1
|
Wing D, Roelands B, Wetherell JL, Nichols JF, Meeusen R, Godino JG, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Eyler LT, Lenze EJ. Cardiorespiratory Fitness and Sleep, but not Physical Activity, are Associated with Functional Connectivity in Older Adults. SPORTS MEDICINE - OPEN 2024; 10:113. [PMID: 39425826 PMCID: PMC11490599 DOI: 10.1186/s40798-024-00778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Aging results in changes in resting state functional connectivity within key networks associated with cognition. Cardiovascular function, physical activity, sleep, and body composition may influence these age-related changes in the brain. Better understanding these associations may help clarify mechanisms related to brain aging and guide interventional strategies to reduce these changes. METHODS In a large (n = 398) sample of healthy community dwelling older adults that were part of a larger interventional trial, we conducted cross sectional analyses of baseline data to examine the relationships between several modifiable behaviors and resting state functional connectivity within networks associated with cognition and emotional regulation. Additionally, maximal aerobic capacity, physical activity, quality of sleep, and body composition were assessed. Associations were explored both through correlation and best vs. worst group comparisons. RESULTS Greater cardiovascular fitness, but not larger quantity of daily physical activity, was associated with greater functional connectivity within the Default Mode (p = 0.008 r = 0.142) and Salience Networks (p = 0.005, r = 0.152). Better sleep (greater efficiency and fewer nighttime awakenings) was also associated with greater functional connectivity within multiple networks including the Default Mode, Executive Control, and Salience Networks. When the population was split into quartiles, the highest body fat group displayed higher functional connectivity in the Dorsal Attentional Network compared to the lowest body fat percentage (p = 0.011; 95% CI - 0.0172 to - 0.0023). CONCLUSION These findings confirm and expand on previous work indicating that, in older adults, higher levels of cardiovascular fitness and better sleep quality, but not greater quantity of physical activity, total sleep time, or lower body fat percentage are associated with increased functional connectivity within key resting state networks.
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA.
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA.
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, San Diego, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Jeanne F Nichols
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
- Department of Sports, Recreation, Exercise and Sciences, Community and Health Sciences, University of the Western Cape, Cape Town, South Africa
| | - Job G Godino
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy Nagels
- Department of Neurology, Brussels, Belgium/Center for Neurosciences (C4N), UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, USA
- Education, and Clinical Center, Desert-Pacific Mental Illness Research, San Diego Veterans Administration Healthcare System, San Diego, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Jang G, Lee EM, Kim HJ, Park Y, Bang NH, Lee Kang J, Park EM. Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice. Neurochem Int 2024; 179:105833. [PMID: 39128623 DOI: 10.1016/j.neuint.2024.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Iron deposition and myelin loss are observed in the brain with aging, and iron accumulation is suggested to be involved in myelin damage. However, the exact mechanism of iron deposition with aging remains unclear. This study was aimed to determine whether expanded visceral adipose tissue contributes to iron deposition and myelin loss by inducing hepcidin in the brains of aged male mice. Compared with young adult mice, levels of hepcidin in the brain, epididymal adipose tissue, and circulation were increased in aged mice, which had expanded visceral adipose tissue with inflammation. An increase in expressions of ferritin, an indicator of intracellular iron status, was accompanied by decreased levels of proteins related to myelin sheath in the brains of aged mice. These age-related changes in the brain were improved by visceral fat removal. In addition, IL-6 level, activation of microglia/macrophages, and nuclear translocation of phosphorylated Smad1/5 (pSmad1/5) inducing hepcidin expression were reduced in the brains of aged mice after visceral fat removal, accompanied by decreases of pSmad1/5- and ferritin-positive microglia/macrophages and mature oligodendrocytes. These findings indicate that visceral adiposity contributes to hepcidin-mediated iron deposition and myelin loss with inflammation in the aged brain. Our results support the importance of preventing visceral adiposity for maintaining brain health in older individuals.
Collapse
Affiliation(s)
- Gyeonghui Jang
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Hyun-Jung Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Yelin Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Nayun Hanna Bang
- School of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Jihee Lee Kang
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 07084, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| |
Collapse
|
3
|
Khalili R, Kehayia E, Roig M. Exercise and Language Performance in Healthy Aging, Stroke and Neurodegenerative Conditions: a Scoping Review. Can Geriatr J 2024; 27:324-344. [PMID: 39234282 PMCID: PMC11346622 DOI: 10.5770/cgj.27.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Background While the benefits of exercise on cognitive functions have already been reviewed, little is known about the impact of exercise on language performance. This scoping review was conducted to identify existing evidence on exercise-induced changes in language performance in healthy aging individuals and adults with stroke or neurodegenerative conditions. Methods & Results Using the Arksey and O'Malley framework, 29 studies were included. Eleven studies in healthy aging indicated enhanced language performance, with 72.72% having significant improvement in semantic/phonological Verbal Fluency (VF) following exercise. Among 18 studies on older adults with stroke or neurodegenerative conditions, 11 reported better language performance, with 44.44% having significant improvement in picture naming/description and semantic/phonological VF by exercise. The seven remaining studies reported no significant change in language performance in persons with stroke or neurodegenerative conditions. Conclusion Overall, exercise interventions showed improvement in language performance in healthy aging, while selective enhancement was shown for language performance in persons with either stroke or neurodegenerative conditions.
Collapse
Affiliation(s)
- Roya Khalili
- School of Physical and Occupational Therapy, McGill University, Montréal
- Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Montréal
- Language and Communication Research Laboratory, Jewish Rehabilitation Hospital, CRIR-Laval
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, CRIR-Laval, QC
| | - Eva Kehayia
- School of Physical and Occupational Therapy, McGill University, Montréal
- Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Montréal
- Language and Communication Research Laboratory, Jewish Rehabilitation Hospital, CRIR-Laval
| | - Marc Roig
- School of Physical and Occupational Therapy, McGill University, Montréal
- Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Montréal
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, CRIR-Laval, QC
| |
Collapse
|
4
|
Faulkner ME, Gong Z, Bilgel M, Laporte JP, Guo A, Bae J, Palchamy E, Kaileh M, Bergeron CM, Bergeron J, Church S, D’Agostino J, Ferrucci L, Bouhrara M. Evidence of association between higher cardiorespiratory fitness and higher cerebral myelination in aging. Proc Natl Acad Sci U S A 2024; 121:e2402813121. [PMID: 39159379 PMCID: PMC11363304 DOI: 10.1073/pnas.2402813121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested. Among cognitively normal participants from two well-characterized studies spanning a wide age range, we assessed CRF operationalized as the maximum rate of oxygen consumption (VO2max) and myelin content defined by myelin water fraction (MWF) estimated through our advanced multicomponent relaxometry MRI method. We found significant positive correlations between VO2max and MWF across several white matter regions. Interestingly, the effect size of this association was higher in brain regions susceptible to early degeneration, including the frontal lobes and major white matter fiber tracts. Further, the interaction between age and VO2max exhibited i) a steeper positive slope in the older age group, suggesting that the association of VO2max with MWF is stronger at middle and older ages and ii) a steeper negative slope in the lower VO2max group, indicating that lower VO2max levels are associated with lower myelination with increasing age. Finally, the nonlinear pattern of myelin maturation and decline is VO2max-dependent with the higher VO2max group reaching the MWF peak at later ages. This study provides evidence of an interconnection between CRF and cerebral myelination and suggests therapeutic strategies for promoting brain health and attenuating white matter degeneration.
Collapse
Affiliation(s)
- Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD21224
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mary Kaileh
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | | | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| | - Sarah Church
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Jarod D’Agostino
- Clinical Research Core, National Institute on Aging, NIH, Baltimore, MD21224
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD21224
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD21224
| |
Collapse
|
5
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
6
|
Raichlen DA, Ally M, Aslan DH, Sayre MK, Bharadwaj PK, Maltagliati S, Lai MHC, Wilcox RR, Habeck CG, Klimentidis YC, Alexander GE. Associations between accelerometer-derived sedentary behavior and physical activity with white matter hyperintensities in middle-aged to older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70001. [PMID: 39183745 PMCID: PMC11342350 DOI: 10.1002/dad2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION We examined the relationship between sedentary behavior (SB), moderate-to-vigorous physical activity (MVPA), and white matter hyperintensity (WMH) volumes, a common magnetic resonance imaging (MRI) marker associated with risk of neurodegenerative disease in middle-aged to older adults. METHODS We used data from the UK Biobank (n = 14,415; 45 to 81 years) that included accelerometer-derived measures of SB and MVPA, and WMH volumes from MRI. RESULTS Both MVPA and SB were associated with WMH volumes (βMVPA = -0.03 [-0.04, -0.01], p < 0.001; βSB = 0.02 [0.01, 0.03], p = 0.007). There was a significant interaction between SB and MVPA on WMH volumes (βSB×MVPA = -0.015 [-0.028, -0.001], p SB×MVPA = 0.03) where SB was positively associated with WMHs at low MVPA, and MVPA was negatively associated with WMHs at high SB. DISCUSSION While this study cannot establish causality, the results highlight the potential importance of considering both MVPA and SB in strategies aimed at reducing the accumulation of WMH volumes in middle-aged to older adults. Highlights SB is associated with greater WMH volumes and MVPA is associated with lower WMH volumes.Relationships between SB and WMH are strongest at low levels of MVPA.Associations between MVPA and WMH are strongest at high levels of SB.Considering both SB and MVPA may be effective strategies for reducing WMHs.
Collapse
Affiliation(s)
- David A. Raichlen
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of AnthropologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Madeline Ally
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Daniel H. Aslan
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | | - Silvio Maltagliati
- Human and Evolutionary Biology SectionDepartment of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mark H. C. Lai
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rand R. Wilcox
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Christian G. Habeck
- Cognitive Neuroscience DivisionDepartment of Neurology and Taub InstituteColumbia UniversityNew YorkNew YorkUSA
| | - Yann C. Klimentidis
- Department of Epidemiology and BiostatisticsMel and Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| | - Gene E. Alexander
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
- Evelyn F. McKnight Brain InstituteUniversity of ArizonaTucsonArizonaUSA
- Department of PsychiatryUniversity of ArizonaTucsonArizonaUSA
- Neuroscience Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Physiological Sciences Graduate Interdisciplinary ProgramUniversity of ArizonaTucsonArizonaUSA
- Arizona Alzheimer's ConsortiumPhoenixArizonaUSA
| |
Collapse
|
7
|
Boa Sorte Silva NC, Barha CK, Erickson KI, Kramer AF, Liu-Ambrose T. Physical exercise, cognition, and brain health in aging. Trends Neurosci 2024; 47:402-417. [PMID: 38811309 DOI: 10.1016/j.tins.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024]
Abstract
Exercise training is an important strategy to counteract cognitive and brain health decline during aging. Evidence from systematic reviews and meta-analyses supports the notion of beneficial effects of exercise in cognitively unimpaired and impaired older individuals. However, the effects are often modest, and likely influenced by moderators such as exercise training parameters, sample characteristics, outcome assessments, and control conditions. Here, we discuss evidence on the impact of exercise on cognitive and brain health outcomes in healthy aging and in individuals with or at risk for cognitive impairment and neurodegeneration. We also review neuroplastic adaptations in response to exercise and their potential neurobiological mechanisms. We conclude by highlighting goals for future studies, including addressing unexplored neurobiological mechanisms and the inclusion of under-represented populations.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Cindy K Barha
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Wing D, Eyler LT, Lenze EJ, Wetherell JL, Nichols JF, Meeusen R, Godino J, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Roelands B. Fatness but Not Fitness Linked to BrainAge: Longitudinal Changes in Brain Aging during an Exercise Intervention. Med Sci Sports Exerc 2024; 56:655-662. [PMID: 38079309 PMCID: PMC10947938 DOI: 10.1249/mss.0000000000003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024]
Abstract
PURPOSE Fitness, physical activity, body composition, and sleep have all been proposed to explain differences in brain health. We hypothesized that an exercise intervention would result in improved fitness and body composition and would be associated with improved structural brain health. METHODS In a randomized controlled trial, we studied 485 older adults who engaged in an exercise intervention ( n = 225) or a nonexercise comparison condition ( n = 260). Using magnetic resonance imaging, we estimated the physiological age of the brain (BrainAge) and derived a predicted age difference compared with chronological age (brain-predicted age difference (BrainPAD)). Aerobic capacity, physical activity, sleep, and body composition were assessed and their impact on BrainPAD explored. RESULTS There were no significant differences between experimental groups for any variable at any time point. The intervention group gained fitness, improved body composition, and increased total sleep time but did not have significant changes in BrainPAD. Analyses of changes in BrainPAD independent of group assignment indicated significant associations with changes in body fat percentage ( r (479) = 0.154, P = 0.001), and visceral adipose tissue (VAT) ( r (478) = 0.141, P = 0.002), but not fitness ( r (406) = -0.075, P = 0.129), sleep ( r (467) range, -0.017 to 0.063; P range, 0.171 to 0.710), or physical activity ( r (471) = -0.035, P = 0.444). With linear regression, changes in body fat percentage and VAT significantly predicted changes in BrainPAD ( β = 0.948, P = 0.003) with 1-kg change in VAT predicting 0.948 yr of change in BrainPAD. CONCLUSIONS In cognitively normal older adults, exercise did not appear to impact BrainPAD, although it was effective in improving fitness and body composition. Changes in body composition, but not fitness, physical activity, or sleep impacted BrainPAD. These findings suggest that focus on weight control, particularly reduction of central obesity, could be an interventional target to promote healthier brains.
