1
|
Kulke L, Ertugrul S, Reyentanz E, Thomas V. Uncomfortable staring? Gaze to other people in social situations is inhibited in both infants and adults. Dev Sci 2024; 27:e13468. [PMID: 38135924 DOI: 10.1111/desc.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
People attract infants' and adults' gaze when presented on a computer screen. However, in live social situations, adults inhibit their gaze at strangers to avoid sending inappropriate social signals. Such inhibition of gaze has never been directly investigated in infants. The current preregistered study measured gaze and neural responses (EEG alpha power) to a confederate in a live social situation compared to a video of this confederate. Adults looked less at the live confederate than at the video of the confederate, although their neural responses suggest that they were overall equally attentive in both situations. Infants also looked less at the live confederate than at the video of the confederate, with similar neural response patterns. The gaze difference between live social and video situations increased with age. The study shows that young infants are already sensitive to social context and show decreased gaze to strangers in social situations. RESEARCH HIGHLIGHTS: This study shows that infants and adults look more at a video of a stranger than at a stranger that is present live in a social situation. Neural responses suggest that adults are equally attentive in both live and video situations but inhibit their gaze at the stranger in live social situations. Infants show a similar pattern of shorter gaze at a stranger who is present in person than at a video of this stranger. The study shows that gaze in infants and adults may diverge from cognitive processes measured through EEG, highlighting the importance of combining behavioural and neural measures in natural interactions.
Collapse
Affiliation(s)
- Louisa Kulke
- Developmental Psychology with Educational Psychology, University of Bremen, Bremen, Germany
- Neurocognitive Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sahura Ertugrul
- Developmental Psychology with Educational Psychology, University of Bremen, Bremen, Germany
- Neurocognitive Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emely Reyentanz
- Neurocognitive Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vanessa Thomas
- Neurocognitive Developmental Psychology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Shirota Y, Fushimi M, Sekino M, Yumoto M. Investigating the technical feasibility of magnetoencephalography during transcranial direct current stimulation. Front Hum Neurosci 2023; 17:1270605. [PMID: 37771350 PMCID: PMC10525331 DOI: 10.3389/fnhum.2023.1270605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Magnetoencephalography (MEG) can measure weak magnetic fields produced by electrical brain activity. Transcranial direct current stimulation (tDCS) can affect such brain activities. The concurrent application of both, however, is challenging because tDCS presents artifacts on the MEG signal. If brain activity during tDCS can be elucidated by MEG, mechanisms of plasticity-inducing and other effects of tDCS would be more comprehensively understood. We tested the technical feasibility of MEG during tDCS using a phantom that produces an artificial current dipole simulating focal brain activity. An earlier study investigated estimation of a single oscillating phantom dipole during tDCS, and we systematically tested multiple dipole locations with a different MEG device. Methods A phantom provided by the manufacturer was used to produce current dipoles from 32 locations. For the 32 dipoles, MEG was recorded with and without tDCS. Temporally extended signal space separation (tSSS) was applied for artifact rejection. Current dipole sources were estimated as equivalent current dipoles (ECDs). The ECD modeling quality was assessed using localization error, amplitude error, and goodness of fit (GOF). The ECD modeling performance with and without tDCS, and with and without tSSS was assessed. Results Mean localization errors of the 32 dipoles were 1.70 ± 0.72 mm (tDCS off, tSSS off, mean ± standard deviation), 6.13 ± 3.32 mm (tDCS on, tSSS off), 1.78 ± 0.83 mm (tDCS off, tSSS on), and 5.73 ± 1.60 mm (tDCS on, tSSS on). Mean GOF findings were, respectively, 92.3, 87.4, 97.5, and 96.7%. Modeling was affected by tDCS and restored by tSSS, but improvement of the localization error was marginal, even with tSSS. Also, the quality was dependent on the dipole location. Discussion Concurrent tDCS-MEG recording is feasible, especially when tSSS is applied for artifact rejection and when the assumed location of the source of activity is favorable for modeling. More technical studies must be conducted to confirm its feasibility with different source modeling methods and stimulation protocols. Recovery of single-trial activity under tDCS warrants further research.
Collapse
Affiliation(s)
- Yuichiro Shirota
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Motofumi Fushimi
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Engineering, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
3
|
Gross J, Junghöfer M, Wolters C. Bioelectromagnetism in Human Brain Research: New Applications, New Questions. Neuroscientist 2023; 29:62-77. [PMID: 34873945 PMCID: PMC9902961 DOI: 10.1177/10738584211054742] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bioelectromagnetism has contributed some of the most commonly used techniques to human neuroscience such as magnetoencephalography (MEG), electroencephalography (EEG), transcranial magnetic stimulation (TMS), and transcranial electric stimulation (TES). The considerable differences in their technical design and practical use give rise to the impression that these are quite different techniques altogether. Here, we review, discuss and illustrate the fundamental principle of Helmholtz reciprocity that provides a common ground for all four techniques. We show that, more than 150 years after its discovery by Helmholtz in 1853, reciprocity is important to appreciate the strengths and limitations of these four classical tools in neuroscience. We build this case by explaining the concept of Helmholtz reciprocity, presenting a methodological account of this principle for all four methods and, finally, by illustrating its application in practical clinical studies.
Collapse
Affiliation(s)
- Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany,Joachim Gross, Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, Münster, 48149, Germany.
