1
|
Vinke LN, Avanaki M, Jeffrey C, Harikumar A, Mow JL, Tootell RBH, DeTore NR, Holt DJ. Neural correlates of personal space regulation in psychosis: role of the inferior parietal cortex. Mol Psychiatry 2025:10.1038/s41380-025-02906-4. [PMID: 39900675 DOI: 10.1038/s41380-025-02906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/14/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025]
Abstract
Regulation of interpersonal distance or "personal space" (PS; the space near the body into which others cannot intrude without eliciting discomfort) is a largely unconscious channel of non-verbal social communication used by many species including humans. PS abnormalities have been observed in neuropsychiatric illnesses, including schizophrenia. However, the neurophysiological basis of these abnormalities remains unknown. To investigate this question, in this study, functional magnetic resonance imaging (fMRI) data were collected while individuals with psychotic disorders (PD; n = 37) and demographically-matched healthy control (HC) subjects (n = 60) viewed images of faces moving towards or away from them. Responses of a frontoparietal-subcortical network of brain regions were measured to the approaching versus the withdrawing face stimuli, and resting-state fMRI data were also collected. PS size was measured using the classical Stop Distance Procedure. As expected, the PD group demonstrated a significantly larger PS compared to the HC group (P = 0.002). In both groups, a network of parietal and frontal cortical regions showed greater approach-biased responses, whereas subcortical areas (the striatum, amygdala and hippocampus) showed greater withdrawal-biased responses. Moreover, within the PD (but not the HC) group, approach-biased activation of the inferior parietal cortex (IPC) and functional connectivity between the IPC and the ventral/limbic striatum were significantly correlated with PS size. This study provides evidence that PS abnormalities in psychotic illness involve disrupted function and connectivity of the PS network. Such brain-behavior relationships may serve as objective treatment targets for novel interventions for schizophrenia and related psychotic illnesses.
Collapse
Affiliation(s)
- Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mona Avanaki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clayton Jeffrey
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Amritha Harikumar
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Jessica L Mow
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Roger B H Tootell
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Nicole R DeTore
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Lenglart L, Roger C, Sampaio A, Coello Y. The role of object ownership on online inhibition in peripersonal space. Psychophysiology 2024; 61:e14659. [PMID: 39072809 DOI: 10.1111/psyp.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Peripersonal space (PPS), as opposed to extrapersonal space (EPS), refers to the area surrounding the body within which individuals interact with objects or conspecifics. However, objects in PPS can belong to oneself or to others, which was found to influence how these objects are encoded. We analyzed the performances of motor responses in a reachability judgment task concerning self-owned and other-owned objects (cups) presented in PPS or EPS. EMG activities were recorded on the thumbs (flexor pollicis brevis) to detect correct and erroneous motor activations. Behavioral data showed that motor responses were shorter and longer for self-owned cups compared to other-owned cups in PPS and EPS, respectively. Ten percent of trials showed initial response errors, which were higher in the EPS for self-owned cups and in the PPS for other-owned cups. Eighty-two percent of these errors were corrected online, with corrections being more efficient for self-owned cups in the PPS. Overall, the data revealed that reachability judgments were faster and more accurate in the PPS, with more efficient inhibition processes in the presence of motor errors. Motor selection and correction are thus modulated by the social context of object ownership, highlighting the specific role of the PPS in encoding self-relevant objects for action.
Collapse
Affiliation(s)
- Lucie Lenglart
- CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Université de Lille, Lille, France
| | - Clémence Roger
- CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Université de Lille, Lille, France
| | - Adriana Sampaio
- Psychological Neuroscience Lab, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Yann Coello
- CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Université de Lille, Lille, France
| |
Collapse
|
3
|
Basile GA, Tatti E, Bertino S, Milardi D, Genovese G, Bruno A, Muscatello MRA, Ciurleo R, Cerasa A, Quartarone A, Cacciola A. Neuroanatomical correlates of peripersonal space: bridging the gap between perception, action, emotion and social cognition. Brain Struct Funct 2024; 229:1047-1072. [PMID: 38683211 PMCID: PMC11147881 DOI: 10.1007/s00429-024-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024]
Abstract
Peripersonal space (PPS) is a construct referring to the portion of space immediately surrounding our bodies, where most of the interactions between the subject and the environment, including other individuals, take place. Decades of animal and human neuroscience research have revealed that the brain holds a separate representation of this region of space: this distinct spatial representation has evolved to ensure proper relevance to stimuli that are close to the body and prompt an appropriate behavioral response. The neural underpinnings of such construct have been thoroughly investigated by different generations of studies involving anatomical and electrophysiological investigations in animal models, and, recently, neuroimaging experiments in human subjects. Here, we provide a comprehensive anatomical overview of the anatomical circuitry underlying PPS representation in the human brain. Gathering evidence from multiple areas of research, we identified cortical and subcortical regions that are involved in specific aspects of PPS encoding.We show how these regions are part of segregated, yet integrated functional networks within the brain, which are in turn involved in higher-order integration of information. This wide-scale circuitry accounts for the relevance of PPS encoding in multiple brain functions, including not only motor planning and visuospatial attention but also emotional and social cognitive aspects. A complete characterization of these circuits may clarify the derangements of PPS representation observed in different neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| | - Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, 10031, USA
| | - Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Bruno
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Maria Rosaria Anna Muscatello
- Psychiatry Unit, University Hospital "G. Martino", Messina, Italy
- Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | | | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | | | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
4
|
Holt DJ. Personal space as a model neurobehavioral system for investigating schizophrenia. Schizophr Res 2024; 267:396-397. [PMID: 38640850 DOI: 10.1016/j.schres.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Affiliation(s)
- Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States of America.
