1
|
Li Y, Gu J, Li R, Yi H, He J, Gao J. Sensory and motor cortices parcellations estimated via distance-weighted sparse representation with application to autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111125. [PMID: 39173993 DOI: 10.1016/j.pnpbp.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Motor impairments and sensory processing abnormalities are prevalent in autism spectrum disorder (ASD), closely related to the core functions of the primary motor cortex (M1) and the primary somatosensory cortex (S1). Currently, there is limited knowledge about potential therapeutic targets in the subregions of M1 and S1 in ASD patients. This study aims to map clinically significant functional subregions of M1 and S1. METHODS Resting-state functional magnetic resonance imaging data (NTD = 266) from Autism Brain Imaging Data Exchange (ABIDE) were used for subregion modeling. We proposed a distance-weighted sparse representation algorithm to construct brain functional networks. Functional subregions of M1 and S1 were identified through consensus clustering at the group level. Differences in the characteristics of functional subregions were analyzed, along with their correlation with clinical scores. RESULTS We observed symmetrical and continuous subregion organization from dorsal to ventral aspects in M1 and S1, with M1 subregions conforming to the functional pattern of the motor homunculus. Significant intergroup differences and clinical correlations were found in the dorsal and ventral aspects of M1 (p < 0.05/3, Bonferroni correction) and the ventromedial BA3 of S1 (p < 0.05/5). These functional characteristics were positively correlated with autism severity. All subregions showed significant results in the ROI-to-ROI intergroup differential analysis (p < 0.05/80). LIMITATIONS The generalizability of the segmentation model requires further evaluation. CONCLUSIONS This study highlights the significance of M1 and S1 in ASD treatment and may provide new insights into brain parcellation and the identification of therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Hongtao Yi
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Junbiao He
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Sichuan Province, Chengdu 610039, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Sichuan Province, Chengdu 611731, China.
| |
Collapse
|
2
|
He Z, Zhang T, Wang Q, Zhang S, Cao G, Liu T, Zhao S, Jiang X, Guo L, Yuan Y, Han J. Brain functional gradients are related to cortical folding gradient. Cereb Cortex 2024; 34:bhae453. [PMID: 39569627 DOI: 10.1093/cercor/bhae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
Collapse
Affiliation(s)
- Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Songyao Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yixuan Yuan
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Hackney BC, Pyles JA, Grossman ED. A quantitative comparison of atlas parcellations on the human superior temporal sulcus. Brain Res 2024; 1842:149119. [PMID: 38986829 DOI: 10.1016/j.brainres.2024.149119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The superior temporal sulcus (STS) has a functional topography that has been difficult to characterize through traditional approaches. Automated atlas parcellations may be one solution while also being beneficial for both dimensional reduction and standardizing regions of interest, but they yield very different boundary definitions along the STS. Here we evaluate how well machine learning classifiers can correctly identify six social cognitive tasks from STS activation patterns dimensionally reduced using four popular atlases (Glasser et al., 2016; Gordon et al., 2016; Power et al., 2011 as projected onto the surface by Arslan et al., 2018; Schaefer et al., 2018). Functional data was summarized within each STS parcel in one of four ways, then subjected to leave-one-subject-out cross-validation SVM classification. We found that the classifiers could readily label conditions when data was parcellated using any of the four atlases, evidence that dimensional reduction to parcels did not compromise functional fingerprints. Mean activation for the social conditions was the most effective metric for classification in the right STS, whereas all the metrics classified equally well in the left STS. Interestingly, even atlases constructed from random parcellation schemes (null atlases) classified the conditions with high accuracy. We therefore conclude that the complex activation maps on the STS are readily differentiated at a coarse granular level, despite a strict topography having not yet been identified. Further work is required to identify what features have greatest potential to improve the utility of atlases in replacing functional localizers.
Collapse
Affiliation(s)
- Brandon C Hackney
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States.
| | - John A Pyles
- Department of Psychology, Center for Human Neuroscience, University of Washington, 119 Guthrie Hall, Seattle, WA 98195, United States
| | - Emily D Grossman
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697, United States
| |
Collapse
|
4
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Feilong M, Jiahui G, Gobbini MI, Haxby JV. A cortical surface template for human neuroscience. Nat Methods 2024; 21:1736-1742. [PMID: 39014074 PMCID: PMC11399089 DOI: 10.1038/s41592-024-02346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
Neuroimaging data analysis relies on normalization to standard anatomical templates to resolve macroanatomical differences across brains. Existing human cortical surface templates sample locations unevenly because of distortions introduced by inflation of the folded cortex into a standard shape. Here we present the onavg template, which affords uniform sampling of the cortex. We created the onavg template based on openly available high-quality structural scans of 1,031 brains-25 times more than existing cortical templates. We optimized the vertex locations based on cortical anatomy, achieving an even distribution. We observed consistently higher multivariate pattern classification accuracies and representational geometry inter-participant correlations based on onavg than on other templates, and onavg only needs three-quarters as much data to achieve the same performance compared with other templates. The optimized sampling also reduces CPU time across algorithms by 1.3-22.4% due to less variation in the number of vertices in each searchlight.
Collapse
Affiliation(s)
- Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.
| | - Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Maria Ida Gobbini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - James V Haxby
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
6
|
Farahani FV, Nebel MB, Wager TD, Lindquist MA. Effects of connectivity hyperalignment (CHA) on estimated brain network properties: from coarse-scale to fine-scale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609817. [PMID: 39253413 PMCID: PMC11383013 DOI: 10.1101/2024.08.27.609817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
7
|
Yu M, Rao B, Cao Y, Gao L, Li H, Song X, Xu H. Consistency and stability of individualized cortical functional networks parcellation at 3.0 T and 5.0 T MRI. Front Neurosci 2024; 18:1425032. [PMID: 39224574 PMCID: PMC11366602 DOI: 10.3389/fnins.2024.1425032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Background Individualized cortical functional networks parcellation has been reported as highly reproducible at 3.0 T. However, in view of the complexity of cortical networks and the greatly increased sensitivity provided by ultra-high field 5.0 T MRI, the parcellation consistency between different magnetic fields is unclear. Purpose To explore the consistency and stability of individualized cortical functional networks parcellation at 3.0 T and 5.0 T MRI based on spatial and functional connectivity analysis. Materials and methods Thirty healthy young participants were enrolled. Each subject underwent resting-state fMRI at both 3.0 T and 5.0 T in a random order in less than 48 h. The individualized cortical functional networks was parcellated for each subject using a previously proposed iteration algorithm. Dice coefficient was used to evaluate the spatial consistency of parcellated networks between 3.0 T and 5.0 T. Functional connectivity (FC) consistency was evaluated using the Euclidian distance and Graph-theory metrics. Results A functional cortical atlas consisting of 18 networks was individually parcellated at 3.0 T and 5.0 T. The spatial consistency of these networks at 3.0 T and 5.0 T for the same subject was significantly higher than that of inter-individuals. The FC between the 18 networks acquired at 3.0 T and 5.0 T were highly consistent for the same subject. Positive cross-subject correlations in Graph-theory metrics were found between 3.0 T and 5.0 T. Conclusion Individualized cortical functional networks at 3.0 T and 5.0 T showed consistent and stable parcellation results both spatially and functionally. The 5.0 T MR provides finer functional sub-network characteristics than that of 3.0 T.
Collapse
Affiliation(s)
- Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Cao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaopeng Song
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Boelders SM, De Baene W, Postma E, Gehring K, Ong LL. Predicting Cognitive Functioning for Patients with a High-Grade Glioma: Evaluating Different Representations of Tumor Location in a Common Space. Neuroinformatics 2024; 22:329-352. [PMID: 38900230 PMCID: PMC11329426 DOI: 10.1007/s12021-024-09671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Cognitive functioning is increasingly considered when making treatment decisions for patients with a brain tumor in view of a personalized onco-functional balance. Ideally, one can predict cognitive functioning of individual patients to make treatment decisions considering this balance. To make accurate predictions, an informative representation of tumor location is pivotal, yet comparisons of representations are lacking. Therefore, this study compares brain atlases and principal component analysis (PCA) to represent voxel-wise tumor location. Pre-operative cognitive functioning was predicted for 246 patients with a high-grade glioma across eight cognitive tests while using different representations of voxel-wise tumor location as predictors. Voxel-wise tumor location was represented using 13 different frequently-used population average atlases, 13 randomly generated atlases, and 13 representations based on PCA. ElasticNet predictions were compared between representations and against a model solely using tumor volume. Preoperative cognitive functioning could only partly be predicted from tumor location. Performances of different representations were largely similar. Population average atlases did not result in better predictions compared to random atlases. PCA-based representation did not clearly outperform other representations, although summary metrics indicated that PCA-based representations performed somewhat better in our sample. Representations with more regions or components resulted in less accurate predictions. Population average atlases possibly cannot distinguish between functionally distinct areas when applied to patients with a glioma. This stresses the need to develop and validate methods for individual parcellations in the presence of lesions. Future studies may test if the observed small advantage of PCA-based representations generalizes to other data.
