1
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024:1-18. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
2
|
Bao C, Zhang Q, Zou H, He C, Yan R, Hua L, Lu Q, Yao Z. The Reward Positivity Mediates the Association Between Adverse Childhood Experiences and Anhedonia in Young Adults With Drug-Naïve Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00249-0. [PMID: 39209021 DOI: 10.1016/j.bpsc.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Current clinical studies have indicated that major depressive disorder (MDD) concurrent with adverse childhood experiences (ACEs) is associated with greater anhedonia. However, little is known about whether the change in reward sensitivity among young individuals with MDD and ACEs is related to anhedonia. METHODS We evaluated anhedonia and ACEs in 86 patients with MDD (31 with no or 1 ACE and 55 with 2 or more ACEs) and 44 healthy control participants. Then, participants completed the Iowa Gambling Task during electroencephalography to measure the reward positivity (RewP) and its difference (ΔRewP; gains minus losses). Furthermore, we constructed a mediation model to assess whether aberrant ΔRewP mediated the relationship between ACEs and anhedonia. RESULTS Compared with healthy control participants and MDD patients with no or 1 ACE, MDD patients with 2 or more ACEs had the most severe symptoms of anhedonia and impaired decision making and showed significantly reduced reward sensitivity (most blunted ΔRewP). More importantly, ΔRewP mediated the relationship between ACEs and anhedonia in MDD. CONCLUSIONS We found that the ΔRewP partially mediated the association between ACEs and anhedonia in patients with MDD, which provides evidence for the neurobiological basis of abnormal changes in the reward system in MDD individuals with early adverse experiences.
Collapse
Affiliation(s)
- Ciqing Bao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Qiaoyang Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Haowen Zou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chen He
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Lu
- School of the Biological Sciences & Medical Engineering, Southeast University, Nanjing, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing, China.
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Ruge J, Ehlers MR, Kastrinogiannis A, Klingelhöfer-Jens M, Koppold A, Abend R, Lonsdorf TB. How adverse childhood experiences get under the skin: A systematic review, integration and methodological discussion on threat and reward learning mechanisms. eLife 2024; 13:e92700. [PMID: 39012794 PMCID: PMC11251725 DOI: 10.7554/elife.92700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Adverse childhood experiences (ACEs) are a major risk factor for the development of multiple psychopathological conditions, but the mechanisms underlying this link are poorly understood. Associative learning encompasses key mechanisms through which individuals learn to link important environmental inputs to emotional and behavioral responses. ACEs may impact the normative maturation of associative learning processes, resulting in their enduring maladaptive expression manifesting in psychopathology. In this review, we lay out a systematic and methodological overview and integration of the available evidence of the proposed association between ACEs and threat and reward learning processes. We summarize results from a systematic literature search (following PRISMA guidelines) which yielded a total of 81 articles (threat: n=38, reward: n=43). Across the threat and reward learning fields, behaviorally, we observed a converging pattern of aberrant learning in individuals with a history of ACEs, independent of other sample characteristics, specific ACE types, and outcome measures. Specifically, blunted threat learning was reflected in reduced discrimination between threat and safety cues, primarily driven by diminished responding to conditioned threat cues. Furthermore, attenuated reward learning manifested in reduced accuracy and learning rate in tasks involving acquisition of reward contingencies. Importantly, this pattern emerged despite substantial heterogeneity in ACE assessment and operationalization across both fields. We conclude that blunted threat and reward learning may represent a mechanistic route by which ACEs may become physiologically and neurobiologically embedded and ultimately confer greater risk for psychopathology. In closing, we discuss potentially fruitful future directions for the research field, including methodological and ACE assessment considerations.
Collapse
Affiliation(s)
- Julia Ruge
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
| | | | - Alexandros Kastrinogiannis
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Maren Klingelhöfer-Jens
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- University of BielefeldBielefeldGermany
| | - Alina Koppold
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
| | | | - Tina B Lonsdorf
- University Medical Center Hamburg-Eppendorf, Institute for Systems NeuroscienceHamburgGermany
- University of BielefeldBielefeldGermany
| |
Collapse
|
4
|
Pegg S, Kujawa A. The effects of stress on reward responsiveness: a systematic review and preliminary meta-analysis of the event-related potential literature. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:42-59. [PMID: 38093157 PMCID: PMC10872339 DOI: 10.3758/s13415-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Exposure to stressful events is associated with a range of negative physical and mental health outcomes, including depression. It is critical to understand the mechanisms through which stress impacts mental health to identify promising targets for prevention and intervention efforts. Low-reward responsiveness is thought to be a mechanism of effects of stress on negative health outcomes and can be reliably measured at the neurophysiological level by using event-related potentials (ERPs), such as the reward positivity (RewP) component. The goal of this systematic review and preliminary meta-analysis was to examine evidence of associations between stress and alterations in reward responsiveness measured using ERPs. Through a systematic review of the literature, 23 studies examining the effects of laboratory-induced stressors and naturalistic stressors or perceived stress on reward responsiveness met study criteria, 13 of which were included in the meta-analysis. Most studies were conducted in undergraduate and community samples, with three selected for specific conditions, and primarily in adults. The systematic review supported evidence of associations between laboratory-induced stressors and blunted reward responsiveness as measured by the RewP but there were more mixed results when considering direct associations between naturalistic stressors/perceived stress and reward-related ERPs. Given that all studies examined the RewP, the meta-analysis focused on this component and indicated that there was a weak, nonsignificant negative association between stress and RewP. Results emphasize the complex nature of relations between stress and reward-related ERPs and the need to consider alternative models in future research. We also provide reporting recommendations for ERP researchers to facilitate future meta-analyses.
