1
|
Rué‐Queralt J, Fluhr H, Tourbier S, Aleman‐Gómez Y, Pascucci D, Yerly J, Glomb K, Plomp G, Hagmann P. Connectome spectrum electromagnetic tomography: A method to reconstruct electrical brain source networks at high-spatial resolution. Hum Brain Mapp 2024; 45:e26638. [PMID: 38520365 PMCID: PMC10960556 DOI: 10.1002/hbm.26638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/25/2024] Open
Abstract
Connectome spectrum electromagnetic tomography (CSET) combines diffusion MRI-derived structural connectivity data with well-established graph signal processing tools to solve the M/EEG inverse problem. Using simulated EEG signals from fMRI responses, and two EEG datasets on visual-evoked potentials, we provide evidence supporting that (i) CSET captures realistic neurophysiological patterns with better accuracy than state-of-the-art methods, (ii) CSET can reconstruct brain responses more accurately and with more robustness to intrinsic noise in the EEG signal. These results demonstrate that CSET offers high spatio-temporal accuracy, enabling neuroscientists to extend their research beyond the current limitations of low sampling frequency in functional MRI and the poor spatial resolution of M/EEG.
Collapse
Affiliation(s)
- Joan Rué‐Queralt
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
- Center for ImagingEPFLLausanneSwitzerland
| | - Hugo Fluhr
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Sebastien Tourbier
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Yasser Aleman‐Gómez
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychiatryLausanne University HospitalLausanneSwitzerland
| | | | - Jérôme Yerly
- Department of Diagnostic and Interventional RadiologyLausanne University HospitalLausanneSwitzerland
- Center for Biomedical ImagingEPFLLausanneSwitzerland
| | - Katharina Glomb
- Department of NeurologyCharité University Medicine Berlin and Berlin Institute of HealthBerlinGermany
| | - Gijs Plomp
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Patric Hagmann
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| |
Collapse
|
2
|
Jauny G, Mijalkov M, Canal-Garcia A, Volpe G, Pereira J, Eustache F, Hinault T. Linking structural and functional changes during aging using multilayer brain network analysis. Commun Biol 2024; 7:239. [PMID: 38418523 PMCID: PMC10902297 DOI: 10.1038/s42003-024-05927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
Brain structure and function are intimately linked, however this association remains poorly understood and the complexity of this relationship has remained understudied. Healthy aging is characterised by heterogenous levels of structural integrity changes that influence functional network dynamics. Here, we use the multilayer brain network analysis on structural (diffusion weighted imaging) and functional (magnetoencephalography) data from the Cam-CAN database. We found that the level of similarity of connectivity patterns between brain structure and function in the parietal and temporal regions (alpha frequency band) is associated with cognitive performance in healthy older individuals. These results highlight the impact of structural connectivity changes on the reorganisation of functional connectivity associated with the preservation of cognitive function, and provide a mechanistic understanding of the concepts of brain maintenance and compensation with aging. Investigation of the link between structure and function could thus represent a new marker of individual variability, and of pathological changes.
Collapse
Affiliation(s)
- Gwendolyn Jauny
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Joana Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France
| | - Thomas Hinault
- Normandie Univ, UNICAEN, PSL Université Paris, EPHE, Inserm, U1077, CHU de Caen, Centre Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
3
|
Oliveira R, De Lucia M, Lutti A. Single-subject electroencephalography measurement of interhemispheric transfer time for the in-vivo estimation of axonal morphology. Hum Brain Mapp 2023; 44:4859-4874. [PMID: 37470446 PMCID: PMC10472916 DOI: 10.1002/hbm.26420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Assessing axonal morphology in vivo opens new avenues for the combined study of brain structure and function. A novel approach has recently been introduced to estimate the morphology of axonal fibers from the combination of magnetic resonance imaging (MRI) data and electroencephalography (EEG) measures of the interhemispheric transfer time (IHTT). In the original study, the IHTT measures were computed from EEG data averaged across a group, leading to bias of the axonal morphology estimates. Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained from EEG data acquired in a visual evoked potential experiment. Subject-specific IHTTs are computed in a data-driven framework with minimal a priori constraints, based on the maximal peak of neural responses to visual stimuli within periods of statistically significant evoked activity in the inverse solution space. The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and the between-session variability was comparable to between-subject variability. The mean radius of the axonal radius distribution, computed from the IHTT estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm-α . The single-subject measurement of the IHTT yields estimates of axonal morphology that are consistent with histological values. However, improvement of the repeatability of the IHTT estimates is required to improve the specificity of the single-subject axonal morphology estimates.
