1
|
Small SL. Precision neurology. Ageing Res Rev 2024; 104:102632. [PMID: 39657848 DOI: 10.1016/j.arr.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Over the past several decades, high-resolution brain imaging, blood and cerebrospinal fluid analyses, and other advanced technologies have changed diagnosis from an exercise depending primarily on the history and physical examination to a computer- and online resource-aided process that relies on larger and larger quantities of data. In addition, randomized controlled trials (RCT) at a population level have led to many new drugs and devices to treat neurological disease, including disease-modifying therapies. We are now at a crossroads. Combinatorially profound increases in data about individuals has led to an alternative to population-based RCTs. Genotyping and comprehensive "deep" phenotyping can sort individuals into smaller groups, enabling precise medical decisions at a personal level. In neurology, precision medicine that includes prediction, prevention and personalization requires that genomic and phenomic information further incorporate imaging and behavioral data. In this article, we review the genomic, phenomic, and computational aspects of precision medicine for neurology. After defining biological markers, we discuss some applications of these "-omic" and neuroimaging measures, and then outline the role of computation and ultimately brain simulation. We conclude the article with a discussion of the relation between precision medicine and value-based care.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neuroscience, University of Texas at Dallas, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, The University of Chicago, Chicago, IL, USA; Department of Neurology, University of California, Irvine, Orange, CA, USA.
| |
Collapse
|
2
|
Stasinski J, Taher H, Meier JM, Schirner M, Perdikis D, Ritter P. Homeodynamic feedback inhibition control in whole-brain simulations. PLoS Comput Biol 2024; 20:e1012595. [PMID: 39621754 PMCID: PMC11637364 DOI: 10.1371/journal.pcbi.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/12/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Simulations of large-scale brain dynamics are often impacted by overexcitation resulting from heavy-tailed structural network distributions, leading to biologically implausible simulation results. We implement a homeodynamic plasticity mechanism, known from other modeling work, in the widely used Jansen-Rit neural mass model for The Virtual Brain (TVB) simulation framework. We aim at heterogeneously adjusting the inhibitory coupling weights to reach desired dynamic regimes in each brain region. We show that, by using this dynamic approach, we can control the target activity level to obtain biologically plausible brain simulations, including post-synaptic potentials and blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) activity. We demonstrate that the derived dynamic Feedback Inhibitory Control (dFIC) can be used to enable increased variability of model dynamics. We derive the conditions under which the simulated brain activity converges to a predefined target level analytically and via simulations. We highlight the benefits of dFIC in the context of fitting the TVB model to static and dynamic measures of fMRI empirical data, accounting for global synchronization across the whole brain. The proposed novel method helps computational neuroscientists, especially TVB users, to easily "tune" brain models to desired dynamical regimes depending on the specific requirements of each study. The presented method is a steppingstone towards increased biological realism in brain network models and a valuable tool to better understand their underlying behavior.
Collapse
Affiliation(s)
- Jan Stasinski
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
| | - Halgurd Taher
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jil Mona Meier
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Michael Schirner
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Dionysios Perdikis
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Petra Ritter
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Brain Simulation Section, Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| |
Collapse
|
3
|
Clifford HJ, Paranathala MP, Wang Y, Thomas RH, da Silva Costa T, Duncan JS, Taylor PN. Vagus nerve stimulation for epilepsy: A narrative review of factors predictive of response. Epilepsia 2024; 65:3441-3456. [PMID: 39412361 DOI: 10.1111/epi.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Vagus nerve stimulation (VNS) is an established therapy for drug-resistant epilepsy. However, there is a lack of reliable predictors of VNS response in clinical use. The identification of factors predictive of VNS response is important for patient selection and stratification as well as tailored stimulation programming. We conducted a narrative review of the existing literature on prognostic markers for VNS response using clinical, demographic, biochemical, and modality-specific information such as from electroencephalography (EEG), magnetoencephalography, and magnetic resonance imaging (MRI). No individual marker demonstrated sufficient predictive power for individual patients, although several have been suggested, with some promising initial findings. Combining markers from underresearched modalities such as T1-weighted MRI morphometrics and EEG may provide better strategies for treatment optimization.
Collapse
Affiliation(s)
- Harry J Clifford
- Computational Neurology Neurosicence and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Yujiang Wang
- Computational Neurology Neurosicence and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Rhys H Thomas
- Neurosciences, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Tiago da Silva Costa
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Northern Centre for Mood Disorders, Newcastle University, Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
- National Institute for Health and Care Research, Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| | | | - Peter N Taylor
- Computational Neurology Neurosicence and Psychiatry Lab, School of Computing, Newcastle University, Newcastle Upon Tyne, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
4
|
Ivankovic K, Principe A, Zucca R, Dierssen M, Rocamora R. Methods for Identifying Epilepsy Surgery Targets Using Invasive EEG: A Systematic Review. Biomedicines 2024; 12:2597. [PMID: 39595163 PMCID: PMC11592023 DOI: 10.3390/biomedicines12112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The pre-surgical evaluation for drug-resistant epilepsy achieves seizure freedom in only 50-60% of patients. Efforts to identify quantitative intracranial EEG (qEEG) biomarkers of epileptogenicity are needed. This review summarizes and evaluates the design of qEEG studies, discusses barriers to biomarker adoption, and proposes refinements of qEEG study protocols. METHODS We included exploratory and prediction prognostic studies from MEDLINE and Scopus published between 2017 and 2023 that investigated qEEG markers for identifying the epileptogenic network as the surgical target. Cohort parameters, ground truth references, and analytical approaches were extracted. RESULTS Out of 1789 search results, 128 studies were included. The study designs were highly heterogeneous. Half of the studies included a non-consecutive cohort, with sample sizes ranging from 2 to 166 patients (median of 16). The most common minimum follow-up was one year, and the seizure onset zone was the most common ground truth. Prediction studies were heterogeneous in their analytical approaches, and only 25 studies validated the marker through post-surgical outcome prediction. Outcome prediction performance decreased in larger cohorts. Conversely, longer follow-up periods correlated with higher prediction accuracy, and connectivity-based approaches yielded better predictions. The data and code were available in only 9% of studies. CONCLUSIONS To enhance the validation qEEG markers, we propose standardizing study designs to resemble clinical trials. This includes using a consecutive cohort with long-term follow-up, validating against surgical resection as ground truth, and evaluating markers through post-surgical outcome prediction. These considerations would improve the reliability and clinical adoption of qEEG markers.
Collapse
Affiliation(s)
- Karla Ivankovic
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (K.I.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Alessandro Principe
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (K.I.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| | - Riccardo Zucca
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (K.I.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Mara Dierssen
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (K.I.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Rodrigo Rocamora
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; (K.I.)
- Hospital del Mar Research Institute, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Johnston PR, Griffiths JD, Rokos L, McIntosh AR, Meltzer JA. Secondary thalamic dysfunction underlies abnormal large-scale neural dynamics in chronic stroke. Proc Natl Acad Sci U S A 2024; 121:e2409345121. [PMID: 39503890 PMCID: PMC11573628 DOI: 10.1073/pnas.2409345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024] Open
Abstract
Stroke causes pronounced and widespread slowing of neural activity. Despite decades of work exploring these abnormal neural dynamics and their associated functional impairments, their causes remain largely unclear. To close this gap in understanding, we applied a neurophysiological corticothalamic circuit model to simulate magnetoencephalography (MEG) power spectra recorded from chronic stroke patients. Comparing model-estimated physiological parameters to those of controls, patients demonstrated significantly lower intrathalamic inhibition in the lesioned hemisphere, despite the absence of direct damage to the thalamus itself. We hypothesized that this disinhibition could instead be related to secondary degeneration of the thalamus, for which growing evidence exists in the literature. Further analyses confirmed that spectral slowing correlated significantly with overall secondary degeneration of the ipsilesional thalamus, encompassing decreased thalamic volume, altered tissue microstructure, and decreased blood flow. Crucially, this relationship was mediated by model-estimated thalamic disinhibition, suggesting a causal link between secondary thalamic degeneration and abnormal brain dynamics via thalamic disinhibition. Finally, thalamic degeneration was correlated significantly with poorer cognitive and language outcomes, but not lesion volume, reinforcing that thalamus damage may account for additional individual variability in poststroke disability. Overall, our findings indicate that the frequently observed poststroke slowing reflects a disruption of corticothalamic circuit dynamics due to secondary thalamic dysfunction, and highlights the thalamus as an important target for understanding and potentially treating poststroke brain dysfunction.
Collapse
Affiliation(s)
- Phillip R Johnston
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - John D Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leanne Rokos
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony R McIntosh
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jed A Meltzer
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
6
|
Salvatici G, Pellegrino G, Perulli M, Danieli A, Bonanni P, Duma GM. Electroencephalography derived connectivity informing epilepsy surgical planning: Towards clinical applications and future perspectives. Neuroimage Clin 2024; 44:103703. [PMID: 39546895 PMCID: PMC11613172 DOI: 10.1016/j.nicl.2024.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Epilepsy is one of the most diffused neurological disorders, affecting 50 million people worldwide. Around 30% of patients have drug-resistant epilepsy (DRE), defined as failure of at least two tolerated antiseizure medications (ASMs) to achieve sustained seizure freedom. Brain surgery is an effective therapeutic approach in this group, hinging on the accurate localization of the epileptic focus. The latter task is complex and requires multimodal investigation methods. Epilepsy is also a network disorder and represents one of the best application scenarios of methods leveraging brain functional organization at large scales. Connectivity analysis represents a promising tool for improving surgical assessment, enabling better identification of candidates who could benefit the most from epilepsy surgery. The scalp electroencephalography (EEG) is the most relevant tool to characterize epileptic activity. The EEG has benefited significantly from technological advancement across the last decades. Firstly, electrical source imaging (ESI) allows the reconstruction of electrical activity detected by EEG at the cortex level; secondly, functional connectivity (FC) allows the assessment of functional dependencies across brain areas. The EEG has therefore expanded potential applications in the localization and characterization of the epileptogenic network for surgical planning. As the translation of these methods in clinical practice is little discussed in the literature, we reviewed the investigations using EEG-derived FC. We showed that the FC-informed identification of the epileptic networks improves the localization precision in focal epilepsy. We discussed the heterogeneity in the results and methodology preventing prompt research-to-clinic translation. We finally provided practical suggestions for promoting the applicability of FC-based research in real clinical practice, looking for future research.
