standard MNI template. For the whole-brain analysis voxel-wise maps of linear regression slopes β and P values were calculated. Regional masks of cortical voxels with a significant association between susceptibility and age were created and further analyzed. Results In cortical regions, the highest increase of susceptibility values with age was found in areas involved in motor functions (precentral and postcentral areas, premotor cortex), in cognitive processing (prefrontal cortex, superior temporal gyrus, insula, precuneus), and visual processing (occipital gyri, cuneus, posterior cingulum, fusiform, calcarine and lingual gyrus). Thalamic susceptibility increased until the fourth decade and decreased thereafter with the exception of the pulvinar where susceptibility increase was observed throughout the adult lifespan. Deep grey matter structures with the highest increase of susceptibility values with age included the red nucleus, putamen, substantia nigra, dentate nucleus, external globus pallidus, caudate nucleus, and the subthalamic nucleus in decreasing order. Conclusions Accumulation of iron in basal ganglia follows a linear pattern whereas in the thalamus, pulvinar, precentral cortex, and precuneus, it follows a quadratic or exponential pattern. Age-related changes of iron content are different in the pulvinar and the rest of the thalamus as well as in internal and external globus pallidus. In the cortex, areas involved in motor and cognitive functions and visual processing show the highest iron increase with aging. We suggest that the departure from normal patterns of regional brain iron trajectories during aging may be helpful in the detection of subtle neurodegenerative and neuroinflammatory processes.
Collapse
Affiliation(s)
- Romana Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Radiology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Petr Dusek
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.,Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adam Pudlac
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zsoka Varga
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
47
|
Treit S, Naji N, Seres P, Rickard J, Stolz E, Wilman AH, Beaulieu C. R2* and quantitative susceptibility mapping in deep gray matter of 498 healthy controls from 5 to 90 years. Hum Brain Mapp 2021; 42:4597-4610. [PMID: 34184808 PMCID: PMC8410539 DOI: 10.1002/hbm.25569] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Putative MRI markers of iron in deep gray matter have demonstrated age related changes during discrete periods of healthy childhood or adulthood, but few studies have included subjects across the lifespan. This study reports both transverse relaxation rate (R2*) and quantitative susceptibility mapping (QSM) of four primary deep gray matter regions (thalamus, putamen, caudate, and globus pallidus) in 498 healthy individuals aged 5–90 years. In the caudate, putamen, and globus pallidus, increases of QSM and R2* were steepest during childhood continuing gradually throughout adulthood, except caudate susceptibility which reached a plateau in the late 30s. The thalamus had a unique profile with steeper changes of R2* (reflecting additive effects of myelin and iron) than QSM during childhood, both reaching a plateau in the mid‐30s to early 40s and decreasing thereafter. There were no hemispheric or sex differences for any region. Notably, both R2* and QSM values showed more inter‐subject variability with increasing age from 5 to 90 years, potentially reflecting a common starting point in iron/myelination during childhood that diverges as a result of lifestyle and genetic factors that accumulate with age.
Collapse
Affiliation(s)
- Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nashwan Naji
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Rickard
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Stolz
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Khattar N, Triebswetter C, Kiely M, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging. Neuroimage 2021; 239:118267. [PMID: 34139358 PMCID: PMC8370037 DOI: 10.1016/j.neuroimage.2021.118267] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer’s disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration. We assessed associations between iron content and myelin content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was negatively associated with iron content in most brain regions evaluated indicating that lower myelin content corresponds to higher iron content. Moreover, iron content was significantly higher with advanced age in most structures, with men exhibiting a trend towards higher iron content as compared to women. Finally, relationship between MWF and age, in all brain regions investigated, suggests that brain myelination continues until middle age, followed by degeneration at older ages. This work establishes a foundation for further investigations of the etiology and sequelae of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging markers for disease progression and treatment.
Collapse
Affiliation(s)
- Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States.
| |
Collapse
|
49
|
Cho J, Spincemaille P, Nguyen TD, Gupta A, Wang Y. Temporal clustering, tissue composition, and total variation for mapping oxygen extraction fraction using QSM and quantitative BOLD. Magn Reson Med 2021; 86:2635-2646. [PMID: 34110656 DOI: 10.1002/mrm.28875] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To improve the accuracy of quantitative susceptibility mapping plus quantitative blood oxygen level-dependent magnitude (QSM+qBOLD or QQ) based mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) using temporal clustering, tissue composition, and total variation (CCTV). METHODS Three-dimensional multi-echo gradient echo and arterial spin labeling images were acquired from 11 healthy subjects and 33 ischemic stroke patients. Diffusion-weighted imaging (DWI) was also obtained from patients. The CCTV mapping was developed for incorporating tissue-type information into clustering of the previous cluster analysis of time evolution (CAT) and applying total variation (TV). The QQ-based OEF and CMRO2 were reconstructed with CAT, CAT+TV (CATV), and the proposed CCTV, and results were compared using region-of-interest analysis, Kruskal-Wallis test, and post hoc Wilcoxson rank sum test. RESULTS In simulation, CCTV provided more accurate and precise OEF than CAT or CATV. In healthy subjects, QQ-based OEF was less noisy and more uniform with CCTV than CAT. In subacute stroke patients, OEF with CCTV had a greater contrast-to-noise ratio between DWI-defined lesions and the unaffected contralateral side than with CAT or CATV: 1.9 ± 1.3 versus 1.1 ± 0.7 (P = .01) versus 0.7 ± 0.5 (P < .001). CONCLUSION The CCTV mapping significantly improves the robustness of QQ-based OEF against noise.
Collapse
Affiliation(s)
- Junghun Cho
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
50
|
Incidental evidence of hypointensity in brain grey nuclei on routine MR imaging: when to suspect a neurodegenerative disorder? Neurol Sci 2021; 43:643-650. [PMID: 33931819 DOI: 10.1007/s10072-021-05292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Deep grey nuclei of the human brain accumulate minerals both in aging and in several neurodegenerative diseases. Mineral deposition produces a shortening of the transverse relaxation time which causes hypointensity on magnetic resonance (MR) imaging. The physician often has difficulties in determining whether the incidental hypointensity of grey nuclei seen on MR images is related to aging or neurodegenerative pathology. We investigated the hypointensity patterns in globus pallidus, putamen, caudate nucleus, thalamus and dentate nucleus of 217 healthy subjects (ages, 20-79 years; men/women, 104/113) using 3T MR imaging. Hypointensity was detected more frequently in globus pallidus (35.5%) than in dentate nucleus (32.7%) and putamen (7.8%). A consistent effect of aging on hypointensity (p < 0.001) of these grey nuclei was evident. Putaminal hypointensity appeared only in elderly subjects whereas we did not find hypointensity in the caudate nucleus and thalamus of any subject. In conclusion, the evidence of hypointensity in the caudate nucleus and thalamus at any age or hypointensity in the putamen seen in young subjects should prompt the clinician to consider a neurodegenerative disease.
Collapse
|