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, CA
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, San Diego Veterans Administration Healthcare System, San Diego, CA
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, San Diego, CA
- Department of Psychiatry, University of California, San Diego, CA
| | - Jeanne F. Nichols
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, BELGIUM
- Brubotics, Vrije Universiteit Brussel, Brussels, BELGIUM
| | - Job Godino
- Herbert Wertheim School of Public Health; University of California, San Diego, CA
- Exercise and Physical Activity Resource Center (EPARC); University of California, San Diego, CA
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Ginger E. Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO
| | - Guy Nagels
- Department of Neurology, UZ Brussel, Brussel, Belgium/Center for Neurosciences (C4N) Vrije Universiteit Brussel (VUB), Brussels, BELGIUM
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, BELGIUM
- Brubotics, Vrije Universiteit Brussel, Brussels, BELGIUM
| |
Collapse
|
9
|
Geisler M, de la Cruz F, Makris N, Billah T, Zhang F, Rathi Y, O'Donnell LJ, Bouix S, Herbsleb M, Bär KJ, Kikinis Z, Weiss T. Brains of endurance athletes differ in the association areas but not in the primary areas. Psychophysiology 2024; 61:e14483. [PMID: 37950391 DOI: 10.1111/psyp.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Regular participation in sports results in a series of physiological adaptations. However, little is known about the brain adaptations to physical activity. Here we aimed to investigate whether young endurance athletes and non-athletes differ in the gray and white matter of the brain and whether cardiorespiratory fitness (CRF) is associated with these differences. We assessed the CRF, volumes of the gray and white matter of the brain using structural magnetic resonance imaging (sMRI), and brain white matter connections using diffusion magnetic resonance imaging (dMRI) in 20 young male endurance athletes and 21 healthy non-athletes. While total brain volume was similar in both groups, the white matter volume was larger and the gray matter volume was smaller in the athletes compared to non-athletes. The reduction of gray matter was located in the association areas of the brain that are specialized in processing of sensory stimuli. In the microstructure analysis, significant group differences were found only in the association tracts, for example, the inferior occipito-frontal fascicle (IOFF) showing higher fractional anisotropy and lower radial diffusivity, indicating stronger myelination in this tract. Additionally, gray and white matter brain volumes, as well as association tracts correlated with CRF. No changes were observed in other brain areas or tracts. In summary, the brain signature of the endurance athlete is characterized by changes in the integration of sensory and motor information in the association areas.
Collapse
Affiliation(s)
- Maria Geisler
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
| | | | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Tashrif Billah
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Sylvain Bouix
- Département de génie logiciel et TI, École de Technologie Supérieure, Université du Québec, Montreal, Quebec, Canada
| | - Marco Herbsleb
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany
| | - Karl-Jürgen Bär
- Department of Psychosomatic Medicine, University Hospital Jena, Jena, Germany
| | - Zora Kikinis
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Somerville, Massachusetts, USA
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
10
|
Zhang W, Zhou C, Chen A. A systematic review and meta-analysis of the effects of physical exercise on white matter integrity and cognitive function in older adults. GeroScience 2024; 46:2641-2651. [PMID: 38108993 PMCID: PMC10828294 DOI: 10.1007/s11357-023-01033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
In the context of a globally aging population, exploring interventions that counteract age-related cognitive decline and cerebral structural alterations is paramount. Among various strategies, physical exercise (PE) emerges as a prevalent activity routinely incorporated in many individuals' lives. This systematic review and meta-analysis aims to elucidate the impact of PE on white matter (WM) integrity and cognitive function in older adults. Data from 581 participants, 312 in the PE intervention group, and 269 in the control group were extracted from nine randomized controlled trials (RCTs) retrieved from databases including PubMed, Embase, Web of Science, and the Cochrane Library. The results indicated a significant improvement in white matter (WM) integrity in individuals engaged in PE, as evidenced by enhanced fractional anisotropy (FA) scores (SMD = 0.4, 95% confidence interval (CI) [0.05, 0.75], P = 0.024). The GRADE assessment revealed a moderate risk. However, no significant associations were found between PE and other metrics such as radial diffusivity (RD), mean diffusivity (MD), white matter volume (WMV), hippocampal volume (HV), and cognitive functions (executive function [EF], memory, processing speed). In conclusion, our study emphasizes the potential neurostructural and cognitive functional benefits of physical exercise for the brain health of older adults.
Collapse
Affiliation(s)
- Weikun Zhang
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China
| | - Chenglin Zhou
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China
| | - Antao Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China.
| |
Collapse
|
11
|
Dao E, Barha CK, Zou J, Wei N, Liu-Ambrose T. Prevention of Vascular Contributions to Cognitive Impairment and Dementia: The Role of Physical Activity and Exercise. Stroke 2024; 55:812-821. [PMID: 38410973 DOI: 10.1161/strokeaha.123.044173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
Vascular contributions to cognitive impairment and dementia, specifically cerebral small vessel disease (CSVD), are the second most common cause of dementia. Currently, there are no specific pharmacological treatments for CSVD, and the use of conventional antidementia drugs is not recommended. Exercise has the potential to prevent and mitigate CSVD-related brain damage and improve cognitive function. Mechanistic pathways underlying the neurocognitive benefits of exercise include the control of vascular risk factors, improving endothelial function, and upregulating exerkines. Notably, the therapeutic efficacy of exercise may vary by exercise type (ie, aerobic versus resistance training) and biological sex; thus, studies designed specifically to examine these moderating factors within a CSVD context are needed. Furthermore, future research should prioritize resistance training interventions, given their tremendous therapeutic potential. Addressing these knowledge gaps will help us refine exercise recommendations to maximize their therapeutic impact in the prevention and mitigation of CSVD.
Collapse
Affiliation(s)
- Elizabeth Dao
- Department of Radiology (E.D.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
| | - Cindy K Barha
- Faculty of Kinesiology (C.K.B.), University of Calgary, AB, Canada
- Hotchkiss Brain Institute (C.K.B.), University of Calgary, AB, Canada
| | - Jammy Zou
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Nathan Wei
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| | - Teresa Liu-Ambrose
- Department of Physical Therapy (J.Z., N.W., T.L.-A.)
- Department of Physical Therapy, Aging, Mobility, and Cognitive Health Laboratory (E.D., J.Z., N.W., T.L.-A.), Faculty of Medicine, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada (E.D., J.Z., N.W., T.L.-A.)
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, BC, Canada (J.Z., N.W., T.L.-A.)
| |
Collapse
|
12
|
Roig-Coll F, Castells-Sánchez A, Monté-Rubio G, Dacosta-Aguayo R, Lamonja-Vicente N, Torán-Monserrat P, Pere G, García-Molina A, Tormos JM, Alzamora MT, Stavros D, Sánchez-Ceron M, Via M, Erickson KI, Mataró M. Changes in cardiovascular health and white matter integrity with aerobic exercise, cognitive and combined training in physically inactive healthy late-middle-aged adults: the "Projecte Moviment" randomized controlled trial. Eur J Appl Physiol 2024; 124:909-924. [PMID: 37768344 PMCID: PMC10879245 DOI: 10.1007/s00421-023-05319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION This is a 12-weeks randomized controlled trial examining the effects of aerobic exercise (AE), computerized cognitive training (CCT) and their combination (COMB). We aim to investigate their impact on cardiovascular health and white matter (WM) integrity and how they contribute to the cognitive benefits. METHODS 109 participants were recruited and 82 (62% female; age = 58.38 ± 5.47) finished the intervention with > 80% adherence. We report changes in cardiovascular risk factors and WM integrity (fractional anisotropy (FA); mean diffusivity (MD)), how they might be related to changes in physical activity, age and sex, and their potential role as mediators in cognitive improvements. RESULTS A decrease in BMI (SMD = - 0.32, p = 0.039), waist circumference (SMD = - 0.42, p = 0.003) and diastolic blood pressure (DBP) (SMD = - 0.42, p = 0.006) in the AE group and a decrease in BMI (SMD = - 0.34, p = 0.031) and DBP (SMD = - 0.32, p = 0.034) in the COMB group compared to the waitlist control group was observed. We also found decreased global MD in the CCT group (SMD = - 0.34; p = 0.032) and significant intervention-related changes in FA and MD in the frontal and temporal lobes in the COMB group. CONCLUSIONS We found changes in anthropometric measures that suggest initial benefits on cardiovascular health after only 12 weeks of AE and changes in WM microstructure in the CCT and COMB groups. These results add evidence of the clinical relevance of lifestyle interventions and the potential benefits when combining them. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT031123900.
Collapse
Affiliation(s)
- Francesca Roig-Coll
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Alba Castells-Sánchez
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Gemma Monté-Rubio
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Medical Psychology Unit, Department of Medicine, University of Barcelona, Barcelona, Catalonia, Spain
- Centre de Medicina Comparativa i Bioimatge (CMCiB), Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol (IGTP), Badalona, Spain
| | - Rosalía Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Noemí Lamonja-Vicente
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Department of Medicine, Universitat de Girona, Girona, Spain
| | - Guillem Pere
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Alberto García-Molina
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José Maria Tormos
- Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Teresa Alzamora
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Dimitriadis Stavros
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Marta Sánchez-Ceron
- Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, USA
- AdventHealth Research Institute, Orlando, FL, USA
- Department of Physical and Sports Education, Faculty of Sport Sciences, PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall d'Hebron 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Barcelona, Spain.
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
13
|
Stolicyn A, Lyall LM, Lyall DM, Høier NK, Adams MJ, Shen X, Cole JH, McIntosh AM, Whalley HC, Smith DJ. Comprehensive assessment of sleep duration, insomnia, and brain structure within the UK Biobank cohort. Sleep 2024; 47:zsad274. [PMID: 37889226 PMCID: PMC10851840 DOI: 10.1093/sleep/zsad274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
STUDY OBJECTIVES To assess for associations between sleeping more than or less than recommended by the National Sleep Foundation (NSF), and self-reported insomnia, with brain structure. METHODS Data from the UK Biobank cohort were analyzed (N between 9K and 32K, dependent on availability, aged 44 to 82 years). Sleep measures included self-reported adherence to NSF guidelines on sleep duration (sleeping between 7 and 9 hours per night), and self-reported difficulty falling or staying asleep (insomnia). Brain structural measures included global and regional cortical or subcortical morphometry (thickness, surface area, volume), global and tract-related white matter microstructure, brain age gap (difference between chronological age and age estimated from brain scan), and total volume of white matter lesions. RESULTS Longer-than-recommended sleep duration was associated with lower overall grey and white matter volumes, lower global and regional cortical thickness and volume measures, higher brain age gap, higher volume of white matter lesions, higher mean diffusivity globally and in thalamic and association fibers, and lower volume of the hippocampus. Shorter-than-recommended sleep duration was related to higher global and cerebellar white matter volumes, lower global and regional cortical surface areas, and lower fractional anisotropy in projection fibers. Self-reported insomnia was associated with higher global gray and white matter volumes, and with higher volumes of the amygdala, hippocampus, and putamen. CONCLUSIONS Sleeping longer than recommended by the NSF is associated with a wide range of differences in brain structure, potentially indicative of poorer brain health. Sleeping less than recommended is distinctly associated with lower cortical surface areas. Future studies should assess the potential mechanisms of these differences and investigate long sleep duration as a putative marker of brain health.
