1
|
Soleimani G, Conelea CA, Kuplicki R, Opitz A, Lim KO, Paulus MP, Ekhtiari H. Targeting VMPFC-amygdala circuit with TMS in substance use disorder: A mechanistic framework. Addict Biol 2025; 30:e70011. [PMID: 39783881 PMCID: PMC11714170 DOI: 10.1111/adb.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/04/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
The ventromedial prefrontal cortex (VMPFC), located along the medial aspect of the frontal area, plays a critical role in regulating arousal/emotions. Its intricate connections with subcortical structures, including the striatum and amygdala, highlight the VMPFC's importance in the neurocircuitry of addiction. Due to these features, the VMPFC is considered a promising target for transcranial magnetic stimulation (TMS) in substance use disorders (SUD). By the end of 2023, all 21 studies targeting VMPFC for SUD used anatomical landmarks (e.g., Fp1/Fp2 in the EEG system) to define coil location with a fixed orientation. Nevertheless, one-size-fits-all TMS over VMPFC has yielded variable outcomes. Here, we suggested a pipeline based on a tailored TMS targeting framework aimed at optimally modulating the VMPFC-amygdala circuit on an individual basis. We collected MRI data from 60 participants with methamphetamine use disorders (MUDs). We examined the variability in TMS target location based on task-based functional connectivity between VMPFC and amygdala using psychophysiological interaction (PPI) analysis. Electric fields (EF) were calculated for fixed vs. optimized location (Fp1/Fp2 vs. individualized maximal PPI), orientation (AF7/AF8 vs. optimized algorithm) and intensity (constant vs. adjusted) to maximize target engagement. In our pipeline, the left medial amygdala, identified as the brain region with the highest (0.31 ± 0.29) fMRI drug cue reactivity, was selected as the subcortical seed region. The voxel with the most positive amygdala-VMPFC PPI connectivity in each participant was considered the individualized TMS target (MNI-coordinates: [12.6, 64.23, -0.8] ± [13.64, 3.50, 11.01]). This individualized VMPFC-amygdala connectivity significantly correlated with VAS craving after cue exposure (R = 0.27, p = 0.03). Coil orientation was optimized to increase EF strength over the targeted circuit (0.99 ± 0.21 V/m vs. the fixed approach: Fp1: 0.56 ± 0.22 and Fp2: 0.78 ± 0.25 V/m) and TMS intensity was harmonized across the population. This study highlights the potential of an individualized VMPFC targeting framework to enhance treatment outcomes for addiction, specifically modulating the personalized VMPFC-amygdala circuit.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Christine A. Conelea
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Alexander Opitz
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Laureate Institute for Brain Research (LIBR)OklahomaUSA
| |
Collapse
|
2
|
He H, Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, Hong L, Pantazatos SP, Yuan H, McTeague LM, Goldman RI, Brown TR, George MS, Sajda P. TMS-induced modulation of brain networks and its associations to rTMS treatment for depression: a concurrent fMRI-EEG-TMS study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.24.24319609. [PMID: 39763561 PMCID: PMC11703315 DOI: 10.1101/2024.12.24.24319609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is an established intervention for treatment-resistant depression (TRD), yet the underlying therapeutic mechanisms remain not fully understood. This study employs an integrative approach that combines TMS with concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), aimed at assessing the acute/immediate effects of TMS on brain network dynamics and their correlation with clinical outcomes. Our study demonstrates that TMS acutely modulates connectivity within vital brain circuits, particularly the cognitive control and default mode networks. We found that the baseline TMS-evoked responses in the cognitive control and limbic networks significantly predicted clinical improvement in patients receiving a novel EEG-synchronized repetitive TMS treatment. Furthermore, this study explored the brain-state dependent effects of TMS, as the brain-state indexed by the phase of EEG prefrontal alpha oscillation. We found that clinical outcomes in this novel treatment are linked to state-specific TMS-modulated functional connectivity within a pivotal brain circuit of the L-DLPFC and the posterior subgenual anterior cingulate cortex within the limbic system. These findings contribute to our understanding of the therapeutic effects underlying TMS treatment in depression and support the potential of assessing state-dependent TMS effects in TMS timing target selection. This study emphasizes the importance of personalized timing of TMS for optimizing target engagement of specific clinically relevant brain circuits. Our results are crucial for future research into the development of personalized neuromodulation therapies for TRD patients.
Collapse
Affiliation(s)
- Hengda He
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - James R. McIntosh
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Golbarg T. Saber
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
- Department of Neurology, University of Chicago, Chicago, 60637, IL, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Linbi Hong
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
| | - Spiro P. Pantazatos
- Department of Psychiatry, Columbia University Irving Medical Center, New York, 10032, NY, USA
| | - Han Yuan
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, OK, USA
| | - Lisa M. McTeague
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, 29401, SC, USA
| | - Robin I. Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Truman R. Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Mark S. George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, 29425, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, 29401, SC, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Electrical Engineering, Columbia University, New York, 10027, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, 10032, NY, USA
- Data Science Institute, Columbia University, New York, 10027, NY, USA
| |
Collapse
|
3
|
Sun Y, Liu X, Li Y, Zhi Q, Xia Y. Effectiveness of individualized rTMS under sMRI guidance in reducing depressive symptoms and suicidal ideation in adolescents with depressive disorders: an open-label study. Front Psychiatry 2024; 15:1485878. [PMID: 39758440 PMCID: PMC11695401 DOI: 10.3389/fpsyt.2024.1485878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Background Major Depressive Disorder (MDD) is occurring at a progressively younger age, and suicide is now the second leading cause of death among adolescents with MDD. Studies have shown that structural magnetic resonance imaging (sMRI) can improve the positioning accuracy and anti-depressant effects of repetitive transcranial magnetic stimulation (rTMS), thereby reducing suicidal ideation. Objective To compare the efficacy of sMRI-guided rTMS combined with pharmacotherapy, surface 5-cm rTMS positioning combined with pharmacotherapy, and pharmacotherapy alone on reducing depressive symptoms and suicidal ideation (SI) in MDD adolescents. Methods This was an open-label study of adjustable-dose pharmacotherapy combined with rTMS for the treatment of depressive symptoms and suicidal ideation in MDD adolescents. The three study groups were as follows: sMRI navigation for individualized rTMS coordinates targeting the dorsolateral prefrontal cortex (DLPFC) and in combination with pharmacotherapy for 10 rTMS sessions over two weeks; surface 5-cm positioning for DLPFC in combination with pharmacotherapy for 10 rTMS sessions over two weeks; pharmacotherapy. All patients received only one type of SSRIs anti-depressant. A total of 123 Chinese adolescents aged 13-18 with MDD were enrolled, and psychological parameters were evaluated in the first and second weeks of treatment. Results Following treatment, the clinical symptoms improved in all three groups. The sMRI navigation group exhibited significantly more improvement in depressive symptoms and suicidal ideation, without severe adverse reactions. Conclusion Ten sessions of rTMS treatment are feasible and effective in improving depressive symptoms and reducing SI in MDD adolescents. The combination of sMRI navigation rTMS and pharmacotherapy was found to yield the best outcomes. Clinical trial registration https://www.medicalresearch.org.cn/index, identifier MR-33-24-030536.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xia
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Neacsiu AD, Gerlus N, Graner JL, Beynel L, Smoski MJ, LaBar KS. Characterization of neural networks involved in transdiagnostic emotion dysregulation from a pilot randomized controlled trial of a neurostimulation-enhanced behavioral intervention. Psychiatry Res Neuroimaging 2024; 345:111891. [PMID: 39278196 PMCID: PMC11611631 DOI: 10.1016/j.pscychresns.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Emotional dysregulation is a serious and impairing mental health problem. We examined functional activity and connectivity of neural networks involved in emotional dysregulation at baseline and following a pilot neurostimulation-enhanced cognitive restructuring intervention in a transdiagnostic clinical adult sample. METHODS Neuroimaging data were analyzed from adults who scored 89 or higher on the Difficulties with Emotion Regulation (DERS) scale and had at least one DSM-5 diagnosis. These participants were part of a pilot randomized, double-blind, placebo-controlled trial combining a single therapeutic session of cognitive restructuring with active or sham transcranial magnetic stimulation over the dorsolateral prefrontal cortex. During the study, participants engaged in an emotional regulation task using personalized autobiographical stressors while undergoing functional magnetic resonance imaging (fMRI) before and after the pilot intervention. The fMRI task required participants to either experience the emotions associated with the memories or apply cognitive restructuring strategies to reduce their distress. RESULTS Whole-brain fMRI results during regulation at baseline revealed increased activation in the dorsal frontoparietal network but decreased activation in the supplementary motor area, cingulate cortex, insula, and ventrolateral prefrontal cortex (vlPFC). Emotion dysregulation was associated with greater vmPFC and amygdala activation and functional connectivity between these regions. The strength of functional connectivity between the dlPFC and other frontal regions was also a marker of emotional dysregulation. Preliminary findings from a subset of participants who completed the follow-up fMRI scan showed that active neurostimulation improved behavioral indices of emotion regulation more than sham stimulation. A whole-brain generalized psychophysiological interaction analysis indicated that active neurostimulation selectively increased occipital cortex connectivity with both the insula and the dlPFC. Region-of-interest functional connectivity analyses showed that active neurostimulation selectively increased dlPFC connectivity with the insula and orbitofrontal cortex (OFC). CONCLUSION Insufficient neural specificity during the emotion regulation process and over-involvement of frontal regions may be a marker of emotional dysregulation across disorders. OFC, vlPFC, insula activity, and connectivity are associated with improved emotion regulation in transdiagnostic adults. In this pilot study, active neurostimulation led to neural changes in the emotion regulation network after a single session; however, the intervention findings are preliminary, given the small sample size. These functional network properties can inform future neuroscience-driven interventions and larger-scale studies.