Collapse
Affiliation(s)
- Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN, 37203-5721, USA.
| | - Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, Peabody College #552, 230 Appleton Place, Nashville, TN, 37203-5721, USA
| |
Collapse
|
5
|
Wang C, Zhu L, Zheng W, Peng H, Wang J, Cui Y, Liu B, Jiang T. Effects of childhood trauma on aggressive behaviors and hippocampal function: the modulation of COMT haplotypes. PSYCHORADIOLOGY 2023; 3:kkad013. [PMID: 38666110 PMCID: PMC11003423 DOI: 10.1093/psyrad/kkad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 04/28/2024]
Abstract
Background Aggression is a commonly hostile behavior linked to the hippocampal activity. Childhood trauma (CT) exposure has been associated with altered sensitization of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampal volume,which could increase violent aggressive behaviors. Additionally, Catechol-O-methyltransferase (COMT), the major dopamine metabolism enzyme, is implicated in stress responsivity, including aggression. Hence, CT exposure may affect aggression through the effect on the hippocampal function, which might also be modulated by the COMT variations. Objectives This study examined whether both CT and haplotypes of COMT moderate hippocampal function and thus affect human aggressive behavior. Methods We obtained bilateral hippocampal functional connectivity maps using resting state functional magnetic resonance imaging (MRI) data. COMT haplotype estimation was performed using Haploview 4.2 and PHASE 2.1. Then we constructed a moderated mediation model to study the effect of the CTQ × COMT on aggressive behavior. Results Three major haplotypes were generated from thirteen single nucleotide polymorphisms (SNPs) within the COMT gene and formed three haplotypes corresponding to high, medium, and low enzymatic activity of COMT. The results showed interactive relationships between the Childhood Trauma Questionnaire (CTQ) and COMT with respect to the functional connectivity (FC) of the bilateral hippocampus (HIP)-orbital frontal cortex (OFC). Specifically, CT experience predicted lower negative HIP-OFC coupling in the APS and HPS haplotypes corresponding to the medium and high enzymatic activity of COMT, but greater FC in the LPS haplotypes corresponding to the low enzymatic activity. We also observed a conditional mediation effect of the right HIP-OFC coupling in the link between COMT and aggressive behavior that was moderated by CT experience. Conclusions These results suggest that CT and COMT have a combined effect on aggressive behavior through hippocampal function. This mediation analysis sheds light on the influence of childhood experience on aggressive behavior in different genetic backgrounds.
Collapse
Affiliation(s)
- Chao Wang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Linfei Zhu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Hanyuzhu Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yue Cui
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Tianzi Jiang
- Brainnetome Center, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Seitz KI, Ueltzhöffer K, Rademacher L, Paulus FM, Schmitz M, Herpertz SC, Bertsch K. Your smile won't affect me: Association between childhood maternal antipathy and adult neural reward function in a transdiagnostic sample. Transl Psychiatry 2023; 13:70. [PMID: 36828811 PMCID: PMC9958053 DOI: 10.1038/s41398-023-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Aberrant activation in the ventral striatum (VS) during reward anticipation may be a key mechanism linking adverse childhood experiences (ACE) to transdiagnostic psychopathology. This study aimed to elucidate whether retrospectively reported ACE, specifically maternal antipathy, relate to monetary and social reward anticipation in a transdiagnostic adult sample. A cross-sectional neuroimaging study was conducted in 118 participants with varying levels of ACE, including 25 participants with posttraumatic stress disorder (PTSD), 32 with major depressive disorder (MDD), 29 with somatic symptom disorder (SSD), and 32 healthy volunteers (HVs). Participants underwent functional magnetic resonance imaging during a monetary and social incentive delay task, and completed a self-report measure of ACE, including maternal antipathy. Neural correlates of monetary and social reward anticipation and their association with ACE, particularly maternal antipathy, were analyzed. Participants showed elevated activation in brain regions underlying reward processing, including the VS, only while anticipating social, but not monetary rewards. Participants reporting higher levels of maternal antipathy exhibited reduced activation in the brain reward network, including the VS, only during social, but not monetary reward anticipation. Group affiliation moderated the association between maternal antipathy and VS activation to social reward anticipation, with significant associations found in participants with PTSD and HVs, but not in those with MDD and SSD. Results were not associated with general psychopathology or psychotropic medication use. Childhood maternal antipathy may confer risk for aberrant social reward anticipation in adulthood, and may thus be considered in interventions targeting reward expectations from social interactions.
Collapse
Affiliation(s)
- Katja I. Seitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Kai Ueltzhöffer
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Lena Rademacher
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Frieder M. Paulus
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Marius Schmitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine C. Herpertz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Suor JH, Granros M, Calentino AE, Luan Phan K, Burkhouse KL. The interplay of childhood maltreatment and maternal depression in relation to the reward positivity in youth. Dev Psychopathol 2023; 35:168-178. [PMID: 36914290 PMCID: PMC10014903 DOI: 10.1017/s0954579421000857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Guided by developmental psychopathology and dual-risk frameworks, the present study examined the interplay between childhood maltreatment and maternal major depression history in relation to neural reward responsiveness in youth. The sample consisted of 96 youth (ages 9-16; M = 12.29 years, SD = 2.20; 68.8% female) drawn from a large metropolitan city. Youth were recruited based on whether their mothers had a history of major depressive disorder (MDD) and were categorized into two groups: youth with mothers with a history of MDD (high risk; HR; n = 56) and youth with mothers with no history of psychiatric disorders (low risk; LR; n = 40). The reward positivity (RewP), an event-related potential component, was utilized to measure reward responsiveness and the Childhood Trauma Questionnaire measured childhood maltreatment. We found a significant two-way interaction between childhood maltreatment and risk group in relation to RewP. Simple slope analysis revealed that in the HR group, greater childhood maltreatment was significantly associated with reduced RewP. The relationship between childhood maltreatment and RewP was not significant among the LR youth. The present findings demonstrate that the association between childhood maltreatment and blunted reward responsiveness is dependent on whether offspring have mothers with histories of MDD.
