1
|
Mattoni M, Fisher AJ, Gates KM, Chein J, Olino TM. Group-to-individual generalizability and individual-level inferences in cognitive neuroscience. Neurosci Biobehav Rev 2025; 169:106024. [PMID: 39889869 PMCID: PMC11835466 DOI: 10.1016/j.neubiorev.2025.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Much of cognitive neuroscience research is focused on group-averages and interindividual brain-behavior associations. However, many theories core to the goal of cognitive neuroscience, such as hypothesized neural mechanisms for a behavior, are inherently based on intraindividual processes. To accommodate this mismatch between study design and theory, research frequently relies on an implicit assumption that group-level, between-person inferences extend to individual-level, within-person processes. The assumption of group-to-individual generalizability, formally referred to as ergodicity, requires that a process be both homogenous within a population and stationary within individuals over time. Our goal in this review is to assess this assumption and provide an accessible introduction to idiographic science (study of the individual) for the cognitive neuroscientist, ultimately laying a foundation for increased focus on the study of intraindividual processes. We first review the history of idiographic science in psychology to connect this longstanding literature with recent individual-level research goals in cognitive neuroscience. We then consider two requirements of group-to-individual generalizability, pattern homogeneity and stationarity, and suggest that most processes in cognitive neuroscience do not meet these assumptions. Consequently, interindividual findings are inappropriate for the intraindividual inferences that many theories are based on. To address this challenge, we suggest precision imaging as an ideal path forward for intraindividual study and present a research framework for complementary interindividual and intraindividual study.
Collapse
Affiliation(s)
- Matthew Mattoni
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA.
| | - Aaron J Fisher
- University of California-Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA, USA
| | - Kathleen M Gates
- University of North Carolina at Chapel Hill, Department of Psychology and Neuroscience, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Jason Chein
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| | - Thomas M Olino
- Temple University, Department of Psychology and Neuroscience, 1801 N Broad St., Philadelphia, PA, USA
| |
Collapse
|
2
|
Borovska P, de Haas B. Individual gaze shapes diverging neural representations. Proc Natl Acad Sci U S A 2024; 121:e2405602121. [PMID: 39213176 PMCID: PMC11388360 DOI: 10.1073/pnas.2405602121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
Complex visual stimuli evoke diverse patterns of gaze, but previous research suggests that their neural representations are shared across brains. Here, we used hyperalignment to compare visual responses between observers viewing identical stimuli. We find that individual eye movements enhance cortical visual responses but also lead to representational divergence. Pairwise differences in the spatial distribution of gaze and in semantic salience predict pairwise representational divergence in V1 and inferior temporal cortex, respectively. This suggests that individual gaze sculpts individual visual worlds.
Collapse
Affiliation(s)
- Petra Borovska
- Department of Experimental Psychology, Justus Liebig University, Giessen 35394, Germany
| | - Benjamin de Haas
- Department of Experimental Psychology, Justus Liebig University, Giessen 35394, Germany
- Center for Mind, Brain and Behavior, Marburg and Giessen, Darmstadt 35032, Germany
| |
Collapse
|
3
|
Farahani FV, Nebel MB, Wager TD, Lindquist MA. Effects of connectivity hyperalignment (CHA) on estimated brain network properties: from coarse-scale to fine-scale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609817. [PMID: 39253413 PMCID: PMC11383013 DOI: 10.1101/2024.08.27.609817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference. Persistent misalignment in functional topography after registration and spatial normalization will reduce power in developing predictive models and biomarkers, reduce the specificity of estimated brain responses and patterns, and provide misleading results on local neural representations and individual differences. This study aims to determine how connectivity hyperalignment (CHA)-an analytic approach for handling functional misalignment-can change estimated functional brain network topologies at various spatial scales from the coarsest set of parcels down to the vertex-level scale. The findings highlight the role of CHA in improving inter-subject similarities, while retaining individual-specific information and idiosyncrasies at finer spatial granularities. This highlights the potential for fine-grained connectivity analysis using this approach to reveal previously unexplored facets of brain structure and function.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
4
|
Wang Y, Cao R, Chakravarthula PN, Yu H, Wang S. Atypical neural encoding of faces in individuals with autism spectrum disorder. Cereb Cortex 2024; 34:172-186. [PMID: 38696606 PMCID: PMC11065108 DOI: 10.1093/cercor/bhae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 05/04/2024] Open
Abstract
Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.
Collapse
Affiliation(s)
- Yue Wang
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Runnan Cao
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Puneeth N Chakravarthula
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, 4525 Scott Ave, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Busch EL, Rapuano KM, Anderson KM, Rosenberg MD, Watts R, Casey BJ, Haxby JV, Feilong M. Dissociation of Reliability, Heritability, and Predictivity in Coarse- and Fine-Scale Functional Connectomes during Development. J Neurosci 2024; 44:e0735232023. [PMID: 38148152 PMCID: PMC10866091 DOI: 10.1523/jneurosci.0735-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
Collapse
Affiliation(s)
- Erica L Busch
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, Illinois, 60637
| | - Richard Watts
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - B J Casey
- Department of Psychology, Yale University, New Haven, Connecticut, 06510
| | - James V Haxby
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| | - Ma Feilong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, 03755
| |
Collapse
|
6
|
Kalyani A, Contier O, Klemm L, Azañon E, Schreiber S, Speck O, Reichert C, Kuehn E. Reduced dimension stimulus decoding and column-based modeling reveal architectural differences of primary somatosensory finger maps between younger and older adults. Neuroimage 2023; 283:120430. [PMID: 37923281 DOI: 10.1016/j.neuroimage.2023.120430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
The primary somatosensory cortex (SI) contains fine-grained tactile representations of the body, arranged in an orderly fashion. The use of ultra-high resolution fMRI data to detect group differences, for example between younger and older adults' SI maps, is challenging, because group alignment often does not preserve the high spatial detail of the data. Here, we use robust-shared response modeling (rSRM) that allows group analyses by mapping individual stimulus-driven responses to a lower dimensional shared feature space, to detect age-related differences in tactile representations between younger and older adults using 7T-fMRI data. Using this method, we show that finger representations are more precise in Brodmann-Area (BA) 3b and BA1 compared to BA2 and motor areas, and that this hierarchical processing is preserved across age groups. By combining rSRM with column-based decoding (C-SRM), we further show that the number of columns that optimally describes finger maps in SI is higher in younger compared to older adults in BA1, indicating a greater columnar size in older adults' SI. Taken together, we conclude that rSRM is suitable for finding fine-grained group differences in ultra-high resolution fMRI data, and we provide first evidence that the columnar architecture in SI changes with increasing age.