| |
Collapse
|
5
|
Bufacchi RJ, Battaglia-Mayer A, Iannetti GD, Caminiti R. Cortico-spinal modularity in the parieto-frontal system: A new perspective on action control. Prog Neurobiol 2023; 231:102537. [PMID: 37832714 DOI: 10.1016/j.pneurobio.2023.102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Classical neurophysiology suggests that the motor cortex (MI) has a unique role in action control. In contrast, this review presents evidence for multiple parieto-frontal spinal command modules that can bypass MI. Five observations support this modular perspective: (i) the statistics of cortical connectivity demonstrate functionally-related clusters of cortical areas, defining functional modules in the premotor, cingulate, and parietal cortices; (ii) different corticospinal pathways originate from the above areas, each with a distinct range of conduction velocities; (iii) the activation time of each module varies depending on task, and different modules can be activated simultaneously; (iv) a modular architecture with direct motor output is faster and less metabolically expensive than an architecture that relies on MI, given the slow connections between MI and other cortical areas; (v) lesions of the areas composing parieto-frontal modules have different effects from lesions of MI. Here we provide examples of six cortico-spinal modules and functions they subserve: module 1) arm reaching, tool use and object construction; module 2) spatial navigation and locomotion; module 3) grasping and observation of hand and mouth actions; module 4) action initiation, motor sequences, time encoding; module 5) conditional motor association and learning, action plan switching and action inhibition; module 6) planning defensive actions. These modules can serve as a library of tools to be recombined when faced with novel tasks, and MI might serve as a recombinatory hub. In conclusion, the availability of locally-stored information and multiple outflow paths supports the physiological plausibility of the proposed modular perspective.
Collapse
Affiliation(s)
- R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai, China
| | - A Battaglia-Mayer
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London, UK
| | - R Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
6
|
Presti P, Galasso GM, Ruzzon D, Avanzini P, Caruana F, Rizzolatti G, Vecchiato G. Architectural experience influences the processing of others' body expressions. Proc Natl Acad Sci U S A 2023; 120:e2302215120. [PMID: 37782807 PMCID: PMC10576150 DOI: 10.1073/pnas.2302215120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
The interplay between space and cognition is a crucial issue in Neuroscience leading to the development of multiple research fields. However, the relationship between architectural space and the movement of the inhabitants and their interactions has been too often neglected, failing to provide a unifying view of architecture's capacity to modulate social cognition broadly. We bridge this gap by requesting participants to judge avatars' emotional expression (high vs. low arousal) at the end of their promenade inside high- or low-arousing architectures. Stimuli were presented in virtual reality to ensure a dynamic, naturalistic experience. High-density electroencephalography (EEG) was recorded to assess the neural responses to the avatar's presentation. Observing highly aroused avatars increased Late Positive Potentials (LPP), in line with previous evidence. Strikingly, 250 ms before the occurrence of the LPP, P200 amplitude increased due to the experience of low-arousing architectures, reflecting an early greater attention during the processing of body expressions. In addition, participants stared longer at the avatar's head and judged the observed posture as more arousing. Source localization highlighted a contribution of the dorsal premotor cortex to both P200 and LPP. In conclusion, the immersive and dynamic architectural experience modulates human social cognition. In addition, the motor system plays a role in processing architecture and body expressions suggesting that the space and social cognition interplay is rooted in overlapping neural substrates. This study demonstrates that the manipulation of mere architectural space is sufficient to influence human social cognition.
Collapse
Affiliation(s)
- Paolo Presti
- Institute of Neuroscience, National Research Council of Italy, Parma43125, Italy
- Department of Medicine and Surgery, University of Parma, Parma43125, Italy
| | - Gaia Maria Galasso
- Department of Medicine and Surgery, University of Parma, Parma43125, Italy
| | - Davide Ruzzon
- Dipartimento di Culture del Progetto, IUAV University, Venice30135, Italy
- TUNED, Lombardini22 s.p.a., Milan20143, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma43125, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy, Parma43125, Italy
| | - Giacomo Rizzolatti
- Institute of Neuroscience, National Research Council of Italy, Parma43125, Italy
| | - Giovanni Vecchiato
- Institute of Neuroscience, National Research Council of Italy, Parma43125, Italy
- Department of Medicine and Surgery, University of Parma, Parma43125, Italy
| |
Collapse
|
7
|
Drew T, Fortier-Lebel N, Nakajima T. Cortical contribution to visuomotor coordination in locomotion and reaching. Curr Opin Neurobiol 2023; 82:102755. [PMID: 37633106 DOI: 10.1016/j.conb.2023.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
One of the hallmarks of mammals is their ability to make precise visually guided limb movements to attain objects. This is best exemplified by the reach and grasp movements of primates, although it is not unique to this mammalian order. Precise, coordinated, visually guided movements are equally as important during locomotion in many mammalian species, especially in predators. In this context, vision is used to guide paw trajectory and placement. In this review we examine the contribution of the fronto-parietal network in the control of such movements. We suggest that this network is responsible for visuomotor coordination across behaviours and species. We further argue for analogies between cytoarchitectonically similar cortical areas in primates and cats.