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Fabbrini A, Guerra A, Giangrosso M, Manzo N, Leodori G, Pasqualetti P, Conte A, Di Lazzaro V, Berardelli A. Transcranial alternating current stimulation modulates cortical processing of somatosensory information in a frequency- and time-specific manner. Neuroimage 2022; 254:119119. [PMID: 35321858 DOI: 10.1016/j.neuroimage.2022.119119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022] Open
Abstract
Neural oscillations can be modulated by non-invasive brain stimulation techniques, including transcranial alternating current stimulation (tACS). However, direct evidence of tACS effects at the cortical level in humans is still limited. In a tACS-electroencephalography co-registration setup, we investigated the ability of tACS to modulate cortical somatosensory information processing as assessed by somatosensory-evoked potentials (SEPs). To better elucidate the neural substrates of possible tACS effects we also recorded peripheral and spinal SEPs components, high-frequency oscillations (HFOs), and long-latency reflexes (LLRs). Finally, we studied whether changes were limited to the stimulation period or persisted thereafter. SEPs, HFOs, and LLRs were recorded during tACS applied at individual mu and beta frequencies and at the theta frequency over the primary somatosensory cortex (S1). Sham-tACS was used as a control condition. In a separate experiment, we assessed the time course of mu-tACS effects by recording SEPs before (T0), during (T1), and 1 min (T2) and 10 min (T3) after stimulation. Mu-tACS increased the amplitude of the N20 component of SEPs compared to both sham and theta-tACS. No differences were found between sham, beta-, and theta-tACS conditions. Also, peripheral and spinal SEPs, P25, HFOs, and LLRs did not change during tACS. Finally, mu-tACS-induced modulation of N20 amplitude specifically occurred during stimulation (T1) and vanished afterwards (i.e., at T2 and T3). Our findings suggest that TACS applied at the individual mu frequency is able to modulate early somatosensory information processing at the S1 level and the effect is limited to the stimulation period.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Andrea Guerra
- IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Margherita Giangrosso
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Viale dell'Università 30, Rome 00185, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Via Álvaro Del Portillo 21, Rome 00128, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy; IRCCS Neuromed, Via Atinense 18, Pozzilli, IS 86077, Italy.
| |
Collapse
|
5
|
Ekhtiari H, Ghobadi-Azbari P, Thielscher A, Antal A, Li LM, Shereen AD, Cabral-Calderin Y, Keeser D, Bergmann TO, Jamil A, Violante IR, Almeida J, Meinzer M, Siebner HR, Woods AJ, Stagg CJ, Abend R, Antonenko D, Auer T, Bächinger M, Baeken C, Barron HC, Chase HW, Crinion J, Datta A, Davis MH, Ebrahimi M, Esmaeilpour Z, Falcone B, Fiori V, Ghodratitoostani I, Gilam G, Grabner RH, Greenspan JD, Groen G, Hartwigsen G, Hauser TU, Herrmann CS, Juan CH, Krekelberg B, Lefebvre S, Liew SL, Madsen KH, Mahdavifar-Khayati R, Malmir N, Marangolo P, Martin AK, Meeker TJ, Ardabili HM, Moisa M, Momi D, Mulyana B, Opitz A, Orlov N, Ragert P, Ruff CC, Ruffini G, Ruttorf M, Sangchooli A, Schellhorn K, Schlaug G, Sehm B, Soleimani G, Tavakoli H, Thompson B, Timmann D, Tsuchiyagaito A, Ulrich M, Vosskuhl J, Weinrich CA, Zare-Bidoky M, Zhang X, Zoefel B, Nitsche MA, Bikson M. A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement. Nat Protoc 2022; 17:596-617. [PMID: 35121855 PMCID: PMC7612687 DOI: 10.1038/s41596-021-00664-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/12/2021] [Indexed: 11/09/2022]
Abstract
Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.
Collapse
Affiliation(s)
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea Antal
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Lucia M Li
- Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
- UK DRI Centre for Care Research and Technology, Imperial College London, London, UK
| | - A Duke Shereen
- Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY, USA
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
- Department of Radiology, University Hospital LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU Munich, Munich, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Marcus Meinzer
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rany Abend
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Tibor Auer
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, University Hospital Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, USA
- The City College of the City University of New York, New York, USA
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Brian Falcone
- Northrop Grumman Company, Mission Systems, Falls Church, VA, USA
| | - Valentina Fiori
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Engineering Applied to Health, Institute of Mathematics and Computer Science (ICMC), University of Sao Paulo, Sao Paulo, Brazil
| | - Gadi Gilam
- Systems Neuroscience and Pain Laboratory, Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Georg Groen
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Christoph S Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, K, Lyngby, Denmark
| | | | - Nastaran Malmir
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy
- Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrew K Martin
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychology, University of Kent, Canterbury, UK
| | - Timothy J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hossein Mohaddes Ardabili
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marius Moisa
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Psychology, Jagiellonian University, Cracow, Poland
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Cambridge, MA, USA
- Neuroelectrics Corporation, Barcelona, Barcelona, Spain
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratories, Department of Neurology, Baystate-University of Massachusetts Medical School, and Department of Biomedical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hosna Tavakoli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Ulrich
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Christiane A Weinrich
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Department of Cognitive Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, China
| | - Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| |
Collapse
|
6
|
No effects of transcranial direct current stimulation on visual evoked potential and peak gamma frequency. Cogn Process 2022; 23:235-254. [PMID: 35099659 DOI: 10.1007/s10339-022-01076-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Evidence suggests that the visual evoked potential (VEP) and gamma oscillations elicited by visual stimuli reflect the balance of excitatory and inhibitory (E-I) cortical processes. As tDCS has been shown to modulate E-I balance, the current study investigated whether amplitudes of VEP components (N1 and P2) and peak gamma frequency are modulated by transcranial direct current stimulation (tDCS). Healthy adults underwent two electroencephalography (EEG) recordings while viewing stimuli designed to elicit a robust visual response. Between the two recordings, participants were randomly assigned to three tDCS conditions (anodal-, cathodal-, and sham-tDCS) or received no-tDCS. tDCS electrodes were placed over the occipital cortex (Oz) and the left cheek with an intensity of 2 mA for 10 min. Data of 39 participants were analysed for VEP amplitudes and peak gamma frequency using mixed-model ANOVAs. The results showed no main effects of tDCS in any metric. Possible explanations for the absence of tDCS effects are discussed.