Collapse
Affiliation(s)
- Giulia Salvatici
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, Conegliano 31015, Italy.
| | - Giovanni Pellegrino
- Clinical Neurological Sciences Department, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada.
| | - Marco Perulli
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, Conegliano 31015, Italy.
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, Conegliano 31015, Italy.
| | - Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, Conegliano 31015, Italy.
| |
Collapse
|
7
|
Sun J, Niu Y, Dong Y, Zhou M, Yao R, Ma J, Wen X, Xiang J. Virtual resection evaluation based on sEEG propagation network for drug-resistant epilepsy. Sci Rep 2024; 14:25542. [PMID: 39462086 PMCID: PMC11513035 DOI: 10.1038/s41598-024-77216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Drug-resistant epilepsy with frequent seizures are considered to undergo surgery to become seizure-free, but seizure-free rates have not dramatically improved, partly due to imprecise intervention locations. To address this clinical need, we construct effective connectivity to reveal epilepsy brain dynamics. Based on the propagation path captured by the high order effective connectivity, calculate the control centrality evaluation scheme of the excised area. We used three datasets: simulation dataset, clinical dataset, and public dataset. The epileptogenic propagation network was quantified by calculating high-order effective connection to obtain accurate propagation path, based on this, combined with the outdegree index for virtual resection. By removing electrodes and recalculating control centrality, we quantify each electrode or region's control centrality to evaluate the virtual resection scheme. Three datasets obtained consistent results. We track the accurate propagation path and find the obvious inflection points occurring during the excision process. The minimum intervention targets were obtained by comparing different schemes without recurrence. The clinical data with multiple seizures found that after resection, the brain reaches a stable state and is less likely to continue spreading. By quantitative analysis of control centrality to evaluate the possible excision scheme, finally we obtain the best intervention area for epilepsy, which assist in developing surgical plans.
Collapse
Affiliation(s)
- Jie Sun
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Yanqing Dong
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Mengni Zhou
- School of Software, Taiyuan University of Technology, Taiyuan, China
| | - Rong Yao
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Jiuhong Ma
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Wen
- School of Software, Taiyuan University of Technology, Taiyuan, China.
| | - Jie Xiang
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
8
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
9
|
Stampacchia S, Asadi S, Tomczyk S, Ribaldi F, Scheffler M, Lövblad KO, Pievani M, Fall AB, Preti MG, Unschuld PG, Van De Ville D, Blanke O, Frisoni GB, Garibotto V, Amico E. Fingerprints of brain disease: connectome identifiability in Alzheimer's disease. Commun Biol 2024; 7:1169. [PMID: 39294332 PMCID: PMC11411139 DOI: 10.1038/s42003-024-06829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Functional connectivity patterns in the human brain, like the friction ridges of a fingerprint, can uniquely identify individuals. Does this "brain fingerprint" remain distinct even during Alzheimer's disease (AD)? Using fMRI data from healthy and pathologically ageing subjects, we find that individual functional connectivity profiles remain unique and highly heterogeneous during mild cognitive impairment and AD. However, the patterns that make individuals identifiable change with disease progression, revealing a reconfiguration of the brain fingerprint. Notably, connectivity shifts towards functional system connections in AD and lower-order cognitive functions in early disease stages. These findings emphasize the importance of focusing on individual variability rather than group differences in AD studies. Individual functional connectomes could be instrumental in creating personalized models of AD progression, predicting disease course, and optimizing treatments, paving the way for personalized medicine in AD management.
Collapse
Affiliation(s)
- Sara Stampacchia
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| | - Saina Asadi
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Neurodiagnostic and Neurointerventional Division, Geneva University Hospitals, Geneva, Switzerland
| | - Michela Pievani
- Lab of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aïda B Fall
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Paul G Unschuld
- Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland
- Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Fekonja LS, Schenk R, Schröder E, Tomasello R, Tomšič S, Picht T. The digital twin in neuroscience: from theory to tailored therapy. Front Neurosci 2024; 18:1454856. [PMID: 39376542 PMCID: PMC11457707 DOI: 10.3389/fnins.2024.1454856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Digital twins enable simulation, comprehensive analysis and predictions, as virtual representations of physical systems. They are also finding increasing interest and application in the healthcare sector, with a particular focus on digital twins of the brain. We discuss how digital twins in neuroscience enable the modeling of brain functions and pathology as they offer an in-silico approach to studying the brain and illustrating the complex relationships between brain network dynamics and related functions. To showcase the capabilities of digital twinning in neuroscience we demonstrate how the impact of brain tumors on the brain's physical structures and functioning can be modeled in relation to the philosophical concept of plasticity. Against this technically derived backdrop, which assumes that the brain's nonlinear behavior toward improvement and repair can be modeled and predicted based on MRI data, we further explore the philosophical insights of Catherine Malabou. Malabou emphasizes the brain's dual capacity for adaptive and destructive plasticity. We will discuss in how far Malabou's ideas provide a more holistic theoretical framework for understanding how digital twins can model the brain's response to injury and pathology, embracing Malabou's concept of both adaptive and destructive plasticity which provides a framework to address such yet incomputable aspects of neuroscience and the sometimes seemingly unfavorable dynamics of neuroplasticity helping to bridge the gap between theoretical research and clinical practice.
Collapse
Affiliation(s)
- Lucius Samo Fekonja
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emily Schröder
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Tomasello
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Samo Tomšič
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Fine Arts of Hamburg, Hamburg, Germany
| | - Thomas Picht
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Nieto Ramos A, Krishnan B, Alexopoulos AV, Bingaman W, Najm I, Bulacio JC, Serletis D. Epileptic network identification: insights from dynamic mode decomposition of sEEG data. J Neural Eng 2024; 21:046061. [PMID: 39151464 DOI: 10.1088/1741-2552/ad705f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Objective.For medically-refractory epilepsy patients, stereoelectroencephalography (sEEG) is a surgical method using intracranial electrode recordings to identify brain networks participating in early seizure organization and propagation (i.e. the epileptogenic zone, EZ). If identified, surgical EZ treatment via resection, ablation or neuromodulation can lead to seizure-freedom. To date, quantification of sEEG data, including its visualization and interpretation, remains a clinical and computational challenge. Given elusiveness of physical laws or governing equations modelling complex brain dynamics, data science offers unique insight into identifying unknown patterns within high-dimensional sEEG data. We apply here an unsupervised data-driven algorithm, dynamic mode decomposition (DMD), to sEEG recordings from five focal epilepsy patients (three with temporal lobe, and two with cingulate epilepsy), who underwent subsequent resective or ablative surgery and became seizure free.Approach.DMD obtains a linear approximation of nonlinear data dynamics, generating coherent structures ('modes') defining important signal features, used to extract frequencies, growth rates and spatial structures. DMD was adapted to produce dynamic modal maps (DMMs) across frequency sub-bands, capturing onset and evolution of epileptiform dynamics in sEEG data. Additionally, we developed a static estimate of EZ-localized electrode contacts, termed the higher-frequency mode-based norm index (MNI). DMM and MNI maps for representative patient seizures were validated against clinical sEEG results and seizure-free outcomes following surgery.Main results.DMD was most informative at higher frequencies, i.e. gamma (including high-gamma) and beta range, successfully identifying EZ contacts. Combined interpretation of DMM/MNI plots best identified spatiotemporal evolution of mode-specific network changes, with strong concordance to sEEG results and outcomes across all five patients. The method identified network attenuation in other contacts not implicated in the EZ.Significance.This is the first application of DMD to sEEG data analysis, supporting integration of neuroengineering, mathematical and machine learning methods into traditional workflows for sEEG review and epilepsy surgical decision-making.
Collapse
Affiliation(s)
- Alejandro Nieto Ramos
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| | - Balu Krishnan
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| | - Andreas V Alexopoulos
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - William Bingaman
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Imad Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Juan C Bulacio
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| | - Demitre Serletis
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| |
Collapse
|
12
|
Cai T, Lin Y, Wang G, Luo J. Predicting radiofrequency thermocoagulation surgical outcomes in refractory focal epilepsy patients using functional coupled neural mass model. Front Neurol 2024; 15:1402004. [PMID: 39246608 PMCID: PMC11377261 DOI: 10.3389/fneur.2024.1402004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Objective The success rate of achieving seizure freedom after radiofrequency thermocoagulation surgery for patients with refractory focal epilepsy is about 20-40%. This study aims to enhance the prediction of surgical outcomes based on preoperative decisions through network model simulation, providing a reference for clinicians to validate and optimize surgical plans. Methods Twelve patients with epilepsy who underwent radiofrequency thermocoagulation were retrospectively reviewed in this study. A coupled model based on model subsets of the neural mass model was constructed by calculating partial directed coherence as the coupling matrix from stereoelectroencephalography (SEEG) signals. Multi-channel time-varying model parameters of excitation and inhibitions were identified by fitting the real SEEG signals with the coupled model. Further incorporating these model parameters, the coupled model virtually removed contacts destroyed in radiofrequency thermocoagulation or selected randomly. Subsequently, the coupled model after virtual surgery was simulated. Results The identified excitatory and inhibitory parameters showed significant difference before and after seizure onset (p < 0.05), and the trends of parameter changes aligned with the seizure process. Additionally, excitatory parameters of epileptogenic contacts were higher than that of non-epileptogenic contacts, and opposite findings were noticed for inhibitory parameters. The simulated signals of postoperative models to predict surgical outcomes yielded an area under the curve (AUC) of 83.33% and an accuracy of 91.67%. Conclusion The multi-channel coupled model proposed in this study with physiological characteristics showed a desirable performance for preoperatively predicting patients' prognoses.