Collapse
Affiliation(s)
- Trevor Drew
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Nicolas Fortier-Lebel
- Département de Neurosciences, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA), Groupe de recherche sur la signalisation neurale et la circuiterie (SNC), Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada
| | - Toshi Nakajima
- Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
8
|
Lenglart L, Cartaud A, Quesque F, Sampaio A, Coello Y. Object coding in peripersonal space depends on object ownership. Q J Exp Psychol (Hove) 2023; 76:1925-1939. [PMID: 36113191 DOI: 10.1177/17470218221128306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Previous studies have shown that objects located in the peripersonal space (PPS) receive enhanced attention, as compared with extrapersonal space (EPS), However, most objects in the environment belong to someone in particular and how object ownership influences object coding in relation to PPS representation is still unclear. In the present study, after having chosen their own mug, participants performed a reachability judgement task of self-owned and other-owned mugs presented at different distances while facing a virtual character. This task was followed, on each trial, by a localisation task in which participants had to indicate where the mug, removed from view, was previously located. The two tasks were separated by a 900-ms visual mask during which the virtual character was unnoticeably shifted by 3° to evaluate the spatial frame-of-reference used. The results showed that self-owned mugs were processed faster than other-owned mugs, but only when located in the PPS. Furthermore, reachability judgements were biased for self-owned mugs, leading to an extension of the PPS representation, especially for participants with a high score on the fantasy scale of Interpersonal Reactivity Index (IRI). Finally, the virtual character shift altered the localisation performance but only for the distant mugs, suggesting a progressive shift from egocentric to allocentric frame-of-reference when moving from the PPS to EPS, irrespective of object ownership. Overall, our data reveal that the representations of ownership and PPS interact to facilitate the processing of manipulable objects, to an extent that depends on individual sensitivity to the social presence of others.
Collapse
Affiliation(s)
- Lucie Lenglart
- CNRS, UMR 9193, SCALab-Sciences Cognitives et Sciences Affectives, University of Lille, Villeneuve d'Ascq Cedex, France
| | - Alice Cartaud
- CNRS, UMR 9193, SCALab-Sciences Cognitives et Sciences Affectives, University of Lille, Villeneuve d'Ascq Cedex, France
| | - François Quesque
- Inserm, CHU Lille, U1172, LilNCog-Lille Neuroscience & Cognition, University of Lille, Villeneuve d'Ascq Cedex, France
| | - Adriana Sampaio
- Psychological Neuroscience Lab, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Yann Coello
- CNRS, UMR 9193, SCALab-Sciences Cognitives et Sciences Affectives, University of Lille, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
9
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
10
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
11
|
Caprara I, Janssen P. Effect of viewing distance on object responses in macaque areas 45B, F5a and F5p. Sci Rep 2022; 12:16527. [PMID: 36192562 PMCID: PMC9530235 DOI: 10.1038/s41598-022-18482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
To perform tasks like grasping, the brain has to process visual object information so that the grip aperture can be adjusted before touching the object. Previous studies have demonstrated that the posterior subsector of the Anterior Intraparietal area is connected to area 45B, and its anterior counterpart to F5a. However, the role of area 45B and F5a in visually-guided grasping is poorly understood. Here, we investigated the role of area 45B, F5a and F5p in object processing during visually-guided grasping in two monkeys. We tested whether the presentation of an object in near peripersonal space activated F5p neurons more than objects with the same retinal size presented beyond reachable distance and conversely, whether neurons in 45B and F5a—which may encode a purely visual object representation—were less affected by viewing distance when equalizing retinal size. Contrary to our expectations, we found that most neurons in area 45B were object- and viewing distance-selective, and preferred mostly Near presentations. Area F5a showed much weaker object selectivity compared to 45B, with a similar preference for objects presented at the Near position. Finally, F5p neurons were less object selective and frequently Far-preferring. In sum, area 45B—but not F5p– prefers objects presented in peripersonal space.
Collapse
Affiliation(s)
- I Caprara
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium.,Department of Neurosurgery, Department of Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - P Janssen
- Laboratorium Voor Neuro-en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium. .,The Leuven Brain Institute, Leuven, Belgium.
| |
Collapse
|
12
|
Presti P, Ruzzon D, Avanzini P, Caruana F, Rizzolatti G, Vecchiato G. Measuring arousal and valence generated by the dynamic experience of architectural forms in virtual environments. Sci Rep 2022; 12:13376. [PMID: 35927322 PMCID: PMC9352685 DOI: 10.1038/s41598-022-17689-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The built environment represents the stage surrounding our everyday life activities. To investigate how architectural design impacts individuals' affective states, we measured subjective judgments of perceived valence (pleasant and unpleasant) and arousal after the dynamic experience of a progressive change of macro visuospatial dimensions of virtual spaces. To this aim, we developed a parametric model that allowed us to create 54 virtual architectural designs characterized by a progressive change of sidewalls distance, ceiling and windows height, and color of the environment. Decreasing sidewalls distance, ceiling height variation, and increasing windows height significantly affected the participants' emotional state within virtual environments. Indeed, such architectural designs generated high arousing and unpleasant states according to subjective judgment. Overall, we observed that valence and arousal scores are affected by all the dynamic form factors which modulated the spaciousness of the surrounding. Showing that the dynamic experience of virtual environments enables the possibility of measuring the emotional impact of macro spatial architectural features, the present findings may lay the groundwork for future experiments investigating the effects that the architectural design has on individuals' mental state as a fundamental factor for the creation of future spaces.