Collapse
|
7
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
8
|
Arif Y, Embury CM, Spooner RK, Okelberry HJ, Willett MP, Eastman JA, Wilson TW. High-definition transcranial direct current stimulation of the occipital cortices induces polarity dependent effects within the brain regions serving attentional reorientation. Hum Brain Mapp 2022; 43:1930-1940. [PMID: 34997673 PMCID: PMC8933319 DOI: 10.1002/hbm.25764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Numerous brain stimulation studies have targeted the posterior parietal cortex, a key hub of the attention network, to manipulate attentional reorientation. However, the impact of stimulating brain regions earlier in the pathway, including early visual regions, is poorly understood. In this study, 28 healthy adults underwent three high‐definition transcranial direct current stimulation (HD‐tDCS) visits (i.e., anodal, cathodal, and sham). During each visit, they completed 20 min of occipital HD‐tDCS and then a modified Posner task during magnetoencephalography (MEG). MEG data were transformed into the time‐frequency domain and significant oscillatory events were imaged using a beamformer. Oscillatory response amplitude values were extracted from peak voxels in the whole‐brain maps and were statistically compared. Behaviorally, we found that the participants responded slowly when attention reallocation was needed (i.e., the validity effect), irrespective of the stimulation condition. Our neural findings indicated that cathodal HD‐tDCS was associated with significantly reduced theta validity effects in the occipital cortices, as well as reduced alpha validity effects in the left occipital and parietal cortices relative to anodal HD‐tDCS. Additionally, anodal occipital stimulation significantly increased gamma amplitude in right occipital regions relative to cathodal and sham stimulation. Finally, we also found a negative correlation between the alpha validity effect and reaction time following anodal stimulation. Our findings suggest that HD‐tDCS of the occipital cortices has a polarity dependent impact on the multispectral neural oscillations serving attentional reorientation in healthy adults, and that such effects may reflect altered local GABA concentrations in the neural circuitry serving attentional reorientation.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Psychology, University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Matsushita R, Puschmann S, Baillet S, Zatorre RJ. Inhibitory effect of tDCS on auditory evoked response: Simultaneous MEG-tDCS reveals causal role of right auditory cortex in pitch learning. Neuroimage 2021; 233:117915. [PMID: 33652144 DOI: 10.1016/j.neuroimage.2021.117915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
A body of literature has demonstrated that the right auditory cortex (AC) plays a dominant role in fine pitch processing. However, our understanding is relatively limited about whether this asymmetry extends to perceptual learning of pitch. There is also a lack of causal evidence regarding the role of the right AC in pitch learning. We addressed these points with anodal transcranial direct current stimulation (tDCS), adapting a previous behavioral study in which anodal tDCS over the right AC was shown to block improvement of a microtonal pitch pattern learning task over 3 days. To address the physiological changes associated with tDCS, we recorded MEG data simultaneously with tDCS on the first day, and measured behavioral thresholds on the following two consecutive days. We tested three groups of participants who received anodal tDCS over their right or left AC, or sham tDCS, and measured the N1m auditory evoked response before, during, and after tDCS. Our data show that anodal tDCS of the right AC disrupted pitch discrimination learning up to two days after its application, whereas learning was unaffected by left-AC or sham tDCS. Although tDCS reduced the amplitude of the N1m ipsilaterally to the stimulated hemisphere on both left and right, only right AC N1m amplitude reductions were associated with the degree to which pitch learning was disrupted. This brain-behavior relationship confirms a causal link between right AC physiological responses and fine pitch processing, and provides neurophysiological insight concerning the mechanisms of action of tDCS on the auditory system.
Collapse
Affiliation(s)
- Reiko Matsushita
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| | - Sebastian Puschmann
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; Institute of Psychology, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Centre for Research on Brain, Language and Music, Montreal, QC H3G 2A8, Canada; International Laboratory for Brain, Music and Sound Research, Montreal, QC H2V 2S9, Canada.
