1
|
Furnari F, Park H, Yaffe G, Hampson M. Neurofeedback: potential for abuse and regulatory frameworks in the United States. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230099. [PMID: 39428883 PMCID: PMC11513161 DOI: 10.1098/rstb.2023.0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback is a brain-training technique that continues to develop via ongoing innovations, and that has broadening potential impact. Once confined primarily to clinical and research settings, it is increasingly being used in the general population. Such development raises concerns about the current regulatory mechanisms and their adequacy in protecting patterns of economic and political decision-making from the novel technology. As studies have found neurofeedback to change subjects' preferences and mental associations covertly, there is a possibility it will be abused for political and commercial gains. Current regulatory practices (including disclaimer requirements, unfair and deceptive trade practice statutes and undue influence law) may be avenues from which to regulate neurofeedback influence. They are, however, limited. Regulating neurofeedback will face the line-drawing problem of determining when it induces an unacceptable level of influence. We suggest experiments that will clarify how the parameters of neurofeedback training affect its level of influence. In addition, we assert that the reactive nature of the traditional models of regulation will be inadequate against this and other rapidly transforming technologies. An integrated and proactive regulatory system designed for flexibility must be adopted to protect society in this era of modern technological advancement. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
| | - Haesoo Park
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06510, USA
| | | | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06510, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT06511, USA
- Child Study Center, Yale School of Medicine, New Haven, CT06520, USA
| |
Collapse
|
2
|
Gurevitch G, Lubianiker N, Markovits T, Or-Borichev A, Sharon H, Fine NB, Fruchtman-Steinbok T, Keynan JN, Shahar M, Friedman A, Singer N, Hendler T. Amygdala self-neuromodulation capacity as a window for process-related network recruitment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240186. [PMID: 39428877 PMCID: PMC11491848 DOI: 10.1098/rstb.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Neurofeedback (NF) has emerged as a promising avenue for demonstrating process-related neuroplasticity, enabling self-regulation of brain function. NF targeting the amygdala has drawn attention to therapeutic potential in psychiatry, by potentially harnessing emotion-regulation processes. However, not all individuals respond equally to NF training, possibly owing to varying self-regulation abilities. This underscores the importance of understanding the mechanisms behind successful neuromodulation (i.e. capacity). This study aimed to investigate the establishment and neural correlates of neuromodulation capacity using data from repeated sessions of amygdala electrical fingerprint (Amyg-EFP)-NF and post-training functional magnetic resonance imaging (fMRI)-NF sessions. Results from 97 participants (healthy controls and post-traumatic stress disorder and fibromyalgia patients) revealed increased Amyg-EFP neuromodulation capacity over training, associated with post-training amygdala-fMRI modulation capacity and improvements in alexithymia. Individual differenaces in this capacity were associated with pre-training amygdala reactivity and initial neuromodulation success. Additionally, amygdala downregulation during fMRI-NF co-modulated with other regions such as the posterior insula and parahippocampal gyrus. This combined modulation better explained EFP-modulation capacity and improvement in alexithymia than the amygdala modulation alone, suggesting the relevance of this broader network to gained capacity. These findings support a network-based approach for NF and highlight the need to consider individual differences in brain function and modulation capacity to optimize NF interventions. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Guy Gurevitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Psychology Department, Yale University, New Haven, CT, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Taly Markovits
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ayelet Or-Borichev
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Haggai Sharon
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- Department of Anesthesia and Critical Care Medicine, Institute of Pain Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Naomi B. Fine
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | - Jacob N. Keynan
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Moni Shahar
- The Center for AI and Data Science, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Alon Friedman
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Neomi Singer
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
| | - Talma Hendler
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
3
|
Rice DA, Ozolins C, Biswas R, Almesfer F, Zeng I, Parikh A, Vile WG, Rashid U, Graham J, Kluger MT. Home-based EEG Neurofeedback for the Treatment of Chronic Pain: A Randomized Controlled Clinical Trial. THE JOURNAL OF PAIN 2024; 25:104651. [PMID: 39154809 DOI: 10.1016/j.jpain.2024.104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
This parallel, 2-arm, blinded, randomized controlled superiority trial examined whether, when added to usual care, active-electroencephalography neurofeedback (EEG NFB) was safe and more effective than sham control-EEG NFB for chronic pain. In total, 116 participants with chronic pain were randomly assigned (1:1) to usual care plus ≥32 sessions of active-EEG NFB upregulating relative alpha power over C4 or usual care plus ≥32 sessions of sham control-EEG NFB. Per-protocol analyses revealed no significant between-group differences in the primary outcome, Brief Pain Inventory average pain (mean difference [95% confidence interval]: -.04 [-.39 to .31], P = .90), or any secondary outcomes. However, 44% of participants in the active-EEG NFB group and 45% in the control-EEG NFB group reported at least a moderate (≥30%), clinically important improvement in Brief Pain Inventory average pain. The number of treatment-emergent adverse events were similar in both groups (P = .83), and none were serious. Post hoc analyses revealed similar upregulated relative alpha power in both groups during training, with concordant positive rewards delivered to the active-EEG group 100% of the time and the control-EEG group ∼25% of the time, suggesting a partially active sham intervention. When added to usual care, the active-EEG NFB intervention used in this study was not superior to the sham control-EEG NFB intervention. However, a large proportion of participants in both groups reported a clinically important reduction in pain intensity. A partially active sham intervention may have obscured between-group differences. The intervention was free of important side effects, with no safety concerns identified. PERSPECTIVE: This study is the first attempt at an appropriately blinded, randomized, sham-controlled trial of alpha EEG NFB for the treatment of chronic pain. The findings may interest people living with chronic pain, clinicians involved in chronic pain management, and may inform the design of future EEG NFB trials. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12621000667819.
Collapse
Affiliation(s)
- David A Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand; Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand.
| | | | - Riya Biswas
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Irene Zeng
- Department of Biostatistics, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Ankit Parikh
- Exsurgo Limited, Auckland, Auckland, New Zealand
| | | | - Usman Rashid
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, Auckland, New Zealand
| | - Jon Graham
- PhysioFunction Ltd., Northampton, Northamptonshire, United Kingdom
| | - Michal T Kluger
- Waitemata Pain Services, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology and Perioperative Medicine, Te Whatu Ora - Health New Zealand Waitematā, Auckland, Auckland, New Zealand; Department of Anaesthesiology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Krause F, Linden DEJ, Hermans EJ. Getting stress-related disorders under control: the untapped potential of neurofeedback. Trends Neurosci 2024; 47:766-776. [PMID: 39261131 DOI: 10.1016/j.tins.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Stress-related disorders are among the biggest global health challenges. Despite significant progress in understanding their neurocognitive basis, the promise of applying insights from fundamental research to prevention and treatment remains largely unfulfilled. We argue that neurofeedback - a method for training voluntary control over brain activity - has the potential to fill this translational gap. We provide a contemporary perspective on neurofeedback as endogenous neuromodulation that can target complex brain network dynamics, is transferable to real-world scenarios outside a laboratory or treatment facility, can be trained prospectively, and is individually adaptable. This makes neurofeedback a prime candidate for a personalized preventive neuroscience-based intervention strategy that focuses on the ecological momentary neuromodulation of stress-related brain networks in response to actual stressors in real life.