Collapse
Affiliation(s)
- Paolo Presti
- Institute of Neuroscience, National Research Council of Italy, 43125, Parma, Italy.,Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Davide Ruzzon
- TUNED, Lombardini22, 20143, Milan, Italy.,Dipartimento Culture del Progetto, IUAV, 30125, Venice, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, 43125, Parma, Italy
| | - Fausto Caruana
- Institute of Neuroscience, National Research Council of Italy, 43125, Parma, Italy
| | - Giacomo Rizzolatti
- Institute of Neuroscience, National Research Council of Italy, 43125, Parma, Italy
| | - Giovanni Vecchiato
- Institute of Neuroscience, National Research Council of Italy, 43125, Parma, Italy.
| |
Collapse
|
13
|
Leclere NX, Sarlegna FR, Coello Y, Bourdin C. Gradual exposure to Coriolis force induces sensorimotor adaptation with no change in peripersonal space. Sci Rep 2022; 12:922. [PMID: 35042915 PMCID: PMC8766485 DOI: 10.1038/s41598-022-04961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
The space immediately surrounding the body is crucial for the organization of voluntary motor actions and seems to be functionally represented in the brain according to motor capacities. However, despite extensive research, little is known about how the representation of peripersonal space is adjusted to new action capacities. Abrupt exposure to a new force field has been shown to cause the representation of peripersonal space to shrink, possibly reflecting a conservative spatial strategy triggered by consciously-perceived motor errors. The present study assessed whether the representation of peripersonal space is influenced by gradual exposure of reaching movements to a new force field, produced by a stepwise acceleration of a rotating platform. We hypothesized that such gradual exposure would induce progressive sensorimotor adaptation to motor errors, albeit too small to be consciously perceived. In contrast, we hypothesized that reachability judgments, used as a proxy of peripersonal space representation, would not be significantly affected. Results showed that gradual exposure to Coriolis force produced a systematic after-effect on reaching movements but no significant change in reachability judgments. We speculate that the conscious experience of large motor errors may influence the updating of the representation of peripersonal space.
Collapse
Affiliation(s)
| | | | - Yann Coello
- Univ. Lille, CNRS, Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, Lille, France
| | | |
Collapse
|
14
|
Foster C, Sheng WA, Heed T, Ben Hamed S. The macaque ventral intraparietal area has expanded into three homologue human parietal areas. Prog Neurobiol 2021; 209:102185. [PMID: 34775040 DOI: 10.1016/j.pneurobio.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
The macaque ventral intraparietal area (VIP) in the fundus of the intraparietal sulcus has been implicated in a diverse range of sensorimotor and cognitive functions such as motion processing, multisensory integration, processing of head peripersonal space, defensive behavior, and numerosity coding. Here, we exhaustively review macaque VIP function, cytoarchitectonics, and anatomical connectivity and integrate it with human studies that have attempted to identify a potential human VIP homologue. We show that human VIP research has consistently identified three, rather than one, bilateral parietal areas that each appear to subsume some, but not all, of the macaque area's functionality. Available evidence suggests that this human "VIP complex" has evolved as an expansion of the macaque area, but that some precursory specialization within macaque VIP has been previously overlooked. The three human areas are dominated, roughly, by coding the head or self in the environment, visual heading direction, and the peripersonal environment around the head, respectively. A unifying functional principle may be best described as prediction in space and time, linking VIP to state estimation as a key parietal sensorimotor function. VIP's expansive differentiation of head and self-related processing may have been key in the emergence of human bodily self-consciousness.
Collapse
Affiliation(s)
- Celia Foster
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - Wei-An Sheng
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany; Center of Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany; Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-University of Lyon 1, France.
| |
Collapse
|
15
|
Russ BE, Petkov CI, Kwok SC, Zhu Q, Belin P, Vanduffel W, Hamed SB. Common functional localizers to enhance NHP & cross-species neuroscience imaging research. Neuroimage 2021; 237:118203. [PMID: 34048898 PMCID: PMC8529529 DOI: 10.1016/j.neuroimage.2021.118203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Functional localizers are invaluable as they can help define regions of interest, provide cross-study comparisons, and most importantly, allow for the aggregation and meta-analyses of data across studies and laboratories. To achieve these goals within the non-human primate (NHP) imaging community, there is a pressing need for the use of standardized and validated localizers that can be readily implemented across different groups. The goal of this paper is to provide an overview of the value of localizer protocols to imaging research and we describe a number of commonly used or novel localizers within NHPs, and keys to implement them across studies. As has been shown with the aggregation of resting-state imaging data in the original PRIME-DE submissions, we believe that the field is ready to apply the same initiative for task-based functional localizers in NHP imaging. By coming together to collect large datasets across research group, implementing the same functional localizers, and sharing the localizers and data via PRIME-DE, it is now possible to fully test their robustness, selectivity and specificity. To do this, we reviewed a number of common localizers and we created a repository of well-established localizer that are easily accessible and implemented through the PRIME-RE platform.
