1
|
Dresbach S, Gulban OF, Steinbach T, Eck J, Kashyap S, Kaas A, Weiskopf N, Goebel R, Huber R. Laminar CBV and BOLD response-characteristics over time and space in the human primary somatosensory cortex at 7T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600746. [PMID: 39372740 PMCID: PMC11451658 DOI: 10.1101/2024.06.26.600746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Uncovering the cortical representation of the body has been at the core of human brain mapping for decades, with special attention given to the digits. In the last decade, advances in functional magnetic resonance imaging (fMRI) technologies have opened the possibility of noninvasively unraveling the 3rd dimension of digit representations in humans along cortical layers. In laminar fMRI it is common to combine the use of the highly sensitive blood oxygen level dependent (BOLD) contrast with cerebral blood volume sensitive measurements, like vascular space occupancy (VASO), that are more specific to the underlying neuronal populations. However, the spatial and temporal VASO response characteristics across cortical depth to passive stimulation of the digits are still unknown. Therefore, we characterized haemodynamic responses to vibrotactile stimulation of individual digit-tips across cortical depth at 0.75 mm in-plane spatial resolution using BOLD and VASO fMRI at 7T. We could identify digit-specific regions of interest (ROIs) in putative Brodmann area 3b, following the known anatomical organization. In the ROIs, the BOLD response increased towards the cortical surface due to the draining vein effect, while the VASO response was more shifted towards middle cortical layers, likely reflecting bottom-up input from the thalamus, as expected. Interestingly, we also found slightly negative BOLD and VASO responses for non-preferred digits in the ROIs, potentially indicating neuronal surround inhibition. Finally, we explored the temporal signal dynamics for BOLD and VASO as a function of distance from activation peaks resulting from stimulation of contralateral digits. With this analysis, we showed a triphasic response consisting of an initial peak and a subsequent negative deflection during stimulation, followed by a positive post-stimulus response in BOLD and to some extent in VASO. While similar responses were reported with invasive methods in animal models, here we demonstrate a potential neuronal excitation-inhibition mechanism in a center-surround architecture across layers in the human somatosensory cortex. Given that, unlike in animals, human experiments do not rely on anesthesia and can readily implement extensive behavioral testing, obtaining this effect in humans is an important step towards further uncovering the functional significance of the different aspects of the triphasic response.
Collapse
|
2
|
Feinberg DA, Beckett AJS, Vu AT, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald LL, Polimeni JR, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods 2023; 20:2048-2057. [PMID: 38012321 PMCID: PMC10703687 DOI: 10.1038/s41592-023-02068-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
Collapse
Affiliation(s)
- David A Feinberg
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Alexander J S Beckett
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - An T Vu
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, CA, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Suhyung Park
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Computer Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Chunlei Liu
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Jonathan R Polimeni
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- BARNLabs, Muenzkirchen, Austria
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mathias Davids
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Paul Bell
- Siemens Medical Solutions, Malvern, PA, USA
| | | | | | | | | | | | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
- MR CoilTech Limited, Glasgow, UK
| | | |
Collapse
|
3
|
Kruggel F, Solodkin A. Analyzing the cortical fine structure as revealed by ex-vivo anatomical MRI. J Comp Neurol 2023; 531:2146-2161. [PMID: 37522626 DOI: 10.1002/cne.25532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/15/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
The human cortex has a rich fiber structure as revealed by myelin-staining of histological slices. Myelin also contributes to the image contrast in Magnetic Resonance Imaging (MRI). Recent advances in Magnetic Resonance (MR) scanner and imaging technology allowed the acquisition of an ex-vivo data set at an isotropic resolution of 100 µm. This study focused on a computational analysis of this data set with the aim of bridging between histological knowledge and MRI-based results. This work highlights: (1) the design and implementation of a processing chain that extracts intracortical features from a high-resolution MR image; (2) a demonstration of the correspondence between MRI-based cortical intensity profiles and the myelo-architectonic layering of the cortex; (3) the characterization and classification of four basic myelo-architectonic profile types; (4) the distinction of cortical regions based on myelo-architectonic features; and (5) the segmentation of cortical modules in the entorhinal cortex.