Collapse
Affiliation(s)
- S M Boelders
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - W De Baene
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands
| | - E Postma
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| | - K Gehring
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands.
- Department of Cognitive Neuropsychology, Tilburg University Tilburg, Warandelaan 2, P. O. Box 90153, Tilburg, 5000 LE, The Netherlands.
| | - L L Ong
- Department of Cognitive Sciences and AI, Tilburg University, Tilburg, The Netherlands
| |
Collapse
|
9
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
10
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. Comparative Analysis of Human-Chimpanzee Divergence in Brain Connectivity and its Genetic Correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597252. [PMID: 38895242 PMCID: PMC11185649 DOI: 10.1101/2024.06.03.597252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
11
|
Sreepadmanabh M, Arun AB, Bhattacharjee T. Design approaches for 3D cell culture and 3D bioprinting platforms. BIOPHYSICS REVIEWS 2024; 5:021304. [PMID: 38765221 PMCID: PMC11101206 DOI: 10.1063/5.0188268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
The natural habitat of most cells consists of complex and disordered 3D microenvironments with spatiotemporally dynamic material properties. However, prevalent methods of in vitro culture study cells under poorly biomimetic 2D confinement or homogeneous conditions that often neglect critical topographical cues and mechanical stimuli. It has also become increasingly apparent that cells in a 3D conformation exhibit dramatically altered morphological and phenotypical states. In response, efforts toward designing biomaterial platforms for 3D cell culture have taken centerstage over the past few decades. Herein, we present a broad overview of biomaterials for 3D cell culture and 3D bioprinting, spanning both monolithic and granular systems. We first critically evaluate conventional monolithic hydrogel networks, with an emphasis on specific experimental requirements. Building on this, we document the recent emergence of microgel-based 3D growth media as a promising biomaterial platform enabling interrogation of cells within porous and granular scaffolds. We also explore how jammed microgel systems have been leveraged to spatially design and manipulate cellular structures using 3D bioprinting. The advent of these techniques heralds an unprecedented ability to experimentally model complex physiological niches, with important implications for tissue bioengineering and biomedical applications.
Collapse
Affiliation(s)
- M Sreepadmanabh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Ashitha B. Arun
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| |
Collapse
|
12
|
Wen X, Yang M, Qi S, Wu X, Zhang D. Automated individual cortical parcellation via consensus graph representation learning. Neuroimage 2024; 293:120616. [PMID: 38697587 DOI: 10.1016/j.neuroimage.2024.120616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.
Collapse
Affiliation(s)
- Xuyun Wen
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China.
| | - Mengting Yang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China
| | - Xia Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Vohryzek J, Cabral J, Timmermann C, Atasoy S, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. The flattening of spacetime hierarchy of the N,N-dimethyltryptamine brain state is characterized by harmonic decomposition of spacetime (HADES) framework. Natl Sci Rev 2024; 11:nwae124. [PMID: 38778818 PMCID: PMC11110867 DOI: 10.1093/nsr/nwae124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we investigate healthy participants taking the serotonergic psychedelic N,N-dimethyltryptamine (DMT) with the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in contributions across most low-frequency harmonic modes in the DMT-induced brain state. When normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES' dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco 94143, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, Department of Psychiatry, University of Oxford, Oxford OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
14
|
Chen Y, Liang L, Wei Y, Liu Y, Li X, Zhang Z, Li L, Deng D. Disrupted morphological brain network organization in subjective cognitive decline and mild cognitive impairment. Brain Imaging Behav 2024; 18:387-395. [PMID: 38147273 DOI: 10.1007/s11682-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
We aim to investigate the alterations in gray matter for subjective cognitive decline (SCD) and mild cognitive impairment (MCI) from the perspective of the human connectome. High-resolution T1-weighted images were acquired from 54 patients with SCD, 95 patients with MCI, and 65 healthy controls (HC). Morphological brain networks (MBN) were constructed using similarities in the distribution of gray matter volumes between regions. The strength of morphological connections and topographic metrics derived from the graph-theoretical analysis were compared. Furthermore, we assessed the relationship between the observed morphological abnormalities and disease severity. According to the results, we found a significantly decreased morphological connection between the somatomotor network and ventral attention network in SCD compared to HC and MCI compared to SCD. The graph-theoretic analysis illustrated disruptions in the whole network organization, where the normalized shortest path increased and the global efficiency (Eg) decreased in MCI compared to SCD. In addition, Montreal Cognitive Assessment scores of SCD patients had a significantly negative correlation with Eg. The primary limitations of the present study include the cross-sectional design, no enrolled AD patients, no assessment of amyloidosis, and the need for more comprehensive neuropsychological tests. Our findings indicate the abnormalities of morphological networks at early stages in the AD continuum, which could be interpreted as compensatory changes to retain a normal level of cognitive function. The present study could provide new insight into the mechanism of AD.
Collapse
Affiliation(s)
- Yuxin Chen
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, China
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Lingyan Liang
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Yichen Wei
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Ying Liu
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Xiaocheng Li
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Linling Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, Guangdong, China.
| | - Demao Deng
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, China.
- Department of Radiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Science, Nanning, Guangxi, China.
| |
Collapse
|
15
|
Wylie KP, Vu T, Legget KT, Tregellas JR. Hierarchical Principal Components for Data-Driven Multiresolution fMRI Analyses. Brain Sci 2024; 14:325. [PMID: 38671978 PMCID: PMC11048444 DOI: 10.3390/brainsci14040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Understanding the organization of neural processing is a fundamental goal of neuroscience. Recent work suggests that these systems are organized as a multiscale hierarchy, with increasingly specialized subsystems nested inside general processing systems. Current neuroimaging methods, such as independent component analysis (ICA), cannot fully capture this hierarchy since they are limited to a single spatial scale. In this manuscript, we introduce multiresolution hierarchical principal components analysis (hPCA) and compare it to ICA using simulated fMRI datasets. Furthermore, we describe a parametric statistical filtering method developed to focus analyses on biologically relevant features. Lastly, we apply hPCA to the Human Connectome Project (HCP) to demonstrate its ability to estimate a hierarchy from real fMRI data. hPCA accurately estimated spatial maps and time series from networks with diverse hierarchical structures. Simulated hierarchies varied in the degree of branching, such as two-way or three-way subdivisions, and the total number of levels, with varying equal or unequal subdivision sizes at each branch. In each case, as well as in the HCP, hPCA was able to reconstruct a known hierarchy of networks. Our results suggest that hPCA can facilitate more detailed and comprehensive analyses of the brain's network of networks and the multiscale regional specializations underlying neural processing and cognition.
Collapse
Affiliation(s)
- Korey P. Wylie
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristina T. Legget
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Jason R. Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.T.L.); (J.R.T.)
- Research Service, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Levi PT, Chopra S, Pang JC, Holmes A, Gajwani M, Sassenberg TA, DeYoung CG, Fornito A. The effect of using group-averaged or individualized brain parcellations when investigating connectome dysfunction in psychosis. Netw Neurosci 2023; 7:1228-1247. [PMID: 38144692 PMCID: PMC10631788 DOI: 10.1162/netn_a_00329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/27/2023] [Indexed: 12/26/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to each brain. This approach neglects individual differences in brain functional organization and may inaccurately delineate the true borders of functional regions. These inaccuracies could inflate or underestimate group differences in case-control analyses. We investigated how individual differences in brain organization influence group comparisons of FC using psychosis as a case study, drawing on fMRI data in 121 early psychosis patients and 57 controls. We defined FC networks using either a group-based parcellation or an individually tailored variant of the same parcellation. Individualized parcellations yielded more functionally homogeneous ROIs than did group-based parcellations. At the level of individual connections, case-control FC differences were widespread, but the group-based parcellation identified approximately 7.7% more connections as dysfunctional than the individualized parcellation. When considering differences at the level of functional networks, the results from both parcellations converged. Our results suggest that a substantial fraction of dysconnectivity previously observed in psychosis may be driven by the parcellation method, rather than by a pathophysiological process related to psychosis.