Collapse
Affiliation(s)
- Aleks Stolicyn
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Laura M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- School of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - Nikolaj Kjær Høier
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Copenhagen Research Center for Mental Health CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mark J Adams
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - James H Cole
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel J Smith
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Scharf C, Koschutnig K, Zussner T, Fink A, Tilp M. Twelve weeks of physical exercise breaks with coordinative exercises at the workplace increase the sulcal depth and decrease gray matter volume in brain structures related to visuomotor processes. Brain Struct Funct 2024; 229:63-74. [PMID: 38070007 PMCID: PMC10827861 DOI: 10.1007/s00429-023-02732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
Physical exercise can evoke changes in the brain structure. Consequently, these can lead to positive impacts on brain health. However, physical exercise studies including coordinative exercises are rare. Therefore, in this study, we investigated how 12 weeks of physical exercise breaks (PEBs) with coordinative exercises, focusing mainly on juggling tasks, affected the brain structure. The participants were randomly allocated to an intervention group (IG, n = 16; 42.8 ± 10.2 years) and a control group (CG, n = 9; 44.2 ± 12.3 years). The IG performed the PEBs with coordinative exercises twice per week for 15-20 min per session. Before the intervention, after 6 weeks of the intervention, and after 12 weeks of the intervention, participants underwent a high-resolution 3T T1-weighted magnetic resonance imagining scan. Juggling performance was assessed by measuring the time taken to perform a three-ball cascade. A surface-based analysis revealed an increase in vertex-wise cortical depth in a cluster including the inferior parietal lobe after 6 and 12 weeks of training in the IG. After 12 weeks, the IG showed a decrease in gray matter (GM) volume in a cluster primarily involving the right insula and the right operculum. The changes in the GM volume were related to improvements in juggling performance. No significant changes were found for the CG. To conclude, the present study showed that regular engagement in PEBs with coordinative exercises led to changes in brain structures strongly implicated in visuomotor processes involving hand and arm movements.
Collapse
Affiliation(s)
- Carina Scharf
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria.
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas Zussner
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Markus Tilp
- Institute of Human Movement Science, Sport and Health, University of Graz, Mozartgasse 14, 8010, Graz, Austria
| |
Collapse
|
15
|
Pavković S. Enhancing post-diagnostic care in Australian memory clinics: Health professionals' insights into current practices, barriers and facilitators, and desirable support. DEMENTIA 2024; 23:109-131. [PMID: 38116661 PMCID: PMC10797845 DOI: 10.1177/14713012231213419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Providing integrated and evidence-based support to individuals and families following a diagnosis of dementia is essential in order to optimise their quality of life and assist them to live well. Memory clinics provide multidisciplinary services specialising in the assessment and post-diagnostic treatment of people with dementia. This study sought to identify current practices, barriers and facilitators to provision of postdiagnostic support and to obtain health professionals' opinion of ideal post-diagnostic support to be offered in Australian memory clinics. METHODOLOGY This was a cross-sectional qualitative exploratory study. Data was collected from health professionals familiar with the process of diagnosis and post-diagnostic support through two expert panel meetings (n = 22). In addition, 5 focus groups (n = 22) were conducted including health professionals who are employed in Australian memory clinics. Data was collected between October 2020 and November 2021. Reflexive thematic analysis was undertaken. RESULTS Seven themes and three subthemes were identified under the three topics: Current Practices, Barriers and Facilitators, and Desirable Support. Themes relating to Current Practices were: Tailored Communication and feedback about diagnosis; Prescription of medications and follow-up; and Referrals to health and community services. Themes relating to Barriers and Facilitators were: The structure of the current system; Lack of funding; Lack of resources; Call for government investment. Themes relating to Desirable support were: A key/single point of support; Cognitive interventions; and Counselling and education. CONCLUSION Post-diagnostic support in Australian memory clinics focused primarily on ensuring people understood their diagnosis, information about postdiagnostic support was provided, and dementia medications were prescribed. There were notable differences in practices in metropolitan compared to regional areas. A key concern was the need for increased funding, particularly to support the establishment of a single point of contact to facilitate continuity of care.
Collapse
Affiliation(s)
- Slađana Pavković
- Wicking Dementia Research and Education Centre, University of Tasmania, College of Health and Medicine, Australia
| |
Collapse
|
16
|
Bogoian HR, Barber SJ, Carter SE, Mingo C, Rosano C, Dotson VM. Association of white matter hyperintensities and clinical vascular burden with depressive symptoms in Black older adults. Int J Geriatr Psychiatry 2024; 39:e6052. [PMID: 38165121 PMCID: PMC10947565 DOI: 10.1002/gps.6052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Black older adults have a higher vascular burden compared to non-Hispanic White (NHW) older adults, which may put them at risk for a form of depression known as vascular depression (VaDep). The literature examining VaDep in Black older adults is sparse. The current study addressed this important gap by examining whether vascular burden was associated with depressive symptoms in Black older adults. METHODS Participants included 113 Black older adults from the Healthy Brain Project, a substudy of the Health, Aging, and Body Composition Study. In multiple regression analyses, clinical vascular burden (sum of vascular conditions) and white matter hyperintensity (WMH) volume predicted depressive symptoms as measured by the Center for Epidemiologic Studies Depression Scale, controlling for demographic variables. Follow-up analyses compared the associations in the Black subsample and in 179 NHW older adults. RESULTS Higher total WMH volume, but not clinically-defined vascular burden, predicted higher concurrent depressive symptoms and higher average depressive symptoms over 4 years. Similar associations were found between uncinate fasciculus (UF) WMHs and concurrent depressive symptoms and between superior longitudinal fasciculus WMHs and average depressive symptoms. The association between depressive symptoms and UF WMH was stronger in Black compared to NHW individuals. CONCLUSION This research is consistent with the VaDep hypothesis and extends it to Black older adults, a group that has historically been underrepresented in the literature. Results highlight WMH in the UF as particularly relevant to depressive symptoms in Black older adults and suggest this group may be particularly vulnerable to the negative effects of WMH.
Collapse
Affiliation(s)
- Hannah R. Bogoian
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Sarah J. Barber
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
- Gerontology Institute, Georgia State University, Atlanta, Georgia, USA
| | - Sierra E. Carter
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
| | - Chivon Mingo
- Gerontology Institute, Georgia State University, Atlanta, Georgia, USA
| | - Caterina Rosano
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vonetta M. Dotson
- Department of Psychology, Georgia State University, Atlanta, Georgia, USA
- Gerontology Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Ahmed FS, McMillan TM, Guenther BA, Dearborn P. Cognitive Performance following Single- or Multi-Session Exercise Intervention in Middle Age: A Systematic Review. Exp Aging Res 2024; 50:28-64. [PMID: 36384438 DOI: 10.1080/0361073x.2022.2137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Research in modifiable behaviors, like exercise, on risk for dementia is increasing. Although many studies focus on older adults, brain pathology for Alzheimer's Disease can begin in middle age, suggesting an ideal target for intervention. METHODS We conducted a systematic review from exercise intervention studies on cognitive function among healthy, middle-aged participants (45-65). We searched multiple databases (PubMed, PsycINFO, MEDLINE, Cochrane Central Register of Controlled Trials, Google Scholar) for studies using standard, validated, neuropsychological measures following either single- or multi-session interventions in cognitively-unimpaired, middle-aged adults. RESULTS We identified 13 eligible studies. There was notable heterogeneity across studies, with varying design, measures, interventions, and results. Results from single-session studies showed improvement in response inhibition, while results for cognitive flexibility were mixed. No significant changes were found on measures of attention, working memory, or processing speed. Results from multi-session studies were more varied. Verbal memory was found to improve while performance on tests of attention and working memory, processing speed, and executive function were mixed. CONCLUSION Importantly, for both single-session and multi-session studies, there was no standard set of neuropsychological tests administered, making it more difficult to synthesize the findings into a single narrative. We end with a discussion on future directions and implementation.
Collapse
Affiliation(s)
- Fayeza S Ahmed
- Department of Psychology, University of Maine, Orono, Maine, USA
| | | | | | - Peter Dearborn
- Department of Psychology, University of Maine, Orono, Maine, USA
| |
Collapse
|
18
|
Hotz I, Deschwanden PF, Mérillat S, Jäncke L. Associations between white matter hyperintensities, lacunes, entorhinal cortex thickness, declarative memory and leisure activity in cognitively healthy older adults: A 7-year study. Neuroimage 2023; 284:120461. [PMID: 37981203 DOI: 10.1016/j.neuroimage.2023.120461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023] Open
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) is a growing epidemic that affects brain health and cognition. Therefore, a more profound understanding of the interplay between cSVD, brain atrophy, and cognition in healthy aging is of great importance. In this study, we examined the association between white matter hyperintensities (WMH) volume, number of lacunes, entorhinal cortex (EC) thickness, and declarative memory in cognitively healthy older adults over a seven-year period, controlling for possible confounding factors. Because there is no cure for cSVD to date, the neuroprotective potential of an active lifestyle has been suggested. Supporting evidence, however, is scarce. Therefore, a second objective of this study is to examine the relationship between leisure activities, cSVD, EC thickness, and declarative memory. METHODS We used a longitudinal dataset, which consisted of five measurement time points of structural MRI and psychometric cognitive ability and survey data, collected from a sample of healthy older adults (baseline N = 231, age range: 64-87 years, age M = 70.8 years), to investigate associations between cSVD MRI markers, EC thickness and verbal and figural memory performance. Further, we computed physical, social, and cognitive leisure activity scores from survey-based assessments and examined their associations with brain structure and declarative memory. To provide more accurate estimates of the trajectories and cross-domain correlations, we applied latent growth curve models controlling for potential confounders. RESULTS Less age-related thinning of the right (β = 0.92, p<.05) and left EC (β = 0.82, p<.05) was related to less declarative memory decline; and a thicker EC at baseline predicted less declarative memory loss (β = 0.54, p<.05). Higher baseline levels of physical (β = 0.24, p<.05), and social leisure activity (β = 0.27, p<.01) predicted less thinning of right EC. No relation was found between WMH or lacunes and declarative memory or between leisure activity and declarative memory. Higher education was initially related to more physical activity (β = 0.16, p<.05) and better declarative memory (β = 0.23, p<.001), which, however, declined steeper in participants with higher education (β = -.35, p<.05). Obese participants were less physically (β = -.18, p<.01) and socially active (β = -.13, p<.05) and had thinner left EC (β = -.14, p<.05) at baseline. Antihypertensive medication use (β = -.26, p<.05), and light-to-moderate alcohol consumption (β = -.40, p<.001) were associated with a smaller increase in the number of lacunes whereas a larger increase in the number of lacunes was observed in current smokers (β = 0.30, p<.05). CONCLUSIONS Our results suggest complex relationships between cSVD MRI markers (total WMH, number of lacunes, right and left EC thickness), declarative memory, and confounding factors such as antihypertensive medication, obesity, and leisure activitiy. Thus, leisure activities and having good cognitive reserve counteracting this neurodegeneration. Several confounding factors seem to contribute to the extent or progression/decline of cSVD, which needs further investigation in the future. Since there is still no cure for cSVD, modifiable confounding factors should be studied more intensively in the future to maintain or promote brain health and thus cognitive abilities in older adults.
Collapse
Affiliation(s)
- Isabel Hotz
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland.