Collapse
Affiliation(s)
- Frithjof Kruggel
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Ana Solodkin
- School of Behavioral and Brain Sciences, University of Texas, Richardson, Texas, USA
| |
Collapse
|
4
|
Asghar M, Sanchez-Panchuelo R, Schluppeck D, Francis S. Two-Dimensional Population Receptive Field Mapping of Human Primary Somatosensory Cortex. Brain Topogr 2023; 36:816-834. [PMID: 37634160 PMCID: PMC10522535 DOI: 10.1007/s10548-023-01000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Functional magnetic resonance imaging can provide detailed maps of how sensory space is mapped in the human brain. Here, we use a novel 16 stimulator setup (a 4 × 4 grid) to measure two-dimensional sensory maps of between and within-digit (D2-D4) space using high spatial-resolution (1.25 mm isotropic) imaging at 7 Tesla together with population receptive field (pRF) mapping in 10 participants. Using a 2D Gaussian pRF model, we capture maps of the coverage of digits D2-D5 across Brodmann areas and estimate pRF size and shape. In addition, we compare results to previous studies that used fewer stimulators by constraining pRF models to a 1D Gaussian Between Digit or 1D Gaussian Within Digit model. We show that pRFs across somatosensory areas tend to have a strong preference to cover the within-digit axis. We show an increase in pRF size moving from D2-D5. We quantify pRF shapes in Brodmann area (BA) 3b, 3a, 1, 2 and show differences in pRF size in Brodmann areas 3a-2, with larger estimates for BA2. Generally, the 2D Gaussian pRF model better represents pRF coverage maps generated by our data, which itself is produced from a 2D stimulation grid.
Collapse
Affiliation(s)
- Michael Asghar
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| | - Rosa Sanchez-Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Nottingham, UK
| | | | - Susan Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Dresbach S, Huber LR, Gulban OF, Goebel R. Layer-fMRI VASO with short stimuli and event-related designs at 7 T. Neuroimage 2023; 279:120293. [PMID: 37562717 DOI: 10.1016/j.neuroimage.2023.120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Layers and columns are the dominant processing units in the human (neo)cortex at the mesoscopic scale. While the blood oxygenation dependent (BOLD) signal has a high detection sensitivity, it is biased towards unwanted signals from large draining veins at the cortical surface. The additional fMRI contrast of vascular space occupancy (VASO) has the potential to augment the neuroscientific interpretability of layer-fMRI results by means of capturing complementary information of locally specific changes in cerebral blood volume (CBV). Specifically, VASO is not subject to unwanted sensitivity amplifications of large draining veins. Because of constrained sampling efficiency, it has been mainly applied in combination with efficient block task designs and long trial durations. However, to study cognitive processes in neuroscientific contexts, or probe vascular reactivity, short stimulation periods are often necessary. Here, we developed a VASO acquisition procedure with a short acquisition period and sub-millimeter resolution. During visual event-related stimulation, we show reliable responses in visual cortices within a reasonable number of trials (∼20). Furthermore, the short TR and high spatial specificity of our VASO implementation enabled us to show differences in laminar reactivity and onset times. Finally, we explore the generalizability to a different stimulus modality (somatosensation). With this, we showed that CBV-sensitive VASO provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution and is able to be used with event-related paradigms.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Laurentius Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; National Institute of Health, Bethesda, DC, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| |
Collapse
|
6
|
Aungaroon G, Vedala K, Byars AW, Ervin B, Rozhkov L, Horn PS, Ihnen S, Holland KD, Tenney JR, Kremer K, Fong SL, Lin N, Liu W, Arthur TM, Fujiwara H, Skoch J, Leach JL, Mangano FT, Greiner HM, Arya R. Comparing electrical stimulation functional mapping with subdural electrodes and stereoelectroencephalography. Epilepsia 2023; 64:1527-1540. [PMID: 36872854 PMCID: PMC10239361 DOI: 10.1111/epi.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE Electrical stimulation mapping (ESM) is the clinical standard for functional localization with subdural electrodes (SDE). As stereoelectroencephalography (SEEG) has emerged as an alternative option, we compared functional responses, afterdischarges (ADs), and unwanted ESM-induced seizures (EISs) between the two electrode types. METHODS Incidence and current thresholds for functional responses (sensory, motor, speech/language), ADs, and EISs were compared between SDE and SEEG using mixed models incorporating relevant covariates. RESULTS We identified 67 SEEG ESM and 106 SDE ESM patients (7207 and 4980 stimulated contacts, respectively). We found similar incidence of language and motor responses between electrode types; however, more SEEG patients reported sensory responses. ADs and EISs occurred less commonly with SEEG than SDE. Current thresholds for language, face motor, and upper extremity (UE) motor responses and EIS significantly decreased with age. However, they were not affected by electrode type, premedication, or dominant hemispheric stimulation. AD thresholds were higher with SEEG than with SDE. For SEEG ESM, language thresholds remained below AD thresholds up to 26 years of age, whereas this relationship was inverse for SDE. Also, face and UE motor thresholds fell below AD thresholds at earlier ages for SEEG than SDE. AD and EIS thresholds were not affected by premedication. SIGNIFICANCE SEEG and SDE have clinically relevant differences for functional brain mapping with electrical stimulation. Although evaluation of language and motor regions is comparable between SEEG and SDE, SEEG offers a higher likelihood of identifying sensory areas. A lower incidence of ADs and EISs, and a favorable relationship between functional and AD thresholds suggest superior safety and neurophysiologic validity for SEEG ESM than SDE ESM.