Collapse
Affiliation(s)
- Andrada D Neacsiu
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Brain Stimulation Research Center, Duke University, Durham, NC, USA.
| | - Nimesha Gerlus
- Department of Psychology, Duke University, Durham, NC, USA
| | - John L Graner
- Department of Psychology, Duke University, Durham, NC, USA
| | - Lysianne Beynel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Noninvasive Neuromodulation Unit, Bethesda, MD, USA
| | - Moria J Smoski
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology, Duke University, Durham, NC, USA
| | - Kevin S LaBar
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Department of Psychology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Colic L, Sankar A, Goldman DA, Kim JA, Blumberg HP. Towards a neurodevelopmental model of bipolar disorder: a critical review of trait- and state-related functional neuroimaging in adolescents and young adults. Mol Psychiatry 2024:10.1038/s41380-024-02758-4. [PMID: 39333385 DOI: 10.1038/s41380-024-02758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Neurodevelopmental mechanisms are increasingly implicated in bipolar disorder (BD), highlighting the importance of their study in young persons. Neuroimaging studies have demonstrated a central role for frontotemporal corticolimbic brain systems that subserve processing and regulation of emotions, and processing of reward in adults with BD. As adolescence and young adulthood (AYA) is a time when fully syndromal BD often emerges, and when these brain systems undergo dynamic maturational changes, the AYA epoch is implicated as a critical period in the neurodevelopment of BD. Functional magnetic resonance imaging (fMRI) studies can be especially informative in identifying the functional neuroanatomy in adolescents and young adults with BD (BDAYA) and at high risk for BD (HR-BDAYA) that is related to acute mood states and trait vulnerability to the disorder. The identification of early emerging brain differences, trait- and state-based, can contribute to the elucidation of the developmental neuropathophysiology of BD, and to the generation of treatment and prevention targets. In this critical review, fMRI studies of BDAYA and HR-BDAYA are discussed, and a preliminary neurodevelopmental model is presented based on a convergence of literature that suggests early emerging dysfunction in subcortical (e.g., amygdalar, striatal, thalamic) and caudal and ventral cortical regions, especially ventral prefrontal cortex (vPFC) and insula, and connections among them, persisting as trait-related features. More rostral and dorsal cortical alterations, and bilaterality progress later, with lateralization, and direction of functional imaging findings differing by mood state. Altered functioning of these brain regions, and regions they are strongly connected to, are implicated in the range of symptoms seen in BD, such as the insula in interoception, precentral gyrus in motor changes, and prefrontal cortex in cognition. Current limitations, and outlook on the future use of neuroimaging evidence to inform interventions and prevent the onset of mood episodes in BDAYA, are outlined.
Collapse
Affiliation(s)
- Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, partner site Halle-Jena-Magdeburg, Jena, Germany
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Anjali Sankar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Danielle A Goldman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Jihoon A Kim
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Demchenko I, Rampersad S, Datta A, Horn A, Churchill NW, Kennedy SH, Krishnan S, Rueda A, Schweizer TA, Griffiths JD, Boyden ES, Santarnecchi E, Bhat V. Target engagement of the subgenual anterior cingulate cortex with transcranial temporal interference stimulation in major depressive disorder: a protocol for a randomized sham-controlled trial. Front Neurosci 2024; 18:1390250. [PMID: 39268031 PMCID: PMC11390435 DOI: 10.3389/fnins.2024.1390250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background Transcranial temporal interference stimulation (tTIS) is a new, emerging neurostimulation technology that utilizes two or more electric fields at specific frequencies to modulate the oscillations of neurons at a desired spatial location in the brain. The physics of tTIS offers the advantage of modulating deep brain structures in a non-invasive fashion and with minimal stimulation of the overlying cortex outside of a selected target. As such, tTIS can be effectively employed in the context of therapeutics for the psychiatric disease of disrupted brain connectivity, such as major depressive disorder (MDD). The subgenual anterior cingulate cortex (sgACC), a key brain center that regulates human emotions and influences negative emotional states, is a plausible target for tTIS in MDD based on reports of its successful neuromodulation with invasive deep brain stimulation. Methods This pilot, single-site, double-blind, randomized, sham-controlled interventional clinical trial will be conducted at St. Michael's Hospital - Unity Health Toronto in Toronto, ON, Canada. The primary objective is to demonstrate target engagement of the sgACC with 130 Hz tTIS using resting-state magnetic resonance imaging (MRI) techniques. The secondary objective is to estimate the therapeutic potential of tTIS for MDD by evaluating the change in clinical characteristics of participants and electrophysiological outcomes and providing feasibility and tolerability estimates for a large-scale efficacy trial. Thirty participants (18-65 years) with unipolar, non-psychotic MDD will be recruited and randomized to receive 10 sessions of 130 Hz tTIS or sham stimulation (n = 15 per arm). The trial includes a pre- vs. post-treatment 3T MRI scan of the brain, clinical evaluation, and electroencephalography (EEG) acquisition at rest and during the auditory mismatch negativity (MMN) paradigm. Discussion This study is one of the first-ever clinical trials among patients with psychiatric disorders examining the therapeutic potential of repetitive tTIS and its neurobiological mechanisms. Data obtained from this trial will be used to optimize the tTIS approach and design a large-scale efficacy trial. Research in this area has the potential to provide a novel treatment option for individuals with MDD and circuitry-related disorders and may contribute to the process of obtaining regulatory approval for therapeutic applications of tTIS. Clinical Trial Registration ClinicalTrials.gov, identifier NCT05295888.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts Boston, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc., Woodbridge, NJ, United States
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Andreas Horn
- Department of Neurology, Center for Brain Circuit Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery & Center for NeuroTechnology and NeuroRecovery (CNTR), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| | - Sridhar Krishnan
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John D Griffiths
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern Institute for Brain Research and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Neuroscience Research Program, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
7
|
Williams EER, Sghirripa S, Rogasch NC, Hordacre B, Attrill S. Non-invasive brain stimulation in the treatment of post-stroke aphasia: a scoping review. Disabil Rehabil 2024; 46:3802-3826. [PMID: 37828899 DOI: 10.1080/09638288.2023.2259299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Aphasia is an acquired language impairment that commonly results from stroke. Non-invasive brain stimulation (NIBS) might accelerate aphasia recovery trajectories and has seen mounting popularity in recent aphasia rehabilitation research. The present review aimed to: (1) summarise all existing literature on NIBS as a post-stroke aphasia treatment; and (2) provide recommendations for future NIBS-aphasia research. MATERIALS AND METHODS Databases for published and grey literature were searched using scoping review methodology. 278 journal articles, conference abstracts/posters, and books, and 38 items of grey literature, were included for analysis. RESULTS Quantitative analysis revealed that ipsilesional anodal transcranial direct current stimulation and contralesional 1-Hz repetitive transcranial magnetic stimulation were the most widely used forms of NIBS, while qualitative analysis identified four key themes including: the roles of the hemispheres in aphasia recovery and their relationship with NIBS; heterogeneity of individuals but homogeneity of subpopulations; individualisation of stimulation parameters; and much remains under-explored in the NIBS-aphasia literature. CONCLUSIONS Taken together, these results highlighted systemic challenges across the field such as small sample sizes, inter-individual variability, lack of protocol optimisation/standardisation, and inadequate focus on aphasiology. Four key recommendations are outlined herein to guide future research and refine NIBS methods for post-stroke aphasia treatment.
Collapse
Affiliation(s)
- Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Sabrina Sghirripa
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Nigel C Rogasch
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, The University of South Australia, Adelaide, Australia
| | - Stacie Attrill
- Speech Pathology, School of Allied Health Science and Practice, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Lee HS, Kim DH, Seo HG, Im S, Yoo YJ, Kim NY, Lee J, Kim D, Park HY, Yoon MJ, Kim YS, Kim H, Chang WH. Efficacy of personalized rTMS to enhance upper limb function in subacute stroke patients: a protocol for a multi-center, randomized controlled study. Front Neurol 2024; 15:1427142. [PMID: 39022726 PMCID: PMC11253596 DOI: 10.3389/fneur.2024.1427142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is widely used therapy to enhance motor deficit in stroke patients. To date, rTMS protocols used in stroke patients are relatively unified. However, as the pathophysiology of stroke is diverse and individual functional deficits are distinctive, more precise application of rTMS is warranted. Therefore, the objective of this study was to determine the effects of personalized protocols of rTMS therapy based on the functional reserve of each stroke patient in subacute phase. Methods This study will recruit 120 patients with stroke in subacute phase suffering from the upper extremity motor impairment, from five different hospitals in Korea. The participants will be allocated into three different study conditions based on the functional reserve of each participant, measured by the results of TMS-induced motor evoked potentials (MEPs), and brain MRI with diffusion tensor imaging (DTI) evaluations. The participants of the intervention-group in the three study conditions will receive different protocols of rTMS intervention, a total of 10 sessions for 2 weeks: high-frequency rTMS on ipsilesional primary motor cortex (M1), high-frequency rTMS on ipsilesional ventral premotor cortex, and high-frequency rTMS on contralesional M1. The participants of the control-group in all three study conditions will receive the same rTMS protocol: low-frequency rTMS on contralesional M1. For outcome measures, the following assessments will be performed at baseline (T0), during-intervention (T1), post-intervention (T2), and follow-up (T3) periods: Fugl-Meyer Assessment (FMA), Box-and-block test, Action Research Arm Test, Jebsen-Taylor hand function test, hand grip strength, Functional Ambulatory Category, fractional anisotropy measured by the DTI, and brain network connectivity obtained from MRI. The primary outcome will be the difference of upper limb function, as measured by FMA from T0 to T2. The secondary outcomes will be the differences of other assessments. Discussion This study will determine the effects of applying different protocols of rTMS therapy based on the functional reserve of each patient. In addition, this methodology may prove to be more efficient than conventional rTMS protocols. Therefore, effective personalized application of rTMS to stroke patients can be achieved based on their severity, predicted mechanism of motor recovery, or functional reserves. Clinical trial registration https://clinicaltrials.gov/, identifier NCT06270238.
Collapse
Affiliation(s)
- Ho Seok Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Donghyeon Kim
- NEUROPHET Inc., Research Institute, Seoul, Republic of Korea
| | - Hae-Yeon Park
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Seok Kim
- Department of Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Hyunjin Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Lisanby SH. Transcranial Magnetic Stimulation in Psychiatry: Historical Reflections and Future Directions. Biol Psychiatry 2024; 95:488-490. [PMID: 37169276 DOI: 10.1016/j.biopsych.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, Maryland.
| |
Collapse
|
10
|
Long Z, Du L, Marino M. Individual resting-state network functional connectivity predicts treatment improvement of repetitive transcranial magnetic stimulation in major depressive disorder: A pilot study. Psychiatry Res 2024; 331:115616. [PMID: 38039648 DOI: 10.1016/j.psychres.2023.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
The current pilot study aimed to exploratively investigate whether individual functional connectivity (FC) of the rTMS stimulation site with resting-state networks could predict the individual efficacy of rTMS treatment. We found that rTMS induced an increase of the FC between the stimulation site and the limbic network (LN) in healthy participants, and that this individualized FC was negatively correlated with the rTMS treatment improvement in MDD patients. Moreover, the LN successfully guided the personalized rTMS therapy. These findings highlighted the crucial role of the LN in understanding the mechanisms underlying rTMS treatment improvement, and the personalized therapy in MDD patients.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China.