Collapse
Affiliation(s)
- Jennifer H Suor
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria Granros
- Department of Psychology and Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alison E Calentino
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, The Stony Brook University, Stony Book, NY, USA
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Katie L Burkhouse
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Hendrikse CJ, du Plessis S, Luckhoff HK, Vink M, van den Heuvel LL, Scheffler F, Phahladira L, Smit R, Asmal L, Seedat S, Emsley R. Childhood trauma exposure and reward processing in healthy adults: A functional neuroimaging study. J Neurosci Res 2022; 100:1452-1462. [PMID: 35434795 PMCID: PMC9546243 DOI: 10.1002/jnr.25051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
The association between childhood trauma exposure and risk of developing psychopathology may in part be mediated by the effects of chronic stress on dopaminergic neurotransmission. However, little is known about the differential effects of distinct trauma types on reward processing, particularly in adults without concurrent medical or psychiatric disorders. We examined the association of childhood trauma exposure, including the differential effects of abuse and neglect, with reward processing in healthy adults (n = 114). Functional magnetic resonance imaging during a monetary incentive delay task was used to assess neural activity in the ventral striatum and orbitofrontal cortex in relation to reward anticipation and reward outcome, respectively. Exposure to childhood trauma, including abuse and neglect, was assessed using the Childhood Trauma Questionnaire-Short Form. We found a significant effect for abuse on ventral striatal activation during reward anticipation, adjusting for age, sex, scanner site, educational level, and household monthly income. There were no effects for abuse or neglect, independently or combined, on orbitofrontal cortex activation during reward outcome. Our findings suggest differential effects of childhood abuse on ventral striatum activation during reward anticipation in healthy adults.
Collapse
Affiliation(s)
| | - Stéfan du Plessis
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
- Genomics of Brain Disorders Research UnitSouth African Medical Research Council / Stellenbosch UniversityCape TownSouth Africa
| | | | - Matthijs Vink
- Departments of Experimental and Developmental PsychologyUtrecht UniversityUtrechtNetherlands
| | - Leigh Luella van den Heuvel
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
- Genomics of Brain Disorders Research UnitSouth African Medical Research Council / Stellenbosch UniversityCape TownSouth Africa
| | - Freda Scheffler
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
| | | | - Retha Smit
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
| | - Laila Asmal
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
| | - Soraya Seedat
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
- Genomics of Brain Disorders Research UnitSouth African Medical Research Council / Stellenbosch UniversityCape TownSouth Africa
| | - Robin Emsley
- Department of PsychiatryStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
9
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
10
|
Young KS, Ward C, Vinograd M, Chen K, Bookheimer SY, Nusslock R, Zinbarg RE, Craske MG. Individual differences in threat and reward neural circuitry activation: Testing dimensional models of early adversity, anxiety and depression. Eur J Neurosci 2022; 55:2739-2753. [PMID: 34989038 PMCID: PMC9149108 DOI: 10.1111/ejn.15592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 01/31/2023]
Abstract
Altered functioning of the brain's threat and reward circuitry has been linked to early life adversity and to symptoms of anxiety and depression. To date, however, these relationships have been studied largely in isolation and in categorical-based approaches. It is unclear to what extent early life adversity and psychopathology have unique effects on brain functioning during threat and reward processing. We examined functional brain activity during a face processing task in threat (amygdala and ventromedial prefrontal cortex) and reward (ventral striatum and orbitofrontal cortex) regions of interest among a sample (N = 103) of young adults (aged 18-19 years) in relation to dimensional measures of early life adversity and symptoms of anxiety and depression. Results demonstrated a significant association between higher scores on the deprivation adversity dimension and greater activation of reward neural circuitry during viewing of happy faces, with the largest effect sizes observed in the orbitofrontal cortex. We found no significant associations between the threat adversity dimension, or symptom dimensions of anxiety and depression, and neural activation in threat or reward circuitries. These results lend partial support to theories of adversity-related alterations in neural activation and highlight the importance of testing dimensional models of adversity and psychopathology in large sample sizes to further our understanding of the biological processes implicated.