Collapse
Affiliation(s)
- Brian E Russ
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Department of Psychiatry, New York University at Langone, New York City, NY, United States.
| | - Christopher I Petkov
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Qi Zhu
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium
| | - Pascal Belin
- Institut de Neurosciences de La Timone, Aix-Marseille Université et CNRS, Marseille, 13005, France
| | - Wim Vanduffel
- Laboratory for Neuro-and Psychophysiology, Department of Neurosciences, KU Leuven Medical School, Leuven, 3000, Belgium; Leuven Brain Institute, KU Leuven, Leuven, 3000, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, United States; Department of Radiology, Harvard Medical School, Boston, MA 02144, United States.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France.
| |
Collapse
|
16
|
Peripersonal space in the front, rear, left and right directions for audio-tactile multisensory integration. Sci Rep 2021; 11:11303. [PMID: 34050213 PMCID: PMC8163804 DOI: 10.1038/s41598-021-90784-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Peripersonal space (PPS) is important for humans to perform body–environment interactions. However, many previous studies only focused on the specific direction of the PPS, such as the front space, despite suggesting that there were PPSs in all directions. We aimed to measure and compare the peri-trunk PPS in four directions (front, rear, left, and right). To measure the PPS, we used a tactile and an audio stimulus because auditory information is available at any time in all directions. We used the approaching and receding task-irrelevant sounds in the experiment. Observers were asked to respond as quickly as possible when a tactile stimulus was applied to a vibrator on their chest. We found that peri-trunk PPS representations exist with an approaching sound, irrespective of the direction.
Collapse
|
17
|
Bogdanova OV, Bogdanov VB, Dureux A, Farnè A, Hadj-Bouziane F. The Peripersonal Space in a social world. Cortex 2021; 142:28-46. [PMID: 34174722 DOI: 10.1016/j.cortex.2021.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
The PeriPersonal Space (PPS) has been defined as the space surrounding the body, where physical interactions with elements of the environment take place. As our world is social in nature, recent evidence revealed the complex modulation of social factors onto PPS representation. In light of the growing interest in the field, in this review we take a close look at the experimental approaches undertaken to assess the impact of social factors onto PPS representation. Our social world also influences the personal space (PS), a concept stemming from social psychology, defined as the space we keep between us and others to avoid discomfort. Here we analytically compare PPS and PS with the aim of understanding if and how they relate to each other. At the behavioral level, the multiplicity of experimental methodologies, whether well-established or novel, lead to somewhat divergent results and interpretations. Beyond behavior, we review physiological and neural signatures of PPS representation to discuss how interoceptive signals could contribute to PPS representation, as well as how these internal signals could shape the neural responses of PPS representation. In particular, by merging exteroceptive information from the environment and internal signals that come from the body, PPS may promote an integrated representation of the self, as distinct from the environment and the others. We put forward that integrating internal and external signals in the brain for perception of proximal environmental stimuli may also provide us with a better understanding of the processes at play during social interactions. Adopting such an integrative stance may offer novel insights about PPS representation in a social world. Finally, we discuss possible links between PPS research and social cognition, a link that may contribute to the understanding of intentions and feelings of others around us and promote appropriate social interactions.
Collapse
Affiliation(s)
- Olena V Bogdanova
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; INCIA, UMR 5287, CNRS, Université de Bordeaux, France.
| | - Volodymyr B Bogdanov
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Ecole Nationale des Travaux Publics de l'Etat, Laboratoire Génie Civil et Bâtiment, Vaulx-en-Velin, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France; Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (Impact), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon 1, France.