Collapse
Affiliation(s)
- Florian Krause
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands.
| | - David E J Linden
- Faculty of Health, Medicine and Life Sciences, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Navarro-Ledesma S, Hamed-Hamed D, Gonzalez-Muñoz A, Pruimboom L. Impact of physical therapy techniques and common interventions on sleep quality in patients with chronic pain: A systematic review. Sleep Med Rev 2024; 76:101937. [PMID: 38669729 DOI: 10.1016/j.smrv.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
This systematic review aims to find effectful healthcare strategies, with special focus on drug-free interventions and physical therapy, as part of the treatment for sleep in patients with chronic musculoskeletal pain. Data search was conducted across seven scientific databases. This review is deposited in the Prospero International prospective register of systematic reviews (CRD42023452574). Seventeen RCTs from different healthcare fields complied with our inclusion criteria. Two RCTs investigated manual therapy, five RCTs therapeutic exercise, one RCT Fu's subcutaneous needling, two RCTs physical agents (one on balneotherapy and one on cryo-stimulation), two RCTs cognitive-behavioral therapy, and four RCTs pharmacological therapy and their effect on sleep quality and/or quantity in patients suffering from chronic pain. We included the four RCT's in this systematic review with the purpose to be able to compare natural interventions with allopathic ones. As allopathic interventions are more prone to have secondary negative effects than physical therapy, compare the two types of interventions could be in favor of choosing the most effective treatment with the least secondary negative effects. Additionally, two RCTs on neurofeedback and limbic neuromodulation were also included. The results of the included studies suggest that strategies such as manual therapy, therapeutic exercise, Fu's subcutaneous needling, balneotherapy, cryo-stimulation, neurofeedback, limbic neuromodulation, cognitive-behavioral therapy, and pharmacological therapies have positive effects on patients suffering from chronic pain and sleep disturbances, especially when they suffer musculoskeletal pain. Secondary negative effects were found for the possible overuse of certain medicines such as morphine, a huge problem in the United States. Sleep deficiency is an independent risk factor for many diseases, including chronic pain syndrome and therefore more studies are needed to find non-toxic interventions for people suffering sleep disorders associated with systemic diseases and pain.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Spain; University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Spain.
| | - Dina Hamed-Hamed
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Ana Gonzalez-Muñoz
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain; Clinica Ana Gonzalez, Avenida Hernan Nuñez de Toledo 6, 29018, Malaga, Spain
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Spain
| |
Collapse
|
6
|
Zopfs M, Jindrová M, Gurevitch G, Keynan JN, Hendler T, Baumeister S, Aggensteiner PM, Cornelisse S, Brandeis D, Schmahl C, Paret C. Amygdala-related electrical fingerprint is modulated with neurofeedback training and correlates with deep-brain activation: proof-of-concept in borderline personality disorder. Psychol Med 2024; 54:1651-1660. [PMID: 38131344 DOI: 10.1017/s0033291723003549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
BACKGROUND The modulation of brain circuits of emotion is a promising pathway to treat borderline personality disorder (BPD). Precise and scalable approaches have yet to be established. Two studies investigating the amygdala-related electrical fingerprint (Amyg-EFP) in BPD are presented: one study addressing the deep-brain correlates of Amyg-EFP, and a second study investigating neurofeedback (NF) as a means to improve brain self-regulation. METHODS Study 1 combined electroencephalography (EEG) and simultaneous functional magnetic resonance imaging to investigate the replicability of Amyg-EFP-related brain activation found in the reference dataset (N = 24 healthy subjects, 8 female; re-analysis of published data) in the replication dataset (N = 16 female individuals with BPD). In the replication dataset, we additionally explored how the Amyg-EFP would map to neural circuits defined by the research domain criteria. Study 2 investigated a 10-session Amyg-EFP NF training in parallel to a 12-weeks residential dialectical behavior therapy (DBT) program. Fifteen patients with BPD completed the training, N = 15 matched patients served as DBT-only controls. RESULTS Study 1 replicated previous findings and showed significant amygdala blood oxygenation level dependent activation in a whole-brain regression analysis with the Amyg-EFP. Neurocircuitry activation (negative affect, salience, and cognitive control) was correlated with the Amyg-EFP signal. Study 2 showed Amyg-EFP modulation with NF training, but patients received reversed feedback for technical reasons, which limited interpretation of results. CONCLUSIONS Recorded via scalp EEG, the Amyg-EFP picks up brain activation of high relevance for emotion. Administering Amyg-EFP NF in addition to standardized BPD treatment was shown to be feasible. Clinical utility remains to be investigated.
Collapse
Affiliation(s)
- Malte Zopfs
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Miroslava Jindrová
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Guy Gurevitch
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Jackob N Keynan
- Brain Stimulation Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Talma Hendler
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Pascal-M Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Sven Cornelisse
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Christian Paret
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
7
|
Torres CB, Barona EJG, Molina MG, Sánchez MEGB, Manso JMM. A systematic review of EEG neurofeedback in fibromyalgia to treat psychological variables, chronic pain and general health. Eur Arch Psychiatry Clin Neurosci 2024; 274:981-999. [PMID: 37179502 PMCID: PMC11127810 DOI: 10.1007/s00406-023-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
This paper is the first up-to-date review of the various EEG-neurofeedback treatments for fibromyalgia patients and their psychological, physiological and general health consequences. Searches were made of the PubMed, PsycNet, Google Scholar and Scopus databases according to PRISMA guidelines for empirical peer-reviewed articles on EEG-neurofeedback treatment of fibromyalgia, yielding a final selection of 17 studies that met the inclusion criteria: (1) published articles and doctoral theses; (2) conducted between 2000 and 2022; (3) reporting empirical and quantitative data. These articles show that there is a wide range of protocols with different designs and procedures to treat fibromyalgia using EEG-neurofeedback techniques. The main symptoms that showed improvement were anxiety, depression, pain, general health and symptom severity, whilst the most commonly used method was traditional EEG neurofeedback based on a sensorimotor rhythm protocol. It may be concluded from the review that the lack of consistency and uniqueness of the protocols makes it very difficult to generalise results, despite the individual improvements identified. This review provides instructions and information that could guide future research and clinical practise, with the data extracted helping to gain a deeper understanding of the state of the art and the needs of the technique for this population group.