| | - Lian Du
- Department of Psychiatry, The First Affliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Marco Marino
- KU Leuven, Movement Control & Neuroplasticity Research Group, Leuven, Belgium; Department of General Psychology, University of Padua, Italy
| |
Collapse
|
11
|
Dobrynina LA, Gadzhieva ZS, Dobrushina OR, Morozova SN, Kremneva EI, Volik AV, Krotenkova MV. [Identifying the neurostimulation target for treatment of cognitive impairment in aging and early cerebral small vessel disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:34-41. [PMID: 38529861 DOI: 10.17116/jnevro202412403134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
OBJECTIVE To develop individualized approaches to the use of neuromodulation as a non-pharmacological treatment of cognitive impairment (CI) based on the assessment of compensatory brain reserves in functional MRI (fMRI). MATERIAL AND METHODS Twenty-one adults over 45 years of age, representing a continuum from healthy norm to mild cognitive impairment due to aging and early cerebral small vessel disease, were studied. All participants underwent fMRI while performing two executive tasks - a modified Stroop task and selective counting. To assess the ability to compensate for CI in real life, functional activation and connectivity were analyzed using the BRIEF-MoCA score as a covariate, which is the difference in ratings between the Behavior Rating Inventory of Executive Function (BRIEF) and the Montreal Cognitive Assessment Scale (MoCA). RESULTS Both fMRI tasks were associated with activation of areas of the frontoparietal control network, as well as supplementary motor area (SMA) and the pre-SMA, the lateral premotor cortex, and the cerebellum. An increase in pre- SMA connectivity was observed during the tasks. The BRIEF-MoCA score correlated firstly with connectivity of the left dorsolateral prefrontal cortex (DLPFC) and secondly with involvement of the occipital cortex during the counting task. CONCLUSIONS The developed technique allows identification of the functionally relevant target within the left DLPFC in patients with CI in aging and early cerebral microangiopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - A V Volik
- Research Center of Neurology, Moscow, Russia
| | | |
Collapse
|
12
|
Mukhtar F, Feuer E, Beynel L, Jones E, Regenold WT, Lisanby SH. Distinguishing Convulsive Syncope From Seizure Induced by Repetitive Transcranial Magnetic Stimulation: A Case Report. J ECT 2023; 39:271-273. [PMID: 38009970 PMCID: PMC10683855 DOI: 10.1097/yct.0000000000000959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) is Food and Drug Administration cleared for clinical use in treatment-resistant depression and a growing list of other disorders. The clinical uptake of rTMS has been facilitated by its relatively benign adverse-effect profile compared with other treatment modalities. Seizure is a rare but serious adverse event that has been reported with rTMS, when dosage exceeds safety guidelines or in individuals at increased risk for seizure. Fortunately, most rTMS-induced seizures are typically transient, with no adverse sequelae, but they may lead to treatment discontinuation. Seizure is not the only cause of loss of conscious and abnormal movements induced by rTMS. Convulsive syncope, a more common adverse event that involves loss of consciousness associated with myoclonic movements, can be difficult to differentiate from an rTMS-induced seizure. We report the case of a 52-year-old man with no known seizure risk factors, enrolled in an institutional review board-approved research study who developed what appeared to be a convulsive syncopal episode lasting 10 to 15 seconds during day 2 of a 30-day rTMS protocol (10 Hz, 120% of motor threshold, 4-second pulse train, 26-second intertrain interval, 3000 pulses per session), with no adverse sequelae. The patient's history, screening, physical examination, pertinent laboratory, neurology consult, electroencephalogram, and imaging findings are discussed. This case demonstrates that distinguishing between convulsive syncope and rTMS-induced seizure can be a diagnostic challenge. Clinicians and researchers delivering rTMS should be familiar with the risk factors for rTMS-induced seizures and rTMS-induced convulsive syncope, to screen for predisposing factors and to manage these rare adverse events if they occur.
Collapse
Affiliation(s)
- Fahad Mukhtar
- Institute of Advanced Diagnostics and Therapeutics, Sheppard Pratt, Baltimore, MD
| | - Elyssa Feuer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Lysianne Beynel
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Eudora Jones
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - William T. Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Sarah H. Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Ma L, Zhong G, Yang Z, Lu X, Fan L, Liu H, Chu C, Xiong H, Jiang T. In-vivoverified anatomically aware deep learning for real-time electric field simulation. J Neural Eng 2023; 20:066018. [PMID: 37939483 DOI: 10.1088/1741-2552/ad0add] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Objective.Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it enables targeted stimulation of specific brain regions. However, current computational methods employed for E-field simulations necessitate extensive preprocessing and simulation time, limiting their fast applications in the determining the optimal coil placement.Approach.We present an attentional deep learning network to simulate E-fields. This network takes individual magnetic resonance images and coil configurations as inputs, firstly transforming the images into explicit brain tissues and subsequently generating the local E-field distribution near the target brain region. Main results. Relative to the previous deep-learning simulation method, the presented method reduced the mean relative error in simulated E-field strength of gray matter by 21.1%, and increased the correlation between regional E-field strengths and corresponding electrophysiological responses by 35.0% when applied into another dataset.In-vivoTMS experiments further revealed that the optimal coil placements derived from presented method exhibit comparable stimulation performance on motor evoked potentials to those obtained using computational methods. The simplified preprocessing and increased simulation efficiency result in a significant reduction in the overall time cost of traditional TMS coil placement optimization, from several hours to mere minutes.Significance.The precision and efficiency of presented simulation method hold promise for its application in determining individualized coil placements in clinical practice, paving the way for personalized TMS treatments.
Collapse
Affiliation(s)
- Liang Ma
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Gangliang Zhong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xuefeng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hao Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Research Center for Augmented Intelligence, Artificial Intelligence Research Institute, Zhejiang Lab, Hangzhou, Zhejiang Province 311100, People's Republic of China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, Hunan Province 425000, People's Republic of China
| |
Collapse
|
14
|
Tang SJ, Holle J, Dadario NB, Lesslar O, Teo C, Ryan M, Sughrue M, Yeung JT. Personalized, parcel-guided rTMS for the treatment of major depressive disorder: Safety and proof of concept. Brain Behav 2023; 13:e3268. [PMID: 37798655 PMCID: PMC10636393 DOI: 10.1002/brb3.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Not all patients with major depressive disorder (MDD) benefit from the US Food and Drug Administration-approved use of repetitive transcranial magnetic stimulation (rTMS) at the dorsolateral prefrontal cortex. We may be undertreating depression with this one-size-fits-all rTMS strategy. METHODS We present a retrospective review of targeted and connectome-guided rTMS in 26 patients from Cingulum Health from 2020 to 2023 with MDD or MDD with associated symptoms. rTMS was conducted by identifying multiple cortical targets based on anomalies in individual functional connectivity networks as determined by machine learning connectomic software. Quality of life assessed by the EuroQol (EQ-5D) score and depression symptoms assessed by the Beck Depression Inventory (BDI) were administered prior to treatment, directly after, and at a follow-up consultation. RESULTS Of the 26 patients treated with rTMS, 16 (62%) attained remission after treatment. Of the 19 patients who completed follow-up assessments after an average interval of 2.6 months, 11 (58%) responded to treatment and 13 (68%) showed significant remission. Between patients classified with or without treatment-resistant depression, there was no difference in BDI improvement. Additionally, there was significant improvement in quality of life after treatment and during follow-up compared to baseline. LIMITATIONS This review is retrospective in nature, so there is no control group to assess the placebo effect on patient outcomes. CONCLUSION The personalized, connectome-guided approach of rTMS is safe and may be effective for depression. This personalized rTMS treatment allows for co-treatment of multiple disorders, such as the comorbidity of depression and anxiety.
Collapse
Affiliation(s)
- Si Jie Tang
- School of MedicineUniversity of California Davis Medical CenterSacramentoCaliforniaUSA
| | | | - Nicholas B. Dadario
- Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | | | | | | | | | - Jacky T. Yeung
- Cingulum HealthSydneyAustralia
- Department of NeurosurgeryYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
15
|
Dębowska W, Więdłocha M, Dębowska M, Kownacka Z, Marcinowicz P, Szulc A. Transcranial magnetic stimulation and ketamine: implications for combined treatment in depression. Front Neurosci 2023; 17:1267647. [PMID: 37954877 PMCID: PMC10637948 DOI: 10.3389/fnins.2023.1267647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
Collapse
Affiliation(s)
- Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Kownacka
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
16
|
Davis SW, Beynel L, Neacsiu AD, Luber BM, Bernhardt E, Lisanby SH, Strauman TJ. Network-level dynamics underlying a combined rTMS and psychotherapy treatment for major depressive disorder: An exploratory network analysis. Int J Clin Health Psychol 2023; 23:100382. [PMID: 36922930 PMCID: PMC10009060 DOI: 10.1016/j.ijchp.2023.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023] Open
Abstract
Background Despite the growing use of repetitive transcranial magnetic stimulation (rTMS) as a treatment for depression, there is a limited understanding of the mechanisms of action and how potential treatment-related brain changes help to characterize treatment response. To address this gap in understanding we investigated the effects of an approach combining rTMS with simultaneous psychotherapy on global functional connectivity. Method We compared task-related functional connectomes based on an idiographic goal priming task tied to emotional regulation acquired before and after simultaneous rTMS/psychotherapy treatment for patients with major depressive disorders and compared these changes to normative connectivity patterns from a set of healthy volunteers (HV) performing the same task. Results At baseline, compared to HVs, patients demonstrated hyperconnectivity of the DMN, cerebellum and limbic system, and hypoconnectivity of the fronto-parietal dorsal-attention network and visual cortex. Simultaneous rTMS/psychotherapy helped to normalize these differences, which were reduced after treatment. This finding suggests that the rTMS/therapy treatment regularizes connectivity patterns in both hyperactive and hypoactive brain networks. Conclusions These results help to link treatment to a comprehensive model of the neurocircuitry underlying depression and pave the way for future studies using network-guided principles to significantly improve rTMS efficacy for depression.