Collapse
Affiliation(s)
- Priscila T. Levi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
| | - James C. Pang
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Mehul Gajwani
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | | | - Colin G. DeYoung
- Department of Psychology, University of Minnesota, Minnesota, MN, USA
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Mawla I, Huang Z, Kaplan CM, Ichesco E, Waller N, Larkin TE, Zöllner HJ, Edden RA, Harte SE, Clauw DJ, Mashour GA, Napadow V, Harris RE. Large-scale momentary brain co-activation patterns are associated with hyperalgesia and mediate focal neurochemistry and cross-network functional connectivity in fibromyalgia. Pain 2023; 164:2737-2748. [PMID: 37751539 PMCID: PMC10652715 DOI: 10.1097/j.pain.0000000000002973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Fibromyalgia has been characterized by augmented cross-network functional communication between the brain's sensorimotor, default mode, and attentional (salience/ventral and dorsal) networks. However, the underlying mechanisms of these aberrant communication patterns are unknown. In this study, we sought to understand large-scale topographic patterns at instantaneous timepoints, known as co-activation patterns (CAPs). We found that a sustained pressure pain challenge temporally modulated the occurrence of CAPs. Using proton magnetic resonance spectroscopy, we found that greater basal excitatory over inhibitory neurotransmitter levels within the anterior insula orchestrated higher cross-network connectivity between the anterior insula and the default mode network through lower occurrence of a CAP encompassing the attentional networks during sustained pain. Moreover, we found that hyperalgesia in fibromyalgia was mediated through increased occurrence of a CAP encompassing the sensorimotor network during sustained pain. In conclusion, this study elucidates the role of momentary large-scale topographic brain patterns in shaping noxious information in patients with fibromyalgia, while laying the groundwork for using precise spatiotemporal dynamics of the brain for the potential development of therapeutics.
Collapse
Affiliation(s)
- Ishtiaq Mawla
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Zirui Huang
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Chelsea M. Kaplan
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Eric Ichesco
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Noah Waller
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Tony E. Larkin
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Steven E. Harte
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - Daniel J. Clauw
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
| | - George A. Mashour
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Network, Harvard Medical School, Charlestown, MA, United States
| | - Richard E. Harris
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan, Ann Arbor, MI, United States
- Susan Samueli Integrative Health Institute, School of Medicine, University of California at Irvine, Irvine, CA, United States
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California at Irvine, Irvine, CA, United States
| |
Collapse
|
18
|
Feilong M, Nastase SA, Jiahui G, Halchenko YO, Gobbini MI, Haxby JV. The individualized neural tuning model: Precise and generalizable cartography of functional architecture in individual brains. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00032. [PMID: 39449717 PMCID: PMC11501089 DOI: 10.1162/imag_a_00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Quantifying how brain functional architecture differs from person to person is a key challenge in human neuroscience. Current individualized models of brain functional organization are based on brain regions and networks, limiting their use in studying fine-grained vertex-level differences. In this work, we present the individualized neural tuning (INT) model, a fine-grained individualized model of brain functional organization. The INT model is designed to have vertex-level granularity, to capture both representational and topographic differences, and to model stimulus-general neural tuning. Through a series of analyses, we demonstrate that (a) our INT model provides a reliable individualized measure of fine-grained brain functional organization, (b) it accurately predicts individualized brain response patterns to new stimuli, and (c) for many benchmarks, it requires only 10-20 minutes of data for good performance. The high reliability, specificity, precision, and generalizability of our INT model affords new opportunities for building brain-based biomarkers based on naturalistic neuroimaging paradigms.
Collapse
Affiliation(s)
- Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - Samuel A. Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | | | - M. Ida Gobbini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - James V. Haxby
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
19
|
Liu H, Zheng H, Zhang G, Zhuang J, Li W, Wu B, Zheng W. A Graph Theory Study of Resting-State Functional MRI Connectivity in Children With Carbon Monoxide Poisoning. J Magn Reson Imaging 2023; 58:1452-1459. [PMID: 36994898 DOI: 10.1002/jmri.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The effect of carbon monoxide (CO) poisoning on the topology of brain functional networks is unclear, especially in children whose brains are still developing. PURPOSE To investigate the topological alterations of the whole-brain functional connectome in children with CO poisoning and characterize its relationship with disease severity. STUDY TYPE Cross-sectional and prospective study. SUBJECTS A total of 26 patients with CO poisoning and 26 healthy controls. FIELD STRENGTH/SEQUENCE A 3.0 T MRI system/echo planar imaging (EPI) and 3D brain volume imaging (BRAVO) sequences. ASSESSMENT We used the network-based statistics (NBS) method to explore between-group differences in functional connectivity strength and a graph-theoretical-based analytic method to explore the topology of brain networks. STATISTICAL TESTS Student's t-test, chi-square test, NBS, Pearson correlation coefficient, and false discovery rate correction. The statistical significance threshold was set at P < 0.05. RESULTS The case group's brain functional network topology was impaired in comparison to the control group (reduced global efficiency and small-worldness, increased characteristic path length). According to node and edge analyses, the case group showed topologically damaged regions in the frontal lobe and basal ganglia, as well as neuronal circuits with weaker connections. Also, there was a significant correlation between the patients' coma time and the degree (r = -0.4564), efficiency (r = -0.4625), and characteristic path length (r = 0.4383) of the nodes in the left orbital inferior frontal gyrus. Carbon monoxide hemoglobin content (COHb) concentration and right rolandic operculum node characteristic path length (r = -0.3894) were significantly correlated. The node efficiency and node degree of the right middle frontal gyrus (r = 0.4447 and 0.4539) and right pallidum (r = 0.4136 and 0.4501) significantly correlated with the MMSE score. DATA CONCLUSION The brain network topology of CO poisoned children is damaged, which is manifested by reduced network integration and may lead to a series of clinical symptoms in patients. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- HongKun Liu
- Department of Radiology, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - HongYi Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - GengBiao Zhang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - JiaYan Zhuang
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - WeiJia Li
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - BiXia Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| | - WenBin Zheng
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong, China
| |
Collapse
|
20
|
Boeken OJ, Cieslik EC, Langner R, Markett S. Characterizing functional modules in the human thalamus: coactivation-based parcellation and systems-level functional decoding. Brain Struct Funct 2023; 228:1811-1834. [PMID: 36547707 PMCID: PMC10516793 DOI: 10.1007/s00429-022-02603-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
The human thalamus relays sensory signals to the cortex and facilitates brain-wide communication. The thalamus is also more directly involved in sensorimotor and various cognitive functions but a full characterization of its functional repertoire, particularly in regard to its internal anatomical structure, is still outstanding. As a putative hub in the human connectome, the thalamus might reveal its functional profile only in conjunction with interconnected brain areas. We therefore developed a novel systems-level Bayesian reverse inference decoding that complements the traditional neuroinformatics approach towards a network account of thalamic function. The systems-level decoding considers the functional repertoire (i.e., the terms associated with a brain region) of all regions showing co-activations with a predefined seed region in a brain-wide fashion. Here, we used task-constrained meta-analytic connectivity-based parcellation (MACM-CBP) to identify thalamic subregions as seed regions and applied the systems-level decoding to these subregions in conjunction with functionally connected cortical regions. Our results confirm thalamic structure-function relationships known from animal and clinical studies and revealed further associations with language, memory, and locomotion that have not been detailed in the cognitive neuroscience literature before. The systems-level decoding further uncovered large systems engaged in autobiographical memory and nociception. We propose this novel decoding approach as a useful tool to detect previously unknown structure-function relationships at the brain network level, and to build viable starting points for future studies.
Collapse
Affiliation(s)
- Ole J Boeken
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany.
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | - Sebastian Markett
- Faculty of Life Sciences, Department of Molecular Psychology, Humboldt-Universität Zu Berlin, Rudower Chaussee 18, 12489, Berlin, Germany
| |
Collapse
|
21
|
Brkić D, Sommariva S, Schuler AL, Pascarella A, Belardinelli P, Isabella SL, Pino GD, Zago S, Ferrazzi G, Rasero J, Arcara G, Marinazzo D, Pellegrino G. The impact of ROI extraction method for MEG connectivity estimation: practical recommendations for the study of resting state data. Neuroimage 2023; 284:120424. [PMID: 39492417 DOI: 10.1016/j.neuroimage.2023.120424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis requires the extraction of measures from regions of interest (ROI). M/EEG ROI-derived source activity can be treated in different ways. It is possible, for instance, to average each ROI's time series prior to calculating connectivity measures. Alternatively, one can compute connectivity maps for each element of the ROI prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity results is still unclear. Here, we address this question within a large MEG resting state cohort (N=113) and within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), and three frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare four extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI before computing connectivity, map of the (iii) average, or (iv) maximum connectivity after computing connectivity for each element of the seed. Hierarchical clustering is then applied to compare connectivity outputs across multiple strategies, followed by direct contrasts across extraction methods. Finally, the results are validated by using a set of realistic simulations. We show that ROI-based connectivity maps vary remarkably across strategies in terms of connectivity magnitude and spatial distribution. Dimensionality reduction procedures conducted after computing connectivity are more similar to each-other, while PCA before approach is the most dissimilar to other approaches. Although differences across methods are consistent across frequency bands, they are influenced by the connectivity metric and ROI size. Greater differences were observed for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed that after aggregation procedures are generally more accurate but have lower specificity (higher rate of false positive connections). Though computationally demanding, after dimensionality reduction strategies should be preferred when higher sensitivity is desired. Given the remarkable differences across aggregation procedures, caution is warranted in comparing results across studies applying different methods.