Collapse
|
8
|
Diotaiuti P, Corrado S, Tosti B, Spica G, Di Libero T, D’Oliveira A, Zanon A, Rodio A, Andrade A, Mancone S. Evaluating the effectiveness of neurofeedback in chronic pain management: a narrative review. Front Psychol 2024; 15:1369487. [PMID: 38770259 PMCID: PMC11104502 DOI: 10.3389/fpsyg.2024.1369487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
The prevalence and impact of chronic pain in individuals worldwide necessitate effective management strategies. This narrative review specifically aims to assess the effectiveness of neurofeedback, an emerging non-pharmacological intervention, on the management of chronic pain. The methodology adopted for this review involves a meticulous search across various scientific databases. The search was designed to capture a broad range of studies related to neurofeedback and chronic pain management. To ensure the quality and relevance of the included studies, strict inclusion and exclusion criteria were applied. These criteria focused on the study design, population, intervention type, and reported outcomes. The review synthesizes the findings from a diverse array of studies, including randomized controlled trials, observational studies, and case reports. Key aspects evaluated include the types of neurofeedback used (such as EEG biofeedback), the various chronic pain conditions addressed (like fibromyalgia, neuropathic pain, and migraines), and the methodologies employed in these studies. The review highlights the underlying mechanisms by which neurofeedback may influence pain perception and management, exploring theories related to neural plasticity, pain modulation, and psychological factors. The results of the review reveal a positive correlation between neurofeedback interventions and improved pain management. Several studies report significant reductions on pain intensity, improved quality of life, and decreased reliance on medication following neurofeedback therapy. The review also notes variations in the effectiveness of different neurofeedback protocols and individual responses to treatment. Despite the promising results, the conclusion of the review emphasizes the need for further research. It calls for larger, well-designed clinical trials to validate the findings, to understand the long-term implications of neurofeedback therapy, and to optimize treatment protocols for individual patients.
Collapse
Affiliation(s)
- Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Giuseppe Spica
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Anderson D’Oliveira
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Alessandra Zanon
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| | - Alexandro Andrade
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Lazio, Italy
| |
Collapse
|
9
|
Fine NB, Neuman Fligelman E, Carlton N, Bloch M, Hendler T, Helpman L, Seligman Z, Armon DB. Integration of limbic self-neuromodulation with psychotherapy for complex post-traumatic stress disorder: treatment rationale and case study. Eur J Psychotraumatol 2024; 15:2256206. [PMID: 38166532 PMCID: PMC10769120 DOI: 10.1080/20008066.2023.2256206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 01/04/2024] Open
Abstract
Treatment Rationale: Exposure to repeated sexual trauma, particularly during childhood, often leads to protracted mental health problems. Childhood adversity is specifically associated with complex posttraumatic stress disorder (PTSD) presentation, which is particularly tenacious and treatment refractory, and features severe emotion dysregulation. Augmentation approaches have been suggested to enhance treatment efficacy in PTSD thus integrating first-line psychotherapy with mechanistically informed self-neuromodulation procedures (i.e. neurofeedback) may pave the way to enhanced clinical outcomes. A central neural mechanism of PTSD and emotion dysregulation involves amygdala hyperactivity that can be volitionally regulated by neurofeedback. We outline a treatment rationale that includes a detailed justification for the potential of combining psychotherapy and NF and delineate mechanisms of change. We illustrate key processes of reciprocal interactions between neurofeedback engagement and therapeutic goals.Case Study: We describe a clinical case of a woman with complex PTSD due to early and repetitive childhood sexual abuse using adjunctive neurofeedback as an augmentation to an ongoing, stable, traditional treatment plan. The woman participated in (a) ten sessions of neurofeedback by the use of an fMRI-inspired EEG model of limbic related activity (Amygdala Electrical-Finger-Print; AmygEFP-NF), (b) traditional weekly individual psychotherapy, (c) skills group. Before and after NF training period patient was blindly assessed for PTSD symptoms, followed by a 1, 3- and 6-months self-report follow-up. We demonstrate mechanisms of change as well as the clinical effectiveness of adjunctive treatment as indicated by reduced PTSD symptoms and improved daily functioning within this single case.Conclusions: We outline an integrative neuropsychological framework for understanding the unique mechanisms of change conferring value to conjoining NF applications with trauma-focused psychotherapy in complex PTSD.
Collapse
Affiliation(s)
- Naomi B. Fine
- Faculty of Social Sciences, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Brain Institute Tel-Aviv, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ellie Neuman Fligelman
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Nora Carlton
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Miki Bloch
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Talma Hendler
- Faculty of Social Sciences, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol Brain Institute Tel-Aviv, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Helpman
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Counseling and Human Development, University of Haifa, Haifa, Israel
| | - Zivya Seligman
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| | - Daphna Bardin Armon
- Lotem Center for Treatment of Sexual Trauma, Department of Psychiatry, Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
10
|
Fine NB, Helpman L, Armon DB, Gurevitch G, Sheppes G, Seligman Z, Hendler T, Bloch M. Amygdala-related electroencephalogram neurofeedback as add-on therapy for treatment-resistant childhood sexual abuse posttraumatic stress disorder: feasibility study. Psychiatry Clin Neurosci 2024; 78:19-28. [PMID: 37615935 PMCID: PMC11488636 DOI: 10.1111/pcn.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
AIM Childhood sexual abuse (CSA) among women is an alarmingly prevalent traumatic experience that often leads to debilitating and treatment-refractory posttraumatic stress disorder (PTSD), raising the need for novel adjunctive therapies. Neuroimaging investigations systematically report that amygdala hyperactivity is the most consistent and reliable neural abnormality in PTSD and following childhood abuse, raising the potential of implementing volitional neural modulation using neurofeedback (NF) aimed at down-regulating amygdala activity. This study aimed to reliably probe limbic activity but overcome the limited applicability of functional magnetic resonance imaging (fMRI) NF by using a scalable electroencephalogram NF probe of amygdala-related activity, termed amygdala electrical-finger-print (amyg-EFP) in a randomized controlled trial. METHOD Fifty-five women with CSA-PTSD who were in ongoing intensive trauma-focused psychotherapy for a minimum of 1 year but still met Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) PTSD criteria were randomized to either 10 add-on sessions of amyg-EFP-NF training (test group) or continuing psychotherapy (control group). Participants were blindly assessed for PTSD symptoms before and after the NF training period, followed by self-reported clinical follow-up at 1, 3, and 6 months, as well as one session of amygdala real-time fMRI-NF before and after NF training period. RESULTS Participants in the test group compared with the control group demonstrated a marginally significant immediate reduction in PTSD symptoms, which progressively improved during the follow-up period. In addition, successful neuromodulation during NF training was demonstrated. CONCLUSION This feasibility study for patients with treatment-resistant CSA-PTSD indicates that amyg-EFP-NF is a viable and efficient intervention.