| |
Collapse
|
18
|
Cléry JC, Hori Y, Schaeffer DJ, Menon RS, Everling S. Neural network of social interaction observation in marmosets. eLife 2021; 10:e65012. [PMID: 33787492 PMCID: PMC8024015 DOI: 10.7554/elife.65012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
A crucial component of social cognition is to observe and understand the social interactions of other individuals. A promising nonhuman primate model for investigating the neural basis of social interaction observation is the common marmoset (Callithrix jacchus), a small New World primate that shares a rich social repertoire with humans. Here, we used functional magnetic resonance imaging acquired at 9.4 T to map the brain areas activated by social interaction observation in awake marmosets. We discovered a network of subcortical and cortical areas, predominately in the anterior lateral frontal and medial frontal cortex, that was specifically activated by social interaction observation. This network resembled that recently identified in Old World macaque monkeys. Our findings suggest that this network is largely conserved between New and Old World primates and support the use of marmosets for studying the neural basis of social cognition.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- University of Pittsburgh, Department of NeurobiologyPittsburghUnited States
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| |
Collapse
|
19
|
Ellena G, Starita F, Haggard P, Romei V, Làdavas E. Fearful faces modulate spatial processing in peripersonal space: An ERP study. Neuropsychologia 2021; 156:107827. [PMID: 33722572 DOI: 10.1016/j.neuropsychologia.2021.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/09/2023]
Abstract
Peripersonal space (PPS) represents the region of space surrounding the body. A pivotal function of PPS is to coordinate defensive responses to threat. We have previously shown that a centrally-presented, looming fearful face, signalling a potential threat in one's surroundings, modulates spatial processing by promoting a redirection of sensory resources away from the face towards the periphery, where the threat may be expected - but only when the face is presented in near, rather than far space. Here, we use electrophysiological measures to investigate the neural mechanism underlying this effect. Participants made simple responses to tactile stimuli delivered on the cheeks, while watching task-irrelevant neutral or fearful avatar faces, looming towards them either in near or far space. Simultaneously with the tactile stimulation, a ball with a checkerboard pattern (probe) appeared to the left or right of the avatar face. Crucially, this probe could either be close to the avatar face, and thus more central in the participant's vision, or further away from the avatar face, and thus more peripheral in the participant's vision. Electroencephalography was continuously recorded. Behavioural results confirmed that in near space only, and for fearful relative to neutral faces, tactile processing was facilitated by the peripheral compared to the central probe. This behavioural effect was accompanied by a reduction of the N1 mean amplitude elicited by the peripheral probe for fearful relative to neutral faces. Moreover, the faster the participants responded to tactile stimuli with the peripheral probe, relative to the central, the smaller was their N1. Together these results, suggest that fearful faces intruding into PPS may increase expectation of a visual event occurring in the periphery. This fear-induced effect would enhance the defensive function of PPS when it is most needed, i.e., when the source of threat is nearby, but its location remains unknown.
Collapse
Affiliation(s)
- Giulia Ellena
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy.
| | - Francesca Starita
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, UK
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy; IRCCS Fondazione Santa Lucia, 00179, Roma, Italy
| | - Elisabetta Làdavas
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena, 47521, Cesena, Italy
| |
Collapse
|
20
|
Phase-coupling of neural oscillations contributes to individual differences in peripersonal space. Neuropsychologia 2021; 156:107823. [PMID: 33705822 DOI: 10.1016/j.neuropsychologia.2021.107823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
The peripersonal space (PPS) is a multisensory and sensorimotor interface between our body and the environment. The location of PPS boundary is not fixed. Rather, it adapts to the environmental context and differs greatly across individuals. Recent studies have started to unveil the neural correlates of individual differences in PPS extension; however, this picture is not clear yet. Here, we used approaching auditory stimuli and magnetoencephalography to capture the individual boundary of PPS and examine its neural underpinnings. In particular, building upon previous studies from our own group, we investigated the possible contribution of an intrinsic feature of the brain, that is the "resting state" functional connectivity, to the individual differences in PPS extension and the frequency specificity of this contribution. Specifically, we focused on the activity synchronized to the premotor cortex, where multisensory neurons encoding PPS have been described. Results showed that the stronger the connectivity between left premotor cortex (lPM) and a set of fronto-parietal, sensorimotor regions in the right and left hemisphere, the wider the extension of the PPS. Strikingly, such a correlation was observed only in the beta-frequency band. Overall, our results suggest that the individual extension of the PPS is coded in spatially- and spectrally-specific resting state functional links.
Collapse
|
21
|
A multisensory perspective onto primate pulvinar functions. Neurosci Biobehav Rev 2021; 125:231-243. [PMID: 33662442 DOI: 10.1016/j.neubiorev.2021.02.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Perception in ambiguous environments relies on the combination of sensory information from various sources. Most associative and primary sensory cortical areas are involved in this multisensory active integration process. As a result, the entire cortex appears as heavily multisensory. In this review, we focus on the contribution of the pulvinar to multisensory integration. This subcortical thalamic nucleus plays a central role in visual detection and selection at a fast time scale, as well as in the regulation of visual processes, at a much slower time scale. However, the pulvinar is also densely connected to cortical areas involved in multisensory integration. In spite of this, little is known about its multisensory properties and its contribution to multisensory perception. Here, we review the anatomical and functional organization of multisensory input to the pulvinar. We describe how visual, auditory, somatosensory, pain, proprioceptive and olfactory projections are differentially organized across the main subdivisions of the pulvinar and we show that topography is central to the organization of this complex nucleus. We propose that the pulvinar combines multiple sources of sensory information to enhance fast responses to the environment, while also playing the role of a general regulation hub for adaptive and flexible cognition.
Collapse
|
22
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
23
|
Taffou M, Suied C, Viaud-Delmon I. Auditory roughness elicits defense reactions. Sci Rep 2021; 11:956. [PMID: 33441758 PMCID: PMC7806762 DOI: 10.1038/s41598-020-79767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Auditory roughness elicits aversion, and higher activation in cerebral areas involved in threat processing, but its link with defensive behavior is unknown. Defensive behaviors are triggered by intrusions into the space immediately surrounding the body, called peripersonal space (PPS). Integrating multisensory information in PPS is crucial to assure the protection of the body. Here, we assessed the behavioral effects of roughness on auditory-tactile integration, which reflects the monitoring of this multisensory region of space. Healthy human participants had to detect as fast as possible a tactile stimulation delivered on their hand while an irrelevant sound was approaching them from the rear hemifield. The sound was either a simple harmonic sound or a rough sound, processed through binaural rendering so that the virtual sound source was looming towards participants. The rough sound speeded tactile reaction times at a farther distance from the body than the non-rough sound. This indicates that PPS, as estimated here via auditory-tactile integration, is sensitive to auditory roughness. Auditory roughness modifies the behavioral relevance of simple auditory events in relation to the body. Even without emotional or social contextual information, auditory roughness constitutes an innate threat cue that elicits defensive responses.