Collapse
Affiliation(s)
- Avinash Kalyani
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany.
| | - Oliver Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, 04103, Germany
| | - Lisa Klemm
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Elena Azañon
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Clinic for Neurology, Otto-von-Guericke University Magdeburg, 39120, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Department Biomedical Magnetic Resonance (BMMR), Otto-von-Guericke University Magdeburg, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
| | - Christoph Reichert
- Leibniz Institute for Neurobiology (LIN), Otto-von-Guericke University Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Research Campus STIMULATE, Otto von Guericke University, Magdeburg, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, 39120, Germany; Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Jiahui G, Feilong M, Nastase SA, Haxby JV, Gobbini MI. Cross-movie prediction of individualized functional topography. eLife 2023; 12:e86037. [PMID: 37994909 PMCID: PMC10666932 DOI: 10.7554/elife.86037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Participant-specific, functionally defined brain areas are usually mapped with functional localizers and estimated by making contrasts between responses to single categories of input. Naturalistic stimuli engage multiple brain systems in parallel, provide more ecologically plausible estimates of real-world statistics, and are friendly to special populations. The current study shows that cortical functional topographies in individual participants can be estimated with high fidelity from naturalistic stimuli. Importantly, we demonstrate that robust, individualized estimates can be obtained even when participants watched different movies, were scanned with different parameters/scanners, and were sampled from different institutes across the world. Our results create a foundation for future studies that allow researchers to estimate a broad range of functional topographies based on naturalistic movies and a normative database, making it possible to integrate high-level cognitive functions across datasets from laboratories worldwide.
Collapse
Affiliation(s)
- Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth CollegeHanoverUnited States
| | - Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth CollegeHanoverUnited States
| | - Samuel A Nastase
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - James V Haxby
- Center for Cognitive Neuroscience, Dartmouth CollegeHanoverUnited States
| | - M Ida Gobbini
- Department of Medical and Surgical Sciences (DIMEC), University of BolognaBolognaItaly
- IRCCS, Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| |
Collapse
|
8
|
Feilong M, Nastase SA, Jiahui G, Halchenko YO, Gobbini MI, Haxby JV. The individualized neural tuning model: Precise and generalizable cartography of functional architecture in individual brains. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00032. [PMID: 39449717 PMCID: PMC11501089 DOI: 10.1162/imag_a_00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Quantifying how brain functional architecture differs from person to person is a key challenge in human neuroscience. Current individualized models of brain functional organization are based on brain regions and networks, limiting their use in studying fine-grained vertex-level differences. In this work, we present the individualized neural tuning (INT) model, a fine-grained individualized model of brain functional organization. The INT model is designed to have vertex-level granularity, to capture both representational and topographic differences, and to model stimulus-general neural tuning. Through a series of analyses, we demonstrate that (a) our INT model provides a reliable individualized measure of fine-grained brain functional organization, (b) it accurately predicts individualized brain response patterns to new stimuli, and (c) for many benchmarks, it requires only 10-20 minutes of data for good performance. The high reliability, specificity, precision, and generalizability of our INT model affords new opportunities for building brain-based biomarkers based on naturalistic neuroimaging paradigms.
Collapse
Affiliation(s)
- Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | - Samuel A. Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| | | | - M. Ida Gobbini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - James V. Haxby
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
9
|
Smith BB, Zhao Y, Lindquist MA, Caffo B. Regression models for partially localized fMRI connectivity analyses. FRONTIERS IN NEUROIMAGING 2023; 2:1178359. [PMID: 38025311 PMCID: PMC10679340 DOI: 10.3389/fnimg.2023.1178359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Background Brain functional connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data is typically performed in a standardized template space assuming consistency of connections across subjects. Analysis methods can come in the form of one-edge-at-a-time analyses or dimension reduction/decomposition methods. Common to these approaches is an assumption that brain regions are functionally aligned across subjects; however, it is known that this functional alignment assumption is often violated. Methods In this paper, we use subject-level regression models to explain intra-subject variability in connectivity. Covariates can include factors such as geographic distance between two pairs of brain regions, whether the two regions are symmetrically opposite (homotopic), and whether the two regions are members of the same functional network. Additionally, a covariate for each brain region can be included, to account for the possibility that some regions have consistently higher or lower connectivity. This style of analysis allows us to characterize the fraction of variation explained by each type of covariate. Additionally, comparisons across subjects can then be made using the fitted connectivity regression models, offering a more parsimonious alternative to edge-at-a-time approaches. Results We apply our approach to Human Connectome Project data on 268 regions of interest (ROIs), grouped into eight functional networks. We find that a high proportion of variation is explained by region covariates and network membership covariates, while geographic distance and homotopy have high relative importance after adjusting for the number of predictors. We also find that the degree of data repeatability using our connectivity regression model-which uses only partial location information about pairs of ROI's-is comparably as high as the repeatability obtained using full location information. Discussion While our analysis uses data that have been transformed into a common template-space, we also envision the method being useful in multi-atlas registration settings, where subject data remains in its own geometry and templates are warped instead. These results suggest the tantalizing possibility that fMRI connectivity analysis can be performed in subject-space, using less aggressive registration, such as simple affine transformations, multi-atlas subject-space registration, or perhaps even no registration whatsoever.
Collapse
Affiliation(s)
- Bonnie B. Smith
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Martin A. Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
10
|
Jiahui G, Feilong M, Visconti di Oleggio Castello M, Nastase SA, Haxby JV, Gobbini MI. Modeling naturalistic face processing in humans with deep convolutional neural networks. Proc Natl Acad Sci U S A 2023; 120:e2304085120. [PMID: 37847731 PMCID: PMC10614847 DOI: 10.1073/pnas.2304085120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies focused on static face image processing with rapid display times and ignored the processing of naturalistic, dynamic information. To address this gap, we developed the largest naturalistic dynamic face stimulus set in human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used this naturalistic dataset to compare representational geometries estimated from DCNNs, behavioral responses, and brain responses. We found that DCNN representational geometries were consistent across architectures, cognitive representational geometries were consistent across raters in a behavioral arrangement task, and neural representational geometries in face areas were consistent across brains. Representational geometries in late, fully connected DCNN layers, which are optimized for individuation, were much more weakly correlated with cognitive and neural geometries than were geometries in late-intermediate layers. The late-intermediate face-DCNN layers successfully matched cognitive representational geometries, as measured with a behavioral arrangement task that primarily reflected categorical attributes, and correlated with neural representational geometries in known face-selective topographies. Our study suggests that current DCNNs successfully capture neural cognitive processes for categorical attributes of faces but less accurately capture individuation and dynamic features.
Collapse
Affiliation(s)
- Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH03755
| | - Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH03755
| | | | - Samuel A. Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ08544
| | - James V. Haxby
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH03755
| | - M. Ida Gobbini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna40138, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Bologna40139, Italia
| |
Collapse
|
11
|
D'Andrea CB, Laumann TO, Newbold DJ, Nelson SM, Nielsen AN, Chauvin R, Marek S, Greene DJ, Dosenbach NUF, Gordon EM. Substructure of the brain's Cingulo-Opercular network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561772. [PMID: 37873065 PMCID: PMC10592749 DOI: 10.1101/2023.10.10.561772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The Cingulo-Opercular network (CON) is an executive network of the human brain that regulates actions. CON is composed of many widely distributed cortical regions that are involved in top-down control over both lower-level (i.e., motor) and higher-level (i.e., cognitive) functions, as well as in processing of painful stimuli. Given the topographical and functional heterogeneity of the CON, we investigated whether subnetworks within the CON support separable aspects of action control. Using precision functional mapping (PFM) in 15 participants with > 5 hours of resting state functional connectivity (RSFC) and task data, we identified three anatomically and functionally distinct CON subnetworks within each individual. These three distinct subnetworks were linked to Decisions, Actions, and Feedback (including pain processing), respectively, in convergence with a meta-analytic task database. These Decision, Action and Feedback subnetworks represent pathways by which the brain establishes top-down goals, transforms those goals into actions, implemented as movements, and processes critical action feedback such as pain.