Collapse
Affiliation(s)
- Naomi B. Fine
- School of Psychological Sciences, Faculty of Social SciencesTel‐Aviv UniversityTel AvivIsrael
- Sagol Brain Institute Tel‐Aviv, Wohl Institute for Advanced ImagingTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
| | - Liat Helpman
- Womens' Reproductive Mental Health research Unit, Psychiatric DepartmentTel Aviv Sourasky Medical CenterTel‐AvivIsrael
- Department of Counseling and Human DevelopmentUniversity of HaifaHaifaIsrael
| | - Daphna Bardin Armon
- Lotem Center for Treatment of Sexual Trauma, Department of PsychiatryTel Aviv Sourasky Medical CenterTel‐AvivIsrael
| | - Guy Gurevitch
- Sagol Brain Institute Tel‐Aviv, Wohl Institute for Advanced ImagingTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Gal Sheppes
- School of Psychological Sciences, Faculty of Social SciencesTel‐Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel‐AvivIsrael
| | - Zivya Seligman
- Lotem Center for Treatment of Sexual Trauma, Department of PsychiatryTel Aviv Sourasky Medical CenterTel‐AvivIsrael
| | - Talma Hendler
- School of Psychological Sciences, Faculty of Social SciencesTel‐Aviv UniversityTel AvivIsrael
- Sagol Brain Institute Tel‐Aviv, Wohl Institute for Advanced ImagingTel‐Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- Sagol School of NeuroscienceTel‐Aviv UniversityTel‐AvivIsrael
| | - Miki Bloch
- Womens' Reproductive Mental Health research Unit, Psychiatric DepartmentTel Aviv Sourasky Medical CenterTel‐AvivIsrael
- Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
11
|
Fleury M, Figueiredo P, Vourvopoulos A, Lécuyer A. Two is better? combining EEG and fMRI for BCI and neurofeedback: a systematic review. J Neural Eng 2023; 20:051003. [PMID: 37879343 DOI: 10.1088/1741-2552/ad06e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two commonly used non-invasive techniques for measuring brain activity in neuroscience and brain-computer interfaces (BCI).Objective. In this review, we focus on the use of EEG and fMRI in neurofeedback (NF) and discuss the challenges of combining the two modalities to improve understanding of brain activity and achieve more effective clinical outcomes. Advanced technologies have been developed to simultaneously record EEG and fMRI signals to provide a better understanding of the relationship between the two modalities. However, the complexity of brain processes and the heterogeneous nature of EEG and fMRI present challenges in extracting useful information from the combined data.Approach. We will survey existing EEG-fMRI combinations and recent studies that exploit EEG-fMRI in NF, highlighting the experimental and technical challenges.Main results. We made a classification of the different combination of EEG-fMRI for NF, we provide a review of multimodal analysis methods for EEG-fMRI features. We also survey the current state of research on EEG-fMRI in the different existing NF paradigms. Finally, we also identify some of the remaining challenges in this field.Significance. By exploring EEG-fMRI combinations in NF, we are advancing our knowledge of brain function and its applications in clinical settings. As such, this review serves as a valuable resource for researchers, clinicians, and engineers working in the field of neural engineering and rehabilitation, highlighting the promising future of EEG-fMRI-based NF.
Collapse
Affiliation(s)
- Mathis Fleury
- Univ Rennes, Inria, CNRS, Inserm, Empenn ERL U1228 Rennes, France
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Athanasios Vourvopoulos
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Anatole Lécuyer
- Univ Rennes, Inria, CNRS, Inserm, Empenn ERL U1228 Rennes, France
| |
Collapse
|
12
|
Tene O, Bleich Cohen M, Helpman L, Fine N, Halevy A, Goldway N, Perry D, Bary P, Aisenberg Romano G, Ben-Zion Z, Hendler T, Bloch M. Limbic self-neuromodulation as a novel treatment option for emotional dysregulation in premenstrual dysphoric disorder (PMDD); a proof-of-concept study. Psychiatry Clin Neurosci 2023; 77:550-558. [PMID: 37354437 DOI: 10.1111/pcn.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
AIM To assess the efficacy of a novel neurofeedback (NF) method, targeting limbic activity, to treat emotional dysregulation related to premenstrual dysphoric disorder (PMDD). METHODS We applied a NF probe targeting limbic activity using a functional magnetic resonance imaging-inspired electroencephalogram model (termed Amyg-EFP-NF) in a double-blind randomized controlled trial. A frontal alpha asymmetry probe (AAS-NF), served as active control. Twenty-seven participants diagnosed with PMDD (mean age = 33.57 years, SD = 5.67) were randomly assigned to Amyg-EFP-NF or AAS-NF interventions with a 2:1 ratio, respectively. The treatment protocol consisted of 11 NF sessions through three menstrual cycles, and a follow-up assessment 3 months thereafter. The primary outcome measure was improvement in the Revised Observer Version of the Premenstrual Tension Syndrome Rating Scale (PMTS-OR). RESULTS A significant group by time effect was observed for the core symptom subscale of the PMTS-OR, with significant improvement observed at follow-up for the Amyg-EFP group compared with the AAS group [F(1, 15)=4.968, P = 0.042]. This finding was specifically robust for reduction in anger [F(1, 15) = 22.254, P < 0.001]. A significant correlation was found between learning scores and overall improvement in core symptoms (r = 0.514, P = 0.042) suggesting an association between mechanism of change and clinical improvement. CONCLUSION Our preliminary findings suggest that Amyg-EFP-NF may serve as an affordable and accessible non-invasive treatment option for emotional dysregulation in women suffering from PMDD. Our main limitations were the relatively small number of participants and the lack of a sham-NF placebo arm.
Collapse
Affiliation(s)
- Oren Tene
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Bleich Cohen
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Helpman
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Counseling and Human Development, Faculty of Education, University of Haifa, Haifa, Israel
| | - Naomi Fine
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Halevy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Noam Goldway
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychology, New York University, New York City, New York, USA
| | - Daniella Perry
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Plia Bary
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Gabi Aisenberg Romano
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ziv Ben-Zion
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Departments of Comparative Medicine and Psychiatry, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
- Clinical Neuroscience Division, US Department of Veterans Affairs National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Talma Hendler
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Miki Bloch
- Department of Psychiatry and Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Sagol School of Neuroscience and Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Singer N, Poker G, Dunsky-Moran N, Nemni S, Reznik Balter S, Doron M, Baker T, Dagher A, Zatorre RJ, Hendler T. Development and validation of an fMRI-informed EEG model of reward-related ventral striatum activation. Neuroimage 2023; 276:120183. [PMID: 37225112 PMCID: PMC10300238 DOI: 10.1016/j.neuroimage.2023.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Reward processing is essential for our mental-health and well-being. In the current study, we developed and validated a scalable, fMRI-informed EEG model for monitoring reward processing related to activation in the ventral-striatum (VS), a significant node in the brain's reward system. To develop this EEG-based model of VS-related activation, we collected simultaneous EEG/fMRI data from 17 healthy individuals while listening to individually-tailored pleasurable music - a highly rewarding stimulus known to engage the VS. Using these cross-modal data, we constructed a generic regression model for predicting the concurrently acquired Blood-Oxygen-Level-Dependent (BOLD) signal from the VS using spectro-temporal features from the EEG signal (termed hereby VS-related-Electrical Finger Print; VS-EFP). The performance of the extracted model was examined using a series of tests that were applied on the original dataset and, importantly, an external validation dataset collected from a different group of 14 healthy individuals who underwent the same EEG/FMRI procedure. Our results showed that the VS-EFP model, as measured by simultaneous EEG, predicted BOLD activation in the VS and additional functionally relevant regions to a greater extent than an EFP model derived from a different anatomical region. The developed VS-EFP was also modulated by musical pleasure and predictive of the VS-BOLD during a monetary reward task, further indicating its functional relevance. These findings provide compelling evidence for the feasibility of using EEG alone to model neural activation related to the VS, paving the way for future use of this scalable neural probing approach in neural monitoring and self-guided neuromodulation.