Collapse
Affiliation(s)
| | - Sara Sommariva
- Dipartimento di Matematica, Università di Genova, Genova, Italy
| | - Anna-Lisa Schuler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annalisa Pascarella
- Istituto per le Applicazioni del Calcolo "M. Picone", National Research Council, Rome, Italy
| | | | - Silvia L Isabella
- IRCCS San Camillo, Venice, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | | | | | - Javier Rasero
- CoAx Lab, Carnegie Mellon University, Pittsburgh, USA; School of Data Science, University of Virginia, Charlottesville, USA.
| | | | - Daniele Marinazzo
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Han Z, Liu T, Shi Z, Zhang J, Suo D, Wang L, Chen D, Wu J, Yan T. Investigating the heterogeneity within the somatosensory-motor network and its relationship with the attention and default systems. PNAS NEXUS 2023; 2:pgad276. [PMID: 37693210 PMCID: PMC10485902 DOI: 10.1093/pnasnexus/pgad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
The somatosensory-motor network (SMN) not only plays an important role in primary somatosensory and motor processing but is also central to many disorders. However, the SMN heterogeneity related to higher-order systems still remains unclear. Here, we investigated SMN heterogeneity from multiple perspectives. To characterize the SMN substructures in more detail, we used ultra-high-field functional MRI to delineate a finer-grained cortical parcellation containing 430 parcels that is more homogenous than the state-of-the-art parcellation. We personalized the new parcellation to account for individual differences and identified multiscale individual-specific brain structures. We found that the SMN subnetworks showed distinct resting-state functional connectivity (RSFC) patterns. The Hand subnetwork was central within the SMN and exhibited stronger RSFC with the attention systems than the other subnetworks, whereas the Tongue subnetwork exhibited stronger RSFC with the default systems. This two-fold differentiation was observed in the temporal ordering patterns within the SMN. Furthermore, we characterized how the distinct attention and default streams were carried forward into the functions of the SMN using dynamic causal modeling and identified two behavioral domains associated with this SMN fractionation using meta-analytic tools. Overall, our findings provided important insights into the heterogeneous SMN organization at the system level and suggested that the Hand subnetwork may be preferentially involved in exogenous processes, whereas the Tongue subnetwork may be more important in endogenous processes.
Collapse
Affiliation(s)
- Ziteng Han
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tiantian Liu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhongyan Shi
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Duanduan Chen
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
23
|
Wang F, Zhang H, Wu Z, Hu D, Zhou Z, Girault JB, Wang L, Lin W, Li G. Fine-grained functional parcellation maps of the infant cerebral cortex. eLife 2023; 12:e75401. [PMID: 37526293 PMCID: PMC10393291 DOI: 10.7554/elife.75401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Resting-state functional MRI (rs-fMRI) is widely used to examine the dynamic brain functional development of infants, but these studies typically require precise cortical parcellation maps, which cannot be directly borrowed from adult-based functional parcellation maps due to the substantial differences in functional brain organization between infants and adults. Creating infant-specific cortical parcellation maps is thus highly desired but remains challenging due to difficulties in acquiring and processing infant brain MRIs. In this study, we leveraged 1064 high-resolution longitudinal rs-fMRIs from 197 typically developing infants and toddlers from birth to 24 months who participated in the Baby Connectome Project to develop the first set of infant-specific, fine-grained, surface-based cortical functional parcellation maps. To establish meaningful cortical functional correspondence across individuals, we performed cortical co-registration using both the cortical folding geometric features and the local gradient of functional connectivity (FC). Then we generated both age-related and age-independent cortical parcellation maps with over 800 fine-grained parcels during infancy based on aligned and averaged local gradient maps of FC across individuals. These parcellation maps reveal complex functional developmental patterns, such as changes in local gradient, network size, and local efficiency, especially during the first 9 postnatal months. Our generated fine-grained infant cortical functional parcellation maps are publicly available at https://www.nitrc.org/projects/infantsurfatlas/ for advancing the pediatric neuroimaging field.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anChina
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Zhang
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Dan Hu
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Zhen Zhou
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Jessica B Girault
- Department of Psychiatry, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, the University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
24
|
Jiang P, Cui S, Yao S, Cai H, Zhu J, Yu Y. The hierarchical organization of the precuneus captured by functional gradients. Brain Struct Funct 2023; 228:1561-1572. [PMID: 37378854 PMCID: PMC10335959 DOI: 10.1007/s00429-023-02672-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
The precuneus shows considerable heterogeneity in multiple dimensions including anatomy, function, and involvement in brain disorders. Leveraging the state-of-the-art functional gradient approach, we aimed to investigate the hierarchical organization of the precuneus, which may hold promise for a unified understanding of precuneus heterogeneity. Resting-state functional MRI data from 793 healthy individuals were used to discover and validate functional gradients of the precuneus, which were calculated based on the voxel-wise precuneus-to-cerebrum functional connectivity patterns. Then, we further explored the potential relationships of the precuneus functional gradients with cortical morphology, intrinsic geometry, canonical functional networks, and behavioral domains. We found that the precuneus principal and secondary gradients showed dorsoanterior-ventral and ventroposterior-dorsal organizations, respectively. Concurrently, the principal gradient was associated with cortical morphology, and both the principal and secondary gradients showed geometric distance dependence. Importantly, precuneus functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along both gradients in a hierarchical manner, i.e., from the sensorimotor network (somatic movement and sensation) at one extreme to the default mode network (abstract cognitive functions) at the other extreme for the principal gradient and from the visual network (vision) at one end to the dorsal attention network (top-down control of attention) at the other end for the secondary gradient. These findings suggest that the precuneus functional gradients may provide mechanistic insights into the multifaceted nature of precuneus heterogeneity.
Collapse
Affiliation(s)
- Ping Jiang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Shunshun Cui
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Shanwen Yao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
25
|
Li X, Friedrich P, Patil KR, Eickhoff SB, Weis S. A topography-based predictive framework for naturalistic viewing fMRI. Neuroimage 2023:120245. [PMID: 37353099 DOI: 10.1016/j.neuroimage.2023.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) during naturalistic viewing (NV) provides exciting opportunities for studying brain functions in more ecologically valid settings. Understanding individual differences in brain functions during NV and their behavioural relevance has recently become an important goal. However, methods specifically designed for this purpose remain limited. Here, we propose a topography-based predictive framework (TOPF) to fill this methodological gap. TOPF identifies individual-specific evoked activity topographies in a data-driven manner and examines their behavioural relevance using a machine learning-based predictive framework. We validate TOPF on both NV and task-based fMRI data from multiple conditions. Our results show that TOPF effectively and stably captures individual differences in evoked brain activity and successfully predicts phenotypes across cognition, emotion and personality on unseen subjects from their activity topographies. Moreover, TOPF compares favourably with functional connectivity-based approaches in prediction performance, with the identified predictive brain regions being neurobiologically interpretable. Crucially, we highlight the importance of examining individual evoked brain activity topographies in advancing our understanding of the brain-behaviour relationship. We believe that the TOPF approach provides a simple but powerful tool for understanding brain-behaviour relationships on an individual level with a strong potential for clinical applications.
Collapse
Affiliation(s)
- Xuan Li
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany;; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Patrick Friedrich
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany;; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany;; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany;; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany;; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Shen Y, Cai H, Mo F, Yao S, Yu Y, Zhu J. Functional connectivity gradients of the cingulate cortex. Commun Biol 2023; 6:650. [PMID: 37337086 PMCID: PMC10279697 DOI: 10.1038/s42003-023-05029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Heterogeneity of the cingulate cortex is evident in multiple dimensions including anatomy, function, connectivity, and involvement in networks and diseases. Using the recently developed functional connectivity gradient approach and resting-state functional MRI data, we found three functional connectivity gradients that captured distinct dimensions of cingulate hierarchical organization. The principal gradient exhibited a radiating organization with transitions from the middle toward both anterior and posterior parts of the cingulate cortex and was related to canonical functional networks and corresponding behavioral domains. The second gradient showed an anterior-posterior axis across the cingulate cortex and had prominent geometric distance dependence. The third gradient displayed a marked differentiation of subgenual and caudal middle with other parts of the cingulate cortex and was associated with cortical morphology. Aside from providing an updated framework for understanding the multifaceted nature of cingulate heterogeneity, the observed hierarchical organization of the cingulate cortex may constitute a novel research agenda with potential applications in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Shanwen Yao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
27
|
Yan X, Kong R, Xue A, Yang Q, Orban C, An L, Holmes AJ, Qian X, Chen J, Zuo XN, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Bzdok D, Eickhoff SB, Yeo BTT. Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity. Neuroimage 2023; 273:120010. [PMID: 36918136 PMCID: PMC10212507 DOI: 10.1016/j.neuroimage.2023.120010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for dimensionality reduction and interpreting human neuroscience studies. We previously developed a model that integrates local and global approaches for estimating areal-level cortical parcellations. The resulting local-global parcellations are often referred to as the Schaefer parcellations. However, the lack of homotopic correspondence between left and right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, we show that the resulting homotopic parcellations are as homogeneous as the Schaefer parcellations, while being more homogeneous than five publicly available parcellations. Furthermore, weaker correlations between homotopic parcels are associated with greater lateralization in resting network organization, as well as lateralization in language and motor task activation. Finally, the homotopic parcellations agree with the boundaries of a number of cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local-global parcellations represent neurobiologically meaningful subdivisions of the human cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations estimated from 1479 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yan2023_homotopic).