Collapse
Affiliation(s)
- Simon W. Davis
- Department of Neurology, Duke University, Durham, NC, USA
| | | | - Andrada D. Neacsiu
- Psychiatry and Behavioral Neuroscience, Duke University, Durham, NC, USA
| | | | | | | | - Timothy J. Strauman
- Psychiatry and Behavioral Neuroscience, Duke University, Durham, NC, USA
- Psychology & Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
17
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
18
|
Soleimani G, Conelea CA, Kuplicki R, Opitz A, Lim KO, Paulus MP, Ekhtiari H. Optimizing Individual Targeting of Fronto-Amygdala Network with Transcranial Magnetic Stimulation (TMS): Biophysical, Physiological and Behavioral Variations in People with Methamphetamine Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.02.23288047. [PMID: 37066153 PMCID: PMC10104226 DOI: 10.1101/2023.04.02.23288047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Previous studies in people with substance use disorders (SUDs) have implicated both the frontopolar cortex and amygdala in drug cue reactivity and craving, and amygdala-frontopolar coupling is considered a marker of early relapse risk. Accumulating data highlight that the frontopolar cortex can be considered a promising therapeutic target for transcranial magnetic stimulation (TMS) in SUDs. However, one-size-fits-all approaches to TMS targets resulted in substantial variation in both physiological and behavioral outcomes. Individualized TMS approaches to target cortico-subcortical circuits like amygdala-frontopolar have not yet been investigated in SUDs. Objective Here, we (1) defined individualized TMS target location based on functional connectivity of the amygdala-frontopolar circuit while people were exposed to drug-related cues, (2) optimized coil orientation based on maximizing electric field (EF) perpendicular to the individualized target, and (3) harmonized EF strength in targeted brain regions across a population. Method MRI data including structural, resting-state, and task-based fMRI data were collected from 60 participants with methamphetamine use disorders (MUDs). Craving scores based on a visual analog scale were collected immediately before and after the MRI session. We analyzed inter-subject variability in the location of TMS targets based on the maximum task-based connectivity between the left medial amygdala (with the highest functional activity among subcortical areas during drug cue exposure) and frontopolar cortex using psychophysiological interaction (PPI) analysis. Computational head models were generated for all participants and EF simulations were calculated for fixed vs. optimized coil location (Fp1/Fp2 vs. individualized maximal PPI location), orientation (AF7/AF8 vs. orientation optimization algorithm), and stimulation intensity (constant vs. adjusted intensity across the population). Results Left medial amygdala with the highest (mean ± SD: 0.31±0.29) functional activity during drug cue exposure was selected as the subcortical seed region. Amygdala-to-whole brain PPI analysis showed a significant cluster in the prefrontal cortex (cluster size: 2462 voxels, cluster peak in MNI space: [25 39 35]) that confirms cortico-subcortical connections. The location of the voxel with the most positive amygdala-frontopolar PPI connectivity in each participant was considered as the individualized TMS target (mean ± SD of the MNI coordinates: [12.6 64.23 -0.8] ± [13.64 3.50 11.01]). Individual amygdala-frontopolar PPI connectivity in each participant showed a significant correlation with VAS scores after cue exposure (R=0.27, p=0.03). Averaged EF strength in a sphere with r = 5mm around the individualized target location was significantly higher in the optimized (mean ± SD: 0.99 ± 0.21) compared to the fixed approach (Fp1: 0.56 ± 0.22, Fp2: 0.78 ± 0.25) with large effect sizes (Fp1: p = 1.1e-13, Hedges'g = 1.5, Fp2: p = 1.7e-5, Hedges'g = 1.26). Adjustment factor to have identical 1 V/m EF strength in a 5mm sphere around the individualized targets ranged from 0.72 to 2.3 (mean ± SD: 1.07 ± 0.29). Conclusion Our results show that optimizing coil orientation and stimulation intensity based on individualized TMS targets led to stronger electric fields in the targeted brain regions compared to a one-size-fits-all approach. These findings provide valuable insights for refining TMS therapy for SUDs by optimizing the modulation of cortico-subcortical circuits.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | - Christine A. Conelea
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | | | - Alexander Opitz
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | | | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
- Laureate Institute for Brain Research (LIBR), OK, USA
| |
Collapse
|
19
|
Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial Magnetic Stimulation and its Imaging Features in Patients With Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad Radiol 2023; 30:103-112. [PMID: 35437218 DOI: 10.1016/j.acra.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most studies to date have focused on TMS's ability to treat major depressive disorder, it has shown promise in several other conditions including post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understanding of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imaging features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Joseph H Huntley
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandeep Vaishnavi
- MindPath Care Centers Clinical Research Institute, Raleigh, North Carolina
| | - Parisa Khoshpouri
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael A Kraut
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
20
|
Li H, Deng ZD, Oathes D, Fan Y. Computation of transcranial magnetic stimulation electric fields using self-supervised deep learning. Neuroimage 2022; 264:119705. [PMID: 36280099 PMCID: PMC9854270 DOI: 10.1016/j.neuroimage.2022.119705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/28/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Electric fields (E-fields) induced by transcranial magnetic stimulation (TMS) can be modeled using partial differential equations (PDEs). Using state-of-the-art finite-element methods (FEM), it often takes tens of seconds to solve the PDEs for computing a high-resolution E-field, hampering the wide application of the E-field modeling in practice and research. To improve the E-field modeling's computational efficiency, we developed a self-supervised deep learning (DL) method to compute precise TMS E-fields. Given a head model and the primary E-field generated by TMS coils, a DL model was built to generate a E-field by minimizing a loss function that measures how well the generated E-field fits the governing PDE. The DL model was trained in a self-supervised manner, which does not require any external supervision. We evaluated the DL model using both a simulated sphere head model and realistic head models of 125 individuals and compared the accuracy and computational speed of the DL model with a state-of-the-art FEM. In realistic head models, the DL model obtained accurate E-fields that were significantly correlated with the FEM solutions. The DL model could obtain precise E-fields within seconds for whole head models at a high spatial resolution, faster than the FEM. The DL model built for the simulated sphere head model also obtained an accurate E-field whose average difference from the analytical E-fields was 0.0054, comparable to the FEM solution. These results demonstrated that the self-supervised DL method could obtain precise E-fields comparable to the FEM solutions with improved computational speed.
Collapse
Affiliation(s)
- Hongming Li
- Center for Biomedical Image Computation and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, MD 20892, USA
| | - Desmond Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computation and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
McClintock SM, Abbott CC. Five-Year Longitudinal Evidence Supports the Safety and Efficacy of Electroconvulsive Therapy for Older Adults With Major Depressive Disorder. Am J Geriatr Psychiatry 2022; 30:1295-1297. [PMID: 35879214 DOI: 10.1016/j.jagp.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Shawn M McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center (SMM), Dallas, TX.
| | | |
Collapse
|
22
|
Jiang S, Carpenter LL, Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders. Vis Comput Ind Biomed Art 2022; 5:22. [PMID: 36071259 PMCID: PMC9452613 DOI: 10.1186/s42492-022-00119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been established as an important and effective treatment for various psychiatric disorders. However, its effectiveness has likely been limited due to the dearth of neuronavigational tools for targeting purposes, unclear ideal stimulation parameters, and a lack of knowledge regarding the physiological response of the brain to TMS in each psychiatric condition. Modern optical imaging modalities, such as functional near-infrared spectroscopy and diffuse optical tomography, are promising tools for the study of TMS optimization and functional targeting in psychiatric disorders. They possess a unique combination of high spatial and temporal resolutions, portability, real-time capability, and relatively low costs. In this mini-review, we discuss the advent of optical imaging techniques and their innovative use in several psychiatric conditions including depression, panic disorder, phobias, and eating disorders. With further investment and research in the development of these optical imaging approaches, their potential will be paramount for the advancement of TMS treatment protocols in psychiatry.
Collapse
|
23
|
Zemestani M, Hoseinpanahi O, Salehinejad MA, Nitsche MA. The impact of prefrontal transcranial direct current stimulation (tDCS) on theory of mind, emotion regulation and emotional-behavioral functions in children with autism disorder: A randomized, sham-controlled, and parallel-group study. Autism Res 2022; 15:1985-2003. [PMID: 36069668 DOI: 10.1002/aur.2803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Advances in our knowledge about the neuropsychological mechanisms underlying core deficits in autism spectrum disorder (ASD) have produced several novel treatment modalities. One of these approaches is modulation of activity of the brain regions involved in ASD symptoms. This study examined the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) on autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functions in children with ASD. Thirty-two children (Mage = 10.16, SD = 1.93, range 7-12 years) diagnosed with ASD were randomly assigned to active (N = 17) or sham stimulation (N = 15) groups in a randomized, sham-controlled, parallel-group design. Participants underwent 10 sessions of active (1.5 mA, 15 min, bilateral left anodal/right cathodal DLPFC, 2 sessions per week) or sham tDCS. Autism symptom severity, theory of mind, emotion regulation strategies, and emotional-behavioral functioning of the patients were assessed at baseline, immediately after the intervention, and 1 month after the intervention. A significant improvement of autism symptom severity (i.e., communication), theory of mind (i.e., ToM 3), and emotion regulation strategies was observed for the active as compared to the sham stimulation group at the end of the intervention, and these effects were maintained at the one-month follow-up. The results suggest that repeated tDCS with anodal stimulation of left and cathodal stimulation of right DLPFC improves autism symptom severity as well as social cognition and emotion regulation in ASD.
Collapse
Affiliation(s)
- Mehdi Zemestani
- Department of Psychology, University of Kurdistan, Sanandaj, Iran
| | | | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
24
|
Lindsey A, Ellison RL, Herrold AA, Aaronson AL, Kletzel SL, Stika MM, Guernon A, Bender Pape T. rTMS/iTBS and Cognitive Rehabilitation for Deficits Associated With TBI and PTSD: A Theoretical Framework and Review. J Neuropsychiatry Clin Neurosci 2022; 35:28-38. [PMID: 35872613 DOI: 10.1176/appi.neuropsych.21090227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rehabilitation of cognitive and psychosocial deficits resulting from traumatic brain injury (TBI) continues to be an area of concern in health care. Commonly co-occurring psychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, create additional hurdles when attempting to remediate cognitive sequelae. There is increased need for procedures that will yield consistent gains indicative of recovery of function. Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, has potential as an instrument that can be tailored to aid cognitive processes and support functional gains. The use of iTBS enables direct stimulation of desired neural systems. iTBS, performed in conjunction with behavioral interventions (e.g., cognitive rehabilitation, psychotherapy), may result in additive success in facilitating cognitive restoration and adaptation. The purpose of this theoretical review is to illustrate how the technical and physiological aspects of iTBS may enhance other forms of neurorehabilitation for individuals with TBI. Future research on combinatorial iTBS interventions has the potential to translate to other complex neuropsychiatric conditions.
Collapse
Affiliation(s)
- André Lindsey
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Rachael L Ellison
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Amy A Herrold
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Alexandra L Aaronson
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Sandra L Kletzel
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Monica M Stika
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Ann Guernon
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Theresa Bender Pape
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| |
Collapse
|
25
|
Luber B, Davis SW, Deng ZD, Murphy D, Martella A, Peterchev AV, Lisanby SH. Using diffusion tensor imaging to effectively target TMS to deep brain structures. Neuroimage 2022; 249:118863. [PMID: 34974116 PMCID: PMC8851689 DOI: 10.1016/j.neuroimage.2021.118863] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/08/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022] Open
Abstract
TMS has become a powerful tool to explore cortical function, and in parallel has proven promising in the development of therapies for various psychiatric and neurological disorders. Unfortunately, much of the inference of the direct effects of TMS has been assumed to be limited to the area a few centimeters beneath the scalp, though clearly more distant regions are likely to be influenced by structurally connected stimulation sites. In this study, we sought to develop a novel paradigm to individualize TMS coil placement to non-invasively achieve activation of specific deep brain targets of relevance to the treatment of psychiatric disorders. In ten subjects, structural diffusion imaging tractography data were used to identify an accessible cortical target in the right frontal pole that demonstrated both anatomic and functional connectivity to right Brodmann area 25 (BA25). Concurrent TMS-fMRI interleaving was used with a series of single, interleaved TMS pulses applied to the right frontal pole at four intensity levels ranging from 80% to 140% of motor threshold. In nine of ten subjects, TMS to the individualized frontal pole sites resulted in significant linear increase in BOLD activation of BA25 with increasing TMS intensity. The reliable activation of BA25 in a dosage-dependent manner suggests the possibility that the careful combination of imaging with TMS can make use of network properties to help overcome depth limitations and allow noninvasive brain stimulation to influence deep brain structures.