Collapse
Affiliation(s)
- Neomi Singer
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Gilad Poker
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel
| | - Netta Dunsky-Moran
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Shlomi Nemni
- Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Shira Reznik Balter
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel
| | - Maayan Doron
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Sackler School of Medicine, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Travis Baker
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Alain Dagher
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada; International Laboratory for Brain, Music, and Sound Research (BRAMS), Canada
| | - Talma Hendler
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, 6 Weizman St. Tel Aviv, 64239, Israel; Sagol school of Neuroscience, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel; Sackler School of Medicine, Tel-Aviv University, PO Box 39040, Tel Aviv 6997801, Israel.
| |
Collapse
|
14
|
Neural and functional validation of fMRI-informed EEG model of right inferior frontal gyrus activity. Neuroimage 2023; 266:119822. [PMID: 36535325 DOI: 10.1016/j.neuroimage.2022.119822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The right inferior frontal gyrus (rIFG) is a region involved in the neural underpinning of cognitive control across several domains such as inhibitory control and attentional allocation process. Therefore, it constitutes a desirable neural target for brain-guided interventions such as neurofeedback (NF). To date, rIFG-NF has shown beneficial ability to rehabilitate or enhance cognitive functions using functional Magnetic Resonance Imaging (fMRI-NF). However, the utilization of fMRI-NF for clinical purposes is severely limited, due to its poor scalability. The present study aimed to overcome the limited applicability of fMRI-NF by developing and validating an EEG model of fMRI-defined rIFG activity (hereby termed "Electrical FingerPrint of rIFG"; rIFG-EFP). To validate the computational model, we employed two experiments in healthy individuals. The first study (n = 14) aimed to test the target engagement of the model by employing rIFG-EFP-NF training while simultaneously acquiring fMRI. The second study (n = 41) aimed to test the functional outcome of two sessions of rIFG-EFP-NF using a risk preference task (known to depict cognitive control processes), employed before and after the training. Results from the first study demonstrated neural target engagement as expected, showing associated rIFG-BOLD signal changing during simultaneous rIFG-EFP-NF training. Target anatomical specificity was verified by showing a more precise prediction of the rIFG-BOLD by the rIFG-EFP model compared to other EFP models. Results of the second study suggested that successful learning to up-regulate the rIFG-EFP signal through NF can reduce one's tendency for risk taking, indicating improved cognitive control after two sessions of rIFG-EFP-NF. Overall, our results confirm the validity of a scalable NF method for targeting rIFG activity by using an EEG probe.
Collapse
|
15
|
Korem N, Duek O, Ben-Zion Z, Kaczkurkin AN, Lissek S, Orederu T, Schiller D, Harpaz-Rotem I, Levy I. Emotional numbing in PTSD is associated with lower amygdala reactivity to pain. Neuropsychopharmacology 2022; 47:1913-1921. [PMID: 35945274 PMCID: PMC9485255 DOI: 10.1038/s41386-022-01405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with altered pain perception, namely increased pain threshold and higher pain response. While pain consists of physiological and affective components, affective components are often overlooked. Similar patterns of increased threshold-high response in PTSD were shown in response to emotional stimuli, i.e., emotional numbing. As both emotional numbing and pain processing are modulated by the amygdala, we aimed to examine whether individuals diagnosed with PTSD show lower amygdala activation to pain compared with combat controls, and whether the amygdala responses to pain correlates with emotional numbing. To do so, two independent samples of veterans (original study: 44 total (20 PTSD); conceptual replication study: 40 total (20 PTSD)) underwent threat conditioning, where a conditioned stimulus (CS+; visual stimulus) was paired with an unconditioned stimulus (US; electric-shock). We contrasted the amygdala activity to the CS + US pairing with the CS+ presented alone and correlated it with emotional numbing severity. In both samples, the PTSD group showed a robust reduction in amygdala reactivity to shock compared to the Combat Controls group. Furthermore, amygdala activation was negatively correlated with emotional numbing severity. These patterns were unique to the amygdala, and did not appear in comparison to a control region, the insula, a pivotal region for the processing of pain. To conclude, amygdala response to pain is lower in individuals with PTSD, and is associated with emotional numbing symptoms. Lower amygdala reactivity to mild pain may contribute to the "all-or-none" reaction to stressful situations often observed in PTSD.
Collapse
Affiliation(s)
- Nachshon Korem
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA.
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
- Yale University School of Medicine, Departments of Comparative Medicine and Neuroscience, New Haven, CT, 06511, USA.
| | - Or Duek
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Ziv Ben-Zion
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | | | - Shmuel Lissek
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Temidayo Orederu
- The Nash Family Department of Neuroscience, Department of Psychiatry, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniela Schiller
- The Nash Family Department of Neuroscience, Department of Psychiatry, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ilan Harpaz-Rotem
- Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06511, USA
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale University Department of Psychology, New Haven, CT, 06511, USA
- Wu Tsai Institute, Yale University New Haven, New Haven, CT, 06510, USA
| | - Ifat Levy
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale University School of Medicine, Departments of Comparative Medicine and Neuroscience, New Haven, CT, 06511, USA
- Yale University Department of Psychology, New Haven, CT, 06511, USA
- Wu Tsai Institute, Yale University New Haven, New Haven, CT, 06510, USA
| |
Collapse
|
16
|
Orth L, Meeh J, Gur RC, Neuner I, Sarkheil P. Frontostriatal circuitry as a target for fMRI-based neurofeedback interventions: A systematic review. Front Hum Neurosci 2022; 16:933718. [PMID: 36092647 PMCID: PMC9449529 DOI: 10.3389/fnhum.2022.933718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulated frontostriatal circuitries are viewed as a common target for the treatment of aberrant behaviors in various psychiatric and neurological disorders. Accordingly, experimental neurofeedback paradigms have been applied to modify the frontostriatal circuitry. The human frontostriatal circuitry is topographically and functionally organized into the "limbic," the "associative," and the "motor" subsystems underlying a variety of affective, cognitive, and motor functions. We conducted a systematic review of the literature regarding functional magnetic resonance imaging-based neurofeedback studies that targeted brain activations within the frontostriatal circuitry. Seventy-nine published studies were included in our survey. We assessed the efficacy of these studies in terms of imaging findings of neurofeedback intervention as well as behavioral and clinical outcomes. Furthermore, we evaluated whether the neurofeedback targets of the studies could be assigned to the identifiable frontostriatal subsystems. The majority of studies that targeted frontostriatal circuitry functions focused on the anterior cingulate cortex, the dorsolateral prefrontal cortex, and the supplementary motor area. Only a few studies (n = 14) targeted the connectivity of the frontostriatal regions. However, post-hoc analyses of connectivity changes were reported in more cases (n = 32). Neurofeedback has been frequently used to modify brain activations within the frontostriatal circuitry. Given the regulatory mechanisms within the closed loop of the frontostriatal circuitry, the connectivity-based neurofeedback paradigms should be primarily considered for modifications of this system. The anatomical and functional organization of the frontostriatal system needs to be considered in decisions pertaining to the neurofeedback targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Goldway N, Jalon I, Keynan JN, Hellrung L, Horstmann A, Paret C, Hendler T. Feasibility and utility of amygdala neurofeedback. Neurosci Biobehav Rev 2022; 138:104694. [PMID: 35623447 DOI: 10.1016/j.neubiorev.2022.104694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
Amygdala NeuroFeedback (NF) have the potential of being a valuable non-invasive intervention tool in many psychiatric disporders. However, the feasibility and best practices of this method have not been systematically examined. The current article presents a review of amygdala-NF studies, an analytic summary of study design parameters, and examination of brain mechanisms related to successful amygdala-NF performance. A meta-analysis of 33 publications showed that real amygdala-NF facilitates learned modulation compared to control conditions. In addition, while variability in study dsign parameters is high, these design choices are implicitly organized by the targeted valence domain (positive or negative). However, in most cases the neuro-behavioral effects of targeting such domains were not directly assessed. Lastly, re-analyzing six data sets of amygdala-fMRI-NF revealed that successful amygdala down-modulation is coupled with deactivation of the posterior insula and nodes in the Default-Mode-Network. Our findings suggest that amygdala self-modulation can be acquired using NF. Yet, additional controlled studies, relevant behavioral tasks before and after NF intervention, and neural 'target engagement' measures are critically needed to establish efficacy and specificity. In addition, the fMRI analysis presented here suggest that common accounts regarding the brain network involved in amygdala NF might reflect unsuccessful modulation attempts rather than successful modulation.