Collapse
Affiliation(s)
- Katherine S. Young
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonLondonUK,NIHR Maudsley Biomedical Research CentreKing's College LondonLondonUK
| | - Camilla Ward
- Social, Genetic and Developmental Psychiatry (SGDP) Centre, Institute of Psychology, Psychiatry and NeuroscienceKing's College LondonLondonUK
| | - Meghan Vinograd
- Center of Excellence for Stress and Mental HealthVeterans Affairs San Diego Healthcare SystemSan DiegoCaliforniaUSA,Department of PsychiatryUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Kelly Chen
- Department of PsychologyUniversity of ArizonaTucsonArizonaUSA
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUnited States
| | - Robin Nusslock
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA
| | - Richard E. Zinbarg
- Department of PsychologyNorthwestern UniversityEvanstonIllinoisUSA,The Family InstituteNorthwestern UniversityEvanstonIllinoisUSA
| | - Michelle G. Craske
- Department of Psychiatry and Biobehavioral SciencesUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUnited States,Department of PsychologyUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
11
|
Children's value-based decision making. Sci Rep 2022; 12:5953. [PMID: 35396382 PMCID: PMC8993860 DOI: 10.1038/s41598-022-09894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
To effectively navigate their environments, infants and children learn how to recognize events predict salient outcomes, such as rewards or punishments. Relatively little is known about how children acquire this ability to attach value to the stimuli they encounter. Studies often examine children’s ability to learn about rewards and threats using either classical conditioning or behavioral choice paradigms. Here, we assess both approaches and find that they yield different outcomes in terms of which individuals had efficiently learned the value of information presented to them. The findings offer new insights into understanding how to assess different facets of value learning in children.
Collapse
|
12
|
Smith KE, Pollak SD. Early life stress and perceived social isolation influence how children use value information to guide behavior. Child Dev 2021; 93:804-814. [PMID: 34971461 PMCID: PMC9177517 DOI: 10.1111/cdev.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Learning the value of environmental signals and using that information to guide behavior is critical for survival. Stress in childhood may influence these processes, but how it does so is still unclear. This study examined how stressful event exposures and perceived social isolation affect the ability to learn value signals and use that information in 72 children (8–9 years; 29 girls; 65.3% White). Stressful event exposures and perceived social isolation did not influence how children learned value information. But, children with high stressful event exposures and perceived social isolation were worse at using that information. These data suggest alterations in how value information is used, rather than learned, may be one mechanism linking early experiences to later behaviors.
Collapse
Affiliation(s)
- Karen E Smith
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seth D Pollak
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Blair KS, Aloi J, Bashford-Largo J, Zhang R, Elowsky J, Lukoff J, Vogel S, Carollo E, Schwartz A, Pope K, Bajaj S, Tottenham N, Dobbertin M, Blair RJ. Different forms of childhood maltreatment have different impacts on the neural systems involved in the representation of reinforcement value. Dev Cogn Neurosci 2021; 53:101051. [PMID: 34953316 PMCID: PMC8714998 DOI: 10.1016/j.dcn.2021.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Background The current study aimed to address two gaps in the literature on child maltreatment, reinforcement processing and psychopathology. First, the extent to which compromised reinforcement processing might be particularly associated with either neglect or abuse. Second, the extent to which maltreatment-related compromised reinforcement processing might be associated with particular symptom sets (depression, conduct problems, anxiety) or symptomatology more generally. Methods A sample of adolescents (N = 142) aged between 14 and 18 years with varying levels of prior maltreatment participated in this fMRI study. They were scanned while performing a passive avoidance learning task, where the participant learns to respond to stimuli that engender reward and avoid responding to stimuli that engender punishment. Maltreatment (abuse and neglect) levels were assessed with the Childhood Trauma Questionnaire (CTQ). Results We found that: (i) level of neglect, but not abuse, was negatively associated with differential BOLD responses to reward-punishment within the striatum and medial frontal cortex; and (ii) differential reward-punishment responses within these neglect-associated regions were particularly negatively associated with level of conduct problems. Conclusion Our findings demonstrate the adverse neurodevelopmental impact of childhood maltreatment, particularly neglect, on reinforcement processing. Moreover, they suggest a neurodevelopmental route by which neglect might increase the risk for conduct problems.
Collapse
Affiliation(s)
- Karina S Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Joseph Aloi
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, USA
| | - Johannah Bashford-Largo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ru Zhang
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jaimie Elowsky
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jennie Lukoff
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Steven Vogel
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erin Carollo
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Amanda Schwartz
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kayla Pope
- Department of Psychiatry, Creighton University School of Medicine, Omaha, NE, USA
| | - Sahil Bajaj
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - Matthew Dobbertin
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - R James Blair
- Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| |
Collapse
|
14
|
Donofry SD, Stillman CM, Hanson JL, Sheridan M, Sun S, Loucks EB, Erickson KI. Promoting brain health through physical activity among adults exposed to early life adversity: Potential mechanisms and theoretical framework. Neurosci Biobehav Rev 2021; 131:688-703. [PMID: 34624365 PMCID: PMC8642290 DOI: 10.1016/j.neubiorev.2021.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
Adverse childhood experiences such as abuse, neglect, and poverty, profoundly alter neurobehavioral development in a manner that negatively impacts health across the lifespan. Adults who have been exposed to such adversities exhibit premature and more severe age-related declines in brain health. Unfortunately, it remains unclear whether the negative effects of early life adversity (ELA) on brain health can be remediated through intervention in adulthood. Physical activity may represent a low-cost behavioral approach to address the long-term consequences of ELA on brain health. However, there has been limited research examining the impact of physical activity on brain health among adults with a history of ELA. Accordingly, the purpose of this review is to (1) review the influence of ELA on brain health in adulthood and (2) highlight evidence for the role of neurotrophic factors, hypothalamic-adrenal-pituitary axis regulation, inflammatory processes, and epigenetic modifications in mediating the effects of both ELA and physical activity on brain health outcomes in adulthood. We then propose a theoretical framework to guide future research in this area.