| | - Pascal Frédéric Deschwanden
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Susan Mérillat
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| | - Lutz Jäncke
- Dynamics of Healthy Aging, University Research Priority Program (URPP), University of Zurich, Stampfenbachstrasse 73, Zurich CH-8006, Switzerland
| |
Collapse
|
19
|
Grasset L, Planche V, Bouteloup V, Azouani C, Dubois B, Blanc F, Paquet C, David R, Belin C, Jonveaux T, Julian A, Pariente J, Mangin JF, Chêne G, Dufouil C. Physical activity, biomarkers of brain pathologies and dementia risk: Results from the Memento clinical cohort. Alzheimers Dement 2023; 19:5700-5718. [PMID: 37422285 DOI: 10.1002/alz.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION This study aims to examine whether physical activity moderates the association between biomarkers of brain pathologies and dementia risk. METHODS From the Memento cohort, we analyzed 1044 patients with mild cognitive impairment, aged 60 and older. Self-reported physical activity was assessed using the International Physical Activity Questionnaire. Biomarkers of brain pathologies comprised medial temporal lobe atrophy (MTA), white matter lesions, and plasma amyloid beta (Aβ)42/40 and phosphorylated tau181. Association between physical activity and risk of developing dementia over 5 years of follow-up, and interactions with biomarkers of brain pathologies were tested. RESULTS Physical activity moderated the association between MTA and plasma Aβ42/40 level and increased dementia risk. Compared to participants with low physical activity, associations of both MTA and plasma Aβ42/40 on dementia risk were attenuated in participants with high physical activity. DISCUSSION Although reverse causality cannot be excluded, this work suggests that physical activity may contribute to cognitive reserve. HIGHLIGHTS Physical activity is an interesting modifiable target for dementia prevention. Physical activity may moderate the impact of brain pathology on dementia risk. Medial temporal lobe atrophy and plasma amyloid beta 42/40 ratio were associated with increased dementia risk especially in those with low level of physical activity.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
| | - Vincent Planche
- University of Bordeaux, CNRS UMR 5293, Institut des Maladies Neurodégénératives, Centre Mémoire de Ressources et de Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Vincent Bouteloup
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Chabha Azouani
- CATI multicentre imaging platform, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Gif-sur-Yvette, France
| | - Bruno Dubois
- IM2A AP-HP INSERM UMR-S975 Groupe Hospitalier Pitié-Salpêtrière Institut de la Mémoire et de la Maladie d'Alzheimer Institut du Cerveau et de la Moelle épinière Sorbonne Université Paris, Paris, France
| | - Frédéric Blanc
- ICube laboratory, Pôle de Gériatrie, Université de Strasbourg, CNRS, UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Centre Mémoire de Ressources et de Recherches, Strasbourg, France
| | - Claire Paquet
- Université de Paris Cité, Centre de Neurologie Cognitive GHU APHP Nord Hôpital Lariboisière, INSERMU1144, Paris, France
| | - Renaud David
- Department of Old Age Psychiatry, Nice University Hospital, Nice, France
| | - Catherine Belin
- Service de Neurologie Hôpital Saint-Louis AP-HP, Paris, France
| | - Thérèse Jonveaux
- Centre Mémoire de Ressources et de Recherche de Lorraine, Service de Neurologie CHRU Nancy, Laboratoire Lorrain de Psychologie et de Neurosciences de la dynamique des comportements 2LPN EA 7489 Université de Lorraine, Nancy, France
| | - Adrien Julian
- Service de Neurologie CHU La Milétrie Centre Mémoire de Ressources et de Recherche, Poitiers, France
- Centre d'Investigation Clinique CIC1402, Poitiers, France
| | - Jérémie Pariente
- Department of Neurology, Toulouse University Hospital, Toulouse, France
- Toulouse NeuroImaging Center, Universite de Toulouse, Inserm, UPS, Toulouse, France
| | - Jean-François Mangin
- CATI multicentre imaging platform, US52-UAR2031, CEA, ICM, SU, CNRS, INSERM, APHP, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Neurospin, UMR 9027, Gif-sur-Yvette, France
| | - Geneviève Chêne
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Bangen KJ, Calcetas AT, Thomas KR, Wierenga C, Smith CN, Bordyug M, Brenner EK, Wing D, Chen C, Liu TT, Zlatar ZZ. Greater accelerometer-measured physical activity is associated with better cognition and cerebrovascular health in older adults. J Int Neuropsychol Soc 2023; 29:859-869. [PMID: 36789631 PMCID: PMC10425574 DOI: 10.1017/s1355617723000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and regional cerebral blood flow (CBF) in older adults. METHOD Forty-three older adults without cognitive impairment underwent magnetic resonance imaging (MRI) and comprehensive neuropsychological assessment. Waist-worn accelerometers objectively measured PA for approximately one week. RESULTS Higher time spent in moderate to vigorous PA (MVPA) was uniquely associated with better memory and executive functioning after adjusting for all light PA. Higher MVPA was also uniquely associated with lower frontal WMH volume although the finding was no longer significant after additionally adjusting for age and accelerometer wear time. MVPA was not associated with CBF. Higher time spent in all light PA was uniquely associated with higher CBF but not with cognitive performance or WMH volume. CONCLUSIONS Engaging in PA may be beneficial for cerebrovascular health, and MVPA in particular may help preserve memory and executive function in otherwise cognitively healthy older adults. There may be differential effects of engaging in lighter PA and MVPA on MRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
Collapse
Affiliation(s)
- Katherine J Bangen
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda T Calcetas
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Kelsey R Thomas
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christina Wierenga
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Christine N Smith
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA
| | - Maria Bordyug
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Einat K Brenner
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Conan Chen
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Center for Functional MRI and Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Zvinka Z Zlatar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Miró-Padilla A, Adrián-Ventura J, Cherednichenko A, Monzonís-Carda I, Beltran-Valls MR, MolinerUrdiales D, Ávila C. Relevance of the anterior cingulate cortex volume and personality in motivated physical activity behaviors. Commun Biol 2023; 6:1106. [PMID: 37907751 PMCID: PMC10618534 DOI: 10.1038/s42003-023-05423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/05/2023] [Indexed: 11/02/2023] Open
Abstract
Some recent theories about the origins and maintenance of regular physical activity focus on the rewards of the properties of practicing this activity. Animal and human studies have demonstrated that mesolimbic dopamine plays a crucial role in the involvement in voluntary physical activity. Here, we test this possible role in a sample of 66 right-handed healthy young adults by studying the influence of personality and the volume of reward-related brain areas on individual differences in voluntary physical activity, objectively measured by accelerometer and subjectively self-reported by questionnaire. Our results show that a smaller volume of the right anterior cingulate cortex and lower scores on reward sensitivity contributed to explaining low levels of daily physical activity. Moreover, the volume of the right anterior cingulate cortex correlates positively with self-reported total physical activity. Results are discussed by highlighting the need to use objective measures of daily physical activity, as well as the important role of the anterior cingulate cortex and personality in promoting effortful and invigorating actions to obtain rewards.
Collapse
Affiliation(s)
- Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
- Department of Psychology and Sociology, University of Zaragoza, 44003, Teruel, Spain
| | - Anastasia Cherednichenko
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| | - Irene Monzonís-Carda
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | | | - Diego MolinerUrdiales
- LIFE Research Group, Department of Education, Universitat Jaume I, 12071, Castellon, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
22
|
Callow DD, Kommula Y, Stark CEL, Smith JC. Acute cycling exercise and hippocampal subfield function and microstructure in healthy older adults. Hippocampus 2023; 33:1123-1138. [PMID: 37526119 PMCID: PMC10543457 DOI: 10.1002/hipo.23571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
Aging is associated with deterioration in dentate gyrus (DG) and CA3, both crucial hippocampal subfields for age susceptible memory processes such as mnemonic discrimination (MD). Meanwhile, a single aerobic exercise session alters DG/CA3 function and neural activity in both rats and younger adults and can elicit short-term microstructural alterations in the hippocampus of older adults. However, our understanding of the effects of acute exercise on hippocampal subfield integrity via function and microstructure in older adults is limited. Thus, a within subject-design was employed to determine if 20-min of moderate to vigorous aerobic exercise alters bilateral hippocampal subfield function and microstructure using high-resolution functional magnetic resonance imaging (fMRI) during an MD task (n = 35) and high angular resolution multi-shell diffusion imaging (n = 31), in healthy older adults, compared to seated rest. Following the exercise condition, participants exhibited poorer MD performance, particularly when their perception of effort was higher. Exercise was also related to lower MD-related activity within the DG/CA3 but not CA1 subfield. Finally, after controlling for whole brain gray matter diffusion, exercise was associated with lower neurite density index (NDI) within the DG/CA3. However, exercise-related differences in DG/CA3 activity and NDI were not associated with differences in MD performance. Our results suggest moderate to vigorous aerobic exercise may temporarily inhibit MD performance, and suppress DG/CA3 MD-related activity and NDI, potentially through neuroinflammatory/glial processes. However, additional studies are needed to confirm whether these short-term changes in behavior and hippocampal subfield neurophysiology are beneficial and how they might relate to long-term exercise habits.
Collapse
Affiliation(s)
- Daniel D. Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Yash Kommula
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
23
|
Collins AM, Molina-Hidalgo C, Aghjayan SL, Fanning J, Erlenbach ED, Gothe NP, Velazquez-Diaz D, Erickson KI. Differentiating the influence of sedentary behavior and physical activity on brain health in late adulthood. Exp Gerontol 2023; 180:112246. [PMID: 37356467 DOI: 10.1016/j.exger.2023.112246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Public health messaging calls for individuals to be more physically active and less sedentary, yet these lifestyle behaviors have been historically studied independently. Both physical activity (PA) and sedentary behavior (SB) are linked through time-use in a 24-hour day and are related to health outcomes, such as neurocognition. While the benefits of PA on brain health in late adulthood have been well-documented, the influence of SB remains to be understood. The purpose of this paper was to critically review the evolving work on SB and brain health in late adulthood and emphasize key areas of consideration to inform potential research. Overall, the existing literature studying the impact of SB on the components and mechanisms of brain health are mixed and inconclusive, provided largely by cross-sectional and observational work employing a variety of measurement techniques of SB and brain health outcomes. Further, many studies did not conceptually or statistically account for the role of PA in the proposed relationships. Therefore, our understanding of the way in which SB may influence neurocognition in late adulthood is limited. Future efforts should include more prospective longitudinal and randomized clinical trials with intentional methodological approaches to better understand the relationships between SB and the brain in late adulthood, and how these potential links are differentiated from PA.
Collapse
Affiliation(s)
- Audrey M Collins
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA.
| | | | - Sarah L Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, USA
| | - Emily D Erlenbach
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Neha P Gothe
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Daniel Velazquez-Diaz
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA; Exphy Research Group, Department of Physical Education, Faculty of Education Sciences, University Hospital, University of Cadiz, 11009 Cadiz, Spain; Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cadiz, 11009 Cadiz, Spain
| | - Kirk I Erickson
- AdventHealth Research Institute, Department of Neuroscience, AdventHealth, Orlando, FL, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Klimecki OM, Liebscher M, Gaubert M, Hayek D, Zarucha A, Dyrba M, Bartels C, Buerger K, Butryn M, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Glanz W, Hetzer S, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Spruth EJ, Spottke A, Teipel SJ, Wiltfang J, Wolfsgruber S, Yakupov R, Düzel E, Jessen F, Wagner M, Roeske S, Wirth M. Long-term environmental enrichment is associated with better fornix microstructure in older adults. Front Aging Neurosci 2023; 15:1170879. [PMID: 37711996 PMCID: PMC10498282 DOI: 10.3389/fnagi.2023.1170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Background Sustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer's disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults. Methods N = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status. Results Reported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized β = 0.117, p = 0.033) and lower MD (β = -0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = -0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts. Conclusion Our findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.
Collapse
Affiliation(s)
- Olga M Klimecki
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Malo Gaubert
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neuroradiology, Rennes University Hospital Centre Hospitalier Universitaire (CHU), Rennes, France
| | - Dayana Hayek
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Alexis Zarucha
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Peter Dechent
- Magnetic Resonance (MR)-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Silka Dawn Freiesleben
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Department of Psychiatry and Psychotherapy, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Peters
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and United Kingdom Dementia Research Institute (UK DRI), Edinburgh, United Kingdom
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Eike Jakob Spruth
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
25
|
Ahmed FS, Guenther BA, Thompson JL, Lagerstrom L, Robbins MA. Role of light walking pace on cognition: Findings from the Maine-Syracuse Longitudinal Study. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-15. [PMID: 37402210 PMCID: PMC10764642 DOI: 10.1080/23279095.2023.2228952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Moderate- to vigorous intensities of physical activity are recommended for health promotion, including brain health. Regular physical activity is considered a modifiable factor to delay -perhaps prevent- onset of dementias such as Alzheimer's disease. Little is known about the benefits of light physical activity. We analyzed data from a 998 community-dwelling, cognitively unimpaired participants from the Maine-Syracuse Longitudinal Study (MSLS) and investigated the role of light physical activity, defined by walking pace, across two time points. Results revealed light levels of walking pace were associated with higher performance at the first timepoint and less decline by time 2 in the domains of verbal abstract reasoning and visual scanning and tracking, which includes both processing speed and executive function skills. When examining change over time (N = 583), increasing walking pace was associated with less decline at time two for the domains of visual scanning and tracking, working memory, visual spatial ability, and working memory, but not verbal abstract reasoning. These findings highlight the relevance of light physical activity and the need to investigate its contribution to cognitive function. From a public health perspective, this may encourage more adults to adopt a light level of exercise and still reap health benefits.
Collapse
Affiliation(s)
- Fayeza S. Ahmed
- Department of Psychology, University of Maine, 301 Beryl Warner Williams Hall, Orono, ME 04469, USA
| | - Benjamin A. Guenther
- Department of Psychology, University of Maine, 301 Beryl Warner Williams Hall, Orono, ME 04469, USA
| | - Jennifer L. Thompson
- Department of Psychology, University of Maine, 301 Beryl Warner Williams Hall, Orono, ME 04469, USA
| | - Lindsey Lagerstrom
- Department of Psychology, University of Maine, 301 Beryl Warner Williams Hall, Orono, ME 04469, USA
| | - Michael A. Robbins
- Department of Psychology, University of Maine, 301 Beryl Warner Williams Hall, Orono, ME 04469, USA
| |
Collapse
|
26
|
Oh J, Crockett RA, Hsu CL, Dao E, Tam R, Liu-Ambrose T. Resistance Training Maintains White Matter and Physical Function in Older Women with Cerebral Small Vessel Disease: An Exploratory Analysis of a Randomized Controlled Trial. J Alzheimers Dis Rep 2023; 7:627-639. [PMID: 37483319 PMCID: PMC10357123 DOI: 10.3233/adr-220113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/17/2023] [Indexed: 07/25/2023] Open
Abstract
Background As the aging population grows, there is an increasing need to develop accessible interventions against risk factors for cognitive impairment and dementia, such as cerebral small vessel disease (CSVD). The progression of white matter hyperintensities (WMHs), a key hallmark of CSVD, can be slowed by resistance training (RT). We hypothesize RT preserves white matter integrity and that this preservation is associated with improved cognitive and physical function. Objective To determine if RT preserves regional white matter integrity and if any changes are associated with cognitive and physical outcomes. Methods Using magnetic resonance imaging data from a 12-month randomized controlled trial, we compared the effects of a twice-weekly 60-minute RT intervention versus active control on T1-weighted over T2-weighted ratio (T1w/T2w; a non-invasive proxy measure of white matter integrity) in a subset of study participants (N = 21 females, mean age = 69.7 years). We also examined the association between changes in T1w/T2w with two key outcomes of the parent study: (1) selective attention and conflict resolution, and (2) peak muscle power. Results Compared with an active control group, RT increased T1w/T2w in the external capsule (p = 0.024) and posterior thalamic radiations (p = 0.013) to a greater degree. Increased T1w/T2w in the external capsule was associated with an increase in peak muscle power (p = 0.043) in the RT group. Conclusion By maintaining white matter integrity, RT may be a promising intervention to counteract the pathological changes that accompany CSVD, while improving functional outcomes such as muscle power.