Collapse
Affiliation(s)
- Carolina Badke D'Andrea
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63310, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Dillan J Newbold
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Ashley N Nielsen
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Roselyne Chauvin
- Department of Neurology, New York University Medical Center, New York, New York 10016, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, California 92093, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
12
|
Han S, Gao J, Hu J, Ye Y, Huang H, Liu J, Liu M, Ai H, Qiu J, Luo Y, Xu P. Disruptions of salience network during uncertain anticipation of conflict control in anxiety. Asian J Psychiatr 2023; 88:103721. [PMID: 37562270 DOI: 10.1016/j.ajp.2023.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Anxiety has been characterized by disrupted processing of conflict control, while little is known about anticipatory processing of conflicts in anxiety. Anticipation is the key factor in both anxiety and cognitive control, especially under uncertain conditions. The current study therefore examined neurocomputational mechanisms of uncertain anticipation of conflict control in anxiety. METHODS Twenty-six participants with high-trait anxiety and twenty-nine low-trait anxiety participants completed a cue-flanker task with functional magnetic resonance imaging. The hierarchical drift diffusion model (HDDM) was used to measure the cognitive computations during the task. To identify the neurocomputational mechanism of anticipatory control in anxiety, mediation analysis and dynamic causal modelling (DCM) analysis were conducted to examine the relationship between functional connectivity of brain networks and the parameters of HDDM. RESULTS We found influences of regulatory signals from the dorsolateral prefrontal cortex to dorsal anterior cingulate cortex on decision threshold in low-trait anxiety (LTA), but not in high-trait anxiety (HTA), especially for the condition with uncertain cues. The results indicate deficient top-down anticipatory control of upcoming conflicts in anxious individuals. DCM and HDDM analyses revealed that lower decision threshold was associated with higher intrinsic connectivity of salience network (SN) in anxious individuals, suggesting that dysfunctional SN disrupts anticipation of conflict control under uncertainty in anxiety. CONCLUSIONS Our results suggest hyperfunction of the SN underlies the deficient information accumulation during uncertain anticipation of upcoming conflicts in anxiety. Our findings shed new light on the mechanisms of anticipation processing and the psychopathology of anxiety.
Collapse
Affiliation(s)
- Shangfeng Han
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China; Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
| | - Jie Gao
- School of Psychology, Chengdu Medical College, Chengdu, China
| | - Jie Hu
- School of Psychology, Chengdu Medical College, Chengdu, China
| | - Yanghua Ye
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
| | - Huiya Huang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
| | - Jing Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mingfang Liu
- Community Health Service Center of Beijing Normal University, China
| | - Hui Ai
- Institute of Applied Psychology, Tianjin University, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jianyin Qiu
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejia Luo
- School of Psychology, Chengdu Medical College, Chengdu, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Pengfei Xu
- The State Key Lab of Cognitive and Learning, Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China.
| |
Collapse
|
13
|
Smith BB, Zhao Y, Lindquist MA, Caffo B. Regression models for partially localized fMRI connectivity analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537694. [PMID: 37131800 PMCID: PMC10153269 DOI: 10.1101/2023.04.20.537694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Brain functional connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data is typically performed in a standardized template space assuming consistency of connections across subjects. This can come in the form of one-edge-at-a-time analyses or dimension reduction/decomposition methods. Common to these approaches is the assumption of complete localization (or spatial alignment) of brain regions across subjects. Alternative approaches completely eschew localization assumptions by treating connections as statistically exchangeable (for example, using the density of connectivity between nodes). Yet other approaches, such as hyperalignment, attempt to align subjects on function as well as structure, thereby achieving a different sort of template-based localization. In this paper, we propose the use of simple regression models to characterize connectivity. To that end, we build regression models on subject-level Fisher transformed regional connection matrices using geographic distance, homotopic distance, network labels, and region indicators as covariates to explain variation in connections. While we perform our analysis in template-space in this paper, we envision the method being useful in multi-atlas registration settings, where subject data remains in its own geometry and templates are warped instead. A byproduct of this style of analysis is the ability to characterize the fraction of variation in subject-level connections explained by each type of covariate. Using Human Connectome Project data, we found that network labels and regional characteristics contribute far more than geographic or homotopic relationships (considered non-parametrically). In addition, visual regions had the highest explanatory power (i.e., largest regression coefficients). We also considered subject repeatability and found that the degree of repeatability seen in fully localized models is largely recovered using our proposed subject-level regression models. Further, even fully exchangeable models retain a sizeable amount of repeatability information, despite discarding all localization information. These results suggest the tantalizing possibility that fMRI connectivity analysis can be performed in subject-space, using less aggressive registration, such as simple affine transformations, multi-atlas subject-space registration, or perhaps even no registration whatsoever.
Collapse
|
14
|
Li Z, Dong Q, Hu B, Wu H. Every individual makes a difference: A trinity derived from linking individual brain morphometry, connectivity and mentalising ability. Hum Brain Mapp 2023; 44:3343-3358. [PMID: 37051692 PMCID: PMC10171537 DOI: 10.1002/hbm.26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the "social brain", are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ( N = 24 $$ N=24 $$ ). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
Collapse
Affiliation(s)
- Zhaoning Li
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| |
Collapse
|
15
|
Revsine C, Gonzalez-Castillo J, Merriam EP, Bandettini PA, Ramírez FM. A unifying model for discordant and concordant results in human neuroimaging studies of facial viewpoint selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527219. [PMID: 36945636 PMCID: PMC10028835 DOI: 10.1101/2023.02.08.527219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Our ability to recognize faces regardless of viewpoint is a key property of the primate visual system. Traditional theories hold that facial viewpoint is represented by view-selective mechanisms at early visual processing stages and that representations become increasingly tolerant to viewpoint changes in higher-level visual areas. Newer theories, based on single-neuron monkey electrophysiological recordings, suggest an additional intermediate processing stage invariant to mirror-symmetric face views. Consistent with traditional theories, human studies combining neuroimaging and multivariate pattern analysis (MVPA) methods have provided evidence of view-selectivity in early visual cortex. However, contradictory results have been reported in higher-level visual areas concerning the existence in humans of mirror-symmetrically tuned representations. We believe these results reflect low-level stimulus confounds and data analysis choices. To probe for low-level confounds, we analyzed images from two popular face databases. Analyses of mean image luminance and contrast revealed biases across face views described by even polynomials-i.e., mirror-symmetric. To explain major trends across human neuroimaging studies of viewpoint selectivity, we constructed a network model that incorporates three biological constraints: cortical magnification, convergent feedforward projections, and interhemispheric connections. Given the identified low-level biases, we show that a gradual increase of interhemispheric connections across network layers is sufficient to replicate findings of mirror-symmetry in high-level processing stages, as well as view-tuning in early processing stages. Data analysis decisions-pattern dissimilarity measure and data recentering-accounted for the variable observation of mirror-symmetry in late processing stages. The model provides a unifying explanation of MVPA studies of viewpoint selectivity. We also show how common analysis choices can lead to erroneous conclusions.