Collapse
Affiliation(s)
- Shannon D Donofry
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Psychiatric and Behavioral Health Institute, Allegheny Health Network Pittsburgh, PA, United States.
| | - Chelsea M Stillman
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Margaret Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Shufang Sun
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States
| | - Eric B Loucks
- Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, RI, United States; Mindfulness Center, Brown University, Providence, RI, United States; Department of Epidemiology, Brown University School of Public Health, Providence, RI, United States
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Murdoch University, College of Science, Health, Engineering, and Education, Perth, Western Australia, Australia; PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
| |
Collapse
|
15
|
Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of Early Life Stress on Reward Circuit Function and Regulation. Front Psychiatry 2021; 12:744690. [PMID: 34744836 PMCID: PMC8563782 DOI: 10.3389/fpsyt.2021.744690] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress - including experience of child maltreatment, neglect, separation from or loss of a parent, and other forms of adversity - increases lifetime risk of mood, anxiety, and substance use disorders. A major component of this risk may be early life stress-induced alterations in motivation and reward processing, mediated by changes in the nucleus accumbens (NAc) and ventral tegmental area (VTA). Here, we review evidence of the impact of early life stress on reward circuit structure and function from human and animal models, with a focus on the NAc. We then connect these results to emerging theoretical models about the indirect and direct impacts of early life stress on reward circuit development. Through this review and synthesis, we aim to highlight open research questions and suggest avenues of future study in service of basic science, as well as applied insights. Understanding how early life stress alters reward circuit development, function, and motivated behaviors is a critical first step toward developing the ability to predict, prevent, and treat stress-related psychopathology spanning mood, anxiety, and substance use disorders.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia V. Williams
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Catherine J. Peña
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
16
|
Hu W, Liu Y, Li J, Zhao X, Yang J. Early life stress moderated the influence of reward anticipation on acute psychosocial stress responses. Psychophysiology 2021; 58:e13892. [PMID: 34216019 DOI: 10.1111/psyp.13892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/17/2021] [Accepted: 06/01/2021] [Indexed: 11/30/2022]
Abstract
Recent studies suggest that reward anticipation decreases individuals' acute stress responses. However, individuals who have experienced early life stress (ELS) may have a blunted capacity for reward anticipation, which reduces its buffering effect on psychosocial stress responses. To investigate this phenomenon, 66 young adults completed the Trier Social Stress Test following a reward anticipation task, and their ELS levels were measured using the Childhood Trauma Questionnaire (CTQ). Meanwhile, the current study collected biological and psychological measures of stress by analysing cortisol levels, heart rates, heart rate variability (HRV) as well as subjective stress levels, in response to the Trier Social Stress test. Results showed that reward anticipation successfully decreased acute stress responses in general, and it also improved participants' HRV. However, this effect was more evident in individuals with low ELS than those with high ELS. These findings help us deepen understanding of the role of reward anticipation in fostering resilience under stress and the potentially important implications for individuals who have been exposed to ELS are also discussed.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
18
|
al'Absi M, Ginty AT, Lovallo WR. Neurobiological mechanisms of early life adversity, blunted stress reactivity and risk for addiction. Neuropharmacology 2021; 188:108519. [PMID: 33711348 DOI: 10.1016/j.neuropharm.2021.108519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/13/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
Abstract
Blunted stress reactivity resulting from early exposure to stress during childhood and adolescence may increase vulnerability to addiction. Early life adversity (ELA) affects brain structure and function and results in blunted stress axis reactivity. In this review, we focus on the underlying neurobiological mechanisms associated with a blunted response to stress, ELA, and risk for addictive disorders. ELA and blunted reactivity are accompanied by unstable mood regulation, impulsive behaviors, and reduced cognitive function. Neuroimaging studies reveal cortical and subcortical changes in persons exposed to ELA and those who have a genetic disposition for addiction. We propose a model in which blunted stress reactivity may be a marker of risk for addiction through an altered motivational and behavioral reactivity to stress that contribute to disinhibited behavioral reactivity and impulsivity leading in turn to increased vulnerability for substance use. Evidence supporting this hypothesis in the context of substance use initiation, maintenance, and risk for relapse is presented. The effects of ELA on persons at risk for addiction may lead to early experimentation with drugs of abuse. Early adoption of drug intake may alter neuroregulation in such vulnerable persons leading to a permanent dysregulation of motivational responses consistent with dependence. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Mustafa al'Absi
- Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth, MN, USA.
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - William R Lovallo
- University of Oklahoma Health Sciences Center and VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G. Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
20
|
Kujawa A, Klein DN, Pegg S, Weinberg A. Developmental trajectories to reduced activation of positive valence systems: A review of biological and environmental contributions. Dev Cogn Neurosci 2020; 43:100791. [PMID: 32510349 PMCID: PMC7225621 DOI: 10.1016/j.dcn.2020.100791] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Reduced activation of positive valence systems (PVS), including blunted neural and physiological responses to pleasant stimuli and rewards, has been shown to prospectively predict the development of psychopathology. Yet, little is known about how reduced PVS activation emerges across development or what implications it has for prevention. We review genetic, temperament, parenting, and naturalistic and laboratory stress research on neural measures of PVS and outline developmentally-informed models of trajectories of PVS activation. PVS function is partly heritable and appears to reflect individual differences in early-emerging temperament traits. Although lab-induced stressors blunt PVS activation, effects of parenting and naturalistic stress on PVS are mixed and depend on the type of stressor, developmental timing, and interactions amongst risk factors. We propose that there may be multiple, dynamic developmental trajectories to reduced PVS activation in which combinations of genes, temperament, and exposure to severe, prolonged, or uncontrollable stress may exert direct and interactive effects on PVS function. Critically, these risk factors may alter PVS developmental trajectories and/or PVS sensitivity to proximal stressors. Distinct factors may converge such that PVS activation proceeds along a typical, accelerated, chronically low, or stress-reactive trajectory. Finally, we present directions for future research with translational implications.