Collapse
Affiliation(s)
- Jean Oh
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
| | - Rachel A. Crockett
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Chun-Liang Hsu
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Elizabeth Dao
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Roger Tam
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Teresa Liu-Ambrose
- Aging, Mobility, and Cognitive Health Laboratory, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, Canada
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for SMART Aging at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, Canada
| |
Collapse
|
27
|
Xie Y, Cai K, Dai J, Wei G. Enhanced Integrity of White Matter Microstructure in Mind-Body Practitioners: A Whole-Brain Diffusion Tensor Imaging Study. Brain Sci 2023; 13:brainsci13040691. [PMID: 37190656 DOI: 10.3390/brainsci13040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Tai Chi Chuan (TCC) is an increasingly popular multimodal mind-body practice with potential cognitive benefits, yet the neurobiological mechanisms underlying these effects, particularly in relation to brain white matter (WM) microstructure, remain largely unknown. In this study, we used diffusion tensor imaging (DTI) and the attention network test (ANT) to compare 22 TCC practitioners and 18 healthy controls. We found extensive differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between the two groups. Specifically, TCC practitioners had significantly different diffusion metrics in the corticospinal tract (CST), fornix (FX)/stria terminalis (ST), and cerebral peduncle (CP). We also observed a significant correlation between increased FA values in the right CP and ANT performance in TCC practitioners. Our findings suggest that optimized regional WM microstructure may contribute to the complex information processing associated with TCC practice, providing insights for preventing cognitive decline and treating neurological disorders with cognitive impairment in clinical rehabilitation.
Collapse
Affiliation(s)
- Yingrong Xie
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Cai
- College of Physical Education, Yangzhou University, Yangzhou 225127, China
| | - Jingang Dai
- Experimental Research Center, China Academy of Chinese Medical Sciences, National Chinese Medicine Experts Inheritance Office of Song Jun, Beijing 100700, China
| | - Gaoxia Wei
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Gowik JK, Goelz C, Vieluf S, van den Bongard F, Reinsberger C. Source connectivity patterns in the default mode network differ between elderly golf-novices and non-golfers. Sci Rep 2023; 13:6215. [PMID: 37069191 PMCID: PMC10110620 DOI: 10.1038/s41598-023-31893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
Learning to play golf has high demands on attention and therefore may counteract age-related changes of functional brain networks. This cross-sectional study compared source connectivity in the Default Mode Network (DMN) between elderly golf novices and non-golfers. Four-minute resting-state electroencephalography (128 channels) from 22 elderly people (mean age 67 ± 4.3 years, 55% females) were recorded after completing a 22-week golf learning program or after having continued with normal life. Source connectivity was assessed after co-registration of EEG data with native MRI within pre-defined portions of the DMN in the beta band (14-25 Hz). Non-golfers had significantly higher source connectivity values in the anterior DMN compared to non-golfers. Exploratory correlation analyses did not indicate an association to cognitive performance in either group. Inverse correlations between a marker of external attention with source connectivity of the anterior DMN may suggest a trend in the golf group only, but have to be replicated in future studies. Clinical relevance of these findings remains to be elucidated, but the observed difference in the anterior DMN may provide a starting point to further investigate if and how learning golf may have an impact on physiological age-related cognitive changes.
Collapse
Affiliation(s)
- J K Gowik
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - C Goelz
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - S Vieluf
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - F van den Bongard
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - C Reinsberger
- Department of Exercise and Health, Institute of Sports Medicine, Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany.
| |
Collapse
|
29
|
Romanò F, Motl RW, Valsasina P, Amato MP, Brichetto G, Bruschi N, Chataway J, Chiaravalloti ND, Cutter G, Dalgas U, DeLuca J, Farrell R, Feys P, Freeman J, Inglese M, Meza C, Salter A, Sandroff BM, Feinstein A, Rocca MA, Filippi M. Abnormal thalamic functional connectivity correlates with cardiorespiratory fitness and physical activity in progressive multiple sclerosis. J Neurol 2023; 270:3213-3224. [PMID: 36933030 DOI: 10.1007/s00415-023-11664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Altered thalamic volumes and resting state (RS) functional connectivity (FC) might be associated with physical activity (PA) and cardiorespiratory fitness (CRF) in people with progressive multiple sclerosis (PMS). OBJECTIVES To assess thalamic structural and functional alterations and investigate their correlations with PA/CRF levels in people with PMS. METHODS Seven-day accelerometry and cardiopulmonary exercise testing were used to assess PA/CRF levels in 91 persons with PMS. They underwent 3.0 T structural and RS fMRI acquisition with 37 age/sex-matched healthy controls (HC). Between-group comparisons of MRI measures and their correlations with PA/CRF variables were assessed. RESULTS PMS people had lower volumes compared to HC (all p < 0.001). At corrected threshold, PMS showed decreased intra- and inter-thalamic RS FC, and increased RS FC between the thalamus and the hippocampus, bilaterally. At uncorrected threshold, decreased thalamic RS FC with caudate nucleus, cerebellum and anterior cingulate cortex (ACC), as well as increased thalamic RS FC with occipital regions, were also detected. Lower CRF, measured as peak oxygen consumption (VO2peak), correlated with lower white matter volume (r = 0.31, p = 0.03). Moreover, lower levels of light PA correlated with increased thalamic RS FC with the right hippocampus (r = - 0.3, p = 0.05). DISCUSSION People with PMS showed widespread brain atrophy, as well as pronounced intra-thalamic and thalamo-hippocampal RS FC abnormalities. White matter atrophy correlated with CRF, while increased thalamo-hippocampal RS FC was associated to worse PA levels. Thalamic RS FC might be used to monitor physical impairment and efficacy of rehabilitative and disease-modifying treatments in future studies.
Collapse
Affiliation(s)
- Francesco Romanò
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Maria Pia Amato
- Section Neurosciences, Department NEUROFARBA, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Via Operai 40, 16149, Genoa, Italy.,AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Via Operai 30, 16149, Genoa, Italy
| | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Jeremy Chataway
- Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, UCL, London, UK.,Biomedical Research Centre, National Institute for Health Research, University College London Hospitals, London, UK
| | - Nancy D Chiaravalloti
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus, Denmark
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Rachel Farrell
- Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Peter Feys
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University, Diepenbeek, Belgium.,UMSC Hasselt, Pelt, Belgium
| | - Jennifer Freeman
- Faculty of Health, School of Health Professions, University of Plymouth, Devon, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Meza
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, M5R 3B6, Canada
| | - Amber Salter
- Section on Statistical Planning and Analysis, Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brian M Sandroff
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, M5R 3B6, Canada
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
30
|
Herber E, Aeschbacher S, Coslovsky M, Schwendinger F, Hennings E, Gasser A, Di Valentino M, Rigamonti E, Reichlin T, Rodondi N, Netzer S, Beer JH, Stauber A, Müller A, Ammann P, Sinnecker T, Duering M, Wuerfel J, Conen D, Kühne M, Osswald S, Bonati LH. Physical activity and brain health in patients with atrial fibrillation. Eur J Neurol 2023; 30:567-577. [PMID: 36478335 DOI: 10.1111/ene.15660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Vascular brain lesions, such as ischemic infarcts, are common among patients with atrial fibrillation (AF) and are associated with impaired cognitive function. The role of physical activity (PA) in the prevalence of brain lesions and cognition in AF has not been investigated. METHODS Patients from the multicenter Swiss-AF cohort study were included in this cross-sectional analysis. We assessed regular exercise (RE; at least once weekly) and minutes of weekly PA using a validated questionnaire. We studied associations with ischemic infarcts, white matter hyperintensities, cerebral microbleeds, and brain volume on brain magnetic resonance imaging and with global cognition measured with a cognitive construct (CoCo) score. RESULTS Among 1490 participants (mean age = 72 ± 9 years), 730 (49%) engaged in RE. In adjusted regression analyses, RE was associated with a lower prevalence of ischemic infarcts (odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.63-0.98, p = 0.03) and of moderate to severe white matter hyperintensities (OR = 0.78, 95% CI = 0.62-0.99, p = 0.04), higher brain volume (β-coefficient = 10.73, 95% CI = 2.37-19.09, p = 0.01), and higher CoCo score (β-coefficient = 0.08, 95% CI = 0.03-0.12, p < 0.001). Increasing weekly PA was associated with higher brain volume (β-coefficient = 1.40, 95% CI = 0.65-2.15, p < 0.001). CONCLUSIONS In AF patients, RE was associated with a lower prevalence of ischemic infarcts and of moderate to severe white matter disease, with larger brain volume, and with better cognitive performance. Prospective studies are needed to investigate whether these associations are causal. Until then, our findings suggest that patients with AF should be encouraged to remain physically active.
Collapse
Affiliation(s)
- Elena Herber
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Coslovsky
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinical Trial Unit Basel, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Fabian Schwendinger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise, and Health, University Basel, Basel, Switzerland
| | - Elisa Hennings
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andreas Gasser
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Elia Rigamonti
- Department of Internal Medicine, Cantonal Hospital Authority, Lugano, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Seraina Netzer
- Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
| | - Juerg H Beer
- Department of Medicine, Cantonal Hospital of Baden and Molecular Cardiology, University Hospital of Zurich, Zurich, Switzerland
| | - Annina Stauber
- Department of Cardiology, Triemli Hospital Zurich, Zurich, Switzerland
| | - Andreas Müller
- Department of Cardiology, Triemli Hospital Zurich, Zurich, Switzerland
| | - Peter Ammann
- Department of Cardiology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
| | - Tim Sinnecker
- Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Marco Duering
- Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Radiology, University Hospital Magdeburg, Magdeburg, Germany
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Michael Kühne
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Osswald
- Cardiovascular Research Institute Basel, University Hospital Basel, University of Basel, Basel, Switzerland
- Cardiology Division, Department of Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Leo H Bonati
- Department of Neurology and Stroke Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Department, Reha Rheinfelden, Rheinfelden, Switzerland
| | | |
Collapse
|
31
|
Graciani AL, Gutierre MU, Coppi AA, Arida RM, Gutierre RC. MYELIN, AGING, AND PHYSICAL EXERCISE. Neurobiol Aging 2023; 127:70-81. [PMID: 37116408 DOI: 10.1016/j.neurobiolaging.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Myelin sheath is a structure in neurons fabricated by oligodendrocytes and Schwann cells responsible for increasing the efficiency of neural synapsis, impulse transmission, and providing metabolic support to the axon. They present morpho-functional changes during health aging as deformities of the sheath and its fragmentation, causing an increased load on microglial phagocytosis, with Alzheimer's disease aggravating. Physical exercise has been studied as a possible protective agent for the nervous system, offering benefits to neuroplasticity. In this regard, studies in animal models for Alzheimer's and depression reported the efficiency of physical exercise in protecting against myelin degeneration. A reduction of myelin damage during aging has also been observed in healthy humans. Physical activity promotes oligodendrocyte proliferation and myelin preservation during old age, although some controversies remain. In this review, we will address how effective physical exercise can be as a protective agent of the myelin sheath against the effects of aging in physiological and pathological conditions.