Collapse
Affiliation(s)
- Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Simon W Davis
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - David Murphy
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Andrew Martella
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Angel V Peterchev
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
26
|
Khan MH, Huang X, Tian X, Ouyang C, Wang D, Feng S, Chen J, Xue T, Bao J, Zhang X. Short- and long-term effects of 3.5-23.0 Tesla ultra-high magnetic fields on mice behaviour. Eur Radiol 2022; 32:5596-5605. [PMID: 35294587 DOI: 10.1007/s00330-022-08677-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Higher static magnetic field (SMF) enables higher imaging capability in magnetic resonance imaging (MRI), which encourages the development of ultra-high field MRIs above 20 T with a prerequisite for safety issues. However, animal tests of ≥ 20 T SMF exposure are very limited. The objective of the current study is to evaluate mice behaviour consequences of 3.5-23.0 T SMF exposure. METHODS We systematically examined 112 mice for their short- and long-term behaviour responses to a 2-h exposure of 3.5-23.0 T SMFs. Locomotor activity and cognitive functions were measured by five behaviour tests, including balance beam, open field, elevated plus maze, three-chamber social recognition, and Morris water maze tests. RESULTS Besides the transient short-term impairment of the sense of balance and locomotor activity, the 3.5-23.0 T SMFs did not have long-term negative effects on mice locomotion, anxiety level, social behaviour, or memory. In contrast, we observed anxiolytic effects and positive effects on social and spatial memory of SMFs, which is likely correlated with the significantly increased CaMKII level in the hippocampus region of high SMF-treated mice. CONCLUSIONS Our study showed that the short exposures to high-field SMFs up to 23.0 T have negligible side effects on healthy mice and may even have beneficial outcomes in mice mood and memory, which is pertinent to the future medical application of ultra-high field SMFs in MRIs and beyond. KEY POINTS • Short-term exposure to magnetic fields up to 23.0 T is safe for mice. • High-field static magnetic field exposure transiently reduced mice locomotion. • High-field static magnetic field enhances memory while reduces the anxiety level.
Collapse
Affiliation(s)
- Md Hasanuzzaman Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xinfeng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Xiaofei Tian
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Changjie Ouyang
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Dongmei Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Shuang Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China
| | - Jutao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
| | - Jin Bao
- Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Eye Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Huangshan Road 443, Hefei, 230026, Anhui, China.
- Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Xin Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Shushanhu Road #350, Hefei, 230031, Anhui, China.
- International Magnetobiology Frontier Research Center, Science Island, Hefei, 230031, Anhui, China.
| |
Collapse
|
27
|
Neacsiu AD, Beynel L, Graner JL, Szabo ST, Appelbaum LG, Smoski MJ, LaBar KS. Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation-A randomized controlled trial. J Affect Disord 2022; 301:378-389. [PMID: 35038479 PMCID: PMC9937022 DOI: 10.1016/j.jad.2022.01.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.
Collapse
|
28
|
Sakurai H, Uribe S, Cirillo P, Fuertes-Saiz A, Camprodon JA, Barbour T. Residual symptoms after achieving remission with repetitive transcranial magnetic stimulation in depression. J Affect Disord 2022; 301:154-161. [PMID: 34998805 DOI: 10.1016/j.jad.2021.12.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Hitoshi Sakurai
- Department of Neuropsychiatry, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Sofia Uribe
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, 149 13th Street, 2nd floor, Boston, MA, United States
| | - Patricia Cirillo
- Department of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alejandro Fuertes-Saiz
- Transcranial Magnetic Stimulation Unit, Hospital La Salud, Valencia, Spain; Department of Medicine and Surgery, TXP Research Group, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Joan A Camprodon
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, 149 13th Street, 2nd floor, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, MA, United States
| | - Tracy Barbour
- Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, 149 13th Street, 2nd floor, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, MA, United States.
| |
Collapse
|
29
|
Regenold WT, Deng ZD, Lisanby SH. Noninvasive neuromodulation of the prefrontal cortex in mental health disorders. Neuropsychopharmacology 2022; 47:361-372. [PMID: 34272471 PMCID: PMC8617166 DOI: 10.1038/s41386-021-01094-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
More than any other brain region, the prefrontal cortex (PFC) gives rise to the singularity of human experience. It is therefore frequently implicated in the most distinctly human of all disorders, those of mental health. Noninvasive neuromodulation, including electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) among others, can-unlike pharmacotherapy-directly target the PFC and its neural circuits. Direct targeting enables significantly greater on-target therapeutic effects compared with off-target adverse effects. In contrast to invasive neuromodulation approaches, such as deep-brain stimulation (DBS), noninvasive neuromodulation can reversibly modulate neural activity from outside the scalp. This combination of direct targeting and reversibility enables noninvasive neuromodulation to iteratively change activity in the PFC and its neural circuits to reveal causal mechanisms of both disease processes and healthy function. When coupled with neuronavigation and neurophysiological readouts, noninvasive neuromodulation holds promise for personalizing PFC neuromodulation to relieve symptoms of mental health disorders by optimizing the function of the PFC and its neural circuits. ClinicalTrials.gov Identifier: NCT03191058.
Collapse
Affiliation(s)
- William T. Regenold
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Zhi-De Deng
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| | - Sarah H. Lisanby
- grid.416868.50000 0004 0464 0574Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD USA
| |
Collapse
|
30
|
MEG-Derived Symptom-Sensitive Biomarkers with Long-Term Test-Retest Reliability. Diagnostics (Basel) 2021; 12:diagnostics12010084. [PMID: 35054252 PMCID: PMC8775104 DOI: 10.3390/diagnostics12010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting state MEG recordings were obtained from a normative cohort (CamCAN, baseline: n = 613; mean 16-month follow-up: n = 245) and a chronic symptomatic TBI cohort (TEAM-TBI, baseline: n = 62; mean 6-month follow-up: n = 40). The MEG-derived neuroelectric measures were corrected for the empty-room contribution using a random forest classifier. The mean 16-month correlation between baseline and 16-month follow-up CamCAN measures was 0.67; test-retest reliability was markedly improved in this study compared with previous work. The TEAM-TBI cohort was screened for depression, somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the Insomnia Severity Index and was assessed via adjudication for six clinical syndromes: chronic pain, psychological health, and oculomotor, vestibular, cognitive, and sleep dysfunction. Linear classifiers constructed from the 136 regional measures from each TEAM-TBI cohort member distinguished those with and without each symptom, p < 0.0003 for each, i.e., the tonic regional neuroelectric measures of activation are sensitive to the presence/absence of these symptoms and clinical syndromes. The novel regional MEG-derived neuroelectric measures obtained and tested in this study demonstrate the necessary and sufficient properties to be clinically useful, i.e., good test-retest reliability, sensitivity to symptoms in each individual, and obtainable using automatic processing without human judgement or intervention.
Collapse
|
31
|
Harmelech T, Roth Y, Tendler A. Deep TMS H7 Coil: Features, Applications & Future. Expert Rev Med Devices 2021; 18:1133-1144. [PMID: 34878347 DOI: 10.1080/17434440.2021.2013803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Transcranial magnetic stimulation (TMS) uses magnetic pulses to induce electrical current in the underlying neuronal tissue. A variety of TMS coils exist on the market, differing primarily in configuration, orientation, and flexibility of the wire windings of the coil. Deep TMSTM utilizes H-Coils, flexible coils with different configurations for stimulating different brain regions implicated in different neuropsychiatric disorders. The H7 Coil, designed to target primarily the medial prefrontal cortex and the anterior cingulate cortex, is FDA-cleared for obsessive-compulsive disorder (OCD). It was chosen as the focus of this review since it recently showed promise in various neuropsychiatric populations in addition to growing understanding of its mechanism of action (MOA). AREAS COVERED Here we assembled all peer-reviewed publications on the H7 Coil to showcase its efficacy in: (a) various OCD patient populations (e.g., different degrees of symptom severity, treatment resistance, comorbidities) (b) other neuropsychiatric populations (e.g., addiction, major depressive disorder and autism spectrum disorder). EXPERT OPINION While substantial evidence pertaining to the H7 Coil's efficacy as well as its MOA has accumulated, much work remains. In the final section of this review, we highlight areas of ongoing and future research that will further elucidate the coil's MOA as well as its full efficacy potential.