Collapse
Affiliation(s)
- Autumn Kujawa
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Daniel N Klein
- Department of Psychology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2500, United States.
| | - Samantha Pegg
- Department of Psychology and Human Development, Vanderbilt University, 230 Appleton Place, Nashville, TN 37203-5721, United States.
| | - Anna Weinberg
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, Quebec, H3A 1G1, Canada.
| |
Collapse
|
21
|
Holz NE, Tost H, Meyer-Lindenberg A. Resilience and the brain: a key role for regulatory circuits linked to social stress and support. Mol Psychiatry 2020; 25:379-396. [PMID: 31628419 DOI: 10.1038/s41380-019-0551-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Given the high prevalence and burden of mental disorders, fostering the understanding of protective factors is an urgent issue for translational medicine in psychiatry. The concept of resilience describes individual and environmental protective factors against the backdrop of established adversities linked to mental illness. There is convergent evidence for a crucial role of direct as well as indirect adversity impacting the developing brain, with persisting effects until adulthood. Direct adversity may include childhood maltreatment and family adversity, while indirect social adversity can include factors such as urban living or ethnic minority status. Recently, research has begun to examine protective factors which may be able to buffer against or even reverse these influences. First evidence indicates that supportive social environments as well as trait-like individual protective characteristics might impact on similar neural substrates, thus strengthening the capacity to actively cope with stress exposure in order to counteract the detrimental effects evoked by social adversity. Here, we provide an overview of the current literature investigating the neural mechanisms of resilience with a putative social background, including studies on individual traits and genetic variation linked to resilience. We argue that the regulatory perigenual anterior cingulate cortex and limbic regions, including the amygdala and the ventral striatum, play a key role as crucial convergence sites of protective factors. Further, we discuss possible prevention and early intervention approaches targeting both the individual and the social environment to reduce the risk of psychiatric disorders and foster resilience.
Collapse
Affiliation(s)
- Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| |
Collapse
|
22
|
Herzberg MP, Gunnar MR. Early life stress and brain function: Activity and connectivity associated with processing emotion and reward. Neuroimage 2019; 209:116493. [PMID: 31884055 DOI: 10.1016/j.neuroimage.2019.116493] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Investigating the developmental sequelae of early life stress has provided researchers the opportunity to examine adaptive responses to extreme environments. A large body of work has established mechanisms by which the stressful experiences of childhood poverty, maltreatment, and institutional care can impact the brain and the distributed stress systems of the body. These mechanisms are reviewed briefly to lay the foundation upon which the current neuroimaging literature has been built. More recently, developmental cognitive neuroscientists have identified a number of the effects of early adversity, including differential behavior and brain function. Among the most consistent of these findings are differences in the processing of emotion and reward-related information. The neural correlates of emotion processing, particularly frontolimbic functional connectivity, have been well studied in early life stress samples with results indicating accelerated maturation following early adversity. Reward processing has received less attention, but here the evidence suggests a deficit in reward sensitivity. It is as yet unknown whether the accelerated maturation of emotion-regulation circuits comes at the cost of delayed development in other systems, most notably the reward system. This review addresses the early life stress neuroimaging literature that has investigated emotion and reward processing, identifying important next steps in the study of brain function following adversity.
Collapse
Affiliation(s)
- Max P Herzberg
- Institute of Child Development, University of Minnesota, USA.
| | - Megan R Gunnar
- Institute of Child Development, University of Minnesota, USA
| |
Collapse
|
23
|
Kafshdooz L, Kahroba H, Kafshdooz T, Roghayeh Sheervalilou, Pourfathi H. Labour analgesia; Molecular pathway and the role of nanocarriers: a systematic review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:927-932. [PMID: 30873885 DOI: 10.1080/21691401.2019.1573736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Labour is considered to be one of the most painful procedures in human experience. The most effective technique for pain relief during labour is neuraxial labour analgesia which provides analgesia without maternal or fetal sedation. Genetic predisposition may be of importance for pain perception and women experience varying degrees of pain in labour. Genetic variations in opioid receptor (OPR) genes may influence the response to epidural opioid analgesia during labour. The single-nucleotide polymorphism, A118G of the mu opioid receptor gene (oprm1), has been associated with altered pain perception. Targeted drug delivery reduces toxic side effects. Liposomes, nano-particles, nanofibres hydrogel, have been suggested to deliver anaesthetic drugs.