Collapse
|
32
|
Boa Sorte Silva NC, Dao E, Liang Hsu C, Tam RC, Lam K, Alkeridy W, Laule C, Vavasour IM, Stein RG, Liu-Ambrose T. Myelin and Physical Activity in Older Adults With Cerebral Small Vessel Disease and Mild Cognitive Impairment. J Gerontol A Biol Sci Med Sci 2023; 78:545-553. [PMID: 35876839 DOI: 10.1093/gerona/glac149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myelin loss is a feature of cerebral small vessel disease (cSVD). Although physical activity levels may exert protective effects over cSVD pathology, its specific relationship with myelin content in people living with the cSVD is unknown. Thus, we investigated whether physical activity levels are associated with myelin in community-dwelling older adults with cSVD and mild cognitive impairment. METHODS Cross-sectional data from 102 individuals with cSVD and mild cognitive impairment were analyzed (mean age [SD] = 74.7 years [5.5], 63.7% female). Myelin was measured using a magnetic resonance gradient and spin echo sequence. Physical activity was estimated using the Physical Activity Scale for the Elderly. Hierarchical regression models adjusting for total intracranial volume, age, sex, body mass index, and education were conducted to determine the associations between myelin content and physical activity. Significant models were further adjusted for white matter hyperintensity volume. RESULTS In adjusted models, greater physical activity was linked to higher myelin content in the whole-brain white matter (R2change = .04, p = .048). Greater physical activity was also associated with myelin content in the sagittal stratum (R2change = .08, p = .004), anterior corona radiata (R2change = .04, p = .049), and genu of the corpus callosum (R2change = .05, p = .018). Adjusting for white matter hyperintensity volume did not change any of these associations. CONCLUSIONS Physical activity may be a strategy to maintain myelin in older adults with cSVD and mild cognitive impairment. Future randomized controlled trials of exercise are needed to determine whether exercise increases myelin content.
Collapse
Affiliation(s)
- Nárlon C Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth Dao
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Liang Hsu
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
| | - Roger C Tam
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Lam
- Department of Medicine, Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Walid Alkeridy
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, King Saud University, College of Medicine, Riyadh, Saudi Arabia.,Department of Medicine, Division of Geriatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelia Laule
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Irene M Vavasour
- Department of Radiology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan G Stein
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
33
|
Polk SE, Kleemeyer MM, Bodammer NC, Misgeld C, Porst J, Wolfarth B, Kühn S, Lindenberger U, Düzel S, Wenger E. Aerobic exercise is associated with region-specific changes in volumetric, tensor-based, and fixel-based measures of white matter integrity in healthy older adults. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Pellegrino M, Ben-Soussan TD, Paoletti P. A Scoping Review on Movement, Neurobiology and Functional Deficits in Dyslexia: Suggestions for a Three-Fold Integrated Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3315. [PMID: 36834011 PMCID: PMC9966639 DOI: 10.3390/ijerph20043315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Developmental dyslexia is a common complex neurodevelopmental disorder. Many theories and models tried to explain its symptomatology and find ways to improve poor reading abilities. The aim of this scoping review is to summarize current findings and several approaches and theories, focusing on the interconnectedness between motion, emotion and cognition and their connection to dyslexia. Consequently, we present first a brief overview of the main theories and models regarding dyslexia and its proposed neural correlates, with a particular focus on cerebellar regions and their involvement in this disorder. After examining different types of intervention programs and remedial training, we highlight the effects of a specific structured sensorimotor intervention named Quadrato Motor Training (QMT). QMT utilizes several cognitive and motor functions known to be relevant in developmental dyslexia. We introduce its potential beneficial effects on reading skills, including working memory, coordination and attention. We sum its effects ranging from behavioral to functional, structural and neuroplastic, especially in relation to dyslexia. We report several recent studies that employed this training technique with dyslexic participants, discussing the specific features that distinguish it from other training within the specific framework of the Sphere Model of Consciousness. Finally, we advocate for a new perspective on developmental dyslexia integrating motion, emotion and cognition to fully encompass this complex disorder.
Collapse
Affiliation(s)
- Michele Pellegrino
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, 06081 Assisi, Italy
| | | |
Collapse
|
35
|
Verrall CE, Tran DL, Yang JYM, Lubans DR, Winlaw DS, Ayer J, Celermajer D, Cordina R. Exercise as therapy for neurodevelopmental and cognitive dysfunction in people with a Fontan circulation: A narrative review. Front Pediatr 2023; 11:1111785. [PMID: 36861078 PMCID: PMC9969110 DOI: 10.3389/fped.2023.1111785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
People with a Fontan circulation are at risk of neurodevelopmental delay and disability, and cognitive dysfunction, that has significant implications for academic and occupational attainment, psychosocial functioning, and overall quality of life. Interventions for improving these outcomes are lacking. This review article discusses current intervention practices and explores the evidence supporting exercise as a potential intervention for improving cognitive functioning in people living with a Fontan circulation. Proposed pathophysiological mechanisms underpinning these associations are discussed in the context of Fontan physiology and avenues for future research are recommended.
Collapse
Affiliation(s)
- Charlotte Elizabeth Verrall
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Derek Lee Tran
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), Royal Children's Hospital, Melbourne, VIC, Australia
| | - David Revalds Lubans
- Centre for Active Living and Learning, College of Human and Social Futures, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - David Scott Winlaw
- Cardiothoracic Surgery, the Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Julian Ayer
- Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David Celermajer
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia
| | - Rachael Cordina
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney School of Medicine, Sydney, NSW, Australia.,Charles Perkins Centre, Heart Research Institute, Sydney, NSW, Australia.,Heart Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
36
|
Ihle A, Gouveia ÉR, Gouveia BR, Marques A, Marconcin P, Nascimento MDM, Haas M, Jurema J, Tinôco MA, Kliegel M. The Relation of Having Experienced a Fall in the Past to Lower Cognitive Functioning in Old Age Is Mediated via Less Physical Activity Engagement as Cognitive Reserve Contributor. BIOLOGY 2022; 11:biology11121754. [PMID: 36552264 PMCID: PMC9775010 DOI: 10.3390/biology11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Physical activity and exercise contribute to the accumulation of cognitive reserve, which is instrumental for preserving cognitive health in old age. In a large sample of 701 older adults (mean age = 70.36 years), we investigated whether the relationship between having experienced a fall in the past and lower performance in cognitive functioning was mediated via less physical activity engagement as a cognitive reserve contributor. General cognition was assessed using the mini-mental state examination (MMSE), long-term memory using a word-pair delayed recall test and working memory using a backward digit-span test. In face-to-face interviews, individuals reported information on falls during the past 12 months and their habitual physical activity engagement. Our analyses demonstrated that the relationship between having experienced a fall in the past and lower performance in the cognitive functioning measures was partly mediated (by 16.3% for general cognition, 30.6% for long-term memory, and 33.1% for working memory, respectively) via less physical activity engagement. In conclusion, we suggest as a core bio-psychological mechanism that experiencing a fall at an older age is a critical life event that hinders sufficient physical activity engagement and thereby impedes cognitive reserve build-up, resulting in lower cognitive functioning outcomes.
Collapse
Affiliation(s)
- Andreas Ihle
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
- Correspondence:
| | - Élvio R. Gouveia
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Department of Physical Education and Sport, University of Madeira, 9020-105 Funchal, Portugal
- Laboratory of Robotics and Engineering Systems (LARSYS), Interactive Technologies Institute, 9020-105 Funchal, Portugal
| | - Bruna R. Gouveia
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Laboratory of Robotics and Engineering Systems (LARSYS), Interactive Technologies Institute, 9020-105 Funchal, Portugal
- Regional Directorate of Health, Secretary of Health of the Autonomous Region of Madeira, 9004-515 Funchal, Portugal
- Saint Joseph of Cluny Higher School of Nursing, 9050-535 Funchal, Portugal
| | - Adilson Marques
- Centre for the Study of Human Performance (CIPER), Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Instituto de Saúde Ambiental (ISAMB), Faculty of Medicine, University of Lisbon, 1649-020 Lisbon, Portugal
| | - Priscila Marconcin
- Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- KinesioLab, Research Unit in Human Movement Analysis, Piaget Institute, 2805-059 Almada, Portugal
| | - Marcelo de Maio Nascimento
- Department of Physical Education, Federal University of Vale do São Francisco, 56304-917 Petrolina, Brazil
| | - Maximilian Haas
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
| | - Jefferson Jurema
- Higher School of Health Sciences, Amazonas State University, 69065-001 Manaus, Brazil
| | - Maria A. Tinôco
- Coordination of Physical Education and Sport, Federal Institute of Science and Technology Education of Amazonas, 69020-120 Manaus, Brazil
| | - Matthias Kliegel
- Department of Psychology, University of Geneva, 1205 Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205 Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES—Overcoming Vulnerability: Life Course Perspectives, 1015 Lausanne, Switzerland
| |
Collapse
|
37
|
Wing D, Eyler LT, Lenze EJ, Wetherell JL, Nichols JF, Meeusen R, Godino JG, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Roelands B. Fatness, fitness and the aging brain: A cross sectional study of the associations between a physiological estimate of brain age and physical fitness, activity, sleep, and body composition. NEUROIMAGE. REPORTS 2022; 2:100146. [PMID: 36743444 PMCID: PMC9894084 DOI: 10.1016/j.ynirp.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Introduction Changes in brain structure and function occur with aging. However, there is substantial heterogeneity both in terms of when these changes begin, and the rate at which they progress. Understanding the mechanisms and/or behaviors underlying this heterogeneity may allow us to act to target and slow negative changes associated with aging. Methods Using T1 weighted MRI images, we applied a novel algorithm to determine the physiological age of the brain (brain-predicted age) and the predicted age difference between this physiologically based estimate and chronological age (BrainPAD) to 551 sedentary adults aged 65 to 84 with self-reported cognitive complaint measured at baseline as part of a larger study. We also assessed maximal aerobic capacity with a graded exercise test, physical activity and sleep with accelerometers, and body composition with dual energy x-ray absorptiometry. Associations were explored both linearly and logistically using categorical groupings. Results Visceral Adipose Tissue (VAT), Total Sleep Time (TST) and maximal aerobic capacity all showed significant associations with BrainPAD. Greater VAT was associated with higher (i.e,. older than chronological) BrainPAD (r = 0.149 p = 0.001)Greater TST was associated with higher BrainPAD (r = 0.087 p = 0.042) and greater aerobic capacity was associated with lower BrainPAD (r = - 0.088 p = 0.040). With linear regression, both VAT and TST remained significant (p = 0.036 and 0.008 respectively). Each kg of VAT predicted a 0.741 year increase in BrainPAD, and each hour of increased TST predicted a 0.735 year increase in BrainPAD. Maximal aerobic capacity did not retain statistical significance in fully adjusted linear models. Discussion Accumulation of visceral adipose tissue and greater total sleep time, but not aerobic capacity, total daily physical activity, or sleep quantity and/or quality are associated with brains that are physiologically older than would be expected based upon chronological age alone (BrainPAD).
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, United States
- San Diego Veterans Administration Health Care System, San Diego, United States
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, United States
- Department of Psychiatry, University of California, San Diego, United States
| | - Jeanne F. Nichols
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Job G. Godino
- Herbert Wertheim School of Public Health and Human Longevity, University of California, San Diego, United States
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Ginger E. Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Guy Nagels
- Department of Neurology, UZ Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
38
|
Tarumi T, Fukuie M, Yamabe T, Kimura R, Zhu DC, Ohyama-Byun K, Maeda S, Sugawara J. Microstructural organization of the corpus callosum in young endurance athletes: A global tractography study. Front Neurosci 2022; 16:1042426. [PMID: 36523431 PMCID: PMC9745143 DOI: 10.3389/fnins.2022.1042426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2023] Open
Abstract
Introduction Aerobic exercise training has been shown to improve microstructural organization of the corpus callosum (CC); however, evidence of this topographic effect is limited. Purpose To compare the CC microstructural organization between endurance athletes and sedentary adults using a white-matter fiber tractography approach. Materials and methods Diffusion tensor imaging (DTI) and T1-weighted structural data were collected from 15 male young endurance athletes and 16 age- and sex-matched sedentary adults. DTI data were analyzed with a global probabilistic tractography method based on neighborhood anatomical information. Fractional anisotropy (FA) and mean, radial (RD), and axial diffusivities were measured in the eight CC tracts: rostrum, genu, splenium, and body's prefrontal, premotor, central, parietal, and temporal tracts. Cortical thickness of the CC tract endpoints and the CC tract length and volume were also measured. Physical activity level was assessed by metabolic equivalents (METs). Results The athlete group had an average VO2max of 69.5 ± 3.1 ml/kg/min, which is above 90%ile according to the American College of Sports Medicine guideline. Compared with the sedentary group, the athlete group had higher FA in the CC body's premotor and parietal tracts and the CC splenium. These tracts showed lower RD in the athlete compared with sedentary group. The voxelwise analysis confirmed that the athlete group had higher FA in the CC and other white matter regions than the sedentary group, including the corona radiata, internal capsule, and superior longitudinal fasciculus. Cortical thickness of the CC tract endpoints and the CC tract lengths and volumes were similar between the two groups. Physical activity levels were positively correlated with FA in the CC body's parietal (r = 0.486, p = 0.006) and temporal (r = 0.425, p = 0.017) tracts and the CC splenium (r = 0.408, p = 0.023). Conclusion Young endurance athletes have higher microstructural organization of the CC tracts connected the sensorimotor and visual cortices than the age- and sex-matched sedentary adults.