Collapse
Affiliation(s)
- Rita Oliveira
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Marzia De Lucia
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Antoine Lutti
- Laboratory for Research in Neuroimaging, Department of Clinical NeuroscienceLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Klooster DCW, Ferguson MA, Boon PAJM, Baeken C. Personalizing Repetitive Transcranial Magnetic Stimulation Parameters for Depression Treatment Using Multimodal Neuroimaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:536-545. [PMID: 34800726 DOI: 10.1016/j.bpsc.2021.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a tool that can be used to administer treatment for neuropsychiatric disorders such as major depressive disorder, although the clinical efficacy is still rather modest. Overly general stimulation protocols that consider neither patient-specific depression symptomology nor individualized brain characteristics, such as anatomy or structural and functional connections, may be the cause of the high inter- and intraindividual variability in rTMS clinical responses. Multimodal neuroimaging can provide the necessary insights into individual brain characteristics and can therefore be used to personalize rTMS parameters. Optimal coil positioning should include a three-step process: 1) identify the optimal (indirect) target area based on the exact symptom pattern of the patient; 2) derive the cortical (direct) target location based on functional and/or structural connectomes derived from functional and diffusion magnetic resonance imaging data; and 3) determine the ideal coil position by computational modeling, such that the electric field distribution overlaps with the cortical target. These TMS-induced electric field simulations, derived from anatomical and diffusion magnetic resonance imaging data, can be further applied to compute optimal stimulation intensities. In addition to magnetic resonance imaging, electroencephalography can provide complementary information regarding the ongoing brain oscillations. This information can be used to determine the optimal timing and frequency of the stimuli. The heightened benefits of these personalized stimulation approaches are logically reasoned, but speculative. Randomized clinical trials will be required to compare clinical responses from standard rTMS protocols to personalized protocols. Ultimately, an optimized clinical response may result from precision protocols derived from combinations of personalized stimulation parameters.
Collapse
Affiliation(s)
- Deborah C W Klooster
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium.
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Paul A J M Boon
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; 4Brain, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Chris Baeken
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Ghent Experimental Psychiatry Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital Brussels, Jette, Belgium
| |
Collapse
|
5
|
Oliveira R, Pelentritou A, Di Domenicantonio G, De Lucia M, Lutti A. In vivo Estimation of Axonal Morphology From Magnetic Resonance Imaging and Electroencephalography Data. Front Neurosci 2022; 16:874023. [PMID: 35527816 PMCID: PMC9070985 DOI: 10.3389/fnins.2022.874023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We present a novel approach that allows the estimation of morphological features of axonal fibers from data acquired in vivo in humans. This approach allows the assessment of white matter microscopic properties non-invasively with improved specificity. Theory The proposed approach is based on a biophysical model of Magnetic Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroencephalography (EEG). In a white matter tract of interest, these data depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual axons that compose this tract [g(r)]. P(r) is assumed to follow a Gamma distribution with mode and scale parameters, M and θ, and g(r) is described by a power law with parameters α and β. Methods MRI and EEG data were recorded from 14 healthy volunteers. MRI data were collected with a 3T scanner. MRI-measured g-ratio maps were computed and sampled along the visual transcallosal tract. EEG data were recorded using a 128-lead system with a visual Poffenberg paradigm. The interhemispheric transfer time and axonal conduction velocity were computed from the EEG current density at the group level. Using the MRI and EEG measures and the proposed model, we estimated morphological properties of axons in the visual transcallosal tract. Results The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free parameters of the proposed model, we estimated θ – the width of the right tail of the axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 μm and the parameter β was 0.67 ± 0.02 μm−α. Conclusion The estimates of axonal radius and myelination are consistent with histological findings, illustrating the feasibility of this approach. The proposed method allows the measurement of the distribution of axonal radius and myelination within a white matter tract, opening new avenues for the combined study of brain structure and function, and for in vivo histological studies of the human brain.
Collapse
|
6
|
Albers KJ, Liptrot MG, Ambrosen KS, Røge R, Herlau T, Andersen KW, Siebner HR, Hansen LK, Dyrby TB, Madsen KH, Schmidt MN, Mørup M. Uncovering Cortical Units of Processing From Multi-Layered Connectomes. Front Neurosci 2022; 16:836259. [PMID: 35360166 PMCID: PMC8960198 DOI: 10.3389/fnins.2022.836259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide non-invasive high-resolution images from which multi-layered networks of whole-brain structural and functional connectivity can be derived. Unfortunately, the lack of observed correspondence between the connectivity profiles of the two modalities challenges the understanding of the relationship between the functional and structural connectome. Rather than focusing on correspondence at the level of connections we presently investigate correspondence in terms of modular organization according to shared canonical processing units. We use a stochastic block-model (SBM) as a data-driven approach for clustering high-resolution multi-layer whole-brain connectivity networks and use prediction to quantify the extent to which a given clustering accounts for the connectome within a modality. The employed SBM assumes a single underlying parcellation exists across modalities whilst permitting each modality to possess an independent connectivity structure between parcels thereby imposing concurrent functional and structural units but different structural and functional connectivity profiles. We contrast the joint processing units to their modality specific counterparts and find that even though data-driven structural and functional parcellations exhibit substantial differences, attributed to modality specific biases, the joint model is able to achieve a consensus representation that well accounts for both the functional and structural connectome providing improved representations of functional connectivity compared to using functional data alone. This implies that a representation persists in the consensus model that is shared by the individual modalities. We find additional support for this viewpoint when the anatomical correspondence between modalities is removed from the joint modeling. The resultant drop in predictive performance is in general substantial, confirming that the anatomical correspondence of processing units is indeed present between the two modalities. Our findings illustrate how multi-modal integration admits consensus representations well-characterizing each individual modality despite their biases and points to the importance of multi-layered connectomes as providing supplementary information regarding the brain's canonical processing units.