Collapse
Affiliation(s)
- Tianxin Cai
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| | - Yaoxin Lin
- Department of Functional Neurosurgery, First People's Hospital of Foshan, Foshan, China
| | - Guofu Wang
- Department of Functional Neurosurgery, First People's Hospital of Foshan, Foshan, China
| | - Jie Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Sheheitli H, Jirsa V. Incorporating slow NMDA-type receptors with nonlinear voltage-dependent magnesium block in a next generation neural mass model: derivation and dynamics. J Comput Neurosci 2024; 52:207-222. [PMID: 38967732 PMCID: PMC11327200 DOI: 10.1007/s10827-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
We derive a next generation neural mass model of a population of quadratic-integrate-and-fire neurons, with slow adaptation, and conductance-based AMPAR, GABAR and nonlinear NMDAR synapses. We show that the Lorentzian ansatz assumption can be satisfied by introducing a piece-wise polynomial approximation of the nonlinear voltage-dependent magnesium block of NMDAR current. We study the dynamics of the resulting system for two example cases of excitatory cortical neurons and inhibitory striatal neurons. Bifurcation diagrams are presented comparing the different dynamical regimes as compared to the case of linear NMDAR currents, along with sample comparison simulation time series demonstrating different possible oscillatory solutions. The omission of the nonlinearity of NMDAR currents results in a shift in the range (and possible disappearance) of the constant high firing rate regime, along with a modulation in the amplitude and frequency power spectrum of oscillations. Moreover, nonlinear NMDAR action is seen to be state-dependent and can have opposite effects depending on the type of neurons involved and the level of input firing rate received. The presented model can serve as a computationally efficient building block in whole brain network models for investigating the differential modulation of different types of synapses under neuromodulatory influence or receptor specific malfunction.
Collapse
Affiliation(s)
- Hiba Sheheitli
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France.
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States.
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| |
Collapse
|
14
|
Ye C, Zhang Y, Ran C, Ma T. Recent Progress in Brain Network Models for Medical Applications: A Review. HEALTH DATA SCIENCE 2024; 4:0157. [PMID: 38979037 PMCID: PMC11227951 DOI: 10.34133/hds.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Importance: Pathological perturbations of the brain often spread via connectome to fundamentally alter functional consequences. By integrating multimodal neuroimaging data with mathematical neural mass modeling, brain network models (BNMs) enable to quantitatively characterize aberrant network dynamics underlying multiple neurological and psychiatric disorders. We delved into the advancements of BNM-based medical applications, discussed the prevalent challenges within this field, and provided possible solutions and future directions. Highlights: This paper reviewed the theoretical foundations and current medical applications of computational BNMs. Composed of neural mass models, the BNM framework allows to investigate large-scale brain dynamics behind brain diseases by linking the simulated functional signals to the empirical neurophysiological data, and has shown promise in exploring neuropathological mechanisms, elucidating therapeutic effects, and predicting disease outcome. Despite that several limitations existed, one promising trend of this research field is to precisely guide clinical neuromodulation treatment based on individual BNM simulation. Conclusion: BNM carries the potential to help understand the mechanism underlying how neuropathology affects brain network dynamics, further contributing to decision-making in clinical diagnosis and treatment. Several constraints must be addressed and surmounted to pave the way for its utilization in the clinic.
Collapse
Affiliation(s)
- Chenfei Ye
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Yixuan Zhang
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Chen Ran
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
| | - Ting Ma
- International Research Institute for Artificial Intelligence,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Department of Electronic and Information Engineering,
Harbin Institute of Technology at Shenzhen, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology,
Harbin Institute of Technology at Shenzhen, China
| |
Collapse
|
15
|
Penas DR, Hashemi M, Jirsa VK, Banga JR. Parameter estimation in a whole-brain network model of epilepsy: Comparison of parallel global optimization solvers. PLoS Comput Biol 2024; 20:e1011642. [PMID: 38990984 PMCID: PMC11265693 DOI: 10.1371/journal.pcbi.1011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/23/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The Virtual Epileptic Patient (VEP) refers to a computer-based representation of a patient with epilepsy that combines personalized anatomical data with dynamical models of abnormal brain activities. It is capable of generating spatio-temporal seizure patterns that resemble those recorded with invasive methods such as stereoelectro EEG data, allowing for the evaluation of clinical hypotheses before planning surgery. This study highlights the effectiveness of calibrating VEP models using a global optimization approach. The approach utilizes SaCeSS, a cooperative metaheuristic algorithm capable of parallel computation, to yield high-quality solutions without requiring excessive computational time. Through extensive benchmarking on synthetic data, our proposal successfully solved a set of different configurations of VEP models, demonstrating better scalability and superior performance against other parallel solvers. These results were further enhanced using a Bayesian optimization framework for hyperparameter tuning, with significant gains in terms of both accuracy and computational cost. Additionally, we added a scalable uncertainty quantification phase after model calibration, and used it to assess the variability in estimated parameters across different problems. Overall, this study has the potential to improve the estimation of pathological brain areas in drug-resistant epilepsy, thereby to inform the clinical decision-making process.
Collapse
Affiliation(s)
- David R. Penas
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Spain
| | - Meysam Hashemi
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Viktor K. Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julio R. Banga
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Spain
| |
Collapse
|
16
|
Millán AP, van Straaten ECW, Stam CJ, Nissen IA, Idema S, Van Mieghem P, Hillebrand A. Individualized epidemic spreading models predict epilepsy surgery outcomes: A pseudo-prospective study. Netw Neurosci 2024; 8:437-465. [PMID: 38952815 PMCID: PMC11142635 DOI: 10.1162/netn_a_00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized computational models that combines epidemic spreading with patient-specific connectivity and epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES). ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and significantly better so for patients with good (seizure-free, SF) than bad (nonseizure-free, NSF) outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study (N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to patients without iEEG data. ESSES could predict the chances of good outcome after any resection by finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF than NSF patients, suggesting an intrinsic difference in the network organization or presurgical evaluation results of NSF patients. The actual surgical plan overlapped more with the model-based optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases pseudo-prospectively. Our results show that individualised computational models may inform surgical planning by suggesting alternative resections and providing information on the likelihood of a good outcome after a proposed resection. This is the first time that such a model is validated with a fully independent cohort and without the need for iEEG recordings.
Collapse
Affiliation(s)
- Ana P. Millán
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Institute “Carlos I” for Theoretical and Computational Physics, and Electromagnetism and Matter Physics Department, University of Granada, Granada, Spain
| | - Elisabeth C. W. van Straaten
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Cornelis J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Ida A. Nissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
| | - Sander Idema
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cancer Biology and Immonology, Amsterdam, The Netherlands
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Harrington EG, Kissack P, Terry JR, Woldman W, Junges L. Treatment effects in epilepsy: a mathematical framework for understanding response over time. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1308501. [PMID: 38988793 PMCID: PMC11233745 DOI: 10.3389/fnetp.2024.1308501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, affecting over 65 million people worldwide. Treatment typically commences with the use of anti-seizure medications, including both mono- and poly-therapy. Should these fail, more invasive therapies such as surgery, electrical stimulation and focal drug delivery are often considered in an attempt to render the person seizure free. Although a significant portion ultimately benefit from these treatment options, treatment responses often fluctuate over time. The physiological mechanisms underlying these temporal variations are poorly understood, making prognosis a significant challenge when treating epilepsy. Here we use a dynamic network model of seizure transition to understand how seizure propensity may vary over time as a consequence of changes in excitability. Through computer simulations, we explore the relationship between the impact of treatment on dynamic network properties and their vulnerability over time that permit a return to states of high seizure propensity. For small networks we show vulnerability can be fully characterised by the size of the first transitive component (FTC). For larger networks, we find measures of network efficiency, incoherence and heterogeneity (degree variance) correlate with robustness of networks to increasing excitability. These results provide a set of potential prognostic markers for therapeutic interventions in epilepsy. Such markers could be used to support the development of personalized treatment strategies, ultimately contributing to understanding of long-term seizure freedom.
Collapse
Affiliation(s)
- Elanor G. Harrington
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Peter Kissack
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Saberi A, Wischnewski KJ, Jung K, Lotter LD, Schaare HL, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Poustka L, Hohmann S, Holz N, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Paus T, Dukart J, Bernhardt BC, Popovych OV, Eickhoff SB, Valk SL. Adolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599509. [PMID: 38948771 PMCID: PMC11213014 DOI: 10.1101/2024.06.18.599509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kevin J Wischnewski
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Mathematics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon D Lotter
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany
| | - H Lina Schaare
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Mental Health (DZPG), site Berlin-Potsdam, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. Virtual brain twins: from basic neuroscience to clinical use. Natl Sci Rev 2024; 11:nwae079. [PMID: 38698901 PMCID: PMC11065363 DOI: 10.1093/nsr/nwae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Paul Triebkorn
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Martin Breyton
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacosurveillance, AP–HM, Marseille, 13005, France
| | - Borana Dollomaja
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Spase Petkoski
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Pierpaolo Sorrentino
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Damien Depannemaecker
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Meysam Hashemi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Viktor K Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| |
Collapse
|
20
|
Shafiezadeh S, Duma GM, Mento G, Danieli A, Antoniazzi L, Del Popolo Cristaldi F, Bonanni P, Testolin A. Calibrating Deep Learning Classifiers for Patient-Independent Electroencephalogram Seizure Forecasting. SENSORS (BASEL, SWITZERLAND) 2024; 24:2863. [PMID: 38732969 PMCID: PMC11086106 DOI: 10.3390/s24092863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The recent scientific literature abounds in proposals of seizure forecasting methods that exploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning algorithms seem to achieve a particularly remarkable performance, suggesting that the implementation of clinical devices for seizure prediction might be within reach. However, most of the research evaluated the robustness of automatic forecasting methods through randomized cross-validation techniques, while clinical applications require much more stringent validation based on patient-independent testing. In this study, we show that automatic seizure forecasting can be performed, to some extent, even on independent patients who have never been seen during the training phase, thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models, even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demonstrating that the forecast accuracy of deep learning methods can increase on average by more than 20%, and that performance improves systematically in all independent patients. We further show that our calibration procedure works best for deep learning models, but can also be successfully applied to machine learning algorithms based on engineered signal features. Although our method still requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that focusing on realistic validation methods allows to more reliably compare different machine learning approaches for seizure prediction, enabling the implementation of robust and effective forecasting systems that can be used in daily healthcare practice.