Collapse
Affiliation(s)
- Takashi Tarumi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, United States
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Yamabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryota Kimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David C. Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, United States
| | - Keigo Ohyama-Byun
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
39
|
Chen FT, Soya H, Yassa MA, Li RH, Chu CH, Chen AG, Hung CL, Chang YK. Effects of exercise types on white matter microstructure in late midlife adults: Preliminary results from a diffusion tensor imaging study. Front Aging Neurosci 2022; 14:943992. [DOI: 10.3389/fnagi.2022.943992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Higher aerobic fitness during late midlife is associated with higher white matter (WM) microstructure. Compared with individuals engaged in irregular exercise, those who engage in regular aerobic exercise show higher fractional anisotropy (FA), a diffusion tenor imaging (DTI) measure that provides an index of WM microstructural integrity. However, whether other types of exercise, such as Tai Chi, can also facilitate WM changes in adults during late midlife remains unknown. The present study compares two types of exercise, Tai Chi and walking, with a sedentary control group, in order to examine the effects of exercise on WM microstructure and determine the regional specificity of WM differences. Thirty-six healthy adults between the ages of 55 and 65 years participated in the study. Based on the participants’ exercise habits, they were allocated into three groups: Tai Chi, walking, or sedentary control. All participants were required to complete physical fitness measurements and completed magnetic reasoning imaging (MRI) scans. Our results revealed that the Tai Chi group exhibited a higher FA value in the left cerebral peduncle, compared to the sedentary control group. We also observed that both the Tai Chi and walking groups exhibited higher FA values in the right uncinate fasciculus and the left external capsule, in comparison to the sedentary control group. Increased FA values in these regions was positively correlated with higher levels of physical fitness measurements (i.e., peak oxygen uptake [VO2peak], muscular endurance/number of push-up, agility, power). These findings collectively suggest that regular exercise is associated with improved WM microstructural integrity, regardless of the exercise type, which could guide the development and application of future prevention and intervention strategies designed to address age-related cognitive impairments during late midlife.
Collapse
|
40
|
Physical inactivity amplifies the negative association between sleep quality and depressive symptoms. Prev Med 2022; 164:107233. [PMID: 36067805 DOI: 10.1016/j.ypmed.2022.107233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
Poor sleep quality and physical inactivity are known risk factors for depressive symptoms. Yet, whether these factors differently contribute to depressive symptoms and whether they interact with one another remains unclear. Here, we examined how sleep quality and physical activity influence depressive symptoms in 79,274 adults 50 years of age or older (52.4% women) from the Survey of Health, Aging and Retirement in Europe (SHARE) study. Sleep quality (poor vs. good), physical activity (inactive vs. active), and depressive symptoms (0 to 12 score) were repeatedly collected (7 waves of data collection) between 2004 and 2017. Results showed that sleep quality and physical activity were associated with depressive symptoms. Specifically, participants with poorer sleep quality reported more depressive symptoms than participants with better sleep quality (b = 1.85, 95% CI = 1.83-1.86, p < .001). Likewise, compared to physically active participants, physically inactive participants reported more depressive symptoms (b = 0.44, 95% CI = 0.42-0.45, p < .001). Moreover, sleep quality and physical activity showed an interactive association with depressive symptoms (b = 0.17, 95% CI = 0.13-0.20, p < .001). The negative association between poor sleep quality and higher depressive symptoms was stronger in physically inactive than active participants. These findings suggest that, in adults 50 years of age or older, both poor sleep quality and physical inactivity are related to an increase in depressive symptoms. Moreover, the detrimental association between poor sleep quality and depressive symptoms is amplified in physically inactive individuals.
Collapse
|
41
|
Amorim S, Felício AC, Aagaard P, Suetta C, Blauenfeldt RA, Andersen G. Effects of remote ischemic conditioning on cognitive performance: A systematic review. Physiol Behav 2022; 254:113893. [PMID: 35780946 DOI: 10.1016/j.physbeh.2022.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
The aging process leads to subtle decline in cognitive function, and in some overt dementia. Like physical activity Remote Ischemic Conditioning (RIC) may ameliorate these changes on cognitive impairment in humans. The purpose of this study was to compared the effects of single, repeated short-term and long-term treatment RIC, and analyze its effect registered as immediate vs. long-term on cognitive performance in humans. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and was registered with PROSPERO, number (CRD42021285668). A systematic review was conducted to identify relevant studies through six healthcare science databases (Cochrane, PubMed, EMBASE, EBSCO, Scopus, and Web of Science) up to December 2021. Eligibility criteria included (1) a study sample of participants aged ≥18 years, (2) post-intervention changes on cognitive performance in humans, and (3) this systematic review included only randomized controlled trials of RIC in humans. The quality of the included studies was assessed by GRADEpro tool. A total of 118 articles were initially identified, 35 of which met the inclusion criteria. Based on title/abstract, age and RIC protocol, 14 articles were included in this review: 5 studies investigated the immediate and long-term effect of a single RIC (n = 370 patients), 4 studies examined intermittent short-term RIC (n = 174 patients) and 5 studies evaluated repeated long-term RIC (n = 228 patients). A single pre-operative RIC treatment had an immediate effect that disappeared at one week. Short-term RIC showed either a positive or no effects on cognitive function. The majority of studies examining long-term RIC treatment showed improvements in cognitive performance, particularly in very old adults and older patients with cognitive impairments. Single RIC treatment did not show any persisting effect on cognition. However, repeated short term RIC showed some improvement and long-term RIC may improve cognitive performance after stroke or enhance neuropsychological tests in patients diagnosed with vascular dementia. The mixed results might be explained by different RIC treatment protocols and populations investigated.
Collapse
Affiliation(s)
- Samuel Amorim
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | | | - Per Aagaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark
| | - Charlotte Suetta
- Bispebjerg Hospital, Copenhagen University - Department of Geriatrics
| | - Rolf Ankerlund Blauenfeldt
- Danish Stroke Center, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Grethe Andersen
- Danish Stroke Center, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Balbim GM, Erickson KI, Ajilore OA, Aguiñaga S, Bustamante EE, Lamar M, Marquez DX. Association of physical activity levels and brain white matter in older Latino adults. ETHNICITY & HEALTH 2022; 27:1599-1615. [PMID: 33853442 PMCID: PMC8514578 DOI: 10.1080/13557858.2021.1913484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Investigate the associations between self-reported physical activity (PA) engagement and white matter (WM) health (i.e. volume, integrity, and hyperintensities) in older Latinos. DESIGN Cross-sectional study with community-dwelling older adults from predominantly Latino neighborhoods. Participants: Thirty-four cognitively healthy older Latinos from two different cohorts. Measurements: Participants self-reported demographic information, PA engagement [Community Healthy Activities Model Program for Seniors (CHAMPS) Physical Activity Questionnaire for Older Adults] and magnetic resonance imaging (MRI). We used high-resolution three-dimensional T1- and T2-FLAIR weighted images and diffusion tensor imaging acquired via 3 T MRI. We performed a series of hierarchical linear regression models with the addition of relevant covariates to examine the associations between self-reported PA levels and WM volume, integrity, and hyperintensities (separately). We adjusted p-values with the use of the Benjamini-Hochberg's false discovery rate procedure. RESULTS Higher reported levels of leisure-time moderate-to-vigorous PA were significantly associated with higher WM volume of the posterior cingulate (β = 0.220, SE = 0.125, 95% CI 0.009-0.431, p = 0.047) and isthmus cingulate (β = 0.212, SE = 0.110, 95% CI 0.001-0.443, p = 0.044) after controlling for intracranial volume. Higher levels of total PA were significantly associated with higher overall WM volume of these same regions (posterior cingulate: β = 0.220, SE = 0.125, CI 0.024-0.421, p = 0.046; isthmus cingulate: β = 0.220, SE = 0.125, 95% CI 0.003-0.393; p = 0.040). Significant p-values did not withstand Benjamini-Hochberg's adjustment. PA was not significantly associated with WM integrity or WM hyperintensities. CONCLUSION Higher levels of PA, particularly higher leisure-time moderate-to-vigorous PA, might be associated with greater WM volume in select white matter regions key to brain network integration for physical and cognitive functioning in older Latinos. More research is needed to further confirm these associations.
Collapse
Affiliation(s)
- Guilherme M Balbim
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, United States
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, United States
| | - Olusola A Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, United States
| | - Susan Aguiñaga
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, United States
| | - Eduardo E Bustamante
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Melissa Lamar
- Division of Behavioral Sciences, Rush University, Chicago, Illinois, United States
| | - David X Marquez
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
43
|
Bermudo-Gallaguet A, Ariza M, Dacosta-Aguayo R, Agudelo D, Camins-Vila N, Boldó M, Carrera Ò, Vidal S, Ferrer-Uris B, Busquets A, Via M, Pera G, Cáceres C, Gomis M, García-Molina A, Tormos JM, Arrabé A, Diez G, Durà Mata MJ, Torán-Monserrat P, Soriano-Raya JJ, Domènech S, Perera-Lluna A, Erickson KI, Mataró M. Effects and mechanisms of mindfulness training and physical exercise on cognition, emotional wellbeing, and brain outcomes in chronic stroke patients: Study protocol of the MindFit project randomized controlled trial. Front Aging Neurosci 2022; 14:936077. [PMID: 36248000 PMCID: PMC9557300 DOI: 10.3389/fnagi.2022.936077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Post-stroke cognitive and emotional complications are frequent in the chronic stages of stroke and have important implications for the functionality and quality of life of those affected and their caregivers. Strategies such as mindfulness meditation, physical exercise (PE), or computerized cognitive training (CCT) may benefit stroke patients by impacting neuroplasticity and brain health. Materials and methods One hundred and forty-one chronic stroke patients are randomly allocated to receive mindfulness-based stress reduction + CCT (n = 47), multicomponent PE program + CCT (n = 47), or CCT alone (n = 47). Interventions consist of 12-week home-based programs five days per week. Before and after the interventions, we collect data from cognitive, psychological, and physical tests, blood and stool samples, and structural and functional brain scans. Results The effects of the interventions on cognitive and emotional outcomes will be described in intention-to-treat and per-protocol analyses. We will also explore potential mediators and moderators, such as genetic, molecular, brain, demographic, and clinical factors in our per-protocol sample. Discussion The MindFit Project is a randomized clinical trial that aims to assess the impact of mindfulness and PE combined with CCT on chronic stroke patients' cognitive and emotional wellbeing. Furthermore, our design takes a multimodal biopsychosocial approach that will generate new knowledge at multiple levels of evidence, from molecular bases to behavioral changes. Clinical trial registration www.ClinicalTrials.gov, identifier NCT04759950.
Collapse
Affiliation(s)
- Adrià Bermudo-Gallaguet
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mar Ariza
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Rosalia Dacosta-Aguayo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
| | - Daniela Agudelo
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Neus Camins-Vila
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Maria Boldó
- Department of Physical Medicine and Rehabilitation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Òscar Carrera
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Sandra Vidal
- Germans Trias i Pujol Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Blai Ferrer-Uris
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Albert Busquets
- Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain
| | - Marc Via
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Guillem Pera
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Germans Trias i Pujol Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cynthia Cáceres
- Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Meritxell Gomis
- Department of Neurosciences, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alberto García-Molina
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José María Tormos
- Institut Guttmann, Institut Universitari de Neurorehabilitació, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ana Arrabé
- Nirakara Lab, Mindfulness and Cognitive Science Extraordinary Chair, Universidad Complutense de Madrid, Madrid, Spain
| | - Gustavo Diez
- Nirakara Lab, Mindfulness and Cognitive Science Extraordinary Chair, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria José Durà Mata
- Department of Physical Medicine and Rehabilitation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pere Torán-Monserrat
- Unitat de Suport a la Recerca Metropolitana Nord, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, Mataró, Spain
- Germans Trias i Pujol Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Juan José Soriano-Raya
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Sira Domènech
- Institut de Diagnòstic per la Imatge, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alexandre Perera-Lluna
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Maria Mataró
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
44
|
Seidler RD, Stern C, Basner M, Stahn AC, Wuyts FL, zu Eulenburg P. Future research directions to identify risks and mitigation strategies for neurostructural, ocular, and behavioral changes induced by human spaceflight: A NASA-ESA expert group consensus report. Front Neural Circuits 2022; 16:876789. [PMID: 35991346 PMCID: PMC9387435 DOI: 10.3389/fncir.2022.876789] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
A team of experts on the effects of the spaceflight environment on the brain and eye (SANS: Spaceflight-Associated Neuro-ocular Syndrome) was convened by NASA and ESA to (1) review spaceflight-associated structural and functional changes of the human brain and eye, and any interactions between the two; and (2) identify critical future research directions in this area to help characterize the risk and identify possible countermeasures and strategies to mitigate the spaceflight-induced brain and eye alterations. The experts identified 14 critical future research directions that would substantially advance our knowledge of the effects of spending prolonged periods of time in the spaceflight environment on SANS, as well as brain structure and function. They used a paired comparison approach to rank the relative importance of these 14 recommendations, which are discussed in detail in the main report and are summarized briefly below.