Collapse
Affiliation(s)
| | - Yiftach Roth
- BrainsWay Ltd.,Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Aron Tendler
- BrainsWay Ltd.,Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.,Advanced Mental Health Care Inc, FL, USA
| |
Collapse
|
32
|
Lv Y, Fan Y, Tian X, Yu B, Song C, Feng C, Zhang L, Ji X, Zablotskii V, Zhang X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J Magn Reson Imaging 2021; 56:354-365. [PMID: 34921571 DOI: 10.1002/jmri.28035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MRI) has obvious advantages in acquiring high-resolution images. 7 T MRI has been clinically approved and 21.1 T MRI has also been tested on rodents. PURPOSE To examine the effects of ultra-high field on mice behavior and neuron activity. STUDY TYPE Prospective, animal model. ANIMAL MODEL Ninety-eight healthy C57BL/6 mice and 18 depression model mice. FIELD STRENGTH 11.1-33.0 T SMF (static magnetic field) for 1 hour and 7 T for 8 hours. Gradients were not on and no imaging sequence was used. ASSESSMENT Open field test, elevated plus maze, three-chambered social test, Morris water maze, tail suspension test, sucrose preference test, blood routine, biochemistry examinations, enzyme-linked immunosorbent assay, immunofluorescent assay. STATISTICAL TESTS The normality of the data was assessed by Shapiro-Wilk test, followed by Student's t test or the Mann-Whitney U test for statistical significance. The statistical cut-off line is P < 0.05. RESULTS Compared to the sham group, healthy C57/6 mice spent more time in the center area (35.12 ± 4.034, increased by 47.19%) in open field test and improved novel index (0.6201 ± 0.02522, increased by 16.76%) in three-chambered social test a few weeks after 1 hour 11.1-33.0 T SMF exposure. 7 T SMF exposure for 8 hours alleviated the depression state of depression mice, including less immobile time in tail suspension test (58.32% reduction) and higher sucrose preference (increased by 8.80%). Brain tissue analysis shows that 11.1-33.0 T and 7 T SMFs can increase oxytocin by 164.65% and 36.03%, respectively. Moreover, the c-Fos level in hippocampus region was increased by 14.79%. DATA CONCLUSION 11.1-33.0 T SMFs exposure for 1 hour or 7 T SMF exposure for 8 hours did not have detrimental effects on healthy or depressed mice. Instead, these ultra-high field SMFs have anti-depressive potentials. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yue Lv
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Yixiang Fan
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xiaofei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Biao Yu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chao Song
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Vitalii Zablotskii
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.,International Magnetobiology Frontier Research Center, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.,International Magnetobiology Frontier Research Center, Hefei, China
| |
Collapse
|
33
|
Chen Y, Cha YH, Gleghorn D, Doudican BC, Shou G, Ding L, Yuan H. Brain network effects by continuous theta burst stimulation in mal de débarquement syndrome: simultaneous EEG and fMRI study. J Neural Eng 2021; 18. [PMID: 34670201 DOI: 10.1088/1741-2552/ac314b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Objective. Heterogeneous clinical responses to treatment with non-invasive brain stimulation are commonly observed, making it necessary to determine personally optimized stimulation parameters. We investigated neuroimaging markers of effective brain targets of treatment with continuous theta burst stimulation (cTBS) in mal de débarquement syndrome (MdDS), a balance disorder of persistent oscillating vertigo previously shown to exhibit abnormal intrinsic functional connectivity.Approach.Twenty-four right-handed, cTBS-naive individuals with MdDS received single administrations of cTBS over one of three stimulation targets in randomized order. The optimal target was determined based on the assessment of acute changes after the administration of cTBS over each target. Repetitive cTBS sessions were delivered on three consecutive days with the optimal target chosen by the participant. Electroencephalography (EEG) was recorded at single-administration test sessions of cTBS. Simultaneous EEG and functional MRI data were acquired at baseline and after completion of 10-12 sessions. Network connectivity changes after single and repetitive stimulations of cTBS were analyzed.Main results.Using electrophysiological source imaging and a data-driven method, we identified network-level connectivity changes in EEG that correlated with symptom responses after completion of multiple sessions of cTBS. We further determined that connectivity changes demonstrated by EEG during test sessions of single administrations of cTBS were signatures that could predict optimal targets.Significance.Our findings demonstrate the effect of cTBS on resting state brain networks and suggest an imaging-based, closed-loop stimulation paradigm that can identify optimal targets during short-term test sessions of stimulation.ClinicalTrials.gov Identifier:NCT02470377.
Collapse
Affiliation(s)
- Yafen Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Yoon-Hee Cha
- University of Minnesota, Minneapolis, MN, United States of America
| | - Diamond Gleghorn
- Missouri State University, Springfield, MO, United States of America
| | | | - Guofa Shou
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, 3100 Monitor Ave Suite 125Norman, OK, 73019, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, 3100 Monitor Ave Suite 125Norman, OK, 73019, United States of America
| |
Collapse
|
34
|
Singh A, Erwin-Grabner T, Goya-Maldonado R, Antal A. Transcranial Magnetic and Direct Current Stimulation in the Treatment of Depression: Basic Mechanisms and Challenges of Two Commonly Used Brain Stimulation Methods in Interventional Psychiatry. Neuropsychobiology 2021; 79:397-407. [PMID: 31487716 DOI: 10.1159/000502149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Noninvasive neuromodulation, including repetitive trans-cranial magnetic stimulation (rTMS) and direct current stimulation (tDCS), provides researchers and health care professionals with the ability to gain unique insights into brain functions and treat several neurological and psychiatric conditions. Undeniably, the number of published research and clinical papers on this topic is increasing exponentially. In parallel, several methodological and scientific caveats have emerged in the transcranial stimulation field; these include less robust and reliable effects as well as contradictory clinical findings. These inconsistencies are maybe due to the fact that research exploring the relationship between the methodological aspects and clinical efficacy of rTMS and tDCS is far from conclusive. Hence, additional work is needed to understand the mechanisms underlying the effects of magnetic stimulation and low-intensity transcranial electrical stimulation (TES) in order to optimize dosing, methodological designs, and safety aspects.
Collapse
Affiliation(s)
- Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Tracy Erwin-Grabner
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany, .,Institute for Medical Psychology, Medical Faculty, Otto-v.-Guericke University Magdeburg, Magdeburg, Germany,
| |
Collapse
|
35
|
Schaffer DR, Okhravi HR, Neumann SA. Low-Frequency Transcranial Magnetic Stimulation (LF-TMS) in Treating Depression in Patients With Impaired Cognitive Functioning. Arch Clin Neuropsychol 2021; 36:801-814. [PMID: 33140093 DOI: 10.1093/arclin/acaa095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/17/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Common methodologies for treating depressive symptoms have demonstrated decreased efficacy among individuals with impaired cognitive functioning. While transcranial magnetic stimulation (TMS) has been approved to treat major depressive disorder, few studies have analyzed the ability of TMS to treat depressive symptoms among individuals with cognitive impairments. The present study had two objectives: to determine whether low-frequency TMS (LF-TMS) might demonstrate efficacy in treating depressive symptoms among individuals with impaired cognitive functioning; and to determine whether LF-TMS might improve neurocognitive functioning above and beyond depressive symptom improvements. METHODS Data were derived from a pre-existing database at Eastern Virginia Medical School. Fifty-three (N=53) participants completed LF-TMS treatment. The Beck Depression Inventory II (BDI-II) and CNS Vital Signs (CNS-VS) neurocognitive assessment were administered at multiple time points throughout treatment. Participants were classified as impaired cognitive functioning or average cognitive functioning based on baseline CNS-VS scores. Data were analyzed using restricted maximum likelihood (REML) measures-within-persons longitudinal hierarchical linear modeling (HLM) with time-varying covariates. RESULTS LF-TMS produced significant reductions in depressive symptoms for individuals in both cognitive functioning groups; however, a significant group-by-time interaction indicates differential effects between these two groups. Low-frequency TMS produced significant improvements in three neurocognitive domains above and beyond improvements in depressive symptoms; however, the reliability of these changes may be questionable. CONCLUSIONS This study adds to the growing body of empirical findings for LF-TMS treatment in improving neurocognitive functioning above and beyond other treatment-related effects.
Collapse
Affiliation(s)
- Daniel R Schaffer
- Virginia Consortium Program in Clinical Psychology (VCPCP), Norfolk, VA 23504, USA.,Eastern Virginia Medical School (EVMS), Norfolk, VA 23507, USA
| | - Hamid R Okhravi
- Eastern Virginia Medical School (EVMS), Norfolk, VA 23507, USA
| | - Serina A Neumann
- Virginia Consortium Program in Clinical Psychology (VCPCP), Norfolk, VA 23504, USA.,Eastern Virginia Medical School (EVMS), Norfolk, VA 23507, USA
| |
Collapse
|
36
|
Enticott PG, Barlow K, Guastella AJ, Licari MK, Rogasch NC, Middeldorp CM, Clark SR, Vallence AM, Boulton KA, Hickie IB, Whitehouse AJO, Galletly C, Alvares GA, Fujiyama H, Heussler H, Craig JM, Kirkovski M, Mills NT, Rinehart NJ, Donaldson PH, Ford TC, Caeyenberghs K, Albein-Urios N, Bekkali S, Fitzgerald PB. Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: protocol for a multicentre randomised controlled clinical trial. BMJ Open 2021; 11:e046830. [PMID: 34233985 PMCID: PMC8264904 DOI: 10.1136/bmjopen-2020-046830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION There are no well-established biomedical treatments for the core symptoms of autism spectrum disorder (ASD). A small number of studies suggest that repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, may improve clinical and cognitive outcomes in ASD. We describe here the protocol for a funded multicentre randomised controlled clinical trial to investigate whether a course of rTMS to the right temporoparietal junction (rTPJ), which has demonstrated abnormal brain activation in ASD, can improve social communication in adolescents and young adults with ASD. METHODS AND ANALYSIS This study will evaluate the safety and efficacy of a 4-week course of intermittent theta burst stimulation (iTBS, a variant of rTMS) in ASD. Participants meeting criteria for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition ASD (n=150, aged 14-40 years) will receive 20 sessions of either active iTBS (600 pulses) or sham iTBS (in which a sham coil mimics the sensation of iTBS, but no active stimulation is delivered) to the rTPJ. Participants will undergo a range of clinical, cognitive, epi/genetic, and neurophysiological assessments before and at multiple time points up to 6 months after iTBS. Safety will be assessed via a structured questionnaire and adverse event reporting. The study will be conducted from November 2020 to October 2024. ETHICS AND DISSEMINATION The study was approved by the Human Research Ethics Committee of Monash Health (Melbourne, Australia) under Australia's National Mutual Acceptance scheme. The trial will be conducted according to Good Clinical Practice, and findings will be written up for scholarly publication. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12620000890932).