Collapse
Affiliation(s)
- Sina Shafiezadeh
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
| | - Gian Marco Duma
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Giovanni Mento
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Alberto Danieli
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Lisa Antoniazzi
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | | | - Paolo Bonanni
- Epilepsy and Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea, 31015 Conegliano, Italy; (G.M.D.); (A.D.); (L.A.); (P.B.)
| | - Alberto Testolin
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (G.M.); (F.D.P.C.)
- Department of Mathematics, University of Padova, 35131 Padova, Italy
| |
Collapse
|
21
|
Hong R, Zheng T, Marra V, Yang D, Liu JK. Multi-scale modelling of the epileptic brain: advantages of computational therapy exploration. J Neural Eng 2024; 21:021002. [PMID: 38621378 DOI: 10.1088/1741-2552/ad3eb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective: Epilepsy is a complex disease spanning across multiple scales, from ion channels in neurons to neuronal circuits across the entire brain. Over the past decades, computational models have been used to describe the pathophysiological activity of the epileptic brain from different aspects. Traditionally, each computational model can aid in optimizing therapeutic interventions, therefore, providing a particular view to design strategies for treating epilepsy. As a result, most studies are concerned with generating specific models of the epileptic brain that can help us understand the certain machinery of the pathological state. Those specific models vary in complexity and biological accuracy, with system-level models often lacking biological details.Approach: Here, we review various types of computational model of epilepsy and discuss their potential for different therapeutic approaches and scenarios, including drug discovery, surgical strategies, brain stimulation, and seizure prediction. We propose that we need to consider an integrated approach with a unified modelling framework across multiple scales to understand the epileptic brain. Our proposal is based on the recent increase in computational power, which has opened up the possibility of unifying those specific epileptic models into simulations with an unprecedented level of detail.Main results: A multi-scale epilepsy model can bridge the gap between biologically detailed models, used to address molecular and cellular questions, and brain-wide models based on abstract models which can account for complex neurological and behavioural observations.Significance: With these efforts, we move toward the next generation of epileptic brain models capable of connecting cellular features, such as ion channel properties, with standard clinical measures such as seizure severity.
Collapse
Affiliation(s)
- Rongqi Hong
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Tingting Zheng
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Dongping Yang
- Research Centre for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, People's Republic of China
| | - Jian K Liu
- School of Computer Science, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Moguilner S, Herzog R, Perl YS, Medel V, Cruzat J, Coronel C, Kringelbach M, Deco G, Ibáñez A, Tagliazucchi E. Biophysical models applied to dementia patients reveal links between geographical origin, gender, disease duration, and loss of neural inhibition. Alzheimers Res Ther 2024; 16:79. [PMID: 38605416 PMCID: PMC11008050 DOI: 10.1186/s13195-024-01449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social and demographic heterogeneities on this hypothesis remains to be addressed. METHODS We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer's disease, behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of balanced neural excitation/inhibition. RESULTS Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years with disease, and showed differences regarding the gender and geographical origin of the patients. The model correctly reproduced known disease-related changes in functional connectivity. CONCLUSIONS Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensitivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), 1207 1651 4th St, 3rd Floor, San Francisco, CA, 94143, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, B1644BID, Buenos Aires, VIC, Argentina
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
- Trinity College Dublin, Lloyd Building Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Rubén Herzog
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile
| | - Yonatan Sanz Perl
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, B1644BID, Buenos Aires, VIC, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, 1425, Argentina
- Institute of Applied and Interdisciplinary Physics and Department of Physics, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, CABA, 1428, Argentina
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Plaça de La Mercè, 10-12, Barcelona, 08002, Spain
| | - Vicente Medel
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Harrington 287, Valparaíso, 2381850, Chile
| | - Josefina Cruzat
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile
| | - Carlos Coronel
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, St.Cross Rd, Oxford, OX1 3JA, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Ln, Headington, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, Aarhus, 8200, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Plaça de La Mercè, 10-12, Barcelona, 08002, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig, 04103, Germany
- Institució Catalana de Recerca I Estudis Avancats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
- Turner Institute for Brain and Mental Health, Monash University, 770 Blackburn Rd,, Clayton, VIC, 3168, Australia
| | - Agustín Ibáñez
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile.
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), 1207 1651 4th St, 3rd Floor, San Francisco, CA, 94143, USA.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, B1644BID, Buenos Aires, VIC, Argentina.
- Trinity College Institute of Neuroscience, Trinity College Dublin, 152 - 160 Pearse St, Dublin, D02 R590, Ireland.
- Trinity College Dublin, Lloyd Building Trinity College Dublin, Dublin, D02 PN40, Ireland.
| | - Enzo Tagliazucchi
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Av. Diag. Las Torres 2640, Santiago Región Metropolitana, Peñalolén, 7941169, Chile.
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Vito Dumas 284, B1644BID, Buenos Aires, VIC, Argentina.
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, CABA, 1425, Argentina.
- Institute of Applied and Interdisciplinary Physics and Department of Physics, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, CABA, 1428, Argentina.
| |
Collapse
|
23
|
Medrano J, Friston K, Zeidman P. Linking fast and slow: The case for generative models. Netw Neurosci 2024; 8:24-43. [PMID: 38562283 PMCID: PMC10861163 DOI: 10.1162/netn_a_00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days, or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multiscale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.
Collapse
Affiliation(s)
- Johan Medrano
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
24
|
Ibanez A, Kringelbach ML, Deco G. A synergetic turn in cognitive neuroscience of brain diseases. Trends Cogn Sci 2024; 28:319-338. [PMID: 38246816 DOI: 10.1016/j.tics.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Despite significant improvements in our understanding of brain diseases, many barriers remain. Cognitive neuroscience faces four major challenges: complex structure-function associations; disease phenotype heterogeneity; the lack of transdiagnostic models; and oversimplified cognitive approaches restricted to the laboratory. Here, we propose a synergetics framework that can help to perform the necessary dimensionality reduction of complex interactions between the brain, body, and environment. The key solutions include low-dimensional spatiotemporal hierarchies for brain-structure associations, whole-brain modeling to handle phenotype diversity, model integration of shared transdiagnostic pathophysiological pathways, and naturalistic frameworks balancing experimental control and ecological validity. Creating whole-brain models with reduced manifolds combined with ecological measures can improve our understanding of brain disease and help identify novel interventions. Synergetics provides an integrated framework for future progress in clinical and cognitive neuroscience, pushing the boundaries of brain health and disease toward more mature, naturalistic approaches.
Collapse
Affiliation(s)
- Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile; Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, CA, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Morten L Kringelbach
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
25
|
Saggio ML, Jirsa V. Bifurcations and bursting in the Epileptor. PLoS Comput Biol 2024; 20:e1011903. [PMID: 38446814 PMCID: PMC10947678 DOI: 10.1371/journal.pcbi.1011903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/18/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
The Epileptor is a phenomenological model for seizure activity that is used in a personalized large-scale brain modeling framework, the Virtual Epileptic Patient, with the aim of improving surgery outcomes for drug-resistant epileptic patients. Transitions between interictal and ictal states are modeled as bifurcations, enabling the definition of seizure classes in terms of onset/offset bifurcations. This establishes a taxonomy of seizures grounded in their essential underlying dynamics and the Epileptor replicates the activity of the most common class, as observed in patients with focal epilepsy, which is characterized by square-wave bursting properties. The Epileptor also encodes an additional mechanism to account for interictal spikes and spike and wave discharges. Here we use insights from a more generic model for square-wave bursting, based on the Unfolding Theory approach, to guide the bifurcation analysis of the Epileptor and gain a deeper understanding of the model and the role of its parameters. We show how the Epileptor's parameters can be modified to produce activities for other seizures classes of the taxonomy, as observed in patients, so that the large-scale brain models could be further personalized. Some of these classes have already been described in the literature in the Epileptor, others, predicted by the generic model, are new. Finally, we unveil how the interaction with the additional mechanism for spike and wave discharges alters the bifurcation structure of the main burster.
Collapse
Affiliation(s)
- Maria Luisa Saggio
- Institut de Neurosciences des Systemes INS UMR1106, AMU, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Systemes INS UMR1106, AMU, INSERM, Marseille, France
| |
Collapse
|
26
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
27
|
Frauscher B, Mansilla D, Abdallah C, Astner-Rohracher A, Beniczky S, Brazdil M, Gnatkovsky V, Jacobs J, Kalamangalam G, Perucca P, Ryvlin P, Schuele S, Tao J, Wang Y, Zijlmans M, McGonigal A. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024; 26:1-59. [PMID: 38116690 DOI: 10.1002/epd2.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.