| |
Collapse
|
10
|
The visual system as target of non-invasive brain stimulation for migraine treatment: Current insights and future challenges. PROGRESS IN BRAIN RESEARCH 2020. [PMID: 33008507 DOI: 10.1016/bs.pbr.2020.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The visual network is crucially implicated in the pathophysiology of migraine. Several lines of evidence indicate that migraine is characterized by an altered visual cortex excitability both during and between attacks. Visual symptoms, the most common clinical manifestation of migraine aura, are likely the result of cortical spreading depression originating from the extrastriate area V3A. Photophobia, a clinical hallmark of migraine, is linked to an abnormal sensory processing of the thalamus which is converged with the non-image forming visual pathway. Finally, visual snow is an increasingly recognized persistent visual phenomenon in migraine, possibly caused by increased perception of subthreshold visual stimuli. Emerging research in non-invasive brain stimulation (NIBS) has vastly developed into a diversity of areas with promising potential. One of its clinical applications is the single-pulse transcranial magnetic stimulation (sTMS) applied over the occipital cortex which has been approved for treating migraine with aura, albeit limited evidence. Studies have also investigated other NIBS techniques, such as repetitive TMS (rTMS) and transcranial direct current stimulation (tDCS), for migraine prophylaxis but with conflicting results. As a dynamic brain disorder with widespread pathophysiology, targeting migraine with NIBS is challenging. Furthermore, unlike the motor cortex, evidence suggests that the visual cortex may be less plastic. Controversy exists as to whether the same fundamental principles of NIBS, based mainly on findings in the motor cortex, can be applied to the visual cortex. This review aims to explore existing literature surrounding NIBS studies on the visual system of migraine. We will first provide an overview highlighting the direct implication of the visual network in migraine. Next, we will focus on the rationale behind using NIBS for migraine treatment, including its effects on the visual cortex, and the shortcomings of currently available evidence. Finally, we propose a broader perspective of how novel approaches, the concept of brain networks and the integration of multimodal imaging with computational modeling, can help refine current NIBS methods, with the ultimate goal of optimizing a more individualized treatment for migraine.
Collapse
|
11
|
McKendrick R, Falcone B, Scheldrup M, Ayaz H. Effects of Transcranial Direct Current Stimulation on Baseline and Slope of Prefrontal Cortex Hemodynamics During a Spatial Working Memory Task. Front Hum Neurosci 2020; 14:64. [PMID: 32372928 PMCID: PMC7179692 DOI: 10.3389/fnhum.2020.00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has been shown to be an inexpensive, safe, and effective way of augmenting a variety of cognitive abilities. Relatively recent advances in neuroimaging technology have provided the ability to measure brain activity concurrently during active brain stimulation rather than after stimulation. The effects on brain activity elicited by tDCS during active tDCS reported by initial studies have been somewhat conflicted and seemingly dependent on whether a behavioral improvement was observed. Objective: The current study set out to address questions regarding behavioral change, within and between-participant designs as well as differentiating the effects on hemodynamic amplitude and baseline during active tDCS stimulation. Methods: We tested the effects of transcranial direct current stimulation (tDCS) on anterior hemodynamics in prefrontal cortex during performance on a spatial memory task. Prefrontal cortex activity was measured with functional near infrared spectroscopy (fNIRS), a wearable and portable neuroimaging technique that utilizes near infrared light to measure cortical oxygenated and deoxygenated hemoglobin changes non-invasively. There were two groups, one group (n = 10) received only sham stimulation and the other group (n = 11) received sham followed by anodal stimulation to right ventral lateral prefrontal cortex. Results: Analyses revealed an increase in spatial memory performance following tDCS stimulation. This augmented performance was accompanied by changes to oxygenation (HbO-HbR) at the onset of the hemodynamic response in bilateral dorsolateral prefrontal cortex and left ventral medial prefrontal cortex. In these regions we also observed that stimulation improved neural processing efficiency, by reducing oxygenation and increasing performance from block to block. During and following tDCS stimulation, it was also observed that in bilateral dorsolateral prefrontal cortex the relationship between performance and oxygenation inverted, from a negative relationship to a positive relationship. Conclusion: The results suggest that tDCS is predominately a mechanism for changing neurons propensity for activity as opposed to their strength of activity. tDCS not only alters the efficiency of task relevant processing, but also the nature in which hemodynamic resources are used during augmented task performance.
Collapse
Affiliation(s)
- Ryan McKendrick
- Northrop Grumman Company, Mission Systems, Falls Church, VA, United States
| | - Brian Falcone
- Northrop Grumman Company, Mission Systems, Falls Church, VA, United States
| | - Melissa Scheldrup
- Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
12
|
Spooner RK, Eastman JA, Rezich MT, Wilson TW. High-definition transcranial direct current stimulation dissociates fronto-visual theta lateralization during visual selective attention. J Physiol 2020; 598:987-998. [PMID: 31840247 PMCID: PMC8114144 DOI: 10.1113/jp278788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Visual attention involves discrete multispectral oscillatory responses in visual and 'higher-order' prefrontal cortices. Prefrontal cortex laterality effects during visual selective attention are poorly characterized. High-definition transcranial direct current stimulation dynamically modulated right-lateralized fronto-visual theta oscillations compared to those observed in left fronto-visual pathways. Increased connectivity in right fronto-visual networks after stimulation of the left dorsolateral prefrontal cortex resulted in faster task performance in the context of distractors. Our findings show clear laterality effects in theta oscillatory activity along prefrontal-visual cortical pathways during visual selective attention. ABSTRACT Studies of visual attention have implicated oscillatory activity in the recognition, protection and temporal organization of attended representations in visual cortices. These studies have also shown that higher-order regions such as the prefrontal cortex are critical to attentional processing, but far less is understood regarding prefrontal laterality differences in attention processing. To examine this, we selectively applied high-definition transcranial direct current stimulation (HD-tDCS) to the left or right dorsolateral prefrontal cortex (DLPFC). We predicted that HD-tDCS of the left versus right prefrontal cortex would differentially modulate performance on a visual selective attention task, and alter the underlying oscillatory network dynamics. Our randomized crossover design included 27 healthy adults that underwent three separate sessions of HD-tDCS (sham, left DLPFC and right DLPFC) for 20 min. Following stimulation, participants completed an attention protocol during magnetoencephalography. The resulting oscillatory dynamics were imaged using beamforming, and peak task-related neural activity was subjected to dynamic functional connectivity analyses to evaluate the impact of stimulation site (i.e. left and right DLPFC) on neural interactions. Our results indicated that HD-tDCS over the left DLPFC differentially modulated right fronto-visual functional connectivity within the theta band compared to HD-tDCS of the right DLPFC and further, specifically modulated the oscillatory response for detecting targets among an array of distractors. Importantly, these findings provide network-specific insight into the complex oscillatory mechanisms serving visual selective attention.