Collapse
Affiliation(s)
- Peter G Enticott
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen Barlow
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Melissa K Licari
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Nigel C Rogasch
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Christel M Middeldorp
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Scott R Clark
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ann-Maree Vallence
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
- Discipline of Psychology, Murdoch University, Murdoch, Western Australia, Australia
| | - Kelsie A Boulton
- Autism Clinic for Translational Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Gail A Alvares
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Hakuei Fujiyama
- Discipline of Psychology, Murdoch University, Murdoch, Western Australia, Australia
| | - Helen Heussler
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Jeffrey M Craig
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Melissa Kirkovski
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Natalie T Mills
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole J Rinehart
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Krongold Clinic, Monash Education, Monash University, Clayton, Victoria, Australia
| | - Peter H Donaldson
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Talitha C Ford
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | | | | | - Soukayna Bekkali
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Paul B Fitzgerald
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camperwell, Victoria, Australia
| |
Collapse
|
37
|
Yee SV, Fitzrol DN, Ang SY, Zakaria Z, Ghani ARI, Idris Z, Abdullah JM. Commentary: Demonstration of Microsurgical Technique and Nuances for the Resection of a Midbrain Tectal Glioma via the Transcollicular Approach: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2021; 20:E308-E311. [PMID: 33452879 DOI: 10.1093/ons/opaa465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sze-Voon Yee
- Department of Neurosurgery, Institut Kaji Saraf Tunku Abdul Rahman (IKTAR), Hospital Kuala Lumpur, Jalan Pahang, 56586 Kuala Lumpur, Malaysia
| | - Diana Noma Fitzrol
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Song Yee Ang
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Jalan Raja Perempuan Zainab, 16150 Kota Bharu, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
38
|
Liang K, Li H, Bu X, Li X, Cao L, Liu J, Gao Y, Li B, Qiu C, Bao W, Zhang S, Hu X, Xing H, Gong Q, Huang X. Efficacy and tolerability of repetitive transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder in adults: a systematic review and network meta-analysis. Transl Psychiatry 2021; 11:332. [PMID: 34050130 PMCID: PMC8163761 DOI: 10.1038/s41398-021-01453-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been widely used as an alternative treatment for obsessive-compulsive disorder (OCD). However, the most effective rTMS parameters, such as the targets and stimulation frequencies, remain controversial. Therefore, we aimed to compare and rank the efficacy and tolerability of different rTMS strategies for OCD treatment. We searched five electronic databases from the date of their inception to March 25, 2020. Pairwise meta-analyses and network meta-analyses were performed to synthesize data. We assessed the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Twenty-two eligible randomized controlled trials (RCTs) were included. For efficacy, low-frequency (LF) rTMS over the dorsolateral prefrontal cortex (DLPFC; mean difference (MD) 6.34, 95% credible interval (CrI) 2.12-10.42) and supplementary motor area (MD 4.18, 95% CrI 0.83-7.62), and high-frequency rTMS over the DLPFC (MD 3.75, 95% CrI 1.04-6.81) were more effective than sham rTMS. Regarding tolerability, all rTMS treatment strategies were similar to the sham rTMS. The estimated ranking probabilities of treatments showed that LF-rTMS over the DLPFC might be the most effective intervention among all rTMS strategies. However, the quality of evidence regarding efficacy was evaluated as very low. Current evidence suggested a marginal advantage for LF-rTMS over the DLPFC on OCD treatment. High-quality RCTs with low selection and performance bias are needed to further verify the efficacy of specific rTMS strategies for the OCD treatment.
Collapse
Affiliation(s)
- Kaili Liang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Hailong Li
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xuan Bu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xue Li
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China
| | - Lingxiao Cao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Jing Liu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yingxue Gao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Bin Li
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Changjian Qiu
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Weijie Bao
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Suming Zhang
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xinyu Hu
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Haoyang Xing
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.13291.380000 0001 0807 1581School of Physical Science and Technology, Sichuan University, Chengdu, People’s Republic of China
| | - Qiyong Gong
- grid.412901.f0000 0004 1770 1022Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, People's Republic of China. .,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
39
|
Valiuliene G, Valiulis V, Dapsys K, Vitkeviciene A, Gerulskis G, Navakauskiene R, Germanavicius A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur J Neurosci 2021; 53:3791-3802. [PMID: 33861484 DOI: 10.1111/ejn.15232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Resistance to pharmacological treatment poses a notable challenge for psychiatry. Such cases are usually treated with brain stimulation techniques, including repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Empirical evidence links treatment resistance to insufficient brain plasticity and chronic inflammation. Therefore, this study encompasses analysis of neurotrophic and inflammatory factors in psychiatric patients undergoing rTMS and ECT in order to refine the selection of patients and predict clinical outcomes. This study enrolled 25 drug-resistant depressive patients undergoing rTMS and 31 drug-resistant schizophrenia patients undergoing ECT. Clinical efficacy of brain stimulation therapies was gauged using MADRS and HAM-D scales in the depression group and PANSS scale in the schizophrenia group. Blood-derived BDNF, VEGF, and TNFα were analysed during the treatment course. For reference, 19 healthy control subjects were also enrolled. After statistical analysis, no significant differences were detected in BDNF, VEGF, and TNFα concentrations among healthy, depressive, and schizophrenic subject groups before the treatment. However, depressive patient treatment with rTMS has increased BDNF concentration, while schizophrenic patient treatment with ECT has lowered the concentration of TNFα. Our findings suggest that a lower initial TNFα concentration could be a marker for treatment success in depressed patients undergoing rTMS, whereas in schizophrenic patient group treated with ECT, a higher concentration of VEGF correlates to milder symptoms post-treatment, especially in the negative scale.
Collapse
Affiliation(s)
- Giedre Valiuliene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Vladas Valiulis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Kastytis Dapsys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Aida Vitkeviciene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Giedrius Gerulskis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Ruta Navakauskiene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Arunas Germanavicius
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
40
|
Krieger D, Shepard P, Soose R, Puccio AM, Beers S, Schneider W, Kontos AP, Collins MW, Okonkwo DO. Symptom-Dependent Changes in MEG-Derived Neuroelectric Brain Activity in Traumatic Brain Injury Patients with Chronic Symptoms. Med Sci (Basel) 2021; 9:medsci9020020. [PMID: 33806153 PMCID: PMC8103254 DOI: 10.3390/medsci9020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Neuroelectric measures derived from human magnetoencephalographic (MEG) recordings hold promise as aides to diagnosis and treatment monitoring and targeting for chronic sequelae of traumatic brain injury (TBI). This study tests novel MEG-derived regional brain measures of tonic neuroelectric activation for long-term test-retest reliability and sensitivity to symptoms. Resting state MEG recordings were obtained from a normative cohort, Cambridge Centre for Ageing and Neuroscience (CamCAN), baseline: n = 619; mean 16-month follow-up: n = 253) and a chronic symptomatic TBI cohort, Targeted Evaluation, Action and Monitoring of Traumatic Brain Injury (TEAM-TBI), baseline: n = 64; mean 6-month follow-up: n = 39). For the CamCAN cohort, MEG-derived neuroelectric measures showed good long-term test-retest reliability for most of the 103 automatically identified stereotypic regions. The TEAM-TBI cohort was screened for depression, somatization, and anxiety with the Brief Symptom Inventory and for insomnia with the Insomnia Severity Index. Linear classifiers constructed from the 103 regional measures from each TEAM-TBI cohort member distinguished those with and without each symptom, with p < 0.01 for each-i.e., the tonic regional neuroelectric measures of activation are sensitive to the presence/absence of these symptoms. The novel regional MEG-derived neuroelectric measures obtained and tested in this study demonstrate the necessary and sufficient properties to be clinically useful-i.e., good test-retest reliability, sensitivity to symptoms in each individual, and obtainable using automatic processing without human judgement or intervention.
Collapse
Affiliation(s)
- Don Krieger
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
- Correspondence:
| | - Paul Shepard
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ryan Soose
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Ava M. Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
| | - Sue Beers
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Walter Schneider
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Anthony P. Kontos
- Department of Sports Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.P.K.); (M.W.C.)
| | - Michael W. Collins
- Department of Sports Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.P.K.); (M.W.C.)
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.P.); (D.O.O.)
| |
Collapse
|
41
|
Deng ZD, Luber B, Balderston NL, Velez Afanador M, Noh MM, Thomas J, Altekruse WC, Exley SL, Awasthi S, Lisanby SH. Device-Based Modulation of Neurocircuits as a Therapeutic for Psychiatric Disorders. Annu Rev Pharmacol Toxicol 2020; 60:591-614. [PMID: 31914895 DOI: 10.1146/annurev-pharmtox-010919-023253] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Device-based neuromodulation of brain circuits is emerging as a promising new approach in the study and treatment of psychiatric disorders. This work presents recent advances in the development of tools for identifying neurocircuits as therapeutic targets and in tools for modulating neurocircuits. We review clinical evidence for the therapeutic efficacy of circuit modulation with a range of brain stimulation approaches, including subthreshold, subconvulsive, convulsive, and neurosurgical techniques. We further discuss strategies for enhancing the precision and efficacy of neuromodulatory techniques. Finally, we survey cutting-edge research in therapeutic circuit modulation using novel paradigms and next-generation devices.
Collapse
Affiliation(s)
- Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Bruce Luber
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Nicholas L Balderston
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melbaliz Velez Afanador
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Michelle M Noh
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Jeena Thomas
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - William C Altekruse
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shannon L Exley
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Shriya Awasthi
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
42
|
Li X, Hartwell KJ, Henderson S, Badran BW, Brady KT, George MS. Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain Stimul 2020; 13:1271-1279. [PMID: 32534252 PMCID: PMC7494651 DOI: 10.1016/j.brs.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have found that repetitive transcranial magnetic stimulation (rTMS) to the left dorsal lateral prefrontal cortex (LDLPFC) transiently reduces smoking craving, decreases cigarette consumption, and increases abstinence rates. OBJECTIVE We investigated whether 10 daily MRI-guided rTMS sessions over two weeks to the LDLPFC paired with craving cues could reduce cigarette consumption and induce smoking cessation. METHODS We enrolled 42 treatment-seeking nicotine-dependent smokers (≥10 cigarettes per day) in a randomized, double-blind, sham-controlled trial. Participants received 10 daily sessions over 2 weeks of either active or sham MRI-guided rTMS (10Hz, 3000 pulses each session) to the LDLPFC concurrently with video smoking cues. The primary outcome was a reduction in biochemically confirmed cigarette consumption with a secondary outcome of abstinence on the target quit date. We also recorded cue-induced craving and withdrawal symptoms. RESULTS Compared to sham (n = 17), participants receiving active rTMS (n = 21) smoked significantly fewer cigarettes per day during the 2-week treatment (mean [SD], 13.73[9.18] vs. 11.06[9.29], P < .005) and at 1-month follow-up (12.78[9.53] vs. 7.93[7.24], P < .001). Active rTMS participants were also more likely to quit by their target quit rate (23.81%vs. 0%, OR 11.67, 90% CL, 0.96-141.32, x2 = 4.66, P = .031). Furthermore, rTMS significantly reduced mean craving throughout the treatments and at follow-up (29.93[13.12] vs. 25.01[14.45], P < .001). Interestingly across the active treatment sample, more lateral coil location was associated with more success in quitting (-43.43[0.40] vs. -41.79[2.24], P < .013). CONCLUSIONS Daily MRI-guided rTMS to the LDLPFC for 10 days reduces cigarette consumption and cued craving for up to one month and also increases the likelihood of smoking cessation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02401672.
Collapse
Affiliation(s)
- Xingbao Li
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Karen J Hartwell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Scott Henderson
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
43
|
Moreno-Ortega M, Kangarlu A, Lee S, Perera T, Kangarlu J, Palomo T, Glasser MF, Javitt DC. Parcel-guided rTMS for depression. Transl Psychiatry 2020; 10:283. [PMID: 32788580 PMCID: PMC7423622 DOI: 10.1038/s41398-020-00970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is an approved intervention for treatment-resistant depression (TRD), but current targeting approaches are only partially successful. Our objectives were (1) to examine the feasibility of MRI-guided TMS in the clinical setting using a recently published surface-based, multimodal parcellation in patients with TRD who failed standard TMS (sdTMS); (2) to examine the neurobiological mechanisms and clinical outcomes underlying MRI-guided TMS compared to that of sdTMS. We used parcel-guided TMS (pgTMS) to target the left dorsolateral prefrontal cortex parcel 46. Resting-state functional connectivity (rsfc) was assessed between parcel 46 and predefined nodes within the default mode and visual networks, following both pgTMS and sdTMS. All patients (n = 10) who had previously failed sdTMS responded to pgTMS. Alterations in rsfc between frontal, default mode, and visual networks differed significantly over time between groups. Improvements in symptoms correlated with alterations in rsfc within each treatment group. The outcome of our study supports the feasibility of pgTMS within the clinical setting. Future prospective, double-blind studies of pgTMS vs. sdTMS appear warranted.