Collapse
Affiliation(s)
- B Frauscher
- Department of Neurology, Duke University Medical Center and Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - C Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - A Astner-Rohracher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Aarhus University, Aarhus, Denmark
| | - M Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Member of the ERN-EpiCARE, Brno, Czechia
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - V Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - J Jacobs
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Kalamangalam
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - P Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - J Tao
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Y Wang
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - M Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - A McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
- Mater Research Institute, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
28
|
Haraldsen IH, Hatlestad-Hall C, Marra C, Renvall H, Maestú F, Acosta-Hernández J, Alfonsin S, Andersson V, Anand A, Ayllón V, Babic A, Belhadi A, Birck C, Bruña R, Caraglia N, Carrarini C, Christensen E, Cicchetti A, Daugbjerg S, Di Bidino R, Diaz-Ponce A, Drews A, Giuffrè GM, Georges J, Gil-Gregorio P, Gove D, Govers TM, Hallock H, Hietanen M, Holmen L, Hotta J, Kaski S, Khadka R, Kinnunen AS, Koivisto AM, Kulashekhar S, Larsen D, Liljeström M, Lind PG, Marcos Dolado A, Marshall S, Merz S, Miraglia F, Montonen J, Mäntynen V, Øksengård AR, Olazarán J, Paajanen T, Peña JM, Peña L, Peniche DL, Perez AS, Radwan M, Ramírez-Toraño F, Rodríguez-Pedrero A, Saarinen T, Salas-Carrillo M, Salmelin R, Sousa S, Suyuthi A, Toft M, Toharia P, Tveitstøl T, Tveter M, Upreti R, Vermeulen RJ, Vecchio F, Yazidi A, Rossini PM. Intelligent digital tools for screening of brain connectivity and dementia risk estimation in people affected by mild cognitive impairment: the AI-Mind clinical study protocol. Front Neurorobot 2024; 17:1289406. [PMID: 38250599 PMCID: PMC10796757 DOI: 10.3389/fnbot.2023.1289406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
More than 10 million Europeans show signs of mild cognitive impairment (MCI), a transitional stage between normal brain aging and dementia stage memory disorder. The path MCI takes can be divergent; while some maintain stability or even revert to cognitive norms, alarmingly, up to half of the cases progress to dementia within 5 years. Current diagnostic practice lacks the necessary screening tools to identify those at risk of progression. The European patient experience often involves a long journey from the initial signs of MCI to the eventual diagnosis of dementia. The trajectory is far from ideal. Here, we introduce the AI-Mind project, a pioneering initiative with an innovative approach to early risk assessment through the implementation of advanced artificial intelligence (AI) on multimodal data. The cutting-edge AI-based tools developed in the project aim not only to accelerate the diagnostic process but also to deliver highly accurate predictions regarding an individual's risk of developing dementia when prevention and intervention may still be possible. AI-Mind is a European Research and Innovation Action (RIA H2020-SC1-BHC-06-2020, No. 964220) financed between 2021 and 2026. First, the AI-Mind Connector identifies dysfunctional brain networks based on high-density magneto- and electroencephalography (M/EEG) recordings. Second, the AI-Mind Predictor predicts dementia risk using data from the Connector, enriched with computerized cognitive tests, genetic and protein biomarkers, as well as sociodemographic and clinical variables. AI-Mind is integrated within a network of major European initiatives, including The Virtual Brain, The Virtual Epileptic Patient, and EBRAINS AISBL service for sensitive data, HealthDataCloud, where big patient data are generated for advancing digital and virtual twin technology development. AI-Mind's innovation lies not only in its early prediction of dementia risk, but it also enables a virtual laboratory scenario for hypothesis-driven personalized intervention research. This article introduces the background of the AI-Mind project and its clinical study protocol, setting the stage for future scientific contributions.
Collapse
Affiliation(s)
| | | | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | - Hanna Renvall
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Fernando Maestú
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
| | | | - Soraya Alfonsin
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | | | - Abhilash Anand
- Performance and Assurance Solutions, Digital Solutions, DNV, Oslo, Norway
| | | | - Aleksandar Babic
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Asma Belhadi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | | | - Ricardo Bruña
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, Madrid, Spain
| | - Naike Caraglia
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudia Carrarini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | | | - Americo Cicchetti
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | - Signe Daugbjerg
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | - Rossella Di Bidino
- The Graduate School of Health Economics and Management (ALTEMS), Catholic University of the Sacred Heart, Rome, Italy
| | | | - Ainar Drews
- IT Department, University of Oslo, Oslo, Norway
| | - Guido Maria Giuffrè
- Memory Clinic, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Pedro Gil-Gregorio
- Department of Geriatric Medicine, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Department of Geriatrics, Fundación para la Investigación Biomédica del Hospital Clínico San Carlos, Madrid, Spain
| | | | - Tim M. Govers
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Harry Hallock
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Marja Hietanen
- Division of Neuropsychology, HUS Neurocenter, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Lone Holmen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Jaakko Hotta
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Samuel Kaski
- Department of Computer Science, Helsinki Institute of Information Technology, Aalto University, Helsinki, Finland
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Rabindra Khadka
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Antti S. Kinnunen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Anne M. Koivisto
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
- Department of Neurosciences, University of Helsinki, Helsinki, Finland
- Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Shrikanth Kulashekhar
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Denis Larsen
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Pedro G. Lind
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Alberto Marcos Dolado
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Neurology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Serena Marshall
- Healthcare Programme, Group Research and Development, DNV, Oslo, Norway
| | - Susanne Merz
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Francesca Miraglia
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| | - Juha Montonen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Ville Mäntynen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | | | - Javier Olazarán
- Neurology Service, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | | | - Ana S. Perez
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mohamed Radwan
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Federico Ramírez-Toraño
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | - Andrea Rodríguez-Pedrero
- Centre for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Universidad Complutense de Madrid, Pozuelo de Alarcón, Spain
| | - Timo Saarinen
- BioMag Laboratory, HUS Medical Imaging Centre, Helsinki University Hospital, Helsinki University and Aalto University School of Science, Helsinki, Finland
| | - Mario Salas-Carrillo
- Institute of Sanitary Investigation (IdISSC), San Carlos University Hospital, Madrid, Spain
- Memory Unit, Department of Geriatrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, Helsinki, Finland
| | - Sonia Sousa
- School of Digital Technologies, Tallinn University, Tallinn, Estonia
| | - Abdillah Suyuthi
- Performance and Assurance Solutions, Digital Solutions, DNV, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pablo Toharia
- Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Mats Tveter
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ramesh Upreti
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Robin J. Vermeulen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabrizio Vecchio
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Como, Italy
| | - Anis Yazidi
- Department of Computer Science, OsloMet—Oslo Metropolitan University, Oslo, Norway
- NordSTAR—Nordic Center for Sustainable and Trustworthy AI Research, Oslo, Norway
| | - Paolo Maria Rossini
- Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
29
|
Liu Q, Wei C, Qu Y, Liang Z. Modelling and Controlling System Dynamics of the Brain: An Intersection of Machine Learning and Control Theory. ADVANCES IN NEUROBIOLOGY 2024; 41:63-87. [PMID: 39589710 DOI: 10.1007/978-3-031-69188-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The human brain, as a complex system, has long captivated multidisciplinary researchers aiming to decode its intricate structure and function. This intricate network has driven scientific pursuits to advance our understanding of cognition, behavior, and neurological disorders by delving into the complex mechanisms underlying brain function and dysfunction. Modelling brain dynamics using machine learning techniques deepens our comprehension of brain dynamics from a computational perspective. These computational models allow researchers to simulate and analyze neural interactions, facilitating the identification of dysfunctions in connectivity or activity patterns. Additionally, the trained dynamical system, serving as a surrogate model, optimizes neurostimulation strategies under the guidelines of control theory. In this chapter, we discuss the recent studies on modelling and controlling brain dynamics at the intersection of machine learning and control theory, providing a framework to understand and improve cognitive function, and treat neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China.
| | - Chen Wei
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Youzhi Qu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Zhichao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| |
Collapse
|
30
|
Aquilué-Llorens D, Goldman JS, Destexhe A. High-Density Exploration of Activity States in a Multi-Area Brain Model. Neuroinformatics 2024; 22:75-87. [PMID: 37981636 PMCID: PMC10917847 DOI: 10.1007/s12021-023-09647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/21/2023]
Abstract
To simulate whole brain dynamics with only a few equations, biophysical, mesoscopic models of local neuron populations can be connected using empirical tractography data. The development of mesoscopic mean-field models of neural populations, in particular, the Adaptive Exponential (AdEx mean-field model), has successfully summarized neuron-scale phenomena leading to the emergence of global brain dynamics associated with conscious (asynchronous and rapid dynamics) and unconscious (synchronized slow-waves, with Up-and-Down state dynamics) brain states, based on biophysical mechanisms operating at cellular scales (e.g. neuromodulatory regulation of spike-frequency adaptation during sleep-wake cycles or anesthetics). Using the Virtual Brain (TVB) environment to connect mean-field AdEx models, we have previously simulated the general properties of brain states, playing on spike-frequency adaptation, but have not yet performed detailed analyses of other parameters possibly also regulating transitions in brain-scale dynamics between different brain states. We performed a dense grid parameter exploration of the TVB-AdEx model, making use of High Performance Computing. We report a remarkable robustness of the effect of adaptation to induce synchronized slow-wave activity. Moreover, the occurrence of slow waves is often paralleled with a closer relation between functional and structural connectivity. We find that hyperpolarization can also generate unconscious-like synchronized Up and Down states, which may be a mechanism underlying the action of anesthetics. We conclude that the TVB-AdEx model reveals large-scale properties identified experimentally in sleep and anesthesia.
Collapse
Affiliation(s)
- David Aquilué-Llorens
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France.
- Starlab Barcelona SL, Neuroscience BU, Av Tibidabo 47 bis, Barcelona, Spain.
| | - Jennifer S Goldman
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), 91400, Saclay, France.
| |
Collapse
|
31
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
33
|
Lainscsek C, Salami P, Carvalho VR, Mendes EMAM, Fan M, Cash SS, Sejnowski TJ. Network-motif delay differential analysis of brain activity during seizures. CHAOS (WOODBURY, N.Y.) 2023; 33:123136. [PMID: 38156987 PMCID: PMC10757649 DOI: 10.1063/5.0165904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.