Collapse
Affiliation(s)
- Cambria Revsine
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Department of Psychology, University of Chicago, Chicago, IL
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Functional MRI Core, National Institutes of Health, Bethesda, MD
| | - Fernando M Ramírez
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Mennen AC, Nastase SA, Yeshurun Y, Hasson U, Norman KA. Real-time neurofeedback to alter interpretations of a naturalistic narrative. NEUROIMAGE: REPORTS 2022; 2. [PMID: 36081469 PMCID: PMC9451129 DOI: 10.1016/j.ynirp.2022.100111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We explored the potential of using real-time fMRI (rt-fMRI) neurofeedback training to bias interpretations of naturalistic narrative stimuli. Participants were randomly assigned to one of two possible conditions, each corresponding to a different interpretation of an ambiguous spoken story. While participants listened to the story in the scanner, neurofeedback was used to reward neural activity corresponding to the assigned interpretation. After scanning, final interpretations were assessed. While neurofeedback did not change story interpretations on average, participants with higher levels of decoding accuracy during the neurofeedback procedure were more likely to adopt the assigned interpretation; additional control conditions are needed to establish the role of individualized feedback in driving this result. While naturalistic stimuli introduce a unique set of challenges in providing effective and individualized neurofeedback, we believe that this technique holds promise for individualized cognitive therapy.
Collapse
Affiliation(s)
- Anne C. Mennen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540-1010, USA
- Corresponding author. Princeton Neuroscience Institute, Princeton University, USA. (A.C. Mennen)
| | - Samuel A. Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540-1010, USA
| | - Yaara Yeshurun
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Uri Hasson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540-1010, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540-1010, USA
| | - Kenneth A. Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540-1010, USA
- Department of Psychology, Princeton University, Princeton, NJ, 08540-1010, USA
| |
Collapse
|
17
|
Michon KJ, Khammash D, Simmonite M, Hamlin AM, Polk TA. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022; 263:119589. [PMID: 36030062 DOI: 10.1016/j.neuroimage.2022.119589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022] Open
Abstract
Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.
Collapse
Affiliation(s)
| | - Dalia Khammash
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Molly Simmonite
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Abbey M Hamlin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Tan C, Liu X, Zhang G. Inferring Brain State Dynamics Underlying Naturalistic Stimuli Evoked Emotion Changes With dHA-HMM. Neuroinformatics 2022; 20:737-753. [PMID: 35244856 DOI: 10.1007/s12021-022-09568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
Abstract
The brain functional mechanisms underlying emotional changes have been primarily studied based on the traditional task design with discrete and simple stimuli. However, the brain state transitions when exposed to continuous and naturalistic stimuli with rich affection variations remain poorly understood. This study proposes a dynamic hyperalignment algorithm (dHA) to functionally align the inter-subject neural activity. The hidden Markov model (HMM) was used to study how the brain dynamics responds to emotion during long-time movie-viewing activity. The results showed that dHA significantly improved inter-subject consistency and allowed more consistent temporal HMM states across participants. Afterward, grouping the emotions in a clustering dendrogram revealed a hierarchical grouping of the HMM states. Further emotional sensitivity and specificity analyses of ordered states revealed the most significant differences in happiness and sadness. We then compared the activation map in HMM states during happiness and sadness and found significant differences in the whole brain, but strong activation was observed during both in the superior temporal gyrus, which is related to the early process of emotional prosody processing. A comparison of the inter-network functional connections indicates unique functional connections of the memory retrieval and cognitive network with the cerebellum network during happiness. Moreover, the persistent bilateral connections among salience, cognitive, and sensorimotor networks during sadness may reflect the interaction between high-level cognitive networks and low-level sensory networks. The main results were verified by the second session of the dataset. All these findings enrich our understanding of the brain states related to emotional variation during naturalistic stimuli.
Collapse
Affiliation(s)
- Chenhao Tan
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Xin Liu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China
| | - Gaoyan Zhang
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
19
|
Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA, Montez DF, Nielsen AM, Van AN, Zheng A, Miller R, Siegel JS, Kay BP, Snyder AZ, Greene DJ, Schlaggar BL, Petersen SE, Nelson SM, Dosenbach NUF. Individualized Functional Subnetworks Connect Human Striatum and Frontal Cortex. Cereb Cortex 2022; 32:2868-2884. [PMID: 34718460 PMCID: PMC9247416 DOI: 10.1093/cercor/bhab387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the practice of averaging neuroimaging data across individuals. Here we utilized highly sampled resting-state functional connectivity MRI for individual-specific precision functional mapping (PFM) of corticostriatal connections. We identified ten individual-specific subnetworks linking cortex-predominately frontal cortex-to striatum, most of which converged with nonhuman primate tract-tracing work. These included separable connections between nucleus accumbens core/shell and orbitofrontal/medial frontal gyrus; between anterior striatum and dorsomedial prefrontal cortex; between dorsal caudate and lateral prefrontal cortex; and between middle/posterior putamen and supplementary motor/primary motor cortex. Two subnetworks that did not converge with nonhuman primates were connected to cortical regions associated with human language function. Thus, precision subnetworks identify detailed, individual-specific, neurobiologically plausible corticostriatal connectivity that includes human-specific language networks.
Collapse
Affiliation(s)
- Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley M Nielsen
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Andrew N Van
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryland Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55454, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Hlinka J, Děchtěrenko F, Rydlo J, Androvičová R, Vejmelka M, Jajcay L, Tintěra J, Lukavský J, Horáček J. The intra-session reliability of functional connectivity during naturalistic viewing conditions. Psychophysiology 2022; 59:e14075. [PMID: 35460523 DOI: 10.1111/psyp.14075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Functional connectivity analysis is a common approach to the characterization of brain function. While studies of functional connectivity have predominantly focused on resting-state fMRI, naturalistic paradigms, such as movie watching, are increasingly being used. This ecologically valid, yet relatively unconstrained acquisition state has been shown to improve subject compliance and, potentially, enhance individual differences. However, unlike the reliability of resting-state functional connectivity, the reliability of functional connectivity during naturalistic viewing has not yet been fully established. The current study investigates the intra-session reliability of functional connectivity during naturalistic viewing sessions to extend its understanding. Using fMRI data of 24 subjects measured at rest as well as during six naturalistic viewing conditions, we quantified the split-half reliability of each condition, as well as cross-condition reliabilities. We find that intra-session reliability is relatively high for all conditions. While cross-condition reliabilities are higher for pairings of two naturalistic viewing conditions, split-half reliability is highest for the resting state. Potential sources of variability across the conditions, as well as the strengths and limitations of using intra-session reliability as a measure in naturalistic viewing, are discussed.