Collapse
Affiliation(s)
- Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Kishore Vedala
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Anna W. Byars
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Brian Ervin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Leonid Rozhkov
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Paul S. Horn
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - S.K.Z. Ihnen
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Katherine D. Holland
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Jeffrey R. Tenney
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Kelly Kremer
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Susan L. Fong
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Nan Lin
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Wei Liu
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Todd M. Arthur
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Hisako Fujiwara
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Jesse Skoch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - James L. Leach
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Pediatric Neuroradiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Francesco T. Mangano
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Division of Pediatric Neurosurgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Hansel M. Greiner
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Ravindra Arya
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, U.S.A
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio, U.S.A
| |
Collapse
|
7
|
Huber LR, Poser BA, Bandettini PA, Arora K, Wagstyl K, Cho S, Goense J, Nothnagel N, Morgan AT, van den Hurk J, Müller AK, Reynolds RC, Glen DR, Goebel R, Gulban OF. LayNii: A software suite for layer-fMRI. Neuroimage 2021; 237:118091. [PMID: 33991698 PMCID: PMC7615890 DOI: 10.1016/j.neuroimage.2021.118091] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023] Open
Abstract
High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.
Collapse
Affiliation(s)
| | - Benedikt A Poser
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | | | - Kabir Arora
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Shinho Cho
- CMRR, University of Minneapolis, MN, USA
| | | | | | | | | | | | | | | | - Rainer Goebel
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| |
Collapse
|
8
|
Li Q, Pasquini L, Del Ferraro G, Gene M, Peck KK, Makse HA, Holodny AI. Monolingual and bilingual language networks in healthy subjects using functional MRI and graph theory. Sci Rep 2021; 11:10568. [PMID: 34012006 PMCID: PMC8134560 DOI: 10.1038/s41598-021-90151-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Bilingualism requires control of multiple language systems, and may lead to architectural differences in language networks obtained from clinical fMRI tasks. Emerging connectivity metrics such as k-core may capture these differences, highlighting crucial network components based on resiliency. We investigated the influence of bilingualism on clinical fMRI language tasks and characterized bilingual networks using connectivity metrics to provide a patient care benchmark. Sixteen right-handed subjects (mean age 42-years; nine males) without neurological history were included: eight native English-speaking monolinguals and eight native Spanish-speaking (L1) bilinguals with acquired English (L2). All subjects underwent fMRI with gold-standard clinical language tasks. Starting from active clusters on fMRI, we inferred the persistent functional network across subjects and ran centrality measures to characterize differences. Our results demonstrated a persistent network "core" consisting of Broca's area, the pre-supplementary motor area, and the premotor area. K-core analysis showed that Wernicke's area was engaged by the "core" with weaker connection in L2 than L1.