Collapse
Affiliation(s)
- Noam Goldway
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel; Department of Psychology, New York University, New York, USA
| | - Itamar Jalon
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Jackob N Keynan
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Lydia Hellrung
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Annette Horstmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Faculty of Medicine, University of Leipzig, Leipzig, Germany; Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christian Paret
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel-Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
18
|
Argaman Y, Granovsky Y, Sprecher E, Sinai A, Yarnitsky D, Weissman-Fogel I. Clinical Effects of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex Are Associated With Changes in Resting-State Functional Connectivity in Patients With Fibromyalgia Syndrome. THE JOURNAL OF PAIN 2022; 23:595-615. [PMID: 34785365 DOI: 10.1016/j.jpain.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
In this double-blinded, sham-controlled, counterbalanced, and crossover study, we investigated the potential neuroplasticity underlying pain relief and daily function improvements following repetitive transcranial magnetic stimulation of the motor cortex (M1-rTMS) in fibromyalgia syndrome (FMS) patients. Specifically, we used magnetic resonance imaging (MRI) to examine changes in brain structural and resting-state functional connectivity (rsFC) that correlated with improvements in FMS symptomology following M1-rTMS. Twenty-seven women with FMS underwent real and sham treatment series, each consisting of 10 daily treatments of 10Hz M1-rTMS over 2 weeks, with a washout period in between. Before and after each series, participants underwent anatomical and resting-state functional MRI scans and questionnaire assessments of FMS-related clinical pain and functional and psychological burdens. The expected reductions in FMS-related symptomology following M1-rTMS occurred with the real treatment only and correlated with rsFC changes in brain areas associated with pain processing and modulation. Specifically, between the ventromedial prefrontal cortex and the M1 (t = -5.54, corrected P = .002), the amygdala and the posterior insula (t = 5.81, corrected P = .044), and the anterior and posterior insula (t = 6.01, corrected P = .029). Neither treatment significantly changed brain structure. Therefore, we provide the first evidence of an association between the acute clinical effects of M1-rTMS in FMS and functional alterations of brain areas that have a significant role in the experience of chronic pain. Structural changes could potentially occur over a more extended treatment period. PERSPECTIVE: We show that the neurophysiological mechanism of the improvement in fibromyalgia symptoms following active, but not sham, rTMS applied to M1 involves changes in resting-state functional connectivity in sensory, affective and cognitive pain processing brain areas, thus substantiating the essence of fibromyalgia syndrome as a treatable brain-based disorder.
Collapse
Affiliation(s)
- Yuval Argaman
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yelena Granovsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Elliot Sprecher
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Alon Sinai
- Department of Neurosurgery, Rambam Health Care Campus, Haifa, Israel
| | - David Yarnitsky
- Clinical Neurophysiology Lab, Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Irit Weissman-Fogel
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
19
|
Saul MA, He X, Black S, Charles F. A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Front Psychol 2022; 12:568921. [PMID: 35095625 PMCID: PMC8796854 DOI: 10.3389/fpsyg.2021.568921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Social anxiety disorder has been widely recognised as one of the most commonly diagnosed mental disorders. Individuals with social anxiety disorder experience difficulties during social interactions that are essential in the regular functioning of daily routines; perpetually motivating research into the aetiology, maintenance and treatment methods. Traditionally, social and clinical neuroscience studies incorporated protocols testing one participant at a time. However, it has been recently suggested that such protocols are unable to directly assess social interaction performance, which can be revealed by testing multiple individuals simultaneously. The principle of two-person neuroscience highlights the interpersonal aspect of social interactions that observes behaviour and brain activity from both (or all) constituents of the interaction, rather than analysing on an individual level or an individual observation of a social situation. Therefore, two-person neuroscience could be a promising direction for assessment and intervention of the social anxiety disorder. In this paper, we propose a novel paradigm which integrates two-person neuroscience in a neurofeedback protocol. Neurofeedback and interbrain synchrony, a branch of two-person neuroscience, are discussed in their own capacities for their relationship with social anxiety disorder and relevance to the paradigm. The newly proposed paradigm sets out to assess the social interaction performance using interbrain synchrony between interacting individuals, and to employ a multi-user neurofeedback protocol for intervention of the social anxiety.
Collapse
Affiliation(s)
- Marcia A. Saul
- Faculty of Media and Communication, Centre for Digital Entertainment, Bournemouth University, Poole, United Kingdom
| | - Xun He
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- *Correspondence: Xun He
| | - Stuart Black
- Applied Neuroscience Solutions Ltd., Frimley Green, United Kingdom
| | - Fred Charles
- Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- Fred Charles
| |
Collapse
|
20
|
Stirner M, Gurevitch G, Lubianiker N, Hendler T, Schmahl C, Paret C. An Investigation of Awareness and Metacognition in Neurofeedback with the Amygdala Electrical Fingerprint. Conscious Cogn 2022; 98:103264. [PMID: 35026688 DOI: 10.1016/j.concog.2021.103264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
Awareness theory posits that individuals connected to a brain-computer interface can learn to estimate and discriminate their brain states. We used the amygdala Electrical Fingerprint (amyg-EFP) - a functional Magnetic Resonance Imaging-inspired Electroencephalogram surrogate of deep brain activation - to investigate whether participants could accurately estimate their own brain activation. Ten participants completed up to 20 neurofeedback runs and estimated their amygdala-EFP activation (depicted as a thermometer) and confidence in this rating during each trial. We analysed data using multilevel models, predicting the real thermometer position with participant rated position and adjusted for activation during the previous trial. Hypotheses on learning regulation and improvement of estimation were not confirmed. However, participant ratings were significantly associated with the amyg-EFP signal. Higher rating accuracy also predicted higher subjective confidence in the rating. This proof-of-concept study introduces an approach to study awareness with fMRI-informed neurofeedback and provides initial evidence for metacognition in neurofeedback.