Collapse
Affiliation(s)
- Jaroslav Hlinka
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic
| | - Filip Děchtěrenko
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Rydlo
- National Institute of Mental Health, Klecany, Czech Republic.,Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Martin Vejmelka
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Jajcay
- Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - Jaroslav Tintěra
- National Institute of Mental Health, Klecany, Czech Republic.,Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiří Lukavský
- Institute of Psychology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Horáček
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
21
|
Jabakhanji R, Vigotsky AD, Bielefeld J, Huang L, Baliki MN, Iannetti G, Apkarian AV. Limits of decoding mental states with fMRI. Cortex 2022; 149:101-122. [PMID: 35219121 PMCID: PMC9238276 DOI: 10.1016/j.cortex.2021.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
A growing number of studies claim to decode mental states using multi-voxel decoders of brain activity. It has been proposed that the fixed, fine-grained, multi-voxel patterns in these decoders are necessary for discriminating between and identifying mental states. Here, we present evidence that the efficacy of these decoders might be overstated. Across various tasks, decoder patterns were spatially imprecise, as decoder performance was unaffected by spatial smoothing; 90% redundant, as selecting a random 10% of a decoder's constituent voxels recovered full decoder performance; and performed similarly to brain activity maps used as decoders. We distinguish decoder performance in discriminating between mental states from performance in identifying a given mental state, and show that even when discrimination performance is adequate, identification can be poor. Finally, we demonstrate that simple and intuitive similarity metrics explain 91% and 62% of discrimination performance within- and across-subjects, respectively. These findings indicate that currently used across-subject decoders of mental states are superfluous and inappropriate for decision-making.
Collapse
Affiliation(s)
- Rami Jabakhanji
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jannis Bielefeld
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Marwan N Baliki
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, USA; Shirley Ryan AbilityLab, Chicago, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Giandomenico Iannetti
- Division of Biosciences, University College London, London, UK; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy
| | - A Vania Apkarian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, USA; Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, USA; Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| |
Collapse
|
22
|
Coppola P, Spindler LRB, Luppi AI, Adapa R, Naci L, Allanson J, Finoia P, Williams GB, Pickard JD, Owen AM, Menon DK, Stamatakis EA. Network dynamics scale with levels of awareness. Neuroimage 2022; 254:119128. [PMID: 35331869 DOI: 10.1016/j.neuroimage.2022.119128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/10/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Small world topologies are thought to provide a valuable insight into human brain organisation and consciousness. However, functional magnetic resonance imaging studies in consciousness have not yielded consistent results. Given the importance of dynamics for both consciousness and cognition, here we investigate how the diversity of small world dynamics (quantified by sample entropy; dSW-E1) scales with decreasing levels of awareness (i.e., sedation and disorders of consciousness). Paying particular attention to result reproducibility, we show that dSW-E is a consistent predictor of levels of awareness even when controlling for the underlying functional connectivity dynamics. We find that dSW-E of subcortical and cortical areas are predictive, with the former showing higher and more robust effect sizes across analyses. We find that the network dynamics of intermodular communication in the cerebellum also have unique predictive power for levels of awareness. Consequently, we propose that the dynamic reorganisation of the functional information architecture, in particular of the subcortex, is a characteristic that emerges with awareness and has explanatory power beyond that of the complexity of dynamic functional connectivity.
Collapse
Affiliation(s)
- Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Lloyd Building, Dublin 2, Ireland
| | - Judith Allanson
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Hills Rd., Cambridge, CB2 0QQ, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Division of Neurosurgery, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Western Interdisciplinary Research Building, University of Western Ontario, London, ON N6A 5B7, Canada
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus (Box 65), Cambridge CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK; Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Hills Rd., Cambridge CB2 0QQ, UK.
| |
Collapse
|
23
|
A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. Proc Natl Acad Sci U S A 2022; 119:2112566119. [PMID: 35027449 PMCID: PMC8784138 DOI: 10.1073/pnas.2112566119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Inferotemporal (IT) cortex in humans and other primates is topographically organized, containing multiple hierarchically organized areas selective for particular domains, such as faces and scenes. This organization is commonly viewed in terms of evolved domain-specific visual mechanisms. Here, we develop an alternative, domain-general and developmental account of IT cortical organization. The account is instantiated in interactive topographic networks (ITNs), a class of computational models in which a hierarchy of model IT areas, subject to biologically plausible connectivity-based constraints, learns high-level visual representations optimized for multiple domains. We find that minimizing a wiring cost on spatially organized feedforward and lateral connections, alongside realistic constraints on the sign of neuronal connectivity within model IT, results in a hierarchical, topographic organization. This organization replicates a number of key properties of primate IT cortex, including the presence of domain-selective spatial clusters preferentially involved in the representation of faces, objects, and scenes; columnar responses across separate excitatory and inhibitory units; and generic spatial organization whereby the response correlation of pairs of units falls off with their distance. We thus argue that topographic domain selectivity is an emergent property of a visual system optimized to maximize behavioral performance under generic connectivity-based constraints.
Collapse
|
24
|
Ritchie JB, Lee Masson H, Bracci S, Op de Beeck HP. The unreliable influence of multivariate noise normalization on the reliability of neural dissimilarity. Neuroimage 2021; 245:118686. [PMID: 34728244 DOI: 10.1016/j.neuroimage.2021.118686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Representational similarity analysis (RSA) is a key element in the multivariate pattern analysis toolkit. The central construct of the method is the representational dissimilarity matrix (RDM), which can be generated for datasets from different modalities (neuroimaging, behavior, and computational models) and directly correlated in order to evaluate their second-order similarity. Given the inherent noisiness of neuroimaging signals it is important to evaluate the reliability of neuroimaging RDMs in order to determine whether these comparisons are meaningful. Recently, multivariate noise normalization (NNM) has been proposed as a widely applicable method for boosting signal estimates for RSA, regardless of choice of dissimilarity metrics, based on evidence that the analysis improves the within-subject reliability of RDMs (Guggenmos et al. 2018; Walther et al. 2016). We revisited this issue with three fMRI datasets and evaluated the impact of NNM on within- and between-subject reliability and RSA effect sizes using multiple dissimilarity metrics. We also assessed its impact across regions of interest from the same dataset, its interaction with spatial smoothing, and compared it to GLMdenoise, which has also been proposed as a method that improves signal estimates for RSA (Charest et al. 2018). We found that across these tests the impact of NNM was highly variable, as also seems to be the case for other analysis choices. Overall, we suggest being conservative before adding steps and complexities to the (pre)processing pipeline for RSA.
Collapse
Affiliation(s)
- J Brendan Ritchie
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000 Leuven, Flemish Brabant, Belgium.
| | - Haemy Lee Masson
- Department of Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - Stefania Bracci
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Hans P Op de Beeck
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000 Leuven, Flemish Brabant, Belgium
| |
Collapse
|
25
|
Nastase SA, Liu YF, Hillman H, Zadbood A, Hasenfratz L, Keshavarzian N, Chen J, Honey CJ, Yeshurun Y, Regev M, Nguyen M, Chang CHC, Baldassano C, Lositsky O, Simony E, Chow MA, Leong YC, Brooks PP, Micciche E, Choe G, Goldstein A, Vanderwal T, Halchenko YO, Norman KA, Hasson U. The "Narratives" fMRI dataset for evaluating models of naturalistic language comprehension. Sci Data 2021; 8:250. [PMID: 34584100 PMCID: PMC8479122 DOI: 10.1038/s41597-021-01033-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
The "Narratives" collection aggregates a variety of functional MRI datasets collected while human subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as a benchmark for models of language and narrative comprehension. We provide standardized MRI data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data are publicly available with full provenance in keeping with current best practices in transparent and reproducible neuroimaging.