Collapse
Affiliation(s)
- Rachel K. Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE USA 68198
- Center for Magnetoencephalography, UNMC, Omaha, NE USA 68198
| | - Jacob A. Eastman
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE USA 68198
- Center for Magnetoencephalography, UNMC, Omaha, NE USA 68198
| | - Michael T. Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE USA 68198
- Center for Magnetoencephalography, UNMC, Omaha, NE USA 68198
| | - Tony W. Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE USA 68198
- Center for Magnetoencephalography, UNMC, Omaha, NE USA 68198
| |
Collapse
|
13
|
Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med 2020; 6:4. [PMID: 32232112 PMCID: PMC7098236 DOI: 10.1186/s42234-020-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023] Open
Abstract
Addictive disorders are a severe health concern. Conventional therapies have just moderate success and the probability of relapse after treatment remains high. Brain stimulation techniques, such as transcranial Direct Current Stimulation (tDCS) and Deep Brain Stimulation (DBS), have been shown to be effective in reducing subjectively rated substance craving. However, there are few objective and measurable parameters that reflect neural mechanisms of addictive disorders and relapse. Key electrophysiological features that characterize substance related changes in neural processing are Event-Related Potentials (ERP). These high temporal resolution measurements of brain activity are able to identify neurocognitive correlates of addictive behaviours. Moreover, ERP have shown utility as biomarkers to predict treatment outcome and relapse probability. A future direction for the treatment of addiction might include neural interfaces able to detect addiction-related neurophysiological parameters and deploy neuromodulation adapted to the identified pathological features in a closed-loop fashion. Such systems may go beyond electrical recording and stimulation to employ sensing and neuromodulation in the pharmacological domain as well as advanced signal analysis and machine learning algorithms. In this review, we describe the state-of-the-art in the treatment of addictive disorders with electrical brain stimulation and its effect on addiction-related neurophysiological markers. We discuss advanced signal processing approaches and multi-modal neural interfaces as building blocks in future bioelectronics systems for treatment of addictive disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ivan Minev
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry 2020; 25:397-407. [PMID: 31455860 PMCID: PMC6981019 DOI: 10.1038/s41380-019-0499-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising method for altering the function of neural systems, cognition, and behavior. Evidence is emerging that it can also influence psychiatric symptomatology, including major depression and schizophrenia. However, there are many open questions regarding how the method might have such an effect, and uncertainties surrounding its influence on neural activity, and human cognition and functioning. In the present critical review, we identify key priorities for future research into major depression and schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, including data that appear to favor an effect of tDCS on neural oscillations rather than spiking, and findings that tDCS administration to the prefrontal cortex during task training may be an effective way to enhance behavioral performance. Finally, we provide suggestions for further empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the way for efficacious clinical treatments for psychiatric disorders.
Collapse
|
15
|
BinDawood A, Dickinson A, Aytemur A, Howarth C, Milne E, Jones M. Investigating the effects of tDCS on Visual Orientation Discrimination Task Performance: 'The possible influence of placebo'. JOURNAL OF COGNITIVE ENHANCEMENT 2019; 4:235-249. [PMID: 32747876 DOI: 10.1007/s41465-019-00154-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The non-invasive neuromodulation technique tDCS offers the promise of a low cost tool for both research and clinical applications in psychology, psychiatry and neuroscience. However, findings regarding its efficacy are often equivocal. A key issue is that the clinical and cognitive applications studied are often complex and thus effects of tDCS are difficult to predict given its known effects on the basic underlying neurophysiology, namely alterations in cortical inhibition-excitation balance. As such, it may be beneficial to assess the effects of tDCS in tasks whose performance has a clear link to cortical inhibition-excitation balance such as the visual orientation discrimination task (ODT). In prior studies in our laboratory no practise effects were found during 2 consecutive runs of the ODT, thus in the current investigation, to examine the effects of tDCS, subjects received 10 minutes of 2mA occipital tDCS (sham, anode, cathode) between a first and second run of ODT. Surprisingly, subjects' performance significantly improved in the second run of ODT compared to the first one regardless of the tDCS stimulation type they received (anodal, cathodal, or sham-tDCS). Possible causes for such an improvement could have been due to either a generic 'placebo' effect of tDCS (as all subjects received some form of tDCS) or an increased delay period between the two runs of ODT of the current study compared to our previous work (10 minutes duration required to administer tDCS as opposed to ~2 minutes in previous studies as a 'break'). As such, we tested these two possibilities with a subsequent experiment in which subjects received 2 minutes or 10 minutes delay between the 2 runs (with no tDCS) or 10 minutes of sham-tDCS. Only sham-tDCS resulted in improved performance thus these data add to a growing literature suggesting that tDCS has powerful placebo effect that may occur even in the absence of active cortical modulation.