Collapse
Affiliation(s)
- Xiaoxuan Yan
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Aihuiping Xue
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Qing Yang
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Csaba Orban
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Lijun An
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, Unites States of America
| | - Xing Qian
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianzhong Chen
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning/IDG McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; National Basic Public Science Data Center, China
| | - Juan Helen Zhou
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Gluckman
- UK Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, Unites States of America.
| |
Collapse
|
28
|
Zhang W, Du JL, Fang XY, Ni LY, Zhu YY, Yan W, Lu SP, Zhang RR, Xie SP. Shared and distinct structural brain alterations and cognitive features in drug-naïve schizophrenia and bipolar disorder. Asian J Psychiatr 2023; 82:103513. [PMID: 36827938 DOI: 10.1016/j.ajp.2023.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Our study aimed to examine the shared and distinct structural brain alterations, including cortical thickness(CT) and local gyrification index(LGI), and cognitive impairments between the early course stage of drug-naïve schizophrenia(SZ) and bipolar disorder(BD) patients when compared to healthy controls(HCs), and to further explore the correlation between altered brain structure and cognitive impairments. We included 72 SZ patients, 35 BD patients and 43 HCs. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery. Cerebral cortex analyses were performed with FreeSurfer. Furthermore, any structural aberrations related to cognition impairments were examined. Cognitive impairments existed in SZ and BD patients and were much more severe and widespread in SZ patients, compared to HCs. There were no significant differences in LGI among three groups. Compared to HCs, SZ had thicker cortex in left pars triangularis, and BD showed thinner CT in left postcentral gyrus. In addition, BD showed thinner cortex in left pars triangularis, left pars opercularis, left insula and right fusiform gyrus compared to SZ. Moreover, our results indicated that CT in many brain areas were significantly correlated with cognitive function in HCs, but only CT of left pars triangularis was correlated with impaired social cognition found in SZ. The findings suggest that changes of CT in the left pars triangularis and left postcentral gyrus may be potential pathophysiological mechanisms of the cognition impairments in SZ and BD, respectively, and the divergent CT of partly brain areas in BD vs. SZ may help distinguish them in early phases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Jing-Lun Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xing-Yu Fang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Long-Yan Ni
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan-Yuan Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shui-Ping Lu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Rong-Rong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shi-Ping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Li M, Xu X, Cao Z, Chen R, Zhao R, Zhao Z, Dang X, Oishi K, Wu D. Multi-modal multi-resolution atlas of the human neonatal cerebral cortex based on microstructural similarity. Neuroimage 2023; 272:120071. [PMID: 37003446 DOI: 10.1016/j.neuroimage.2023.120071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The neonatal period is a critical window for the development of the human brain and may hold implications for the long-term development of cognition and disorders. Multi-modal connectome studies have revealed many important findings underlying the adult brain but related studies were rare in the early human brain. One potential challenge is the lack of an appropriate and unbiased parcellation that combines structural and functional information in this population. Using 348 multi-modal MRI datasets from the developing human connectome project, we found that the information fused from the structural, diffusion, and functional MRI was relatively stable across MRI features and showed high reproducibility at the group level. Therefore, we generated automated multi-resolution parcellations (300 - 500 parcels) based on the similarity across multi-modal features using a gradient-based parcellation algorithm. In addition, to acquire a parcellation with high interpretability, we provided a manually delineated parcellation (210 parcels), which was approximately symmetric, and the adjacent areas around each boundary were statistically different in terms of the integrated similarity metric and at least one kind of original features. Overall, the present study provided multi-resolution and neonate-specific parcellations of the cerebral cortex based on multi-modal MRI properties, which may facilitate future studies of the human connectome in the early development period.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zuozhen Cao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Ruike Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Ruoke Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Xixi Dang
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore 21205, United States
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China.
| |
Collapse
|
30
|
Ambron R. Toward the unknown: consciousness and pain. Neurosci Conscious 2023; 2023:niad002. [PMID: 36814785 PMCID: PMC9940454 DOI: 10.1093/nc/niad002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 02/22/2023] Open
Abstract
Studies of consciousness are hindered by the complexity of the brain, but it is possible to study the consciousness of a sensation, namely pain. Three systems are necessary to experience pain: the somatosensory system conveys information about an injury to the thalamus where an awareness of the injury but not the painfulness emerges. The thalamus distributes the information to the affective system, which modulates the intensity of the pain, and to the cognitive system that imparts attention to the pain. Imaging of patients in pain and those experiencing placebo and hypnosis-induced analgesia shows that two essential cortical circuits for pain and attention are located within the anterior cingulate cortex. The circuits are activated when a high-frequency input results in the development of a long-term potentiation (LTP) at synapses on the apical dendrites of pyramidal neurons. The LTP acts via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors, and an anterior cingulate cortex-specific type-1 adenylate cyclase is necessary for both the LTP and the pain. The apical dendrites form an extensive network such that the input from serious injuries results in the emergence of a local field potential. Using mouse models, I propose experiments designed to test the hypothesis that the local field potential is necessary and sufficient for the consciousness of pain.
Collapse
Affiliation(s)
- Richard Ambron
- *Correspondence address. Department of Cell Biology and Pathology, Vagelos College of Physicians and Surgeons, Columbia University, 320 East Shore Road, Apt. 7C, Great Neck, New York, NY 11023, USA. Tel: +516-244-4530; E-mail: , E-mail:
| |
Collapse
|
31
|
Kringelbach ML, Perl YS, Tagliazucchi E, Deco G. Toward naturalistic neuroscience: Mechanisms underlying the flattening of brain hierarchy in movie-watching compared to rest and task. SCIENCE ADVANCES 2023; 9:eade6049. [PMID: 36638163 PMCID: PMC9839335 DOI: 10.1126/sciadv.ade6049] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 06/04/2023]
Abstract
Identifying the functional specialization of the brain has moved from using cognitive tasks and resting state to using ecological relevant, naturalistic movies. We leveraged a large-scale neuroimaging dataset to directly investigate the hierarchical reorganization of functional brain activity when watching naturalistic films compared to performing seven cognitive tasks and resting. A thermodynamics-inspired whole-brain model paradigm revealed the generative underlying mechanisms for changing the balance in causal interactions between brain regions in different conditions. Paradoxically, the hierarchy is flatter for movie-watching, and the level of nonreversibility is significantly smaller in comparison to both rest and tasks, where the latter in turn have the highest levels of hierarchy and nonreversibility. The underlying mechanisms were revealed by the model-based generative effective connectivity (GEC). Naturalistic films could therefore provide a fast and convenient way to measure important changes in GEC (integrating functional and anatomical connectivity) found in, for example, neuropsychiatric disorders. Overall, this study demonstrates the benefits of moving toward a more naturalistic neuroscience.
Collapse
Affiliation(s)
- Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
32
|
Hahn S, Owens MM, Yuan D, Juliano AC, Potter A, Garavan H, Allgaier N. Performance scaling for structural MRI surface parcellations: a machine learning analysis in the ABCD Study. Cereb Cortex 2022; 33:176-194. [PMID: 35238352 PMCID: PMC9758581 DOI: 10.1093/cercor/bhac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/13/2022] Open
Abstract
The use of predefined parcellations on surface-based representations of the brain as a method for data reduction is common across neuroimaging studies. In particular, prediction-based studies typically employ parcellation-driven summaries of brain measures as input to predictive algorithms, but the choice of parcellation and its influence on performance is often ignored. Here we employed preprocessed structural magnetic resonance imaging (sMRI) data from the Adolescent Brain Cognitive Development Study® to examine the relationship between 220 parcellations and out-of-sample predictive performance across 45 phenotypic measures in a large sample of 9- to 10-year-old children (N = 9,432). Choice of machine learning (ML) pipeline and use of alternative multiple parcellation-based strategies were also assessed. Relative parcellation performance was dependent on the spatial resolution of the parcellation, with larger number of parcels (up to ~4,000) outperforming coarser parcellations, according to a power-law scaling of between 1/4 and 1/3. Performance was further influenced by the type of parcellation, ML pipeline, and general strategy, with existing literature-based parcellations, a support vector-based pipeline, and ensembling across multiple parcellations, respectively, as the highest performing. These findings highlight the choice of parcellation as an important influence on downstream predictive performance, showing in some cases that switching to a higher resolution parcellation can yield a relatively large boost to performance.