Collapse
Affiliation(s)
- Samuel A Nastase
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA.
| | - Yun-Fei Liu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hanna Hillman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Asieh Zadbood
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Liat Hasenfratz
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Neggin Keshavarzian
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Honey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yaara Yeshurun
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mor Regev
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mai Nguyen
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Claire H C Chang
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | | | - Olga Lositsky
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | - Erez Simony
- Faculty of Electrical Engineering, Holon Institute of Technology, Holon, Israel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yuan Chang Leong
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Paula P Brooks
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Emily Micciche
- Peabody College, Vanderbilt University, Nashville, TN, USA
| | - Gina Choe
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Ariel Goldstein
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences and Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
26
|
Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Fraenz C, Schlüter C, Friedrich P, Jung RE, Güntürkün O, Genç E. Interindividual differences in matrix reasoning are linked to functional connectivity between brain regions nominated by Parieto-Frontal Integration Theory. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
28
|
Chang LJ, Jolly E, Cheong JH, Rapuano KM, Greenstein N, Chen PHA, Manning JR. Endogenous variation in ventromedial prefrontal cortex state dynamics during naturalistic viewing reflects affective experience. SCIENCE ADVANCES 2021; 7:eabf7129. [PMID: 33893106 PMCID: PMC8064646 DOI: 10.1126/sciadv.abf7129] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
How we process ongoing experiences is shaped by our personal history, current needs, and future goals. Consequently, ventromedial prefrontal cortex (vmPFC) activity involved in processing these subjective appraisals appears to be highly idiosyncratic across individuals. To elucidate the role of the vmPFC in processing our ongoing experiences, we developed a computational framework and analysis pipeline to characterize the spatiotemporal dynamics of individual vmPFC responses as participants viewed a 45-minute television drama. Through a combination of functional magnetic resonance imaging, facial expression tracking, and self-reported emotional experiences across four studies, our data suggest that the vmPFC slowly transitions through a series of discretized states that broadly map onto affective experiences. Although these transitions typically occur at idiosyncratic times across people, participants exhibited a marked increase in state alignment during high affectively valenced events in the show. Our work suggests that the vmPFC ascribes affective meaning to our ongoing experiences.
Collapse
Affiliation(s)
- Luke J Chang
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Eshin Jolly
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jin Hyun Cheong
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | - Nathan Greenstein
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Pin-Hao A Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Jeremy R Manning
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
29
|
Hybrid hyperalignment: A single high-dimensional model of shared information embedded in cortical patterns of response and functional connectivity. Neuroimage 2021; 233:117975. [PMID: 33762217 PMCID: PMC8273921 DOI: 10.1016/j.neuroimage.2021.117975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022] Open
Abstract
Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals’ brain data into a common model space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The dimensions of this common model capture functional profiles that are shared across individuals such as cortical response profiles collected during a common time-locked stimulus presentation (e.g. movie viewing) or functional connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive transformations that project individuals’ neural data from anatomical space into the common model space. Previously, only response or connectivity profiles were used in the derivation of these transformations. In this study, we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that aligns response-based information as well as or better than response hyperalignment while simultaneously aligning connectivity-based information better than connectivity hyperalignment. These results suggest that a single common information space can encode both shared cortical response and functional connectivity profiles across individuals.
Collapse
|
30
|
Feilong M, Guntupalli JS, Haxby JV. The neural basis of intelligence in fine-grained cortical topographies. eLife 2021; 10:e64058. [PMID: 33683205 PMCID: PMC7993992 DOI: 10.7554/elife.64058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods could not resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found.
Collapse
Affiliation(s)
- Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth CollegeHanover, NHUnited States
| | | | - James V Haxby
- Center for Cognitive Neuroscience, Dartmouth CollegeHanover, NHUnited States
| |
Collapse
|
31
|
Robinson JL, Yanes JA, Reid MA, Murphy JE, Busler JN, Mumford PW, Young KC, Pietrzkowski ZJ, Nemzer BV, Hunter JM, Beck DT. Neurophysiological Effects of Whole Coffee Cherry Extract in Older Adults with Subjective Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Pilot Study. Antioxidants (Basel) 2021; 10:144. [PMID: 33498314 PMCID: PMC7909261 DOI: 10.3390/antiox10020144] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant-based compounds have shown promise as protective agents across multiple domains including improvements in neurological and psychological measures. Methodological challenges have limited our understanding of the neurophysiological changes associated with polyphenol-rich supplements such as whole coffee cherry extract (WCCE). In the current study, we (1) compared 100 mg of WCCE to a placebo using an acute, randomized, double-blind, within-subject, cross-over design, and we (2) conducted a phytochemical analysis of WCCE. The primary objective of the study was to determine the neurophysiological and behavioral changes that resulted from the acute administration of WCCE. We hypothesized that WCCE would increase brain-derived neurotrophic factor (BDNF) and glutamate levels while also increasing neurofunctional measures in cognitive brain regions. Furthermore, we expected there to be increased behavioral performance associated with WCCE, as measured by reaction time and accuracy. Participants underwent four neuroimaging scans (pre- and post-WCCE and placebo) to assess neurofunctional/metabolic outcomes using functional magnetic resonance imaging and magnetic resonance spectroscopy. The results suggest that polyphenol-rich WCCE is associated with decreased reaction time and may protect against cognitive errors on tasks of working memory and response inhibition. Behavioral findings were concomitant with neurofunctional changes in structures involved in decision-making and attention. Specifically, we found increased functional connectivity between the anterior cingulate and regions involved in sensory and decision-making networks. Additionally, we observed increased BDNF and an increased glutamate/gamma-aminobutyric acid (GABA) ratio following WCCE administration. These results suggest that WCCE is associated with acute neurophysiological changes supportive of faster reaction times and increased, sustained attention.
Collapse
Affiliation(s)
- Jennifer L. Robinson
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Julio A. Yanes
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Meredith A. Reid
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jerry E. Murphy
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
| | - Jessica N. Busler
- Department of Psychology, Auburn University, Auburn, AL 36849, USA; (J.A.Y.); (J.E.M.); (J.N.B.)
- Auburn University MRI Research Center, Auburn University, Auburn, AL 36849, USA;
- Alabama Advanced Imaging Consortium, Auburn University, Auburn, AL 36849, USA
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
| | - Petey W. Mumford
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (P.W.M.); (K.C.Y.)
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| | | | - Boris V. Nemzer
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - John M. Hunter
- VDF FutureCeuticals, Inc., 2692 N. State Route 1-17, Momence, IL 60954, USA; (B.V.N.); (J.M.H.)
| | - Darren T. Beck
- Initiative for the Center for Neuroscience, Auburn University, Auburn, AL 36849, USA;
- Edward Via College of Osteopathic Medicine, Auburn, AL 36830, USA
| |
Collapse
|
32
|
Visconti di Oleggio Castello M, Chauhan V, Jiahui G, Gobbini MI. An fMRI dataset in response to "The Grand Budapest Hotel", a socially-rich, naturalistic movie. Sci Data 2020; 7:383. [PMID: 33177526 PMCID: PMC7658985 DOI: 10.1038/s41597-020-00735-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Naturalistic stimuli evoke strong, consistent, and information-rich patterns of brain activity, and engage large extents of the human brain. They allow researchers to compare highly similar brain responses across subjects, and to study how complex representations are encoded in brain activity. Here, we describe and share a dataset where 25 subjects watched part of the feature film "The Grand Budapest Hotel" by Wes Anderson. The movie has a large cast with many famous actors. Throughout the story, the camera shots highlight faces and expressions, which are fundamental to understand the complex narrative of the movie. This movie was chosen to sample brain activity specifically related to social interactions and face processing. This dataset provides researchers with fMRI data that can be used to explore social cognitive processes and face processing, adding to the existing neuroimaging datasets that sample brain activity with naturalistic movies.