Collapse
Affiliation(s)
- Qiongge Li
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.253482.a0000 0001 0170 7903Department of Physics, Graduate Center of City University of New York, New York, NY 10016 USA ,grid.21107.350000 0001 2171 9311Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Luca Pasquini
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.7841.aNeuroradiology Unit, NESMOS Department, Sant’Andrea Hospital, La Sapienza University, 00189 Rome, RM Italy
| | - Gino Del Ferraro
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA ,grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753Center for Neural Science, New York University, New York, NY 10003 USA
| | - Madeleine Gene
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Kyung K. Peck
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.51462.340000 0001 2171 9952Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Hernán A. Makse
- grid.254250.40000 0001 2264 7145Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
| | - Andrei I. Holodny
- grid.51462.340000 0001 2171 9952Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA ,grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY 10016 USA ,grid.5386.8000000041936877XDepartment of Neuroscience, Weill Medical College of Cornell University, New York, NY 10065 USA
| |
Collapse
|
9
|
Willoughby WR, Thoenes K, Bolding M. Somatotopic Arrangement of the Human Primary Somatosensory Cortex Derived From Functional Magnetic Resonance Imaging. Front Neurosci 2021; 14:598482. [PMID: 33488347 PMCID: PMC7817621 DOI: 10.3389/fnins.2020.598482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to estimate neuronal activity in the primary somatosensory cortex of six participants undergoing cutaneous tactile stimulation on skin areas spread across the entire body. Differences between the accepted somatotopic maps derived from Penfield's work and those generated by this fMRI study were sought, including representational transpositions or replications across the cortex. MR-safe pneumatic devices mimicking the action of a Wartenberg wheel supplied touch stimuli in eight areas. Seven were on the left side of the body: foot, lower, and upper leg, trunk beneath ribcage, anterior forearm, middle fingertip, and neck above the collarbone. The eighth area was the glabella. Activation magnitude was estimated as the maximum cross-correlation coefficient at a certain phase shift between ideal time series and measured blood oxygen level dependent (BOLD) time courses on the cortical surface. Maximally correlated clusters associated with each cutaneous area were calculated, and cortical magnification factors were estimated. Activity correlated to lower limb stimulation was observed in the paracentral lobule and superomedial postcentral region. Correlations to upper extremity stimulation were observed in the postcentral area adjacent to the motor hand knob. Activity correlated to trunk, face and neck stimulation was localized in the superomedial one-third of the postcentral region, which differed from Penfield's cortical homunculus.
Collapse
Affiliation(s)
- W. R. Willoughby
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina Thoenes
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark Bolding
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
Layer-dependent functional connectivity methods. Prog Neurobiol 2020; 207:101835. [DOI: 10.1016/j.pneurobio.2020.101835] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022]
|
12
|
A probabilistic atlas of finger dominance in the primary somatosensory cortex. Neuroimage 2020; 217:116880. [PMID: 32376303 PMCID: PMC7339146 DOI: 10.1016/j.neuroimage.2020.116880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.
Collapse
|
13
|
Huber L, Finn ES, Handwerker DA, Bönstrup M, Glen DR, Kashyap S, Ivanov D, Petridou N, Marrett S, Goense J, Poser BA, Bandettini PA. Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. Neuroimage 2020; 208:116463. [DOI: 10.1016/j.neuroimage.2019.116463] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/10/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
|
14
|
Yu Y, Huber L, Yang J, Jangraw DC, Handwerker DA, Molfese PJ, Chen G, Ejima Y, Wu J, Bandettini PA. Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. SCIENCE ADVANCES 2019; 5:eaav9053. [PMID: 31106273 PMCID: PMC6520017 DOI: 10.1126/sciadv.aav9053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/02/2019] [Indexed: 05/23/2023]
Abstract
When humans perceive a sensation, their brains integrate inputs from sensory receptors and process them based on their expectations. The mechanisms of this predictive coding in the human somatosensory system are not fully understood. We fill a basic gap in our understanding of the predictive processing of somatosensation by examining the layer-specific activity in sensory input and predictive feedback in the human primary somatosensory cortex (S1). We acquired submillimeter functional magnetic resonance imaging data at 7T (n = 10) during a task of perceived, predictable, and unpredictable touching sequences. We demonstrate that the sensory input from thalamic projects preferentially activates the middle layer, while the superficial and deep layers in S1 are more engaged for cortico-cortical predictive feedback input. These findings are pivotal to understanding the mechanisms of tactile prediction processing in the human somatosensory cortex.