Collapse
Affiliation(s)
- Madita Stirner
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Guy Gurevitch
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center and School of Psychological Sciences, Tel-Aviv University, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Nitzan Lubianiker
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center and School of Psychological Sciences, Tel-Aviv University, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Israel
| | - Talma Hendler
- Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center and School of Psychological Sciences, Tel-Aviv University, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Israel
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Christian Paret
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Germany; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center and School of Psychological Sciences, Tel-Aviv University, Israel.
| |
Collapse
|
21
|
Mercer Lindsay N, Chen C, Gilam G, Mackey S, Scherrer G. Brain circuits for pain and its treatment. Sci Transl Med 2021; 13:eabj7360. [PMID: 34757810 DOI: 10.1126/scitranslmed.abj7360] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nicole Mercer Lindsay
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biology, CNC Program, Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Chong Chen
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,New York Stem Cell Foundation-Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Fruchtman-Steinbok T, Keynan JN, Cohen A, Jaljuli I, Mermelstein S, Drori G, Routledge E, Krasnoshtein M, Playle R, Linden DEJ, Hendler T. Amygdala electrical-finger-print (AmygEFP) NeuroFeedback guided by individually-tailored Trauma script for post-traumatic stress disorder: Proof-of-concept. NEUROIMAGE-CLINICAL 2021; 32:102859. [PMID: 34689055 PMCID: PMC8551212 DOI: 10.1016/j.nicl.2021.102859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Randomized clinical trial with a novel self-neuromodulation training in PTSD. Demonstration of feasibility of an fMRI-informed EEG model of Amygdala modulation (AmygEFP). Individually-tailored trauma-related content as the training feedback interface. Results showed reduction of PTSD symptoms following AmygEFP trauma-related feedback training.
Background Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory. Therefore, provoking the personal traumatic narrative while training amygdala down-regulation could enhance clinical efficacy. We report the results of a randomized controlled trial (NCT02544971) of a novel self-neuromodulation procedure (i.e. NeuroFeedback) for PTSD, aimed at down-regulating limbic activity while receiving feedback from an auditory script of a personal traumatic narrative. To scale-up applicability, neural activity was probed by an fMRI-informed EEG model of amygdala activity, termed Amygdala Electrical Finger-Print (AmygEFP). Methods Fifty-nine adults meeting DSM-5 criteria for PTSD were randomized between three groups: Trauma-script feedback interface (Trauma-NF) or Neutral feedback interface (Neutral-NF), and a control group of No-NF (to control for spontaneous recovery). Before and immediately after 15 NF training sessions patients were blindly assessed for PTSD symptoms and underwent one session of amygdala fMRI-NF for transferability testing. Follow-up clinical assessment was performed at 3- and 6-months following NF treatment. Results Patients in both NF groups learned to volitionally down-regulate AmygEFP signal and demonstrated a greater reduction in PTSD symptoms and improved down-regulation of the amygdala during fMRI-NF, compared to the No-NF group. The Trauma-NF group presented the largest immediate clinical improvement. Conclusions This proof-of-concept study indicates the feasibility of the AmygEFP-NF process-driven as a scalable intervention for PTSD and illustrates its clinical potential. Further investigation is warranted to elucidate the contribution of AmygEFP-NF beyond exposure and placebo effects.
Collapse
Affiliation(s)
- Tom Fruchtman-Steinbok
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Jackob N Keynan
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; Department of Psychiatry & Behavioral Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Avihay Cohen
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Iman Jaljuli
- Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Gadi Drori
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Routledge
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | | | - Rebecca Playle
- Center for Trials Research, College of Biomedical & Life Sciences, Cardiff University, Cardiff, UK
| | - David E J Linden
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Talma Hendler
- Sagol Brain Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
23
|
|
24
|
Trambaiolli LR, Kohl SH, Linden DEJ, Mehler DMA. Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices. Neurosci Biobehav Rev 2021; 125:33-56. [PMID: 33587957 DOI: 10.1016/j.neubiorev.2021.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Division of Basic Neuroscience, McLean Hospital, Harvard Medical School, Boston, USA.
| | - Simon H Kohl
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, RWTH Aachen University, Germany
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, the Netherlands
| | | |
Collapse
|
25
|
The pathophysiology of functional movement disorders. Neurosci Biobehav Rev 2020; 120:387-400. [PMID: 33159917 DOI: 10.1016/j.neubiorev.2020.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023]
Abstract
Functional neurological disorder is characterized by neurological symptoms that cannot be explained by typical neurological diseases or other medical conditions. This review will critically discuss the literature on the pathophysiology of functional movement disorders (FMD), including functional neuroimaging studies, neurophysiological studies, studies on biomarkers and genetic studies. According to PRISMA guidelines for systematic reviews, we selected 39 studies. A complex scenario emerged, with the involvement of different areas of the brain in the pathophysiology of FMD. Our findings showed a hypoactivation of the contralateral primary motor cortex, a decreased activity in the parietal lobe, an aberrant activation of the amygdala, an increased temporo-parietal junction activity and a hyperactivation of insular regions in patients with FMD. Functional connectivity (FC) findings underlined aberrant connections between amygdala and motor areas, temporo-parietal junction and insula. We proposed amygdala hyperactivation as a possible biological marker for FMD and FC alterations between amygdala and other areas of the brain as consequent epiphenomena, accounting for the pathophysiological complexity of FMD. These conclusions might drive novel treatment hypotheses.