Collapse
Affiliation(s)
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | - Eduardo M. A. M. Mendes
- Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Miaolin Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
34
|
Agopyan-Miu AH, Merricks EM, Smith EH, McKhann GM, Sheth SA, Feldstein NA, Trevelyan AJ, Schevon CA. Cell-type specific and multiscale dynamics of human focal seizures in limbic structures. Brain 2023; 146:5209-5223. [PMID: 37536281 PMCID: PMC10689922 DOI: 10.1093/brain/awad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
The relationship between clinically accessible epileptic biomarkers and neuronal activity underlying the transition to seizure is complex, potentially leading to imprecise delineation of epileptogenic brain areas. In particular, the pattern of interneuronal firing at seizure onset remains under debate, with some studies demonstrating increased firing and others suggesting reductions. Previous study of neocortical sites suggests that seizure recruitment occurs upon failure of inhibition, with intact feedforward inhibition in non-recruited territories. We investigated whether the same principle applies in limbic structures. We analysed simultaneous electrocorticography (ECoG) and neuronal recordings of 34 seizures in a cohort of 19 patients (10 male, 9 female) undergoing surgical evaluation for pharmacoresistant focal epilepsy. A clustering approach with five quantitative metrics computed from ECoG and multiunit data was used to distinguish three types of site-specific activity patterns during seizures, which at times co-existed within seizures. Overall, 156 single units were isolated, subclassified by cell-type and tracked through the seizure using our previously published methods to account for impacts of increased noise and single-unit waveshape changes caused by seizures. One cluster was closely associated with clinically defined seizure onset or spread. Entrainment of high-gamma activity to low-frequency ictal rhythms was the only metric that reliably identified this cluster at the level of individual seizures (P < 0.001). A second cluster demonstrated multi-unit characteristics resembling those in the first cluster, without concomitant high-gamma entrainment, suggesting feedforward effects from the seizure. The last cluster captured regions apparently unaffected by the ongoing seizure. Across all territories, the majority of both excitatory and inhibitory neurons reduced (69.2%) or ceased firing (21.8%). Transient increases in interneuronal firing rates were rare (13.5%) but showed evidence of intact feedforward inhibition, with maximal firing rate increases and waveshape deformations in territories not fully recruited but showing feedforward activity from the seizure, and a shift to burst-firing in seizure-recruited territories (P = 0.014). This study provides evidence for entrained high-gamma activity as an accurate biomarker of ictal recruitment in limbic structures. However, reduced neuronal firing suggested preserved inhibition in mesial temporal structures despite simultaneous indicators of seizure recruitment, in contrast to the inhibitory collapse scenario documented in neocortex. Further study is needed to determine if this activity is ubiquitous to hippocampal seizures or indicates a 'seizure-responsive' state in which the hippocampus is not the primary driver. If the latter, distinguishing such cases may help to refine the surgical treatment of mesial temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alexander H Agopyan-Miu
- Department of Neurological Surgery, Columbia University Medical Center, NewYork, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Medical Center, NewYork, NY 10032, USA
| | - Elliot H Smith
- Department of Neurology, Columbia University Medical Center, NewYork, NY 10032, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, NewYork, NY 10032, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston TX 77030, USA
| | - Neil A Feldstein
- Department of Neurological Surgery, Columbia University Medical Center, NewYork, NY 10032, USA
| | - Andrew J Trevelyan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, NewYork, NY 10032, USA
| |
Collapse
|
35
|
Wang SH, Siebenhühner F, Arnulfo G, Myrov V, Nobili L, Breakspear M, Palva S, Palva JM. Critical-like Brain Dynamics in a Continuum from Second- to First-Order Phase Transition. J Neurosci 2023; 43:7642-7656. [PMID: 37816599 PMCID: PMC10634584 DOI: 10.1523/jneurosci.1889-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The classic brain criticality hypothesis postulates that the brain benefits from operating near a continuous second-order phase transition. Slow feedback regulation of neuronal activity could, however, lead to a discontinuous first-order transition and thereby bistable activity. Observations of bistability in awake brain activity have nonetheless remained scarce and its functional significance unclear. Moreover, there is no empirical evidence to support the hypothesis that the human brain could flexibly operate near either a first- or second-order phase transition despite such a continuum being common in models. Here, using computational modeling, we found bistable synchronization dynamics to emerge through elevated positive feedback and occur exclusively in a regimen of critical-like dynamics. We then assessed bistability in vivo with resting-state MEG in healthy adults (7 females, 11 males) and stereo-electroencephalography in epilepsy patients (28 females, 36 males). This analysis revealed that a large fraction of the neocortices exhibited varying degrees of bistability in neuronal oscillations from 3 to 200 Hz. In line with our modeling results, the neuronal bistability was positively correlated with classic assessment of brain criticality across narrow-band frequencies. Excessive bistability was predictive of epileptic pathophysiology in the patients, whereas moderate bistability was positively correlated with task performance in the healthy subjects. These empirical findings thus reveal the human brain as a one-of-a-kind complex system that exhibits critical-like dynamics in a continuum between continuous and discontinuous phase transitions.SIGNIFICANCE STATEMENT In the model, while synchrony per se was controlled by connectivity, increasing positive local feedback led to gradually emerging bistable synchrony with scale-free dynamics, suggesting a continuum between second- and first-order phase transitions in synchrony dynamics inside a critical-like regimen. In resting-state MEG and SEEG, bistability of ongoing neuronal oscillations was pervasive across brain areas and frequency bands and was observed only with concurring critical-like dynamics as the modeling predicted. As evidence for functional relevance, moderate bistability was positively correlated with executive functioning in the healthy subjects, and excessive bistability was associated with epileptic pathophysiology. These findings show that critical-like neuronal dynamics in vivo involves both continuous and discontinuous phase transitions in a frequency-, neuroanatomy-, and state-dependent manner.
Collapse
Affiliation(s)
- Sheng H Wang
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Doctoral Programme Brain & Mind, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, 00290 Helsinki, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, 16136 Genoa, Italy
| | - Vladislav Myrov
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's Sciences, University of Genoa, 16136 Genoa, Italy
- Child Neuropsychiatry Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, 16147 Genoa, Italy
- Centre of Epilepsy Surgery "C. Munari," Department of Neuroscience, Niguarda Hospital, 20162 Milan, Italy
| | - Michael Breakspear
- College of Engineering, Science and Environment, College of Health and Medicine, University of Newcastle, Callaghan, 2308 Australia
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
- Centre for Cognitive Neuroimaging, Institute of Neuroscience & Psychology, University of Glasgow, Glasgow G12 8QB, United Kingdom
| |
Collapse
|
36
|
Bernard C. Brain's Best Kept Secret: Degeneracy. eNeuro 2023; 10:ENEURO.0430-23.2023. [PMID: 37963656 PMCID: PMC10646880 DOI: 10.1523/eneuro.0430-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
37
|
Dallmer-Zerbe I, Jiruska P, Hlinka J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia 2023; 64:2221-2238. [PMID: 37340565 DOI: 10.1111/epi.17690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Epilepsy is a common neurological disorder, with one third of patients not responding to currently available antiepileptic drugs. The proportion of pharmacoresistant epilepsies has remained unchanged for many decades. To cure epilepsy and control seizures requires a paradigm shift in the development of new approaches to epilepsy diagnosis and treatment. Contemporary medicine has benefited from the exponential growth of computational modeling, and the application of network dynamics theory to understanding and treating human brain disorders. In epilepsy, the introduction of these approaches has led to personalized epileptic network modeling that can explore the patient's seizure genesis and predict the functional impact of resection on its individual network's propensity to seize. The application of the dynamic systems approach to neurostimulation therapy of epilepsy allows designing stimulation strategies that consider the patient's seizure dynamics and long-term fluctuations in the stability of their epileptic networks. In this article, we review, in a nontechnical fashion suitable for a broad neuroscientific audience, recent progress in personalized dynamic brain network modeling that is shaping the future approach to the diagnosis and treatment of epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
38
|
Dallmer-Zerbe I, Jajcay N, Chvojka J, Janca R, Jezdik P, Krsek P, Marusic P, Jiruska P, Hlinka J. Computational modeling allows unsupervised classification of epileptic brain states across species. Sci Rep 2023; 13:13436. [PMID: 37596382 PMCID: PMC10439162 DOI: 10.1038/s41598-023-39867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
Current advances in epilepsy treatment aim to personalize and responsively adjust treatment parameters to overcome patient heterogeneity in treatment efficiency. For tailoring treatment to the individual and the current brain state, tools are required that help to identify the patient- and time-point-specific parameters of epilepsy. Computational modeling has long proven its utility in gaining mechanistic insight. Recently, the technique has been introduced as a diagnostic tool to predict individual treatment outcomes. In this article, the Wendling model, an established computational model of epilepsy dynamics, is used to automatically classify epileptic brain states in intracranial EEG from patients (n = 4) and local field potential recordings from in vitro rat data (high-potassium model of epilepsy, n = 3). Five-second signal segments are classified to four types of brain state in epilepsy (interictal, preonset, onset, ictal) by comparing a vector of signal features for each data segment to four prototypical feature vectors obtained by Wendling model simulations. The classification result is validated against expert visual assessment. Model-driven brain state classification achieved a classification performance significantly above chance level (mean sensitivity 0.99 on model data, 0.77 on rat data, 0.56 on human data in a four-way classification task). Model-driven prototypes showed similarity with data-driven prototypes, which we obtained from real data for rats and humans. Our results indicate similar electrophysiological patterns of epileptic states in the human brain and the animal model that are well-reproduced by the computational model, and captured by a key set of signal features, enabling fully automated and unsupervised brain state classification in epilepsy.
Collapse
Affiliation(s)
- Isa Dallmer-Zerbe
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Nikola Jajcay
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic
- National Institute of Mental Health, 250 67, Klecany, Czech Republic
| | - Jan Chvojka
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Radek Janca
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Petr Jezdik
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27, Prague, Czech Republic
| | - Pavel Krsek
- Department of Paediatric Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 150 06, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 150 06, Prague, Czech Republic
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science, Czech Academy of Sciences, 182 00, Prague, Czech Republic.
- National Institute of Mental Health, 250 67, Klecany, Czech Republic.
| |
Collapse
|
39
|
Monteverdi A, Palesi F, Schirner M, Argentino F, Merante M, Redolfi A, Conca F, Mazzocchi L, Cappa SF, Cotta Ramusino M, Costa A, Pichiecchio A, Farina LM, Jirsa V, Ritter P, Gandini Wheeler-Kingshott CAM, D’Angelo E. Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias. Front Aging Neurosci 2023; 15:1204134. [PMID: 37577354 PMCID: PMC10419271 DOI: 10.3389/fnagi.2023.1204134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission. Methods We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. Results The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. Discussion These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches.