Collapse
Affiliation(s)
| | - Vassiki Chauhan
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, USA
| | - Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, Hanover, USA
| | - M Ida Gobbini
- Cognitive Science Program, Dartmouth College, Hanover, USA.
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Mapping neural activity patterns to contextualized fearful facial expressions onto callous-unemotional (CU) traits: intersubject representational similarity analysis reveals less variation among high-CU adolescents. PERSONALITY NEUROSCIENCE 2020; 3:e12. [PMID: 33283146 PMCID: PMC7681174 DOI: 10.1017/pen.2020.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Callous-unemotional (CU) traits are early-emerging personality features characterized by deficits in empathy, concern for others, and remorse following social transgressions. One of the interpersonal deficits most consistently associated with CU traits is impaired behavioral and neurophysiological responsiveness to fearful facial expressions. However, the facial expression paradigms traditionally employed in neuroimaging are often ambiguous with respect to the nature of threat (i.e., is the perceiver the threat, or is something else in the environment?). In the present study, 30 adolescents with varying CU traits viewed fearful facial expressions cued to three different contexts ("afraid for you," "afraid of you," "afraid for self") while undergoing functional magnetic resonance imaging (fMRI). Univariate analyses found that mean right amygdala activity during the "afraid for self" context was negatively associated with CU traits. With the goal of disentangling idiosyncratic stimulus-driven neural responses, we employed intersubject representational similarity analysis to link intersubject similarities in multivoxel neural response patterns to contextualized fearful expressions with differential intersubject models of CU traits. Among low-CU adolescents, neural response patterns while viewing fearful faces were most consistently similar early in the visual processing stream and among regions implicated in affective responding, but were more idiosyncratic as emotional face information moved up the cortical processing hierarchy. By contrast, high-CU adolescents' neural response patterns consistently aligned along the entire cortical hierarchy (but diverged among low-CU youths). Observed patterns varied across contexts, suggesting that interpretations of fearful expressions depend to an extent on neural response patterns and are further shaped by levels of CU traits.
Collapse
|
34
|
Nastase SA, Liu YF, Hillman H, Norman KA, Hasson U. Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. Neuroimage 2020; 217:116865. [PMID: 32325212 PMCID: PMC7958465 DOI: 10.1016/j.neuroimage.2020.116865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Connectivity hyperalignment can be used to estimate a single shared response space across disjoint datasets. We develop a connectivity-based shared response model that factorizes aggregated fMRI datasets into a single reduced-dimension shared connectivity space and subject-specific topographic transformations. These transformations resolve idiosyncratic functional topographies and can be used to project response time series into shared space. We evaluate this algorithm on a large collection of heterogeneous, naturalistic fMRI datasets acquired while subjects listened to spoken stories. Projecting subject data into shared space dramatically improves between-subject story time-segment classification and increases the dimensionality of shared information across subjects. This improvement generalizes to subjects and stories excluded when estimating the shared space. We demonstrate that estimating a simple semantic encoding model in shared space improves between-subject forward encoding and inverted encoding model performance. The shared space estimated across all datasets is distinct from the shared space derived from any particular constituent dataset; the algorithm leverages shared connectivity to yield a consensus shared space conjoining diverse story stimuli.
Collapse
Affiliation(s)
- Samuel A Nastase
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - Yun-Fei Liu
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Hanna Hillman
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Kenneth A Norman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Uri Hasson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
35
|
A naturalistic viewing paradigm using 360° panoramic video clips and real-time field-of-view changes with eye-gaze tracking. Neuroimage 2020; 216:116617. [DOI: 10.1016/j.neuroimage.2020.116617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
|
36
|
Gordon EM, Laumann TO, Marek S, Raut RV, Gratton C, Newbold DJ, Greene DJ, Coalson RS, Snyder AZ, Schlaggar BL, Petersen SE, Dosenbach NUF, Nelson SM. Default-mode network streams for coupling to language and control systems. Proc Natl Acad Sci U S A 2020; 117:17308-17319. [PMID: 32632019 PMCID: PMC7382234 DOI: 10.1073/pnas.2005238117] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human brain is organized into large-scale networks identifiable using resting-state functional connectivity (RSFC). These functional networks correspond with broad cognitive domains; for example, the Default-mode network (DMN) is engaged during internally oriented cognition. However, functional networks may contain hierarchical substructures corresponding with more specific cognitive functions. Here, we used individual-specific precision RSFC to test whether network substructures could be identified in 10 healthy human brains. Across all subjects and networks, individualized network subdivisions were more valid-more internally homogeneous and better matching spatial patterns of task activation-than canonical networks. These measures of validity were maximized at a hierarchical scale that contained ∼83 subnetworks across the brain. At this scale, nine DMN subnetworks exhibited topographical similarity across subjects, suggesting that this approach identifies homologous neurobiological circuits across individuals. Some DMN subnetworks matched known features of brain organization corresponding with cognitive functions. Other subnetworks represented separate streams by which DMN couples with other canonical large-scale networks, including language and control networks. Together, this work provides a detailed organizational framework for studying the DMN in individual humans.
Collapse
Affiliation(s)
- Evan M Gordon
- Veterans Integrated Service Network 17 Center of Excellence for Research on Returning War Veterans, US Department of Veterans Affairs, Waco, TX 76711;
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76789
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryan V Raut
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL 60208
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO 63110
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven M Nelson
- Veterans Integrated Service Network 17 Center of Excellence for Research on Returning War Veterans, US Department of Veterans Affairs, Waco, TX 76711
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76789
- Department of Psychiatry and Behavioral Science, Texas A&M Health Science Center, Bryan, TX 77807
| |
Collapse
|
37
|
Finn ES, Glerean E, Khojandi AY, Nielson D, Molfese PJ, Handwerker DA, Bandettini PA. Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. Neuroimage 2020; 215:116828. [PMID: 32276065 PMCID: PMC7298885 DOI: 10.1016/j.neuroimage.2020.116828] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Two ongoing movements in human cognitive neuroscience have researchers shifting focus from group-level inferences to characterizing single subjects, and complementing tightly controlled tasks with rich, dynamic paradigms such as movies and stories. Yet relatively little work combines these two, perhaps because traditional analysis approaches for naturalistic imaging data are geared toward detecting shared responses rather than between-subject variability. Here, we review recent work using naturalistic stimuli to study individual differences, and advance a framework for detecting structure in idiosyncratic patterns of brain activity, or "idiosynchrony". Specifically, we outline the emerging technique of inter-subject representational similarity analysis (IS-RSA), including its theoretical motivation and an empirical demonstration of how it recovers brain-behavior relationships during movie watching using data from the Human Connectome Project. We also consider how stimulus choice may affect the individual signal and discuss areas for future research. We argue that naturalistic neuroimaging paradigms have the potential to reveal meaningful individual differences above and beyond those observed during traditional tasks or at rest.