Collapse
Affiliation(s)
- Leila Kafshdooz
- a Womens Reproductive Health Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Houman Kahroba
- b Molecular Medicine Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Tayebeh Kafshdooz
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roghayeh Sheervalilou
- c Department of Molecular Medicine, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hojjat Pourfathi
- d Department of Anesthesiology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
24
|
Miguel PM, Pereira LO, Silveira PP, Meaney MJ. Early environmental influences on the development of children's brain structure and function. Dev Med Child Neurol 2019; 61:1127-1133. [PMID: 30740660 DOI: 10.1111/dmcn.14182] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
The developing brain in utero and during the first years of life is highly vulnerable to environmental influences. Experiences occurring during this period permanently modify brain structure and function through epigenetic modifications (alterations of the DNA structure and chromatin function) and consequently affect the susceptibility to mental disorders. In this review, we describe evidence linking adverse environmental variation during early life (from the fetal period to childhood) and long-term changes in brain volume, microstructure, and connectivity, especially in amygdala and hippocampal regions. We also describe genetic variations that moderate the impact of adverse environmental conditions on child neurodevelopment, such as polymorphisms in brain-derived neurotrophic factor and catechol-O-methyltransferase genes, as well as genetic pathways related to glutamate and monoaminergic signaling. Lastly, we have depicted positive early life experiences that could benefit childhood neurodevelopment and reverse some detrimental effects of adversity in the offspring. WHAT THIS PAPER ADDS: Prenatal, peripartum, and postnatal adversities influence child behavior and neurodevelopment. Exposure to environmental enrichment and positive influences may revert these effects. Putative mechanisms involve alterations in neurotrophic factors and neurotransmitter systems. New tools/big data improved the understanding on how early adversity alters neurodevelopment. This permits better translation/application of the findings from animal models to humans.
Collapse
Affiliation(s)
- Patrícia M Miguel
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir O Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada.,Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
25
|
Musci RJ, Augustinavicius JL, Volk H. Gene-Environment Interactions in Psychiatry: Recent Evidence and Clinical Implications. Curr Psychiatry Rep 2019; 21:81. [PMID: 31410638 PMCID: PMC7340157 DOI: 10.1007/s11920-019-1065-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW We identify the recent evidence for gene-by-environment interaction studies in relation to psychiatric disorders. We focus on the key genotypic data as well as environmental exposures and how they interact to predict psychiatric disorders and psychiatric symptomatology. We direct our focus on the psychiatric outcomes that were focused on by the Psychiatric Genetics Consortium. RECENT FINDINGS Many of the studies focus on candidate gene approaches, with most of the studies drawing upon previous literature to decide the genes of interest. Other studies used a genome-wide approach. While some studies demonstrated positive replication of previous findings, replication is still an issue within gene-by-environment interaction studies. Gene-by-environment interaction research in psychiatry globally suggests some susceptibility to environmental exposures based on genotype; however, greater clarity is needed around the idea that genetic risk may not be disorder specific.
Collapse
Affiliation(s)
- Rashelle J. Musci
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 North Broadway, Baltimore, MD 21205, USA
| | - Jura L. Augustinavicius
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 North Broadway, Baltimore, MD 21205, USA
| | - Heather Volk
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 624 North Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Richter A, Krämer B, Diekhof EK, Gruber O. Resilience to adversity is associated with increased activity and connectivity in the VTA and hippocampus. Neuroimage Clin 2019; 23:101920. [PMID: 31491818 PMCID: PMC6617249 DOI: 10.1016/j.nicl.2019.101920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/29/2019] [Accepted: 06/30/2019] [Indexed: 11/18/2022]
Abstract
Accumulating evidence suggests altered function of the mesolimbic reward system resulting from exposure to early adversity. The present study investigated the combined long-term impact of adversity until young adulthood on neuronal reward processing and its interaction with individual resilience processes. In this functional magnetic resonance imaging study, 97 healthy young adults performed a reward-based decision-making task. Adversity as well as resilience were assessed retrospectively using the validated childhood trauma questionnaire, trauma history questionnaire and a resilience scale. Subjects with high adversity load showed reduced reward-related bottom-up activation in the ventral striatum (VS), ventral tegmental area (VTA) and hippocampus (HP) as compared to the low adversity group. However, high resilience traits in individuals with high adversity load were associated with an increased activation in the VTA and HP, indicating a possible resilience-related protective mechanism. Moreover, when comparing groups with high to low adversity, psychophysiological interaction analyses highlighted an increased negative functional coupling between VS and VTA as well as between VS and anteroventral prefrontal cortex (avPFC) during reward acceptance, and an impaired top-down control of the VS by the avPFC during reward rejection. In turn, combination of high adversity and high resilience traits was associated with an improved functional coupling between VTA, VS and HP. Thereby, the present findings identify neural mechanisms mediating interacting effects of adversity and resilience, which could be targeted by early intervention and prevention.
Collapse
Affiliation(s)
- Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| | - Esther K Diekhof
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany; Neuroendocrinology Unit, Institute of Zoology, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Germany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Germany; Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Germany
| |
Collapse
|
27
|
Nofech-Mozes J, Pereira J, Gonzalez A, Atkinson L. Cortisol secretion moderates the association between mother-infant attachment at 17 months and child behavior at age 5 years. Dev Psychobiol 2018; 61:239-253. [DOI: 10.1002/dev.21799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/21/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Jessica Pereira
- Department of Applied Psychology and Human Development; University of Toronto; Toronto Ontario Canada
| | - Andrea Gonzalez
- Department of Psychiatry and Behavioral Neurosciences, Oxford Centre for Child Studies; McMaster University; Hamilton Ontario Canada
| | - Leslie Atkinson
- Department of Psychology; Ryerson University; Toronto Ontario Canada
| |
Collapse
|
28
|
Holz NE, Zohsel K, Laucht M, Banaschewski T, Hohmann S, Brandeis D. Gene x environment interactions in conduct disorder: Implications for future treatments. Neurosci Biobehav Rev 2018; 91:239-258. [DOI: 10.1016/j.neubiorev.2016.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023]
|
29
|
Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. J Psychiatr Res 2018; 101:80-103. [PMID: 29567510 PMCID: PMC5889741 DOI: 10.1016/j.jpsychires.2018.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/19/2023]
Abstract
Early life stress (ELS), in the form of childhood maltreatment, abuse, or neglect, increases the risk for psychiatric sequelae later in life. The neurobiology of response to early stress and of reward processing overlap substantially, leading to the prediction that reward processing may be a primary mediator of the effects of early life stress. We describe a growing body of literature investigating the effects of early life stressors on reward processing in animals and humans. Despite variation in the reviewed studies, an emerging pattern of results indicates that ELS results in deficits of ventral striatum-related functions of reward responsiveness and approach motivation, especially when the stressor is experienced in early in development. For stressors experienced later in the juvenile period and adolescence, the animal literature suggests an opposite effect, in which ELS results in increased hedonic drive. Future research in this area will help elucidate the transdiagnostic impact of early life stress, and therefore potentially identify and intervene with at-risk youth, prior to the emergence of clinical psychopathology.