Collapse
Affiliation(s)
- Sage Hahn
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - Max M Owens
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - DeKang Yuan
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - Anthony C Juliano
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - Alexandra Potter
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - Hugh Garavan
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| | - Nicholas Allgaier
- Departments of Complex Systems and Psychiatry, University of Vermont, Burlington, VT 05401, United States
| |
Collapse
|
33
|
Wang S, Wen H, Qiu S, Xie P, Qiu J, He H. Driving brain state transitions in major depressive disorder through external stimulation. Hum Brain Mapp 2022; 43:5326-5339. [PMID: 35808927 PMCID: PMC9812249 DOI: 10.1002/hbm.26006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Major depressive disorder (MDD) as a dysfunction of neural circuits and brain networks has been established in modern neuroimaging sciences. However, the brain state transitions between MDD and health through external stimulation remain unclear, which limits translation to clinical contexts and demonstrable clinical utility. We propose a framework of the large-scale whole-brain network model for MDD linking the underlying anatomical connectivity with functional dynamics obtained from diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). Then, we further explored the optimal brain regions to promote the transition of brain states between MDD and health through external stimulation of the model. Based on the whole-brain model successfully fitting the brain state space in MDD and the health, we demonstrated that the transition from MDD to health is achieved by the excitatory activation of the limbic system and from health to MDD by the inhibitory stimulation of the reward circuit. Our finding provides novel biophysical evidence for the neural mechanism of MDD and its recovery and allows the discovery of new stimulation targets for MDD recovery.
Collapse
Affiliation(s)
- Shengpei Wang
- Research Centre for Brain‐inspired Intelligence and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education)ChongqingChina
- School of PsychologySouthwest UniversityChongqingChina
| | - Shuang Qiu
- Research Centre for Brain‐inspired Intelligence and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Peng Xie
- Institute of NeuroscienceChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of NeurobiologyChongqingChina
- Department of Neurologythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (Ministry of Education)ChongqingChina
- School of PsychologySouthwest UniversityChongqingChina
| | - Huiguang He
- Research Centre for Brain‐inspired Intelligence and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
34
|
Bach-Morrow L, Boccalatte F, DeRosa A, Devos D, Garcia-Sanchez C, Inglese M, Droby A. Functional changes in prefrontal cortex following frequency-specific training. Sci Rep 2022; 12:20316. [PMID: 36434008 PMCID: PMC9700664 DOI: 10.1038/s41598-022-24088-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Numerous studies indicate a significant role of pre-frontal circuits (PFC) connectivity involving attentional and reward neural networks within attention deficit hyperactivity disorder (ADHD) pathophysiology. To date, the neural mechanisms underlying the utility of non-invasive frequency-specific training systems in ADHD remediation remain underexplored. To address this issue, we created a portable electroencephalography (EEG)-based wireless system consisting of a novel headset, electrodes, and neuro program, named frequency specific cognitive training (FSCT). In a double-blind, randomized, controlled study we investigated the training effects in N = 46 school-age children ages 6-18 years with ADHD. 23 children in experimental group who underwent FCST training showed an increase in scholastic performance and meliorated their performance on neuropsychological tests associated with executive functions and memory. Their results were compared to 23 age-matched participants who underwent training with placebo (pFSCT). Electroencephalogram (EEG) data collected from participants trained with FSCT showed a significant increase in 14-18 Hz EEG frequencies in PFC brain regions, activities that indicated brain activation in frontal brain regions, the caudate nucleus, and putamen. These results demonstrate that FSCT targets specific prefrontal and striatal areas in children with ADHD, suggesting a beneficial modality for non-invasive modulation of brain areas implicated in attention and executive functions.
Collapse
Affiliation(s)
| | - Francesco Boccalatte
- grid.240324.30000 0001 2109 4251Department of Pathology, NYU Langone Medical Center, New York, NY USA
| | - Antonio DeRosa
- grid.164295.d0000 0001 0941 7177Department of Mathematics, University of Maryland, College Park, MD USA
| | - David Devos
- grid.503422.20000 0001 2242 6780Department of Neurology, University Hospital, Univ of Lille, Lille, France
| | - Carmen Garcia-Sanchez
- grid.413396.a0000 0004 1768 8905Neuropsychology Unit, Neurology Service, Hospital de Sant Pau, Barcelona, Spain
| | - Matilde Inglese
- grid.59734.3c0000 0001 0670 2351Neurology Department, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Amgad Droby
- grid.59734.3c0000 0001 0670 2351Neurology Department, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
35
|
Li Y, Liu A, Fu X, Mckeown MJ, Wang ZJ, Chen X. Atlas-guided parcellation: Individualized functionally-homogenous parcellation in cerebral cortex. Comput Biol Med 2022; 150:106078. [PMID: 36155266 DOI: 10.1016/j.compbiomed.2022.106078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/03/2022]
Abstract
Resting-state Magnetic resonance imaging-based parcellation aims to group the voxels/vertices non-invasively based on their connectivity profiles, which has achieved great success in understanding the fundamental organizational principles of the human brain. Given the substantial inter-individual variability, the increasing number of studies focus on individual parcellation. However, current methods perform individual parcellations independently or are based on the group prior, requiring expensive computational costs, precise parcel alignment, and extra group information. In this work, an efficient and flexible parcellation framework of individual cerebral cortex was proposed based on a region growing algorithm by merging the unassigned and neighbor vertex with the highest-correlated parcel iteratively. It considered both consistency with prior atlases and individualized functional homogeneity of parcels, which can be applied to a single individual without parcel alignment and group information. The proposed framework was leveraged to 100 unrelated subjects for functional homogeneity comparison and individual identification, and 186 patients with Parkison's disease for symptom prediction. Results demonstrated our framework outperformed other methods in functional homogeneity, and the generated parcellations provided 100% individual identification accuracy. Moreover, the default mode network (DMN) exhibited higher functional homogeneity, intra-subject parcel reproducibility and fingerprinting accuracy, while the sensorimotor network did the opposite, reflecting that the DMN is the most representative, stable, and individual-identifiable network in the resting state. The correlation analysis showed that the severity of the disease symptoms was related negatively to the similarity of individual parcellation and the atlases of healthy populations. The disease severity can be correctly predicted using machine learning models based on individual topographic features such as parcel similarity and parcel size. In summary, the proposed framework not only significantly improves the functional homogeneity but also captures individualized and disease-related brain topography, serving as a potential tool to explore brain function and disease in the future.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Aiping Liu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Xueyang Fu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Martin J Mckeown
- Pacific Parkinson's Research Centre, Vancouver, British Columbia, V6E 2M6, Canada; Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Z Jane Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Xun Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
36
|
Suo X, Lei D, Li N, Peng J, Chen C, Li W, Qin K, Kemp GJ, Peng R, Gong Q. Brain functional network abnormalities in parkinson's disease with mild cognitive impairment. Cereb Cortex 2022; 32:4857-4868. [PMID: 35078209 PMCID: PMC9923713 DOI: 10.1093/cercor/bhab520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment in Parkinson's disease (PD-M) is related to a high risk of dementia. This study explored the whole-brain functional networks in early-stage PD-M. Forty-one patients with PD classified as cognitively normal (PD-N, n = 17) and PD-M (n = 24) and 24 demographically matched healthy controls (HC) underwent clinical and neuropsychological evaluations and resting-state functional magnetic resonance imaging. The global, regional, and modular topological characteristics were assessed in the brain functional networks, and their relationships to cognitive scores were tested. At the global level, PD-M and PD-N exhibited higher characteristic path length and lower clustering coefficient, local and global efficiency relative to HC. At the regional level, PD-M and PD-N showed lower nodal centrality in sensorimotor regions relative to HC. At the modular level, PD-M showed lower intramodular connectivity in default mode and cerebellum modules, and lower intermodular connectivity between default mode and frontoparietal modules than PD-N, correlated with Montreal Cognitive Assessment scores. Early-stage PD patients showed weaker small-worldization of brain networks. Modular connectivity alterations were mainly observed in patients with PD-M. These findings highlight the shared and distinct brain functional network dysfunctions in PD-M and PD-N, and yield insight into the neurobiology of cognitive decline in PD.