Collapse
Affiliation(s)
- Marine Taffou
- Institut de Recherche Biomédicale des Armées, 91220, Brétigny-sur-Orge, France.
| | - Clara Suied
- Institut de Recherche Biomédicale des Armées, 91220, Brétigny-sur-Orge, France
| | - Isabelle Viaud-Delmon
- CNRS, Ircam, Sorbonne Université, Ministère de la Culture, Sciences et Technologies de la Musique et du son, STMS, 75004, Paris, France
| |
Collapse
|
24
|
Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas. J Neurosci 2020; 40:8883-8899. [PMID: 33051348 DOI: 10.1523/jneurosci.1060-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Binocular disparity, the difference between the two eyes' images, is a powerful cue to generate the 3D depth percept known as stereopsis. In primates, binocular disparity is processed in multiple areas of the visual cortex, with distinct contributions of higher areas to specific aspects of depth perception. Mice, too, can perceive stereoscopic depth, and neurons in primary visual cortex (V1) and higher-order, lateromedial (LM) and rostrolateral (RL) areas were found to be sensitive to binocular disparity. A detailed characterization of disparity tuning across mouse visual areas is lacking, however, and acquiring such data might help clarifying the role of higher areas for disparity processing and establishing putative functional correspondences to primate areas. We used two-photon calcium imaging in female mice to characterize the disparity tuning properties of neurons in visual areas V1, LM, and RL in response to dichoptically presented binocular gratings, as well as random dot correlograms (RDC). In all three areas, many neurons were tuned to disparity, showing strong response facilitation or suppression at optimal or null disparity, respectively, even in neurons classified as monocular by conventional ocular dominance (OD) measurements. Neurons in higher areas exhibited broader and more asymmetric disparity tuning curves compared with V1, as observed in primate visual cortex. Finally, we probed neurons' sensitivity to true stereo correspondence by comparing responses to correlated RDC (cRDC) and anticorrelated RDC (aRDC). Area LM, akin to primate ventral visual stream areas, showed higher selectivity for correlated stimuli and reduced anticorrelated responses, indicating higher-level disparity processing in LM compared with V1 and RL.SIGNIFICANCE STATEMENT A major cue for inferring 3D depth is disparity between the two eyes' images. Investigating how binocular disparity is processed in the mouse visual system will not only help delineating the role of mouse higher areas for visual processing, but also shed light on how the mammalian brain computes stereopsis. We found that binocular integration is a prominent feature of mouse visual cortex, as many neurons are selectively and strongly modulated by binocular disparity. Comparison of responses to correlated and anticorrelated random dot correlograms (RDC) revealed that lateromedial area (LM) is more selective to correlated stimuli, while less sensitive to anticorrelated stimuli compared with primary visual cortex (V1) and rostrolateral area (RL), suggesting higher-level disparity processing in LM, resembling primate ventral visual stream areas.
Collapse
|
25
|
Caron-Guyon J, Corbo J, Zennou-Azogui Y, Xerri C, Kavounoudias A, Catz N. Neuronal Encoding of Multisensory Motion Features in the Rat Associative Parietal Cortex. Cereb Cortex 2020; 30:5372-5386. [PMID: 32494803 DOI: 10.1093/cercor/bhaa118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Motion perception is facilitated by the interplay of various sensory channels. In rodents, the cortical areas involved in multisensory motion coding remain to be identified. Using voltage-sensitive-dye imaging, we revealed a visuo-tactile convergent region that anatomically corresponds to the associative parietal cortex (APC). Single unit responses to moving visual gratings or whiskers deflections revealed a specific coding of motion characteristics strikingly found in both sensory modalities. The heteromodality of this region was further supported by a large proportion of bimodal neurons and by a classification procedure revealing that APC carries information about motion features, sensory origin and multisensory direction-congruency. Altogether, the results point to a central role of APC in multisensory integration for motion perception.
Collapse
Affiliation(s)
| | - Julien Corbo
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France.,Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ 07102, USA
| | | | - Christian Xerri
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| | - Anne Kavounoudias
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| | - Nicolas Catz
- Aix Marseille Université, CNRS, LNSC UMR 7260, Marseille 13331, France
| |
Collapse
|
26
|
Noel JP, Bertoni T, Terrebonne E, Pellencin E, Herbelin B, Cascio C, Blanke O, Magosso E, Wallace MT, Serino A. Rapid Recalibration of Peri-Personal Space: Psychophysical, Electrophysiological, and Neural Network Modeling Evidence. Cereb Cortex 2020; 30:5088-5106. [PMID: 32377673 PMCID: PMC7391419 DOI: 10.1093/cercor/bhaa103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interactions between individuals and the environment occur within the peri-personal space (PPS). The encoding of this space plastically adapts to bodily constraints and stimuli features. However, these remapping effects have not been demonstrated on an adaptive time-scale, trial-to-trial. Here, we test this idea first via a visuo-tactile reaction time (RT) paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual objects approach them. Results demonstrate that RTs to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity. Next, we derive the electroencephalographic correlates of PPS and demonstrate that this multisensory measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and, more generally, that it is sensitive to sensory history, a key feature for any process contextualizing subsequent incoming sensory information (e.g., a Bayesian prior).