Collapse
Affiliation(s)
- Andrew M. Novick
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Corresponding author: Andrew M Novick, MD PhD, Butler Hospital, 345 Blackstone Blvd, Providence, RI 02906, USA,
| | - Mateus L. Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Laura E. Laumann
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Noah S. Philip
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Providence VA, Providence, RI, USA
| | - Lawrence H. Price
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Audrey R. Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA,Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Oldham S, Murawski C, Fornito A, Youssef G, Yücel M, Lorenzetti V. The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Hum Brain Mapp 2018; 39:3398-3418. [PMID: 29696725 PMCID: PMC6055646 DOI: 10.1002/hbm.24184] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta‐analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes.
Collapse
Affiliation(s)
- Stuart Oldham
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, Victoria, Australia
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Fornito
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, Victoria, Australia
| | - George Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, Victoria, Australia
| | - Valentina Lorenzetti
- Brain and Mental Health Research Hub, School of Psychological Sciences and the Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, Victoria, Australia.,School of Psychology, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia.,Department of Psychological Sciences, Institute of Psychology Health and Society, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Miller CWT. Epigenetic and Neural Circuitry Landscape of Psychotherapeutic Interventions. PSYCHIATRY JOURNAL 2017; 2017:5491812. [PMID: 29226124 PMCID: PMC5684598 DOI: 10.1155/2017/5491812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
Abstract
The science behind psychotherapy has garnered considerable interest, as objective measures are being developed to map the patient's subjective change over the course of treatment. Prenatal and early life influences have a lasting impact on how genes are expressed and the manner in which neural circuits are consolidated. Transgenerationally transmitted epigenetic markers as well as templates of enhanced thought flexibility versus evasion can be passed down from parent to child. This influences gene expression/repression (impacting neuroplasticity) and kindling of neurocircuitry which can perpetuate maladaptive cognitive processing seen in a number of psychiatric conditions. Importantly, genetic factors and the compounding effects of early life adversity do not inexorably lead to certain fated outcomes. The concepts of vulnerability and resilience are becoming more integrated into the framework of "differential susceptibility," speaking to how corrective environmental factors may promote epigenetic change and reconfigure neural templates, allowing for symptomatic improvement. Psychotherapy is one such factor, and this review will focus on our current knowledge of its epigenetic and neurocircuitry impact.
Collapse
Affiliation(s)
- Christopher W. T. Miller
- University of Maryland School of Medicine, 701 W. Pratt St., 4th Floor, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
van Os J, Reininghaus U, Meyer-Lindenberg A. The Search for Environmental Mechanisms Underlying the Expression of Psychosis: Introduction. Schizophr Bull 2017; 43:283-286. [PMID: 28039422 PMCID: PMC5782498 DOI: 10.1093/schbul/sbw178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this themed issue, a number of articles are presented that investigate environmental mechanisms in psychotic disorder. Below, we describe some of the challenges associated with this research, in terms of phenotypic definition, the nature of environmental impact and associated design and measurement issues.
Collapse
Affiliation(s)
- Jim van Os
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Psychosis Studies Department, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - Ulrich Reininghaus
- Department of Psychiatry and Psychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre for Epidemiology and Public Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
33
|
Plener PL, Zohsel K, Hohm E, Buchmann AF, Banaschewski T, Zimmermann US, Laucht M. Lower cortisol level in response to a psychosocial stressor in young females with self-harm. Psychoneuroendocrinology 2017; 76:84-87. [PMID: 27889466 DOI: 10.1016/j.psyneuen.2016.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Self-harm is highly prevalent in adolescence, often serving an emotion regulation function. Social stressors such as bullying are associated with self-harm. The neurobiological background of the relationship between social stressors and self-harm needs to be further understood to inform prevention and therapy. METHODS Participants were members of an epidemiological cohort study. 130 female participants underwent the Trier Social Stress Test (TSST) at age 19. Of them, 21 reported a history of self-harm as assessed by the Youth Self Report. Psychiatric diagnoses were recorded. RESULTS Participants with a history of self-harm showed significantly lower blood cortisol levels throughout the TSST. Early psychosocial adversity did not significantly differ between groups with and without self-harm, with self-harming participants reporting more childhood adversities. CONCLUSION These results add to the limited field of studies showing an altered HPA axis activity in females with self-harm. Future studies need to address the causal mechanisms behind this association.
Collapse
Affiliation(s)
- Paul L Plener
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Katrin Zohsel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Erika Hohm
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Arlette F Buchmann
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - T Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Ulrich S Zimmermann
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany; Department of Psychology, University of Potsdam, Germany
| |
Collapse
|