Collapse
Affiliation(s)
- A BinDawood
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT.,Department of Psychology, King Saud University, Riyadh, Saudi Arabia
| | - A Dickinson
- Center for Autism Research and Treatment, University of California, Semel Institute for Neuroscience, 760 Westwood Plaza, Suite A7-448, Los Angeles, CA 90095, United States of America
| | - A Aytemur
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - C Howarth
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - E Milne
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| | - M Jones
- Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield UK, S1 2LT
| |
Collapse
|
16
|
Bland NS, Sale MV. Current challenges: the ups and downs of tACS. Exp Brain Res 2019; 237:3071-3088. [DOI: 10.1007/s00221-019-05666-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
|
17
|
Pellegrino G, Arcara G, Di Pino G, Turco C, Maran M, Weis L, Piccione F, Siebner HR. Transcranial direct current stimulation over the sensory-motor regions inhibits gamma synchrony. Hum Brain Mapp 2019; 40:2736-2746. [PMID: 30854728 DOI: 10.1002/hbm.24556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce plasticity phenomena. Although tDCS application has been spreading over a variety of neuroscience domains, the mechanisms by which the stimulation acts are largely unknown. We investigated tDCS effects on cortical gamma synchrony, which is a crucial player in cortical function. We performed a randomized, sham-controlled, double-blind study on healthy subjects, combining tDCS and magnetoencephalography. By driving brain activity via 40 Hz auditory stimulation during magnetoencephalography, we experimentally tuned cortical gamma synchrony and measured it before and after bilateral tDCS of the primary sensory-motor hand regions (anode left, cathode right). We demonstrated that the stimulation induces a remarkable decrease of gamma synchrony (13 out of 15 subjects), as measured by gamma phase at 40 Hz. tDCS has strong remote effects, as the cortical region mostly affected was located far away from the stimulation site and covered a large area of the right centro-temporal cortex. No significant differences between stimulations were found for baseline gamma synchrony, as well as early transient auditory responses. This suggests a specific tDCS effect on externally driven gamma synchronization. This study sheds new light on the effect of tDCS on cortical function showing that the net effect of the stimulation on cortical gamma synchronization is an inhibition.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Giovanni Di Pino
- Department of Neurology, NeXT: Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome, Italy
| | - Cristina Turco
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Matteo Maran
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Luca Weis
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Francesco Piccione
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| |
Collapse
|
18
|
McDermott TJ, Wiesman AI, Mills MS, Spooner RK, Coolidge NM, Proskovec AL, Heinrichs‐Graham E, Wilson TW. tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum Brain Mapp 2019; 40:729-740. [PMID: 30368974 PMCID: PMC6328324 DOI: 10.1002/hbm.24405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive method for modulating human brain activity. Although there are several hypotheses about the net effects of tDCS on brain function, the field's understanding remains incomplete and this is especially true for neural oscillatory activity during cognitive task performance. In this study, we examined whether different polarities of occipital tDCS differentially alter flanker task performance and the underlying neural dynamics. To this end, 48 healthy adults underwent 20 min of anodal, cathodal, or sham occipital tDCS, and then completed a visual flanker task during high-density magnetoencephalography (MEG). The resulting oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on task-related oscillations and spontaneous neural activity were assessed. The results indicated that anodal tDCS of the occipital cortices inhibited flanker task performance as measured by reaction time, elevated spontaneous activity in the theta (4-7 Hz) and alpha (9-14 Hz) bands in prefrontal and occipital cortices, respectively, and reduced task-related theta oscillatory activity in prefrontal cortices during task performance. Cathodal tDCS of the occipital cortices did not significantly affect behavior or any of these neuronal parameters in any brain region. Lastly, the power of theta oscillations in the prefrontal cortices was inversely correlated with reaction time. In conclusion, anodal tDCS modulated task-related oscillations and spontaneous activity across multiple cortical areas, both near the electrode and in distant sites that were putatively connected to the targeted regions.
Collapse
Affiliation(s)
- Timothy J. McDermott
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Alex I. Wiesman
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Mackenzie S. Mills
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Rachel K. Spooner
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Nathan M. Coolidge
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Amy L. Proskovec
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Elizabeth Heinrichs‐Graham
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Tony W. Wilson
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| |
Collapse
|
19
|
Wiesman AI, Mills MS, McDermott TJ, Spooner RK, Coolidge NM, Wilson TW. Polarity-dependent modulation of multi-spectral neuronal activity by transcranial direct current stimulation. Cortex 2018; 108:222-233. [PMID: 30261367 PMCID: PMC6234070 DOI: 10.1016/j.cortex.2018.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/28/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The ability to preferentially deploy neural resources to the visual space is an important component of normative cognitive function, however, the population-level cortical dynamics that sub-serve this ability are not fully understood. Specifically, rhythmic activity in the occipital cortices (e.g., theta, alpha, and gamma oscillations) has been strongly implicated in this cognitive process, but these neural responses are difficult to non-invasively manipulate in a systematic manner. In this study, transcranial direct-current stimulation (tDCS) was used to modulate brain activity, while high-density magnetoencephalography (MEG) was employed to quantify changes in rhythm-specific neural activity in the occipital cortices of 57 adults performing a visuospatial processing paradigm. All MEG data was analyzed using advanced source reconstruction and oscillatory analysis methods. Our results indicated that basal levels of occipital alpha activity were increased by an occipital-anodal/supraorbital-cathodal tDCS montage, while basal gamma levels in the same cortices were decreased by tDCS using the same montage with its polarity reversed (occipital-cathodal/supraorbital-anodal). In other words, stimulation with the occipital-anodal montage increased local spontaneous alpha (10-16 Hz) activity, while stimulation with the occipital-cathodal montage selectively decreased local gamma (64-90 Hz) activity. Neither polarity affected stimulus-induced oscillations in the alpha or gamma range. Additionally, these modulations strongly predicted the subsequent formation of fronto-visual functional connectivity within distinct oscillatory rhythms, as well as behavior on the visuospatial discrimination task. These findings provide insight into the multifaceted effects of tDCS on cortical activity, as well as the dynamic oscillatory coding of salient information in the human brain.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mackenzie S Mills
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy J McDermott
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nathan M Coolidge
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
20
|
Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 2018; 184:440-449. [PMID: 30243972 DOI: 10.1016/j.neuroimage.2018.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
Low frequency oscillations such as alpha (8-12 Hz) are hypothesized to rhythmically gate sensory processing, reflected by 40-100 Hz gamma band activity, via the mechanism of pulsed inhibition. We applied transcranial alternating current stimulation (TACS) at individual alpha frequency (IAF) and flanking frequencies (IAF-4 Hz, IAF+4 Hz) to the occipital cortex of healthy human volunteers during concurrent magnetoencephalography (MEG), while participants performed a visual detection task inducing strong gamma-band responses. Occipital (but not retinal) TACS phasically suppressed stimulus-induced gamma oscillations in the visual cortex and impaired target detection, with stronger phase-to-amplitude coupling predicting behavioral impairments. Retinal control TACS ruled out retino-thalamo-cortical entrainment resulting from (subthreshold) retinal stimulation. All TACS frequencies tested were effective, suggesting that visual gamma-band responses can be modulated by a range of low frequency oscillations. We propose that TACS-induced membrane potential modulations mimic the rhythmic change in cortical excitability by which spontaneous low frequency oscillations may eventually exert their impact when gating sensory processing via pulsed inhibition.