Collapse
Affiliation(s)
- Jean-Paul Noel
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Center for Neural Science, New York University, New York City, NY 10003, USA
| | - Tommaso Bertoni
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| | - Emily Terrebonne
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Elisa Pellencin
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Trento 38068, Italy
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Carissa Cascio
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Elisa Magosso
- Department of Electrical, Electronic, and Information Engineering ``Guglielmo Marconi'', University of Bologna, Cesena 40126, Italy
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| |
Collapse
|
27
|
Looming and receding visual networks in awake marmosets investigated with fMRI. Neuroimage 2020; 215:116815. [DOI: 10.1016/j.neuroimage.2020.116815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
|
28
|
Field DT, Biagi N, Inman LA. The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. Neuroimage 2020; 213:116679. [DOI: 10.1016/j.neuroimage.2020.116679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 10/24/2022] Open
|
29
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
30
|
Noel JP, Samad M, Doxon A, Clark J, Keller S, Di Luca M. Peri-personal space as a prior in coupling visual and proprioceptive signals. Sci Rep 2018; 8:15819. [PMID: 30361477 PMCID: PMC6202371 DOI: 10.1038/s41598-018-33961-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the integration of multiple body-related sources of information within the peri-personal space (PPS) scaffolds body ownership. However, a normative computational framework detailing the functional role of PPS is still missing. Here we cast PPS as a visuo-proprioceptive Bayesian inference problem whereby objects we see in our environment are more likely to engender sensations as they come near to the body. We propose that PPS is the reflection of such an increased a priori probability of visuo-proprioceptive coupling that surrounds the body. To test this prediction, we immersed participants in a highly realistic virtual reality (VR) simulation of their right arm and surrounding environment. We asked participants to perform target-directed reaches toward visual, proprioceptive, and visuo-proprioceptive targets while visually displaying their reaching arm (body visible condition) or not (body invisible condition). Reach end-points are analyzed in light of the coupling prior framework, where the extension of PPS is taken to be represented by the spatial dispersion of the coupling prior between visual and proprioceptive estimates of arm location. Results demonstrate that if the body is not visible, the spatial dispersion of the visuo-proprioceptive coupling relaxes, whereas the strength of coupling remains stable. By demonstrating a distance-dependent alteration in visual and proprioceptive localization attractive pull toward one another (stronger pull at small spatial discrepancies) when the body is rendered invisible - an effect that is well accounted for by the visuo-proprioceptive coupling prior - the results suggest that the visible body grounds visuo-proprioceptive coupling preferentially in the near vs. far space.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Majed Samad
- Oculus Research, Facebook Inc., Redmond, WA, USA.,Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew Doxon
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Justin Clark
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Sean Keller
- Oculus Research, Facebook Inc., Redmond, WA, USA
| | - Massimiliano Di Luca
- Oculus Research, Facebook Inc., Redmond, WA, USA. .,Centre for Computational Neuroscience and Cognitive Robotics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
31
|
Abstract
The construction of a coherent representation of our body and the mapping of the space immediately surrounding it are of the highest ecological importance. This space has at least three specificities: it is a space where actions are planned in order to interact with our environment; it is a space that contributes to the experience of self and self-boundaries, through tactile processing and multisensory interactions; last, it is a space that contributes to the experience of body integrity against external events. In the last decades, numerous studies have been interested in peripersonal space (PPS), defined as the space directly surrounding us and which we can interact with (for reviews, see Cléry et al., 2015b; de Vignemont and Iannetti, 2015; di Pellegrino and Làdavas, 2015). These studies have contributed to the understanding of how this space is constructed, encoded and modulated. The majority of these studies focused on subparts of PPS (the hand, the face or the trunk) and very few of them investigated the interaction between PPS subparts. In the present review, we summarize the latest advances in this research and we discuss the new perspectives that are set forth for futures investigations on this topic. We describe the most recent methods used to estimate PPS boundaries by the means of dynamic stimuli. We then highlight how impact prediction and approaching stimuli modulate this space by social, emotional and action-related components involving principally a parieto-frontal network. In a next step, we review evidence that there is not a unique representation of PPS but at least three sub-sections (hand, face and trunk PPS). Last, we discuss how these subspaces interact, and we question whether and how bodily self-consciousness (BSC) is functionally and behaviorally linked to PPS.
Collapse
Affiliation(s)
- Justine Cléry
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| | - Suliann Ben Hamed
- UMR5229, Institut des Sciences Cognitives Marc Jeannerod, CNRS-Université Claude Bernard Lyon I, Bron, France
| |
Collapse
|