Collapse
Affiliation(s)
- Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45227, USA
| | - Nannan Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaxin Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Chaolan Chen
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361022, China
| |
Collapse
|
37
|
Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022; 257:119321. [PMID: 35580807 DOI: 10.1016/j.neuroimage.2022.119321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamical whole-brain models were developed to link structural (SC) and functional connectivity (FC) together into one framework. Nowadays, they are used to investigate the dynamical regimes of the brain and how these relate to behavioral, clinical and demographic traits. However, there is no comprehensive investigation on how reliable and subject specific the modeling results are given the variability of the empirical FC. In this study, we show that the parameters of these models can be fitted with a "poor" to "good" reliability depending on the exact implementation of the modeling paradigm. We find, as a general rule of thumb, that enhanced model personalization leads to increasingly reliable model parameters. In addition, we observe no clear effect of the model complexity evaluated by separately sampling results for linear, phase oscillator and neural mass network models. In fact, the most complex neural mass model often yields modeling results with "poor" reliability comparable to the simple linear model, but demonstrates an enhanced subject specificity of the model similarity maps. Subsequently, we show that the FC simulated by these models can outperform the empirical FC in terms of both reliability and subject specificity. For the structure-function relationship, simulated FC of individual subjects may be identified from the correlations with the empirical SC with an accuracy up to 70%, but not vice versa for non-linear models. We sample all our findings for 8 distinct brain parcellations and 6 modeling conditions and show that the parcellation-induced effect is much more pronounced for the modeling results than for the empirical data. In sum, this study provides an exploratory account on the reliability and subject specificity of dynamical whole-brain models and may be relevant for their further development and application. In particular, our findings suggest that the application of the dynamical whole-brain modeling should be tightly connected with an estimate of the reliability of the results.
Collapse
|
38
|
Chen YW, Canli T. "Nothing to see here": No structural brain differences as a function of the Big Five personality traits from a systematic review and meta-analysis. PERSONALITY NEUROSCIENCE 2022; 5:e8. [PMID: 35991756 PMCID: PMC9379932 DOI: 10.1017/pen.2021.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/03/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
Personality reflects social, affective, and cognitive predispositions that emerge from genetic and environmental influences. Contemporary personality theories conceptualize a Big Five Model of personality based on the traits of neuroticism, extraversion, agreeableness, conscientiousness, and openness to experience. Starting around the turn of the millennium, neuroimaging studies began to investigate functional and structural brain features associated with these traits. Here, we present the first study to systematically evaluate the entire published literature of the association between the Big Five traits and three different measures of brain structure. Qualitative results were highly heterogeneous, and a quantitative meta-analysis did not produce any replicable results. The present study provides a comprehensive evaluation of the literature and its limitations, including sample heterogeneity, Big Five personality instruments, structural image data acquisition, processing, and analytic strategies, and the heterogeneous nature of personality and brain structures. We propose to rethink the biological basis of personality traits and identify ways in which the field of personality neuroscience can be strengthened in its methodological rigor and replicability.
Collapse
Affiliation(s)
- Yen-Wen Chen
- Program in Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Turhan Canli
- Program in Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
- Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
39
|
Chen AA, Srinivasan D, Pomponio R, Fan Y, Nasrallah IM, Resnick SM, Beason-Held LL, Davatzikos C, Satterthwaite TD, Bassett DS, Shinohara RT, Shou H. Harmonizing functional connectivity reduces scanner effects in community detection. Neuroimage 2022; 256:119198. [PMID: 35421567 PMCID: PMC9202339 DOI: 10.1016/j.neuroimage.2022.119198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.
Collapse
Affiliation(s)
- Andrew A Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond Pomponio
- Department of Biostatistics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lifespan Informatics & Neuroimaging Center, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Nuerology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Moghimi P, Dang AT, Do Q, Netoff TI, Lim KO, Atluri G. Evaluation of functional MRI-based human brain parcellation: a review. J Neurophysiol 2022; 128:197-217. [PMID: 35675446 DOI: 10.1152/jn.00411.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain parcellations play a crucial role in the analysis of brain imaging data sets, as they can significantly affect the outcome of the analysis. In recent years, several novel approaches for constructing MRI-based brain parcellations have been developed with promising results. In the absence of ground truth, several evaluation approaches have been used to evaluate currently available brain parcellations. In this article, we review and critique methods used for evaluating functional brain parcellations constructed using fMRI data sets. We also describe how some of these evaluation methods have been used to estimate the optimal parcellation granularity. We provide a critical discussion of the current approach to the problem of identifying the optimal brain parcellation that is suited for a given neuroimaging study. We argue that the criteria for an optimal brain parcellation must depend on the application the parcellation is intended for. We describe a teleological approach to the evaluation of brain parcellations, where brain parcellations are evaluated in different contexts and optimal brain parcellations for each context are identified separately. We conclude by discussing several directions for further research that would result in improved evaluation strategies.
Collapse
Affiliation(s)
- Pantea Moghimi
- Department of Neurobiology, University of Chicago, Chicago, Illinois
| | - Anh The Dang
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Quan Do
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Gowtham Atluri
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
41
|
Weber S, Heim S, Richiardi J, Van De Ville D, Serranová T, Jech R, Marapin RS, Tijssen MAJ, Aybek S. Multi-centre classification of functional neurological disorders based on resting-state functional connectivity. Neuroimage Clin 2022; 35:103090. [PMID: 35752061 PMCID: PMC9240866 DOI: 10.1016/j.nicl.2022.103090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Using machine learning on multi-centre data, FND patients were successfully classified with an accuracy of 72%. The angular- and supramarginal gyri, cingular- and insular cortex, and the hippocampus were the most discriminant regions. To provide diagnostic utility, future studies must include patients with similar symptoms but different diagnoses.
Background Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a “rule-in” procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. Methods This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). Results FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). Conclusions The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms.
Collapse
Affiliation(s)
- Samantha Weber
- Psychosomatic Medicine, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Salome Heim
- Psychosomatic Medicine, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, Geneva University Hospitals, Geneva, Switzerland
| | - Tereza Serranová
- Centre for Interventional Therapy of Movement Disorders, Department of Neurology, Charles University, 1(st) Faculty of Medicine and General University Hospital in Prague, Czech Republic
| | - Robert Jech
- Centre for Interventional Therapy of Movement Disorders, Department of Neurology, Charles University, 1(st) Faculty of Medicine and General University Hospital in Prague, Czech Republic; Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ramesh S Marapin
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; UMCG Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; UMCG Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Selma Aybek
- Psychosomatic Medicine, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
42
|
Albers KJ, Liptrot MG, Ambrosen KS, Røge R, Herlau T, Andersen KW, Siebner HR, Hansen LK, Dyrby TB, Madsen KH, Schmidt MN, Mørup M. Uncovering Cortical Units of Processing From Multi-Layered Connectomes. Front Neurosci 2022; 16:836259. [PMID: 35360166 PMCID: PMC8960198 DOI: 10.3389/fnins.2022.836259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide non-invasive high-resolution images from which multi-layered networks of whole-brain structural and functional connectivity can be derived. Unfortunately, the lack of observed correspondence between the connectivity profiles of the two modalities challenges the understanding of the relationship between the functional and structural connectome. Rather than focusing on correspondence at the level of connections we presently investigate correspondence in terms of modular organization according to shared canonical processing units. We use a stochastic block-model (SBM) as a data-driven approach for clustering high-resolution multi-layer whole-brain connectivity networks and use prediction to quantify the extent to which a given clustering accounts for the connectome within a modality. The employed SBM assumes a single underlying parcellation exists across modalities whilst permitting each modality to possess an independent connectivity structure between parcels thereby imposing concurrent functional and structural units but different structural and functional connectivity profiles. We contrast the joint processing units to their modality specific counterparts and find that even though data-driven structural and functional parcellations exhibit substantial differences, attributed to modality specific biases, the joint model is able to achieve a consensus representation that well accounts for both the functional and structural connectome providing improved representations of functional connectivity compared to using functional data alone. This implies that a representation persists in the consensus model that is shared by the individual modalities. We find additional support for this viewpoint when the anatomical correspondence between modalities is removed from the joint modeling. The resultant drop in predictive performance is in general substantial, confirming that the anatomical correspondence of processing units is indeed present between the two modalities. Our findings illustrate how multi-modal integration admits consensus representations well-characterizing each individual modality despite their biases and points to the importance of multi-layered connectomes as providing supplementary information regarding the brain's canonical processing units.
Collapse
Affiliation(s)
- Kristoffer Jon Albers
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Matthew G. Liptrot
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Karen Sandø Ambrosen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus Røge
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tue Herlau
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Kai Hansen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H. Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Mikkel N. Schmidt
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
43
|
Qiu W, Ma L, Jiang T, Zhang Y. Unrevealing Reliable Cortical Parcellation of Individual Brains Using Resting-State Functional Magnetic Resonance Imaging and Masked Graph Convolutions. Front Neurosci 2022; 16:838347. [PMID: 35356058 PMCID: PMC8959420 DOI: 10.3389/fnins.2022.838347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Brain parcellation helps to understand the structural and functional organization of the cerebral cortex. Resting-state functional magnetic resonance imaging (fMRI) and connectivity analysis provide useful information to delineate individual brain parcels in vivo. We proposed an individualized cortical parcellation based on graph neural networks (GNN) to learn the reliable functional characteristics of each brain parcel on a large fMRI dataset and to infer the areal probability of each vertex on unseen subjects. A subject-specific confidence mask was implemented in the GNN model to account for the tradeoff between the topographic alignment across subjects and functional homogeneity of brain parcels on individual brains. The individualized brain parcellation achieved better functional homogeneity at rest and during cognitive tasks compared with the group-registered atlas (p-values < 0.05). In addition, highly reliable and replicable parcellation maps were generated on multiple sessions of the same subject (intrasubject similarity = 0.89), while notable variations in the topographic organization were captured across subjects (intersubject similarity = 0.81). Moreover, the intersubject variability of brain parcellation indicated large variations in the association cortices while keeping a stable parcellation on the primary cortex. Such topographic variability was strongly associated with the functional connectivity variability, significantly predicted cognitive behaviors, and generally followed the myelination, cytoarchitecture, and functional organization of the human brain. This study provides new avenues to the precise individualized mapping of the cortical areas through deep learning and shows high potentials in the personalized localization diagnosis and treatment of neurological disorders.