Collapse
Affiliation(s)
- Jim D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sophie Esterer
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tom R Marshall
- Department of Experimental Psychology, University of Oxford, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
tACS-mediated modulation of the auditory steady-state response as seen with MEG. Hear Res 2018; 364:90-95. [DOI: 10.1016/j.heares.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 11/20/2022]
|
22
|
Falcone B, Wada A, Parasuraman R, Callan DE. Individual differences in learning correlate with modulation of brain activity induced by transcranial direct current stimulation. PLoS One 2018; 13:e0197192. [PMID: 29782510 PMCID: PMC5962315 DOI: 10.1371/journal.pone.0197192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in individual differences in improved performance shedding some light the apparent lack of reliability found in tDCS research.
Collapse
Affiliation(s)
- Brian Falcone
- Center of Excellence in Neuroergonomics, Technology, and Cognition (CENTEC), George Mason University, Fairfax, Virginia, United States of America
| | - Atsushi Wada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Raja Parasuraman
- Center of Excellence in Neuroergonomics, Technology, and Cognition (CENTEC), George Mason University, Fairfax, Virginia, United States of America
| | - Daniel E. Callan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Wilson TW, McDermott TJ, Mills MS, Coolidge NM, Heinrichs-Graham E. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG. Cereb Cortex 2018; 28:1597-1609. [PMID: 28334214 PMCID: PMC5907344 DOI: 10.1093/cercor/bhx055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 01/03/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology and Experimental Neurosciences, UNMC, Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| | | | | | | | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Peled-Avron L, Glasner L, Gvirts HZ, Shamay-Tsoory SG. The role of the inferior frontal gyrus in vicarious social touch: A transcranial direct current stimulation (tDCS) study. Dev Cogn Neurosci 2018; 35:115-121. [PMID: 29773509 PMCID: PMC6968961 DOI: 10.1016/j.dcn.2018.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
The neural mechanisms facilitating the experience of vicarious social touch are largely unknown. The right inferior frontal gyrus (rIFG) has been suggested as part of a simulation observation-execution neural network that plays a key role in the perception of tactile stimuli. Considering that vicarious social touch involves vicarious sharing of emotions, we hypothesized that emotional empathy, i.e., the ability to feel what another individual is feeling, modulates the neural responses to vicarious touch. To examine the role of the rIFG in vicarious touch and its modulation by levels of emotional empathy, we used anodal transcranial direct current stimulation (tDCS) on forty participants who observed photos depicting social touch, nonsocial touch or no touch during tDCS or sham stimulation. The results show that while participants with high levels of emotional empathy exhibited no change in ratings of vicarious social touch, participants with low levels of emotional empathy rate human touch as more emotional following anodal stimulation of the rIFG than following sham stimulation. These findings indicate that emotional responses to vicarious social touch are associated with rIFG activity and are modulated by levels of emotional empathy. This result has major therapeutic potential for individuals with low empathic abilities, such as those with ASD.
Collapse
Affiliation(s)
| | - Laura Glasner
- Department of Psychology, University of Haifa, Haifa, Israel.
| | - Hila Z Gvirts
- Department of Behavioral Sciences and Psychology, Ariel University, Ariel, Israel.
| | | |
Collapse
|
25
|
Lozano-Soldevilla D. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Front Comput Neurosci 2018; 12:23. [PMID: 29670518 PMCID: PMC5893851 DOI: 10.3389/fncom.2018.00023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings.