Collapse
Affiliation(s)
- Emily S Finn
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA.
| | - Enrico Glerean
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Arman Y Khojandi
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Dylan Nielson
- Mood Brain & Development Unit, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter J Molfese
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Haxby JV, Guntupalli JS, Nastase SA, Feilong M. Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies. eLife 2020; 9:e56601. [PMID: 32484439 PMCID: PMC7266639 DOI: 10.7554/elife.56601] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topographies in a canonical anatomical space. Individual transformation matrices project information from individual anatomical spaces into the common model information space, preserving the geometry of pairwise dissimilarities between pattern vectors, and model cortical topography as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content. In this Perspective, we present the conceptual framework that motivates hyperalignment, its computational underpinnings for joint modeling of a common information space and idiosyncratic cortical topographies, and discuss implications for understanding the structure of cortical functional architecture.
Collapse
Affiliation(s)
- James V Haxby
- Center for Cognitive Neuroscience, Dartmouth CollegeHanoverUnited States
| | | | | | - Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth CollegeHanoverUnited States
| |
Collapse
|
39
|
Raut RV, Mitra A, Marek S, Ortega M, Snyder AZ, Tanenbaum A, Laumann TO, Dosenbach NUF, Raichle ME. Organization of Propagated Intrinsic Brain Activity in Individual Humans. Cereb Cortex 2020; 30:1716-1734. [PMID: 31504262 PMCID: PMC7132930 DOI: 10.1093/cercor/bhz198] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks-altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.
Collapse
Affiliation(s)
- Ryan V Raut
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Anish Mitra
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Mario Ortega
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Aaron Tanenbaum
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Department of Occupational Therapy, Washington University, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Radiology, Washington University, St. Louis, MO 63110, USA
- Department of Neurology, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
40
|
Jiahui G, Feilong M, Visconti di Oleggio Castello M, Guntupalli JS, Chauhan V, Haxby JV, Gobbini MI. Predicting individual face-selective topography using naturalistic stimuli. Neuroimage 2019; 216:116458. [PMID: 31843709 DOI: 10.1016/j.neuroimage.2019.116458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/16/2019] [Accepted: 12/09/2019] [Indexed: 01/28/2023] Open
Abstract
Subject-specific, functionally defined areas are conventionally estimated with functional localizers and a simple contrast analysis between responses to different stimulus categories. Compared with functional localizers, naturalistic stimuli provide several advantages such as stronger and widespread brain activation, greater engagement, and increased subject compliance. In this study we demonstrate that a subject's idiosyncratic functional topography can be estimated with high fidelity from that subject's fMRI data obtained while watching a naturalistic movie using hyperalignment to project other subjects' localizer data into that subject's idiosyncratic cortical anatomy. These findings lay the foundation for developing an efficient tool for mapping functional topographies for a wide range of perceptual and cognitive functions in new subjects based only on fMRI data collected while watching an engaging, naturalistic stimulus and other subjects' localizer data from a normative sample.
Collapse
Affiliation(s)
- Guo Jiahui
- Center for Cognitive Neuroscience, Dartmouth College, NH, USA
| | - Ma Feilong
- Center for Cognitive Neuroscience, Dartmouth College, NH, USA
| | | | | | - Vassiki Chauhan
- Center for Cognitive Neuroscience, Dartmouth College, NH, USA
| | - James V Haxby
- Center for Cognitive Neuroscience, Dartmouth College, NH, USA
| | - M Ida Gobbini
- Cognitive Science, Dartmouth College, NH, USA; Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, 40126, Italy.
| |
Collapse
|
41
|
Nastase SA, Gazzola V, Hasson U, Keysers C. Measuring shared responses across subjects using intersubject correlation. Soc Cogn Affect Neurosci 2019; 14:667-685. [PMID: 31099394 PMCID: PMC6688448 DOI: 10.1093/scan/nsz037] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our capacity to jointly represent information about the world underpins our social experience. By leveraging one individual's brain activity to model another's, we can measure shared information across brains-even in dynamic, naturalistic scenarios where an explicit response model may be unobtainable. Introducing experimental manipulations allows us to measure, for example, shared responses between speakers and listeners or between perception and recall. In this tutorial, we develop the logic of intersubject correlation (ISC) analysis and discuss the family of neuroscientific questions that stem from this approach. We also extend this logic to spatially distributed response patterns and functional network estimation. We provide a thorough and accessible treatment of methodological considerations specific to ISC analysis and outline best practices.
Collapse
Affiliation(s)
- Samuel A Nastase
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, KNAW, 105BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WV Amsterdam, The Netherlands
| | - Uri Hasson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, KNAW, 105BA Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
42
|
Bruffaerts R, De Deyne S, Meersmans K, Liuzzi AG, Storms G, Vandenberghe R. Redefining the resolution of semantic knowledge in the brain: Advances made by the introduction of models of semantics in neuroimaging. Neurosci Biobehav Rev 2019; 103:3-13. [PMID: 31132379 DOI: 10.1016/j.neubiorev.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
The boundaries of our understanding of conceptual representation in the brain have been redrawn since the introduction of explicit models of semantics. These models are grounded in vast behavioural datasets acquired in healthy volunteers. Here, we review the most important techniques which have been applied to detect semantic information in neuroimaging data and argue why semantic models are possibly the most valuable addition to the research of semantics in recent years. Using multivariate analysis, predictions based on patient lesion data have been confirmed during semantic processing in healthy controls. Secondly, this new method has given rise to new research avenues, e.g. the detection of semantic processing outside of the temporal cortex. As a future line of work, the same research strategy could be useful to study neurological conditions such as the semantic variant of primary progressive aphasia, which is characterized by pathological semantic processing.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium; Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Simon De Deyne
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, KU Leuven, Belgium
| | - Karen Meersmans
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | | | - Gert Storms
- Laboratory of Experimental Psychology, Humanities and Social Sciences Group, KU Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium; Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Vanderwal T, Eilbott J, Castellanos FX. Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Dev Cogn Neurosci 2019; 36:100600. [PMID: 30551970 PMCID: PMC6969259 DOI: 10.1016/j.dcn.2018.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
The use of movie-watching as an acquisition state for functional connectivity (FC) MRI has recently enabled multiple groups to obtain rich data sets in younger children with both substantial sample sizes and scan durations. Using naturalistic paradigms such as movies has also provided analytic flexibility for these developmental studies that extends beyond conventional resting state approaches. This review highlights the advantages and challenges of using movies for developmental neuroimaging and explores some of the methodological issues involved in designing pediatric studies with movies. Emerging themes from movie-watching studies are discussed, including an emphasis on intersubject correlations, developmental changes in network interactions under complex naturalistic conditions, and dynamic age-related changes in both sensory and higher-order network FC even in narrow age ranges. Converging evidence suggests an enhanced ability to identify brain-behavior correlations in children when using movie-watching data relative to both resting state and conventional tasks. Future directions and cautionary notes highlight the potential and the limitations of using movies to study FC in pediatric populations.
Collapse
Affiliation(s)
- Tamara Vanderwal
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada; Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States.
| | - Jeffrey Eilbott
- Yale Child Study Center, 230 South Frontage Road, New Haven CT, 06519, United States
| | - F Xavier Castellanos
- The Child Study Center at New York University Langone Medical Center, 1 Park Avenue, New York, NY, 10016, United States; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, United States
| |
Collapse
|