Collapse
Affiliation(s)
- Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Laurentius Huber
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - David C. Jangraw
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel A. Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter J. Molfese
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, USA
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
- Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Potentials of Ultrahigh-Field MRI for the Study of Somatosensory Reorganization in Congenital Hemiplegia. Neural Plast 2018; 2018:8472807. [PMID: 30595689 PMCID: PMC6286762 DOI: 10.1155/2018/8472807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 09/04/2018] [Indexed: 12/03/2022] Open
Abstract
Reorganization of somatosensory function influences the clinical recovery of subjects with congenital unilateral brain lesions. Ultrahigh-field (UHF) functional MRI (fMRI) with the use of a 7 T magnet has the potential to contribute fundamentally to the current knowledge of such plasticity mechanisms. The purpose of this study was to obtain preliminary information on the possible advantages of the study of somatosensory reorganization at UHF fMRI. We enrolled 6 young adults (mean age 25 ± 6 years) with congenital unilateral brain lesions (4 in the left hemisphere and 2 in the right hemisphere; 4 with perilesional motor reorganization and 2 with contralesional motor reorganization) and 7 healthy age-matched controls. Nondominant hand sensory assessment included stereognosis and 2-point discrimination. Task-dependent fMRI was performed to elicit a somatosensory activation by using a safe and quantitative device developed ad hoc to deliver a reproducible gentle tactile stimulus to the distal phalanx of thumb and index fingers. Group analysis was performed in the control group. Individual analyses in the native space were performed with data of hemiplegic subjects. The gentle tactile stimulus showed great accuracy in determining somatosensory cortex activation. Single-subject gentle tactile stimulus showed an S1 activation in the postcentral gyrus and an S2 activation in the inferior parietal insular cortex. A correlation emerged between an index of S1 reorganization (distance between expected and reorganized S1) and sensory deficit (p < 0.05) in subjects with hemiplegia, with higher distance related to a more severe sensory deficit. Increase in spatial resolution at 7 T allows a better localization of reorganized tactile function validated by its correlation with clinical measures. Our results support the S1 early-determination hypothesis and support the central role of topography of reorganized S1 compared to a less relevant S1-M1 integration.
Collapse
|
16
|
Aquino KM, Sokoliuk R, Pakenham DO, Sanchez-Panchuelo RM, Hanslmayr S, Mayhew SD, Mullinger KJ, Francis ST. Addressing challenges of high spatial resolution UHF fMRI for group analysis of higher-order cognitive tasks: An inter-sensory task directing attention between visual and somatosensory domains. Hum Brain Mapp 2018; 40:1298-1316. [PMID: 30430706 PMCID: PMC6865556 DOI: 10.1002/hbm.24450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 01/20/2023] Open
Abstract
Functional MRI at ultra‐high field (UHF, ≥7 T) provides significant increases in BOLD contrast‐to‐noise ratio (CNR) compared with conventional field strength (3 T), and has been exploited for reduced field‐of‐view, high spatial resolution mapping of primary sensory areas. Applying these high spatial resolution methods to investigate whole brain functional responses to higher‐order cognitive tasks leads to a number of challenges, in particular how to perform robust group‐level statistical analyses. This study addresses these challenges using an inter‐sensory cognitive task which modulates top‐down attention at graded levels between the visual and somatosensory domains. At the individual level, highly focal functional activation to the task and task difficulty (modulated by attention levels) were detectable due to the high CNR at UHF. However, to assess group level effects, both anatomical and functional variability must be considered during analysis. We demonstrate the importance of surface over volume normalisation and the requirement of no spatial smoothing when assessing highly focal activity. Using novel group analysis on anatomically parcellated brain regions, we show that in higher cognitive areas (parietal and dorsal‐lateral‐prefrontal cortex) fMRI responses to graded attention levels were modulated quadratically, whilst in visual cortex and VIP, responses were modulated linearly. These group fMRI responses were not seen clearly using conventional second‐level GLM analyses, illustrating the limitations of a conventional approach when investigating such focal responses in higher cognitive regions which are more anatomically variable. The approaches demonstrated here complement other advanced analysis methods such as multivariate pattern analysis, allowing UHF to be fully exploited in cognitive neuroscience.
Collapse
Affiliation(s)
- Kevin M Aquino
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,Brain and Mental Health Laboratory, Monash University, Clayton, Australia.,School of Physics, University of Sydney, Sydney, Australia
| | - Rodika Sokoliuk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Daisie O Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Rosa Maria Sanchez-Panchuelo
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stephen D Mayhew
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Karen J Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
|