Collapse
|
26
|
Sheldon SS, Mathewson KE. Does 10-Hz Cathodal Oscillating Current of the Parieto-Occipital Lobe Modulate Target Detection? Front Neurosci 2018. [PMID: 29520215 PMCID: PMC5827548 DOI: 10.3389/fnins.2018.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The phase of alpha (8–12 Hz) brain oscillations have been associated with moment to moment changes in visual attention and awareness. Previous work has demonstrated that endogenous oscillations and subsequent behavior can be modulated by oscillating transcranial current stimulation (otCS). The purpose of the current study is to establish the efficacy of cathodal otCS for modulation of the ongoing alpha brain oscillations, allowing for modulation of individual's visual perception. Thirty-six participants performed a target detection with sham and 10-Hz cathodal otCS. Each participant had two practice and two experimental sets composed of three blocks of 128 trials per block. Stimulating electrodes were placed on the participant's head with the anode electrode at Cz and the cathode electrode at Oz. A 0.5 mA current was applied every 100 ms (10 Hz frequency) during the otCS condition. The same current and frequency was applied for the first 10–20 s of the sham condition, after which the current was turned off. Target detection rates were compared between the sham and otCS experimental conditions in order to test for effects of otCS phase on target detection. We found no significant difference in target detection rates between the sham and otCS conditions, and discuss potential reasons for the apparent inability of cathodal otCS to effectively modulate visual perception.
Collapse
Affiliation(s)
- Sarah S Sheldon
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Kyle E Mathewson
- Department of Psychology, Faculty of Science, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. Neuroimage 2018; 140:1-3. [PMID: 27633745 DOI: 10.1016/j.neuroimage.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.
Collapse
|
28
|
Noury N, Siegel M. Phase properties of transcranial electrical stimulation artifacts in electrophysiological recordings. Neuroimage 2017; 158:406-416. [DOI: 10.1016/j.neuroimage.2017.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/14/2017] [Accepted: 07/09/2017] [Indexed: 11/27/2022] Open
|
29
|
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, Sack AT, Miniussi C, Antal A, Siebner HR, Ziemann U, Herrmann CS. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clin Neurophysiol 2017; 128:843-857. [PMID: 28233641 DOI: 10.1016/j.clinph.2017.01.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 01/08/2017] [Indexed: 01/31/2023]
Abstract
Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges.
Collapse
Affiliation(s)
- Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| | - Til Ole Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Institute for Medical Psychology and Behavioral Neurobiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Flavio Fröhlich
- Department of Psychiatry & Department of Biomedical Engineering & Department of Cell Biology and Physiology & Neuroscience Center & Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy & MEG Center, University Hospital of Tübingen, Tübingen, Germany
| | - John-Stuart Brittain
- Nuffield Department of Clinical Neurosciences, Charles Wolfson Neuroscience Clinical Research Facility, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, Frontlab, Institut du Cerveau et la Moelle (ICM), CNRS UMR 7225-INSERM U-117, Université Pierre et Marie Curie, Paris, France
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Carlo Miniussi
- Center for Mind/Brain Sciences CIMeC University of Trento, Rovereto, Italy & Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Göttingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Center for Excellence "Hearing4all", European Medical School, Carl von Ossietzky University & Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
30
|
Heinrichs-Graham E, McDermott TJ, Mills MS, Coolidge NM, Wilson TW. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study. Cortex 2016; 88:19-31. [PMID: 28042984 DOI: 10.1016/j.cortex.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive neuromodulatory method that involves delivering low amplitude, direct current to specific regions of the brain. While a wealth of literature shows changes in behavior and cognition following tDCS administration, the underlying neuronal mechanisms remain largely unknown. Neuroimaging studies have generally used fMRI and shown only limited consensus to date, while the few electrophysiological studies have reported mostly null or counterintuitive findings. The goal of the current investigation was to quantify tDCS-induced alterations in the oscillatory dynamics of visual processing. To this end, we performed either active or sham tDCS using an occipital-frontal electrode configuration, and then recorded magnetoencephalography (MEG) offline during a visual entrainment task. Significant oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on absolute and relative power were assessed. The results indicated significantly increased basal alpha levels in the occipital cortex following anodal tDCS, as well as reduced occipital synchronization at the second harmonic of the stimulus-flicker frequency relative to sham stimulation. In addition, we found reduced power in brain regions near the cathode (e.g., right inferior frontal gyrus [IFG]) following active tDCS, which was absent in the sham group. Taken together, these results suggest that anodal tDCS of the occipital cortices differentially modulates spontaneous and induced activity, and may interfere with the entrainment of neuronal populations by a visual-flicker stimulus. These findings also demonstrate the importance of electrode configuration on whole-brain dynamics, and highlight the deceptively complicated nature of tDCS in the context of neurophysiology.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | | | | | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
31
|
Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. Neuroimage 2016; 140:99-109. [DOI: 10.1016/j.neuroimage.2016.03.065] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
|
32
|
The relationship between oscillatory EEG activity and the laminar-specific BOLD signal. Proc Natl Acad Sci U S A 2016; 113:6761-6. [PMID: 27247416 DOI: 10.1073/pnas.1522577113] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrophysiological recordings in animals have indicated that visual cortex γ-band oscillatory activity is predominantly observed in superficial cortical layers, whereas α- and β-band activity is stronger in deep layers. These rhythms, as well as the different cortical layers, have also been closely related to feedforward and feedback streams of information. Recently, it has become possible to measure laminar activity in humans with high-resolution functional MRI (fMRI). In this study, we investigated whether these different frequency bands show a differential relation with the laminar-resolved blood-oxygen level-dependent (BOLD) signal by combining data from simultaneously recorded EEG and fMRI from the early visual cortex. Our visual attention paradigm allowed us to investigate how variations in strength over trials and variations in the attention effect over subjects relate to each other in both modalities. We demonstrate that γ-band EEG power correlates positively with the superficial layers' BOLD signal and that β-power is negatively correlated to deep layer BOLD and α-power to both deep and superficial layer BOLD. These results provide a neurophysiological basis for human laminar fMRI and link human EEG and high-resolution fMRI to systems-level neuroscience in animals.
Collapse
|