Collapse
Affiliation(s)
- Anita Monteverdi
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Michael Schirner
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Francesca Argentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mariateresa Merante
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Laura Mazzocchi
- Advanced Imaging and Artificial Intelligence Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Stefano F. Cappa
- IRCCS Mondino Foundation, Pavia, Italy
- University Institute of Advanced Studies (IUSS), Pavia, Italy
| | | | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Artificial Intelligence Center, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, INSERM, INS, Aix Marseille University, Marseille, France
| | - Petra Ritter
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Unit of Digital Neuroscience, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Dong Q, Li J, Ju Y, Xiao C, Li K, Shi B, Zheng W, Zhang Y. Altered Relationship between Functional Connectivity and Fiber-Bundle Structure in High-Functioning Male Adults with Autism Spectrum Disorder. Brain Sci 2023; 13:1098. [PMID: 37509029 PMCID: PMC10377258 DOI: 10.3390/brainsci13071098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by abnormalities in structure and function of the brain. However, how ASD affects the relationship between fiber-bundle microstructures and functional connectivity (FC) remains unclear. Here, we analyzed structural and functional images of 26 high-functioning adult males with ASD, alongside 26 age-, gender-, and full-scale IQ-matched typically developing controls (TDCs) from the BNI dataset in the ABIDE database. We utilized fixel-based analysis to extract microstructural information from fiber tracts, which was then used to predict FC using a multilinear model. Our results revealed that the structure-function relationships in both ASD and TDC cohorts were strongly aligned in the primary cortex but decoupled in the high-order cortex, and the ASD patients exhibited reduced structure-function relationships throughout the cortex compared to the TDCs. Furthermore, we observed that the disrupted relationships in ASD were primarily driven by alterations in FC rather than fiber-bundle microstructures. The structure-function relationships in the left superior parietal cortex, right precentral and inferior temporal cortices, and bilateral insula could predict individual differences in clinical symptoms of ASD patients. These findings underscore the significance of altered relationships between fiber-bundle microstructures and FC in the etiology of ASD.
Collapse
Affiliation(s)
- Qiangli Dong
- Department of Psychiatry, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jialong Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yumeng Ju
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chuman Xiao
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Kangning Li
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bin Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yan Zhang
- Department of Psychiatry & National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
41
|
Sotomayor GA, Grayden DB, Nesic D. Observers for Phenomenological Models of Epileptic Seizures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083352 DOI: 10.1109/embc40787.2023.10341198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Progress towards effective treatment of epileptic seizures has seen much improvement in the past decade. In particular, the emergence of phenomenological models of epileptic seizures specifically designed to capture the electrical seizure dynamics in the Epileptor model is inspiring new approaches to predicting and controlling seizures. These new models present in various forms and contain important but unmeasurable variables that control the occurrence of seizures. These models have been used mostly as nodes in large networks to study the complex brain behaviour of seizures. In order to use this model for the purposes of seizure forecasting or to control seizures through deep brain stimulation, the states of the model will need to be estimated. Although devices such as EEG electrodes can be related to some of the states of the model, most remain unmeasured and would require an observer (as defined in control theory) for their estimation. Additionally, we would like to consider the case for large nodes of systems where the number of electrodes is far smaller than the number of nodes being estimated. In this paper, we provide methods towards obtaining the full states of these phenomenological models using nonlinear observers. In particular, we explore the effectiveness of the Extended Kalman Filter for small networks of nodes of a smoothed sixth order Epileptor model. We show that observer design is possible for this family of systems and identify the difficulties in doing so.Clinical relevance-The methods presented here can be applied with an individual epileptic patient's EEG to reveal previously hidden biomarkers of epilepsy for seizure forecasting.
Collapse
|
42
|
Tan V, Jeyachandra J, Ge R, Dickie EW, Gregory E, Vanderwal T, Vila-Rodriguez F, Hawco C. Subgenual cingulate connectivity as a treatment predictor during low-frequency right dorsolateral prefrontal rTMS: A concurrent TMS-fMRI study. Brain Stimul 2023; 16:1165-1172. [PMID: 37543171 DOI: 10.1016/j.brs.2023.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) to the dorsolateral prefrontal cortex (DLPFC) is effective in alleviating treatment-resistant depression (TRD). It has been proposed that regions within the left DLPFC that are anti-correlated with the right subgenual anterior cingulate cortex (sgACC) may represent optimal individualized target sites for high-frequency left rTMS (HFL). OBJECTIVE/HYPOTHESIS This study aimed to explore the effects of low-frequency right rTMS (LFR) on left sgACC connectivity during concurrent TMS-fMRI. METHODS 34 TRD patients underwent an imaging session that included both a resting-state fMRI run (rs-fMRI0) and a run during which LFR was applied to the right DLPFC (TMS-fMRI). Participants subsequently completed four weeks of LFR treatment. The left sgACC functional connectivity was compared between the rs-fMRI0 run and TMS-fMRI run. Personalized e-fields and a region-of-interest approach were used to calculate overlap of left sgACC functional connectivity at the TMS target and to assess for a relationship with treatment effects. RESULTS TMS-fMRI increased left sgACC functional connectivity to parietal regions within the ventral attention network; differences were not significantly associated with clinical improvements. Personalized e-fields were not significant in predicting treatment outcomes (p = 0.18). CONCLUSION This was the first study to examine left sgACC anti-correlation with the right DLPFC during an LFR rTMS protocol. In contrast to studies that targeted the left DLPFC, we did not find that higher anti-correlation was associated with clinical outcomes. Our results suggest that the antidepressant mechanism of action of LFR to the right DLPFC may be different than for HFL.
Collapse
Affiliation(s)
- Vinh Tan
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jerrold Jeyachandra
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Ruiyang Ge
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Erin W Dickie
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Colin Hawco
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
43
|
Perl YS, Pallavicini C, Piccinini J, Demertzi A, Bonhomme V, Martial C, Panda R, Alnagger N, Annen J, Gosseries O, Ibañez A, Laufs H, Sitt JD, Jirsa VK, Kringelbach ML, Laureys S, Deco G, Tagliazucchi E. Low-dimensional organization of global brain states of reduced consciousness. Cell Rep 2023; 42:112491. [PMID: 37171963 PMCID: PMC11220841 DOI: 10.1016/j.celrep.2023.112491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/14/2023] Open
Abstract
Brain states are frequently represented using a unidimensional scale measuring the richness of subjective experience (level of consciousness). This description assumes a mapping between the high-dimensional space of whole-brain configurations and the trajectories of brain states associated with changes in consciousness, yet this mapping and its properties remain unclear. We combine whole-brain modeling, data augmentation, and deep learning for dimensionality reduction to determine a mapping representing states of consciousness in a low-dimensional space, where distances parallel similarities between states. An orderly trajectory from wakefulness to patients with brain injury is revealed in a latent space whose coordinates represent metrics related to functional modularity and structure-function coupling, increasing alongside loss of consciousness. Finally, we investigate the effects of model perturbations, providing geometrical interpretation for the stability and reversibility of states. We conclude that conscious awareness depends on functional patterns encoded as a low-dimensional trajectory within the vast space of brain configurations.
Collapse
Affiliation(s)
- Yonatan Sanz Perl
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Paris Brain Institute (ICM), Paris, France.
| | - Carla Pallavicini
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Juan Piccinini
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA CRC-In Vivo Imaging Center, GIGA Institute, University of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liège, Belgium; Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Naji Alnagger
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Agustin Ibañez
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California-San Francisco (UCSF), San Francisco, CA, USA; Trinity College, Dublin, Ireland
| | - Helmut Laufs
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt am Main, Germany; Department of Neurology, Christian Albrechts University, Kiel, Germany
| | - Jacobo D Sitt
- Paris Brain Institute (ICM), Paris, France; INSERM U 1127, Paris, France; CNRS UMR 7225, Paris, France
| | - Viktor K Jirsa
- Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Århus, Denmark; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Intendente Guiraldes 2160 (Ciudad Universitaria), Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina; Centre du Cerveau(2), Centre Hospitalier Universitaire de Liège (CHU Liège), Liège, Belgium.
| |
Collapse
|
44
|
Cuesta P, Bruña R, Shah E, Laohathai C, Garcia-Tarodo S, Funke M, Von Allmen G, Maestú F. An individual data-driven virtual resection model based on epileptic network dynamics in children with intractable epilepsy: a magnetoencephalography interictal activity application. Brain Commun 2023; 5:fcad168. [PMID: 37274829 PMCID: PMC10236945 DOI: 10.1093/braincomms/fcad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Epilepsy surgery continues to be a recommended treatment for intractable (medication-resistant) epilepsy; however, 30-70% of epilepsy surgery patients can continue to have seizures. Surgical failures are often associated with incomplete resection or inaccurate localization of the epileptogenic zone. This retrospective study aims to improve surgical outcome through in silico testing of surgical hypotheses through a personalized computational neurosurgery model created from individualized patient's magnetoencephalography recording and MRI. The framework assesses the extent of the epileptic network and evaluates underlying spike dynamics, resulting in identification of one single brain volume as a candidate for resection. Dynamic-locked networks were utilized for virtual cortical resection. This in silico protocol was tested in a cohort of 24 paediatric patients with focal drug-resistant epilepsy who underwent epilepsy surgery. Of 24 patients who were included in the analysis, 79% (19 of 24) of the models agreed with the patient's clinical surgery outcome and 21% (5 of 24) were considered as model failures (accuracy 0.79, sensitivity 0.77, specificity 0.82). Patients with unsuccessful surgery outcome typically showed a model cluster outside of the resected cavity, while those with successful surgery showed the cluster model within the cavity. Two of the model failures showed the cluster in the vicinity of the resected tissue and either a functional disconnection or lack of precision of the magnetoencephalography-MRI overlapping could explain the results. Two other cases were seizure free for 1 year but developed late recurrence. This is the first study that provides in silico personalized protocol for epilepsy surgery planning using magnetoencephalography spike network analysis. This model could provide complementary information to the traditional pre-surgical assessment methods and increase the proportion of patients achieving seizure-free outcome from surgery.