Collapse
Affiliation(s)
- Wenyuan Qiu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
44
|
Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. Gradients in Brain Organization. Neuroimage 2022; 251:118987. [PMID: 35151850 DOI: 10.1016/j.neuroimage.2022.118987] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | | - Shella Keilholz
- Biomedical Engineering, Emory University / Georgia Institute of Technology, Atlanta, Georgia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| |
Collapse
|
45
|
Yankouskaya A, Sui J. Self-prioritization is supported by interactions between large-scale brain networks. Eur J Neurosci 2022; 55:1244-1261. [PMID: 35083806 PMCID: PMC9303922 DOI: 10.1111/ejn.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/29/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has provided solid evidence that the default-mode network (DMN) is implicated in self-referential processing. The functional connectivity of the DMN has also been observed in tasks where self-referential processing leads to self-prioritization (SPE) in perception and decision-making. However, we are less certain about whether (i) SPE solely depends on the interplay within parts of the DMN or is driven by multiple brain networks; and (ii) whether SPE is associated with a unique component of interconnected networks or can be explained by related effects such as emotion prioritization. We addressed these questions by identifying and comparing topological clusters of networks involved in self-and emotion prioritization effects generated in an associative-matching task. Using network-based statistics, we found that SPE controlled by emotion is supported by a unique component of interacting networks, including the medial prefrontal part of the DMN (MPFC), Frontoparietal network (FPN) and insular Salience network (SN). This component emerged as a result of a focal effect confined to few connections, indicating that interaction between DMN, FPC and SN is critical to cognitive operations for the SPE. This result was validated on a separate data set. In contrast, prioritization of happy emotion was associated with a component formed by interactions between the rostral prefrontal part of SN, posterior parietal part of FPN and the MPFC, while sad emotion reveals a cluster of the DMN, Dorsal Attention Network (DAN) and Visual Medial Network (VMN). We discussed theoretical and methodological aspects of these findings within the more general domain of social cognition.
Collapse
Affiliation(s)
- A Yankouskaya
- Department of Psychology, Bournemouth University, UK
| | - J Sui
- School of Psychology, University of Aberdeen, UK
| |
Collapse
|
46
|
Luo W, Constable RT. Inside information: Systematic within-node functional connectivity changes observed across tasks or groups. Neuroimage 2021; 247:118792. [PMID: 34896289 PMCID: PMC8840325 DOI: 10.1016/j.neuroimage.2021.118792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/16/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Mapping the human connectome and understanding its relationship to brain function holds tremendous clinical potential. The connectome has two fundamental components: the nodes and the sconnections between them. While much attention has been given to deriving atlases and measuring the connections between nodes, there have been no studies examining the networks within nodes. Here we demonstrate that each node contains significant connectivity information, that varies systematically across task-induced states and subjects, such that measures based on these variations can be used to classify tasks and identify subjects. The results are not specific for any particular atlas but hold across different atlas resolutions. To date, studies examining changes in connectivity have focused on edge changes and assumed there is no useful information within nodes. Our findings illustrate that for typical atlases, within-node changes can be significant and may account for a substantial fraction of the variance currently attributed to edge changes .
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Biomedical Engineering, Yale University School of Medicine USA
| | - R Todd Constable
- Department of Biomedical Engineering, Yale University School of Medicine USA; Radiology and Biomedical Imaging, Yale University School of Medicine USA; Interdepartmental Neuroscience Program, Yale University School of Medicine USA.
| |
Collapse
|
47
|
Domhof JWM, Jung K, Eickhoff SB, Popovych OV. Parcellation-induced variation of empirical and simulated brain connectomes at group and subject levels. Netw Neurosci 2021; 5:798-830. [PMID: 34746628 PMCID: PMC8567834 DOI: 10.1162/netn_a_00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Recent developments of whole-brain models have demonstrated their potential when investigating resting-state brain activity. However, it has not been systematically investigated how alternating derivations of the empirical structural and functional connectivity, serving as the model input, from MRI data influence modeling results. Here, we study the influence from one major element: the brain parcellation scheme that reduces the dimensionality of brain networks by grouping thousands of voxels into a few hundred brain regions. We show graph-theoretical statistics derived from the empirical data and modeling results exhibiting a high heterogeneity across parcellations. Furthermore, the network properties of empirical brain connectomes explain the lion’s share of the variance in the modeling results with respect to the parcellation variation. Such a clear-cut relationship is not observed at the subject-resolved level per parcellation. Finally, the graph-theoretical statistics of the simulated connectome correlate with those of the empirical functional connectivity across parcellations. However, this relation is not one-to-one, and its precision can vary between models. Our results imply that network properties of both empirical connectomes can explain the goodness-of-fit of whole-brain models to empirical data at a global group level but not at a single-subject level, which provides further insights into the personalization of whole-brain models. The structural and functional connectivities of the brain, which reflect the anatomical connections of axonal bundles and the amount of coactivation between brain regions, respectively, only weakly correlate with each other. In order to enhance and investigate this relationship, large-scale whole-brain dynamical models were involved in this branch of research. However, how the definitions of the brain regions parcellated according to a so-called brain atlas influence these models has so far not been systematically assessed. In this article, we show that this influence can be large, and link group-averaged, atlas-induced deviations to network properties extracted from both types of connectivity. Additionally, we demonstrate that the same association does not apply to subject-specific variations. These results may contribute to the further personalization of the whole-brain models.
Collapse
Affiliation(s)
- Justin W M Domhof
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
48
|
Kraljević N, Schaare HL, Eickhoff SB, Kochunov P, Yeo BTT, Kharabian Masouleh S, Valk SL. Behavioral, Anatomical and Heritable Convergence of Affect and Cognition in Superior Frontal Cortex. Neuroimage 2021; 243:118561. [PMID: 34506912 PMCID: PMC8526801 DOI: 10.1016/j.neuroimage.2021.118561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cognitive abilities and affective experience are key human traits that are interrelated in behavior and brain. Individual variation of cognitive and affective traits, as well as brain structure, has been shown to partly underlie genetic effects. However, to what extent affect and cognition have a shared genetic relationship with local brain structure is incompletely understood. Here we studied phenotypic and genetic correlations of cognitive and affective traits in behavior and brain structure (cortical thickness, surface area and subcortical volumes) in the pedigree-based Human Connectome Project sample (N = 1091). Both cognitive and affective trait scores were highly heritable and showed significant phenotypic correlation on the behavioral level. Cortical thickness in the left superior frontal cortex showed a phenotypic association with both affect and cognition. Decomposing the phenotypic correlations into genetic and environmental components showed that the associations were accounted for by shared genetic effects between the traits. Quantitative functional decoding of the left superior frontal cortex further indicated that this region is associated with cognitive and emotional functioning. This study provides a multi-level approach to study the association between affect and cognition and suggests a convergence of both in superior frontal cortical thickness.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H Lina Schaare
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Otto Hahn group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Leipzig 04103, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Centre for Translational MR Research, N.1 Institute for Health and Institute for Digital Medicine, National University of Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Shahrzad Kharabian Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Otto Hahn group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Leipzig 04103, Germany.
| |
Collapse
|
49
|
Abstract
Cognitive and behavioural outcomes in stroke reflect the interaction between two complex anatomically-distributed patterns: the functional organization of the brain and the structural distribution of ischaemic injury. Conventional outcome models—for individual prediction or population-level inference—commonly ignore this complexity, discarding anatomical variation beyond simple characteristics such as lesion volume. This sets a hard limit on the maximum fidelity such models can achieve. High-dimensional methods can overcome this problem, but only at prohibitively large data scales. Drawing on one of the largest published collections of anatomically-registered imaging of acute stroke—N = 1333—here we use non-linear dimensionality reduction to derive a succinct latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21 distinct intuitive categories. We compare the maximal predictive performance it enables against both simpler low-dimensional and more complex high-dimensional representations, employing multiple empirically-informed ground truth models of distributed structure–outcome relationships. We show our representation sets a substantially higher ceiling on predictive fidelity than conventional low-dimensional approaches, but lower than that achievable within a high-dimensional framework. Where descriptive simplicity is a necessity, such as within clinical care or research trials of modest size, the representation we propose arguably offers a favourable compromise of compactness and fidelity.
Collapse
|
50
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|