Collapse
Affiliation(s)
- M. Moreno-Ortega
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY USA ,grid.469673.9Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - A. Kangarlu
- grid.21729.3f0000000419368729Department of Psychiatry, Radiology and Biomedical Engineering, Columbia University, New York, NY USA
| | - S. Lee
- grid.21729.3f0000000419368729Department of Psychiatry and Biostatistics, New York State Psychiatric Institute/Columbia University, New York, NY USA
| | - T. Perera
- Contemporary Care, Greenwich, CT USA
| | - J. Kangarlu
- grid.411023.50000 0000 9159 4457State University of New York (SUNY) Upstate Medical University, Syracuse, NY USA
| | - T. Palomo
- grid.469673.9Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Psychiatry, Complutense University, Madrid, Spain
| | - M. F. Glasser
- grid.4367.60000 0001 2355 7002Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, USA
| | - D. C. Javitt
- Division of Experimental Therapeutics, Department of Psychiatry, New York State Psychiatric Institute/Columbia University Medical Center, New York, NY USA
| |
Collapse
|
44
|
Medaglia JD, Erickson B, Zimmerman J, Kelkar A. Personalizing neuromodulation. Int J Psychophysiol 2020; 154:101-110. [PMID: 30685229 PMCID: PMC6824943 DOI: 10.1016/j.ijpsycho.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/18/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
In the era of "big data", we are gaining rich person-specific information about neuroanatomy, neural function, and cognitive functions. However, the optimal ways to create precise approaches to optimize individuals' mental functions in health and disease are unclear. Multimodal analysis and modeling approaches can guide neuromodulation by combining anatomical networks, functional signal analysis, and cognitive neuroscience paradigms in single subjects. Our progress could be improved by progressing from statistical fits to mechanistic models. Using transcranial magnetic stimulation as an example, we discuss how integrating methods with a focus on mechanisms could improve our predictions TMS effects within individuals, refine our models of health and disease, and improve our treatments.
Collapse
Affiliation(s)
- John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Drexel University, Philadelphia, PA, 19104, USA.
| | - Brian Erickson
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jared Zimmerman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Kelkar
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Gratton C, Kraus BT, Greene DJ, Gordon EM, Laumann TO, Nelson SM, Dosenbach NUF, Petersen SE. Defining Individual-Specific Functional Neuroanatomy for Precision Psychiatry. Biol Psychiatry 2020; 88:28-39. [PMID: 31916942 PMCID: PMC7203002 DOI: 10.1016/j.biopsych.2019.10.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022]
Abstract
Studies comparing diverse groups have shown that many psychiatric diseases involve disruptions across distributed large-scale networks of the brain. There is hope that functional magnetic resonance imaging (fMRI) functional connectivity techniques will shed light on these disruptions, providing prognostic and diagnostic biomarkers as well as targets for therapeutic interventions. However, to date, progress on clinical translation of fMRI methods has been limited. Here, we argue that this limited translation is driven by a combination of intersubject heterogeneity and the relatively low reliability of standard fMRI techniques at the individual level. We review a potential solution to these limitations: the use of new "precision" fMRI approaches that shift the focus of analysis from groups to single individuals through the use of extended data acquisition strategies. We begin by discussing the potential advantages of fMRI functional connectivity methods for improving our understanding of functional neuroanatomy and disruptions in psychiatric disorders. We then discuss the budding field of precision fMRI and findings garnered from this work. We demonstrate that precision fMRI can improve the reliability of functional connectivity measures, while showing high stability and sensitivity to individual differences. We close by discussing the application of these approaches to clinical settings.
Collapse
Affiliation(s)
- Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, Illinois; Department of Neurology, Northwestern University, Evanston, Illinois.
| | - Brian T Kraus
- Department of Psychology, Northwestern University, Evanston, Illinois
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Evan M Gordon
- VISN Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Steven M Nelson
- VISN Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Nico U F Dosenbach
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E Petersen
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri; Department of Radiology, Washington University in St. Louis, St. Louis, Missouri; Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
46
|
Cermak S, Meng Q, Peng K, Baldwin S, Mejías-Aponte CA, Yang Y, Lu H. Focal transcranial magnetic stimulation in awake rats: Enhanced glucose uptake in deep cortical layers. J Neurosci Methods 2020; 339:108709. [PMID: 32259609 PMCID: PMC8917821 DOI: 10.1016/j.jneumeth.2020.108709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an emerging neuromodulation tool. However, preclinical models of TMS are limited. OBJECTIVE To develop a method for performing TMS in awake rats and to characterize neuronal response to TMS by mapping glucose uptake following TMS administration. METHODS A headpost was implanted into rat skull serving as a refence to guide TMS target. Motor threshold measurement was used as the metric to assess the consistency in TMS delivery across animals and across sessions. Using a fluorescent glucose analogue (2-NBDG) as a marker of neuronal activity, we mapped glucose uptake in response to TMS of the rat motor cortex. RESULTS The average motor threshold (n = 41) was 34.6 ± 6.3 % of maximum stimulator output (MSO). The variability of motor threshold across animals was similar to what has been reported in human studies. Furthermore, there was no significant difference in motor threshold measured across 3 separate days. Enhancement in fluorescent signals were TMS dose (power)-dependent, which centered around the motor cortex, covering an area medial-laterally 2 mm, rostral-caudally 4 mm at 55 % MSO, and 3 mm at 35 % MSO. The count of total cells with significant fluorescent signal was: 107 ± 23 (55 % MSO), 73 ± 11 (35 % MSO) and 42 ± 11 (sham, 5% MSO). CONCLUSIONS Our method allows for consistent motor threshold assessment for longitudinal studies. Notably, cells with fluorescent signal enhancement were consistently aggregated in deep cortical layers, with minimal enhancement in superficial layers COMPARISONS WITH EXISTING METHOD(S): To our knowledge, this is the first study of focal TMS in awake rodents.
Collapse
Affiliation(s)
- Samantha Cermak
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Qinglei Meng
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Kevin Peng
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Simone Baldwin
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Carlos A Mejías-Aponte
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| | - Hanbing Lu
- Neuroimaging Research Branch, Histology Core, National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Baltimore, MD, 21224, USA.
| |
Collapse
|
47
|
Mechanistic link between right prefrontal cortical activity and anxious arousal revealed using transcranial magnetic stimulation in healthy subjects. Neuropsychopharmacology 2020; 45:694-702. [PMID: 31791039 PMCID: PMC7021903 DOI: 10.1038/s41386-019-0583-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mechanistic research on anxiety focuses on subcortical structures such as the amygdala; however, less is known about the distributed cortical circuit that also contributes to anxiety expression. One way to learn about this circuit is to probe candidate regions using transcranial magnetic stimulation (TMS). In this study, we tested the involvement of the dorsolateral prefrontal cortex (dlPFC), in anxiety expression using 10 Hz repetitive TMS (rTMS). In a within-subject, crossover experiment, the study measured anxiety in healthy subjects before and after a session of 10 Hz rTMS to the right dorsolateral prefrontal cortex (dlPFC). It used threat of predictable and unpredictable shock to induce anxiety and anxiety potentiated startle to assess anxiety. Counter to our hypotheses, results showed an increase in anxiety-potentiated startle following active but not sham rTMS. These results suggest a mechanistic link between right dlPFC activity and physiological anxiety expression. This result supports current models of prefrontal asymmetry in affect, and lays the groundwork for further exploration into the cortical mechanisms mediating anxiety, which may lead to novel anxiety treatments.
Collapse
|
48
|
Navarro de Lara LI, Golestanirad L, Makarov SN, Stockmann JP, Wald LL, Nummenmaa A. Evaluation of RF interactions between a 3T birdcage transmit coil and transcranial magnetic stimulation coils using a realistically shaped head phantom. Magn Reson Med 2020; 84:1061-1075. [PMID: 31971632 DOI: 10.1002/mrm.28162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Multichannel transcranial magnetic stimulation (TMS)1 is an emerging technology that allows multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. A multichannel TMS/MRI head coil array for 3 Tesla is currently under development to mitigate challenges of concurrent TMS/fMRI as well as enable potential new applications. The influence of the multichannel TMS system on the MR image quality and safety must be carefully investigated. METHODS A standard birdcage volume coil for 3 Tesla systems was simulated using a commercial numerical electromagnetic solver. Two setups, consisting of 1) a MR-compatible TMS coil, and 2) a 3-axis TMS coil array, were simulated to quantify changes in the transmit field B 1 + and the SAR. A realistically shaped homogeneous head model was used in the computations. RESULTS The stimulation coils produced enhancements and attenuations on the transmit field with effects greater than 5% up to 2.4 cm and 3.3 cm under the scalp for the MR-compatible TMS coil and 3-axis TMS coil array, respectively. The 10 g-SAR distribution did not change significantly in either of the cases; however, the nominal SAR maximum locus was shifted between existing hot spots. CONCLUSION The simulated B 1 + variations found near the TMS coils indicate the possibility of inducing sequence-dependent image artefacts predominatly limited to the vicinity of the coil(s). However, we conclude that neither the MR-compatible commercial TMS coil nor the 3-axis TMS coil array siginificantly elevate SAR in the head or neck beyond accepted safety limits.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Laleh Golestanirad
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Sergey N Makarov
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
49
|
Neural correlates of emotion-attention interactions: From perception, learning, and memory to social cognition, individual differences, and training interventions. Neurosci Biobehav Rev 2020; 108:559-601. [DOI: 10.1016/j.neubiorev.2019.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
|
50
|
Abstract
In neuroimaging research, averaging data at the level of the group results in blurring of potentially meaningful individual differences. A more widespread use of an individual-specific approach is advocated for, which involves a more thorough investigation of each individual in a group, and characterization of idiosyncrasies at the level of behavior, cognition, and symptoms, as well as at the level of brain organization. It is hoped that such an approach, focused on individuals, will provide convergent findings that will help identify the underlying pathologic condition in various psychiatric disorders and help in the development of treatments individualized for each patient.
Collapse
Affiliation(s)
- Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA.
| | - William J Liu
- Department of Neuroscience, Grossman Institute of Neurobiology, The College, University of Chicago, 5812 South Ellis Avenue, MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Suite 2301, Charlestown, MA 02129, USA
| |
Collapse
|