Collapse
|
26
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
27
|
Simões M, Abreu R, Direito B, Sayal A, Castelhano J, Carvalho P, Castelo-Branco M. How much of the BOLD-fMRI signal can be approximated from simultaneous EEG data: relevance for the transfer and dissemination of neurofeedback interventions. J Neural Eng 2020; 17:046007. [DOI: 10.1088/1741-2552/ab9a98] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Patel K, Sutherland H, Henshaw J, Taylor JR, Brown CA, Casson AJ, Trujillo‐Barreton NJ, Jones AKP, Sivan M. Effects of neurofeedback in the management of chronic pain: A systematic review and meta‐analysis of clinical trials. Eur J Pain 2020; 24:1440-1457. [DOI: 10.1002/ejp.1612] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Kajal Patel
- School of Medicine University of Manchester Manchester UK
| | - Heather Sutherland
- Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | - James Henshaw
- Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | - Jason R. Taylor
- Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | | | - Alexander J. Casson
- School of Electrical and Electronic Engineering University of Manchester Manchester UK
| | | | - Anthony K. P. Jones
- Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
| | - Manoj Sivan
- Division of Neuroscience and Experimental Psychology University of Manchester Manchester UK
- Academic Department of Rehabilitation Medicine University of Leeds Leeds UK
| |
Collapse
|
29
|
Sukhodolsky DG, Walsh C, Koller WN, Eilbott J, Rance M, Fulbright RK, Zhao Z, Bloch MH, King R, Leckman JF, Scheinost D, Pittman B, Hampson M. Randomized, Sham-Controlled Trial of Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Tics in Adolescents With Tourette Syndrome. Biol Psychiatry 2020; 87:1063-1070. [PMID: 31668476 PMCID: PMC7015800 DOI: 10.1016/j.biopsych.2019.07.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activity in the supplementary motor area (SMA) has been associated with tics in Tourette syndrome (TS). The aim of this study was to test a novel intervention-real-time functional magnetic resonance imaging neurofeedback from the SMA-for reduction of tics in adolescents with TS. METHODS Twenty-one adolescents with TS were enrolled in a double-blind, randomized, sham-controlled, crossover study involving two sessions of neurofeedback from their SMA. The primary outcome measure of tic severity was the Yale Global Tic Severity Scale administered by an independent evaluator before and after each arm. The secondary outcome was control over the SMA assessed in neuroimaging scans, in which subjects were cued to increase/decrease activity in SMA without receiving feedback. RESULTS All 21 subjects completed both arms of the study and all assessments. Participants had significantly greater reduction of tics on the Yale Global Tic Severity Scale after real neurofeedback as compared with the sham control (p < .05). Mean Yale Global Tic Severity Scale Total Tic score decreased from 25.2 ± 4.6 at baseline to 19.9 ± 5.7 at end point in the neurofeedback condition and from 24.8 ± 8.1 to 23.3 ± 8.5 in the sham control condition. The 3.8-point difference is clinically meaningful and corresponds to an effect size of 0.59. However, there were no differences in changes on the secondary measure of control over the SMA. CONCLUSIONS This first randomized controlled trial of real-time functional magnetic resonance imaging neurofeedback in adolescents with TS suggests that this neurofeedback intervention may be helpful for improving tic symptoms. However, no effects were found in terms of change in control over the SMA, the hypothesized mechanism of action.
Collapse
Affiliation(s)
| | - Christopher Walsh
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - William N Koller
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | | | - Mariela Rance
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Robert K Fulbright
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Zhiying Zhao
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Michael H Bloch
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Robert King
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - James F Leckman
- Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Dustin Scheinost
- Child Study Center, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Michelle Hampson
- Child Study Center, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
30
|
Scheinost D, Hsu TW, Avery EW, Hampson M, Constable RT, Chun MM, Rosenberg MD. Connectome-based neurofeedback: A pilot study to improve sustained attention. Neuroimage 2020; 212:116684. [PMID: 32114151 DOI: 10.1016/j.neuroimage.2020.116684] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/27/2022] Open
Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback is a non-invasive, non-pharmacological therapeutic tool that may be useful for training behavior and alleviating clinical symptoms. Although previous work has used rt-fMRI to target brain activity in or functional connectivity between a small number of brain regions, there is growing evidence that symptoms and behavior emerge from interactions between a number of distinct brain areas. Here, we propose a new method for rt-fMRI, connectome-based neurofeedback, in which intermittent feedback is based on the strength of complex functional networks spanning hundreds of regions and thousands of functional connections. We first demonstrate the technical feasibility of calculating whole-brain functional connectivity in real-time and provide resources for implementing connectome-based neurofeedback. We next show that this approach can be used to provide accurate feedback about the strength of a previously defined connectome-based model of sustained attention, the saCPM, during task performance. Although, in our initial pilot sample, neurofeedback based on saCPM strength did not improve performance on out-of-scanner attention tasks, future work characterizing effects of network target, training duration, and amount of feedback on the efficacy of rt-fMRI can inform experimental or clinical trial designs.
Collapse
Affiliation(s)
- Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Statistics and Data Science, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
| | - Tiffany W Hsu
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Emily W Avery
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Child Study Center, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Marvin M Chun
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Monica D Rosenberg
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Casiglia E, Finatti F, Tikhonoff V, Stabile MR, Mitolo M, Albertini F, Gasparotti F, Facco E, Lapenta AM, Venneri A. MECHANISMS OF HYPNOTIC ANALGESIA EXPLAINED BY FUNCTIONAL MAGNETIC RESONANCE (fMRI). Int J Clin Exp Hypn 2020; 68:1-15. [PMID: 31914368 DOI: 10.1080/00207144.2020.1685331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypnotic-focused analgesia (HFA) was produced in 20 highly hypnotizable subjects receiving nociceptive stimulations while undergoing functional magnetic resonance imaging (fMRI). The fMRI pattern in brain cortex activation while receiving a painful stimulus was recorded both during nonhypnosis and during HFA. The scanning protocol included the acquisition of a T1-weighted structural scan, 4 functional scans, a T2-weighted axial scan, and a fluid attenuated inversion recovery (FLAIR) scan. Total imaging time, including localization and structural image acquisitions, was approximately 60 minutes. Without HFA, the subjects reported subjective presence of pain, and the cortex primary sensory areas S1, S2, and S3 were activated. During HFA, the subjects reported complete absence of subjective pain and S1, S2, and S3 were deactivated. The findings suggest that HFA may prevent painful stimuli from reaching the sensory brain cortex, possibly through a gate-control mechanism.
Collapse
Affiliation(s)
- Edoardo Casiglia
- Studium Patavinum, University of Padova, Padova, Italy.,Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Francesco Finatti
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Pathology, University of Padova, Italy
| | - Valérie Tikhonoff
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Maria R Stabile
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy
| | - Micaela Mitolo
- Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy.,Functional Magnetic Resonance Unit, Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Federica Albertini
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Emergency Medicine, University of Padova, Italy
| | - Federica Gasparotti
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Enrico Facco
- Studium Patavinum, University of Padova, Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neuroscience, University of Padova, Italy
| | - Antonio M Lapenta
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
32
|
Affiliation(s)
- Michelle Hampson
- Department of Radiology and Biomedical Imaging, Department of Psychiatry, and the Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Sergio Ruiz
- Department of Psychiatry, Medicine School, and Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Japan.
| |
Collapse
|
33
|
Current progress in real-time functional magnetic resonance-based neurofeedback: Methodological challenges and achievements. Neuroimage 2019; 202:116107. [DOI: 10.1016/j.neuroimage.2019.116107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
|
34
|
Lubianiker N, Goldway N, Fruchtman-Steinbok T, Paret C, Keynan JN, Singer N, Cohen A, Kadosh KC, Linden DEJ, Hendler T. Process-based framework for precise neuromodulation. Nat Hum Behav 2019; 3:436-445. [DOI: 10.1038/s41562-019-0573-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022]
|