Collapse
Affiliation(s)
- Pablo Cuesta
- Correspondence to: Pablo Cuesta Pza. Ramón y Cajal, s/n. Ciudad Universitaria 28040 Madrid, Spain E-mail:
| | - Ricardo Bruña
- Department of Radiology, Rehabilitation and Physiotherapy, Universidad Complutense de Madrid, Madrid, 28040, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, 28040, Spain
| | - Ekta Shah
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Stephanie Garcia-Tarodo
- Département de la femme, de l'enfant et de l'adolescent, Hôpital des Enfants - Hôpitaux Universitaires de Genève, Geneva, 1211 Genève 14, Switzerland
| | - Michael Funke
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Gretchen Von Allmen
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, 28040, Spain
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, 28040, Spain
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, 28040, Spain
| |
Collapse
|
45
|
Depannemaecker D, Ezzati A, Wang H, Jirsa V, Bernard C. From phenomenological to biophysical models of seizures. Neurobiol Dis 2023; 182:106131. [PMID: 37086755 DOI: 10.1016/j.nbd.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
Epilepsy is a complex disease that requires various approaches for its study. In this short review, we discuss the contribution of theoretical and computational models. The review presents theoretical frameworks that underlie the understanding of certain seizure properties and their classification based on their dynamical properties at the onset and offset of seizures. Dynamical system tools are valuable resources in the study of seizures. By analyzing the complex, dynamic behavior of seizures, these tools can provide insights into seizure mechanisms and offer a framework for their classification. Additionally, computational models have high potential for clinical applications, as they can be used to develop more accurate diagnostic and personalized medicine tools. We discuss various modeling approaches that span different scales and levels, while also questioning the neurocentric view, and emphasize the importance of considering glial cells. Finally, we explore the epistemic value provided by this type of approach.
Collapse
Affiliation(s)
- Damien Depannemaecker
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| | - Aitakin Ezzati
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Huifang Wang
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France
| | - Christophe Bernard
- Institut de Neurosciences des Syst' emes, Aix-Marseille University, INSERM, Marseille, France.
| |
Collapse
|
46
|
Dollomaja B, Makhalova J, Wang H, Bartolomei F, Jirsa V, Bernard C. Personalized whole brain modeling of status epilepticus. Epilepsy Behav 2023; 142:109175. [PMID: 37003103 DOI: 10.1016/j.yebeh.2023.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
How status epilepticus (SE) is generated and propagates in the brain is not known. As for seizures, a patient-specific approach is necessary, and the analysis should be performed at the whole brain level. Personalized brain models can be used to study seizure genesis and propagation at the whole brain scale in The Virtual Brain (TVB), using the Epileptor mathematical construct. Building on the fact that SE is part of the repertoire of activities that the Epileptor can generate, we present the first attempt to model SE at the whole brain scale in TVB, using data from a patient who experienced SE during presurgical evaluation. Simulations reproduced the patterns found with SEEG recordings. We find that if, as expected, the pattern of SE propagation correlates with the properties of the patient's structural connectome, SE propagation also depends upon the global state of the network, i.e., that SE propagation is an emergent property. We conclude that individual brain virtualization can be used to study SE genesis and propagation. This type of theoretical approach may be used to design novel interventional approaches to stop SE. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Borana Dollomaja
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Julia Makhalova
- APHM, Timone Hospital, Epileptology Departement, Marseille, France; Aix Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Timone Hospital, CEMEREM, Marseille, France
| | - Huifang Wang
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology Departement, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | |
Collapse
|
47
|
Jirsa V, Wang H, Triebkorn P, Hashemi M, Jha J, Gonzalez-Martinez J, Guye M, Makhalova J, Bartolomei F. Personalised virtual brain models in epilepsy. Lancet Neurol 2023; 22:443-454. [PMID: 36972720 DOI: 10.1016/s1474-4422(23)00008-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023]
Abstract
Individuals with drug-resistant focal epilepsy are candidates for surgical treatment as a curative option. Before surgery can take place, the patient must have a presurgical evaluation to establish whether and how surgical treatment might stop their seizures without causing neurological deficits. Virtual brains are a new digital modelling technology that map the brain network of a person with epilepsy, using data derived from MRI. This technique produces a computer simulation of seizures and brain imaging signals, such as those that would be recorded with intracranial EEG. When combined with machine learning, virtual brains can be used to estimate the extent and organisation of the epileptogenic zone (ie, the brain regions related to seizure generation and the spatiotemporal dynamics during seizure onset). Virtual brains could, in the future, be used for clinical decision making, to improve precision in localisation of seizure activity, and for surgical planning, but at the moment these models have some limitations, such as low spatial resolution. As evidence accumulates in support of the predictive power of personalised virtual brain models, and as methods are tested in clinical trials, virtual brains might inform clinical practice in the near future.
Collapse
Affiliation(s)
- Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France.
| | - Huifang Wang
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Paul Triebkorn
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Meysam Hashemi
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Jayant Jha
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | | | - Maxime Guye
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Julia Makhalova
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| |
Collapse
|
48
|
Capone C, De Luca C, De Bonis G, Gutzen R, Bernava I, Pastorelli E, Simula F, Lupo C, Tonielli L, Resta F, Allegra Mascaro AL, Pavone F, Denker M, Paolucci PS. Simulations approaching data: cortical slow waves in inferred models of the whole hemisphere of mouse. Commun Biol 2023; 6:266. [PMID: 36914748 PMCID: PMC10011502 DOI: 10.1038/s42003-023-04580-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 02/10/2023] [Indexed: 03/16/2023] Open
Abstract
The development of novel techniques to record wide-field brain activity enables estimation of data-driven models from thousands of recording channels and hence across large regions of cortex. These in turn improve our understanding of the modulation of brain states and the richness of traveling waves dynamics. Here, we infer data-driven models from high-resolution in-vivo recordings of mouse brain obtained from wide-field calcium imaging. We then assimilate experimental and simulated data through the characterization of the spatio-temporal features of cortical waves in experimental recordings. Inference is built in two steps: an inner loop that optimizes a mean-field model by likelihood maximization, and an outer loop that optimizes a periodic neuro-modulation via direct comparison of observables that characterize cortical slow waves. The model reproduces most of the features of the non-stationary and non-linear dynamics present in the high-resolution in-vivo recordings of the mouse brain. The proposed approach offers new methods of characterizing and understanding cortical waves for experimental and computational neuroscientists.
Collapse
Affiliation(s)
| | - Chiara De Luca
- INFN, Sezione di Roma, Rome, Italy
- PhD Program in Behavioural Neuroscience, "Sapienza" University of Rome, Rome, Italy
| | | | - Robin Gutzen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- University of Florence, Physics and Astronomy Department, Sesto Fiorentino, Italy
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | | |
Collapse
|
49
|
Lopes MA, Hamandi K, Zhang J, Creaser JL. The role of additive and diffusive coupling on the dynamics of neural populations. Sci Rep 2023; 13:4115. [PMID: 36914685 PMCID: PMC10011566 DOI: 10.1038/s41598-023-30172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Dynamical models consisting of networks of neural masses commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additive coupling, a population's activity is affected by the sum of the activities of neighbouring populations. In contrast, when using the diffusive coupling a neural population is affected by the sum of the differences between its activity and the activity of its neighbours. These two coupling functions have been used interchangeably for similar applications. In this study, we show that the choice of coupling can lead to strikingly different brain network dynamics. We focus on a phenomenological model of seizure transitions that has been used both with additive and diffusive coupling in the literature. We consider small networks with two and three nodes, as well as large random and scale-free networks with 64 nodes. We further assess resting-state functional networks inferred from magnetoencephalography (MEG) from people with juvenile myoclonic epilepsy (JME) and healthy controls. To characterize the seizure dynamics on these networks, we use the escape time, the brain network ictogenicity (BNI) and the node ictogenicity (NI), which are measures of the network's global and local ability to generate seizure activity. Our main result is that the level of ictogenicity of a network is strongly dependent on the coupling function. Overall, we show that networks with additive coupling have a higher propensity to generate seizures than those with diffusive coupling. We find that people with JME have higher additive BNI than controls, which is the hypothesized BNI deviation between groups, while the diffusive BNI provides opposite results. Moreover, we find that the nodes that are more likely to drive seizures in the additive coupling case are more likely to prevent seizures in the diffusive coupling case, and that these features correlate to the node's number of connections. Consequently, previous results in the literature involving such models to interrogate functional or structural brain networks could be highly dependent on the choice of coupling. Our results on the MEG functional networks and evidence from the literature suggest that the additive coupling may be a better modeling choice than the diffusive coupling, at least for BNI and NI studies. Thus, we highlight the need to motivate and validate the choice of coupling in future studies involving network models of brain activity.
Collapse
Affiliation(s)
- Marinho A Lopes
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom.
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, CF14 4XW, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, CF24 4HQ, United Kingdom
- Department of Computer Science, Swansea University, Swansea, SA1 8EN, United Kingdom
| | - Jennifer L Creaser
- Department of Mathematics, University of Exeter, Exeter, EX4 4QJ, United Kingdom
| |
Collapse
|
50
|
Hashemi M, Vattikonda AN, Jha J, Sip V, Woodman MM, Bartolomei F, Jirsa VK. Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw 2023; 163:178-194. [PMID: 37060871 DOI: 10.1016/j.neunet.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Whole-brain modeling of epilepsy combines personalized anatomical data with dynamical models of abnormal activities to generate spatio-temporal seizure patterns as observed in brain imaging data. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable. Thus, likelihood-free algorithms are required to efficiently estimate the parameters pertaining to the hypothetical areas, ideally including the uncertainty. In this study, we introduce the simulation-based inference for the virtual epileptic patient model (SBI-VEP), enabling us to amortize the approximate posterior of the generative process from a low-dimensional representation of whole-brain epileptic patterns. The state-of-the-art deep learning algorithms for conditional density estimation are used to readily retrieve the statistical relationships between parameters and observations through a sequence of invertible transformations. We show that the SBI-VEP is able to efficiently estimate the posterior distribution of parameters linked to the extent of the epileptogenic and propagation zones from sparse intracranial electroencephalography recordings. The presented Bayesian methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for fast and reliable inference on brain disorders from neuroimaging modalities.
Collapse
|