Collapse
Affiliation(s)
- Rachael D. Seidler
- Department of Applied Physiology & Kinesiology, Health and Human Performance, University of Florida, Gainesville, FL, United States
| | - Claudia Stern
- Department of Clinical Aerospace Medicine, German Aerospace Center (DLR) and ISS Operations and Astronauts Group, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- *Correspondence: Claudia Stern,
| | - Mathias Basner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander C. Stahn
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Floris L. Wuyts
- Department of Physics, University of Antwerp, Antwerp, Belgium
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), Antwerp, Belgium
| | - Peter zu Eulenburg
- German Vertigo and Balance Center, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| |
Collapse
|
45
|
Maurus I, Röll L, Keeser D, Karali T, Papazov B, Hasan A, Schmitt A, Papazova I, Lembeck M, Hirjak D, Thieme CE, Sykorova E, Münz S, Seitz V, Greska D, Campana M, Wagner E, Löhrs L, Pömsl J, Roeh A, Malchow B, Keller-Varady K, Ertl-Wagner B, Stöcklein S, Meyer-Lindenberg A, Falkai P. Associations between aerobic fitness, negative symptoms, cognitive deficits and brain structure in schizophrenia-a cross-sectional study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:63. [PMID: 35918344 PMCID: PMC9345912 DOI: 10.1038/s41537-022-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022]
Abstract
Negative symptoms and cognitive deficits are common in individuals with schizophrenia, greatly affect their outcome, and have been associated with alterations in cerebral gray and white matter volume (GMV, WMV). In the last decade, aerobic endurance training has emerged as a promising intervention to alleviate these symptoms and improved aerobic fitness has been suggested as a key moderator variable. In the present study, we investigated, whether aerobic fitness is associated with fewer cognitive deficits and negative symptoms and with GMVs and WMVs in individuals with schizophrenia in a cross-sectional design. In the largest study to date on the implications of fitness in individuals with schizophrenia, 111 participants at two centers underwent assessments of negative symptoms, cognitive functioning, and aerobic fitness and 69 underwent additional structural magnetic resonance imaging. Multilevel Bayesian partial correlations were computed to quantify relationships between the variables of interest. The main finding was a positive association of aerobic fitness with right hippocampal GMV and WMVs in parahippocampal and several cerebellar regions. We found limited evidence for an association of aerobic fitness with cognitive functioning and negative symptoms. In summary, our results strengthen the notion that aerobic fitness and hippocampal plasticity are interrelated which holds implications for the design of exercise interventions in individuals with schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
| | - Lukas Röll
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Temmuz Karali
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Dusan Hirjak
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Cristina E Thieme
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Eliska Sykorova
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Susanne Münz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Valentina Seitz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lisa Löhrs
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Pömsl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Technical University of Munich, University Hospital Klinikum rechts der Isar, Munich, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | | | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Medical Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Longitudinal associations of absolute versus relative moderate-to-vigorous physical activity with brain microstructural decline in aging. Neurobiol Aging 2022; 116:25-31. [PMID: 35544996 PMCID: PMC9177705 DOI: 10.1016/j.neurobiolaging.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
Higher moderate-to-vigorous intensity (MVPA) may preserve brain structural integrity, but evidence is mostly cross-sectional and relies on absolute PA measures. We examined longitudinal associations of absolute MVPA using population-level activity count thresholds and relative MVPA using individual heart rate reserve (HRR) via Actiheart with subsequent changes in brain diffusion tensor imaging (DTI) over average of 3.8 years in 248 initially cognitively normal individuals (56-91 years). DTI markers included areas important for memory (temporal areas), executive (prefrontal cortex, superior longitudinal fasciculus), and motor function (precentral gyrus, putamen, caudate, body of corpus callosum). Associations of MVPA with changes in DTI markers were examined using linear mixed-effects models, adjusted for demographics and apolipoprotein e4 carrier status. Each additional 22 min of relative MVPA per day was significantly associated with less decline in fractional anisotropy of uncinate fasciculus and cingulum-hippocampal part and with less increase in mean diffusivity of entorhinal cortex and parahippocampal gyrus. Absolute MVPA was not associated with DTI changes. More time spent in relative MVPA by HRR may prevent brain microstructural decline in selected temporal areas.
Collapse
|
47
|
Soldan A, Alfini A, Pettigrew C, Faria A, Hou X, Lim C, Lu H, Spira AP, Zipunnikov V, Albert M. Actigraphy-estimated physical activity is associated with functional and structural brain connectivity among older adults. Neurobiol Aging 2022; 116:32-40. [PMID: 35551019 PMCID: PMC10167793 DOI: 10.1016/j.neurobiolaging.2022.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/04/2022] [Accepted: 04/09/2022] [Indexed: 12/20/2022]
Abstract
Higher physical activity levels are associated with reduced cognitive decline among older adults; however, current understanding of underlying brain mechanisms is limited. This cross-sectional study investigated the relationship between actigraphy-estimated total volume of physical activity (TVPA) and magnetic resonance imaging (MRI) measures of white matter hyperintensities (WMH), and functional and structural brain connectivity, measured by resting-state functional MRI and diffusion tensor imaging. Study participants (N = 156, mean age = 71 years) included 136 with normal cognition and 20 with Mild Cognitive Impairment. Higher TVPA was associated with greater functional connectivity within the default-mode network and greater network modularity (a measure of network specialization), as well as with greater anisotropy and lower radial diffusion in white matter, suggesting better structural connectivity. These associations with functional and structural connectivity were independent of one another and independent of the level of vascular risk, APOE-ε4 status, cognitive reserve, and WMH volume, which were not associated with TVPA. Findings suggest that physical activity is beneficial for brain connectivity among older individuals with varying levels of risk for cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alfonso Alfini
- National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Corinne Pettigrew
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andreia Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chantelle Lim
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adam P Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vadim Zipunnikov
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marilyn Albert
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Neves LM, Ritti-Dias R, Juday V, Marquesini R, Gerage AM, Laurentino GC, Hoffmann Nunes R, Stubbs B, Ugrinowitsch C. Objective physical activity accumulation and brain volume in older adults: An MRI and whole brain volume study. J Gerontol A Biol Sci Med Sci 2022:6647057. [PMID: 35857361 DOI: 10.1093/gerona/glac150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
A decrease in brain volume (i.e., brain atrophy) is a marker of cognitive health in older adults. Insufficient weekly accumulation of moderate and vigorous physical activity (MVPA) has been associated with lower brain volume. As this association has been established for a small number of brain areas and structures and atrophy rates seem to be nonuniform between them, more comprehensive analyses are warranted. We compared the volume of 71 brain areas and structures in 45 older adults who met and did not meet objectively measured MVPA recommendations. In addition, we used multiple regression models to determine whether cardiorespiratory fitness (VO2PEAK), MVPA and health-related risk factors could affect the atrophy of brain areas and structures. An accelerometer (GT9-X ActiGraph®) was worn for 7 days. Participants were then classified into two groups: <150 minutes MVPA (< 150'MVPA) (n=20) and ≥150 minutes MVPA (≥ 150'MVPA) (n=25) per week. Older adults who accumulated ≥ 150'MVPA per week had significantly higher absolute and relative (% of intracranial volume) volumes of 39 and 9 brain areas and structures, respectively, than those who accumulated < 150'MVPA per week. Higher VO2PEAK seems to be a key predictor of the atrophy of brain areas and structures. In conclusion, meeting weekly physical activity recommendations seems to have a widespread effect on preserving the volume of more than 30 brain areas and structures in older adults. VO2PEAK seems to be the most frequent and important predictor of brain volume preservation.
Collapse
Affiliation(s)
- Lucas Melo Neves
- Post-Graduate Program in Health Sciences, Santo Amaro University, UNISA, São Paulo, Brazil.,PROMAN (Bipolar Disorder Research Program), Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil.,Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | | | - Raquel Marquesini
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Gilberto Cândido Laurentino
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.,São Judas University, São Paulo, Brazil
| | - Renato Hoffmann Nunes
- Dasa Laboratório, São Paulo, Brazil.,Faculty of Medical Science, Santa Casa de São Paulo, São Paulo, Brazil
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Carlos Ugrinowitsch
- Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, Suo C, Yücel M. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging Behav 2022; 16:2402-2425. [PMID: 35773556 PMCID: PMC9581839 DOI: 10.1007/s11682-022-00693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran's q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges's g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Stuart Oldham
- Neural Systems and Behaviour, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| |
Collapse
|
50
|
Felisatti F, Gonneaud J, Palix C, Garnier-Crussard A, Mézenge F, Landeau B, Chocat A, Quillard A, Ferrand-Devouge E, de La Sayette V, Vivien D, Chételat G, Poisnel G. Role of Cardiovascular Risk Factors on the Association Between Physical Activity and Brain Integrity Markers in Older Adults. Neurology 2022; 98:e2023-e2035. [PMID: 35418459 PMCID: PMC9162049 DOI: 10.1212/wnl.0000000000200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Physical activity has been associated with a decreased risk for dementia, but the mechanisms underlying this association remain to be determined. Our objective was to assess whether cardiovascular risk factors mediate the association between physical activity and brain integrity markers in older adults. METHODS At baseline, participants from the Age-Well study completed a physical activity questionnaire and underwent cardiovascular risk factors collection (systolic blood pressure, body mass index [BMI], current smoker status, and high-density lipoprotein cholesterol, total cholesterol, and insulin levels) and multimodal neuroimaging (structural MRI, diffusion MRI, FDG-PET, and florbetapir PET). Multiple regressions were conducted to assess the association among physical activity, cardiovascular risk factors, and neuroimaging. Mediation analyses were performed to test whether cardiovascular risk factors mediated the associations between physical activity and neuroimaging. RESULTS A total of 134 cognitively unimpaired older adults (≥65 years) were included. Higher physical activity was associated with higher gray matter (GM) volume (β = 0.174, p = 0.030) and cerebral glucose metabolism (β = 0.247, p = 0.019) but not with amyloid deposition or white matter integrity. Higher physical activity was associated with lower insulin level and BMI but not with the other cardiovascular risk factors. Lower insulin level and BMI were related to higher GM volume but not to cerebral glucose metabolism. When controlling for insulin level and BMI, the association between physical activity and cerebral glucose metabolism remained unchanged, while the association with GM volume was lost. When insulin level and BMI were entered in the same model, only BMI remained a significant predictor of GM volume. Mediation analyses confirmed that insulin level and BMI mediated the association between physical activity and GM volume. Analyses were replicated within Alzheimer disease-sensitive regions and results remained overall similar. DISCUSSION The association between physical activity and GM volume is mediated by changes in insulin level and BMI. In contrast, the association with cerebral glucose metabolism seems to be independent from cardiovascular risk factors. Older adults engaging in physical activity experience cardiovascular benefits through the maintenance of a lower BMI and insulin level, resulting in greater structural brain integrity. This study has implications for understanding how physical activity affects brain health and may help in developing strategies to prevent or delay age-related decline. TRIAL REGISTRATION INFORMATION EudraCT: 2016-002,441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Francesca Felisatti
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Julie Gonneaud
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Cassandre Palix
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Antoine Garnier-Crussard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Florence Mézenge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Brigitte Landeau
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Chocat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Anne Quillard
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Eglantine Ferrand-Devouge
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Vincent de La Sayette
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Denis Vivien
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Gaël Chételat
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| | - Géraldine Poisnel
- From PhIND, "Physiopathology and Imaging of Neurological Disorders" (F.F., J.G., C.P., A.G.-C., F.M., B.L., A.C., A.Q., E.F.-D., D.V., G.C., G.P.), Institut Blood and Brain at Caen-Normandie, Normandie Univ, UNICAEN, INSERM, U1237, Cyceron, Caen; Clinical and Research Memory Center of Lyon (A.G.-C.), Lyon Institute For Elderly, Charpennes Hospital, Hospices Civils de Lyon; Claude Bernard University Lyon 1 (A.G.-C.); Department of General Practice (E.F.-D.), Normandie Univ, UNIROUEN, Rouen; Rouen University Hospital, CIC-CRB 1404 (E.F.-D.); PSL Université, EPHE (V.d.L.S.), Normandie Univ, UNICAEN, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH; and Département de Recherche Clinique (D.V.), CHU Caen-Normandie, Caen, France
| |
Collapse
|