Collapse
Affiliation(s)
- Kristoffer Jon Albers
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Matthew G. Liptrot
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Karen Sandø Ambrosen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Rasmus Røge
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tue Herlau
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Kasper Winther Andersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Kai Hansen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Kristoffer H. Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Mikkel N. Schmidt
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Morten Mørup
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, Shafi MM, Pascual-Leone A, Santarnecchi E. Phase-dependent local brain states determine the impact of image-guided transcranial magnetic stimulation on motor network electroencephalographic synchronization. J Physiol 2022; 600:1455-1471. [PMID: 34799873 PMCID: PMC9728936 DOI: 10.1113/jp282393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022] Open
Abstract
Recent studies have synchronized transcranial magnetic stimulation (TMS) application with pre-defined brain oscillatory phases showing how brain response to perturbation depends on the brain state. However, none have investigated whether phase-dependent TMS can possibly modulate connectivity with homologous distant brain regions belonging to the same network. In the framework of network-targeted TMS, we investigated whether stimulation delivered at a specific phase of ongoing brain oscillations might favour stronger cortico-cortical (c-c) synchronization of distant network nodes connected to the stimulation target. Neuronavigated TMS pulses were delivered over the primary motor cortex (M1) during ongoing electroencephalography recording in 24 healthy individuals over two repeated sessions 1 month apart. Stimulation effects were analysed considering whether the TMS pulse was delivered at the time of a positive (peak) or negative (trough) phase of μ-frequency oscillation, which determines c-c synchrony within homologous areas of the sensorimotor network. Diffusion weighted imaging was used to study c-c connectivity within the sensorimotor network and identify contralateral regions connected with the stimulation spot. Depending on when during the μ-activity the TMS-pulse was applied (peak or trough), its impact on inter-hemispheric network synchrony varied significantly. Higher M1-M1 phase-lock synchronization after the TMS-pulse (0-200 ms) in the μ-frequency band was found for trough compared to peak stimulation trials in both study visits. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of the response to the external perturbation, with implications for interventions aimed at engaging more distributed functional brain networks. KEY POINTS: Synchronized transcranial magnetic stimulation (TMS) pulses with pre-defined brain oscillatory phases allow evaluation of the impact of brain states on TMS effects. TMS pulses over M1 at the negative peak of the μ-frequency band induce higher phase-lock synchronization with interconnected contralateral homologous regions. Cortico-cortical synchronization changes are linearly predicted by the fibre density and cross-section of the white matter tract that connects the two brain regions. Phase-dependent TMS delivery might be crucial not only to amplify local effects but also to increase the magnitude and reliability of within-network synchronization.
Collapse
Affiliation(s)
- Davide Momi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti
| | - Recep A. Ozdemir
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ehsan Tadayon
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alberto Di Domenico
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mirco Fasolo
- Department of Psychological Science, Humanities and Territory, University of Chieti-Pescara, Chieti, Italy
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston MA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Guttmann Brain Health Institute, Guttmann Institut, Universitat Autonoma, Barcelona, Spain
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Esposito R, Bortoletto M, Zacà D, Avesani P, Miniussi C. An integrated TMS-EEG and MRI approach to explore the interregional connectivity of the default mode network. Brain Struct Funct 2022; 227:1133-1144. [PMID: 35119502 PMCID: PMC8930884 DOI: 10.1007/s00429-022-02453-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Explorations of the relation between brain anatomy and functional connections in the brain are crucial for shedding more light on network connectivity that sustains brain communication. In this study, by means of an integrative approach, we examined both the structural and functional connections of the default mode network (DMN) in a group of sixteen healthy subjects. For each subject, the DMN was extracted from the structural and functional resonance imaging data; the areas that were part of the DMN were defined as the regions of interest. Then, the target network was structurally explored by diffusion-weighted imaging, tested by neurophysiological means, and retested by means of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG). A series of correlational analyses were performed to explore the relationship between the amplitude of early-latency TMS-evoked potentials and the indexes of structural connectivity (weighted number of fibres and fractional anisotropy). Stimulation of the left or right parietal nodes of the DMN-induced activation in the contralateral parietal and frontocentral electrodes within 60 ms; this activation correlated with fractional anisotropy measures of the corpus callosum. These results showed that distant secondary activations after target stimulation can be predicted based on the target’s anatomical connections. Interestingly, structural features of the corpus callosum predicted the activation of the directly connected nodes, i.e., parietal-parietal nodes, and of the broader DMN network, i.e., parietal-frontal nodes, as identified with functional magnetic resonance imaging. Our results suggested that the proposed integrated approach would allow us to describe the contributory causal relationship between structural connectivity and functional connectivity of the DMN.
Collapse
Affiliation(s)
- Romina Esposito
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy.
| | - Marta Bortoletto
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, via Pilastroni 4, 25125, Brescia, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy
| | - Paolo Avesani
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy.,Neuroinformatics Laboratory, Center for Information Technology, Fondazione Bruno Kessler, via Sommarive 18, 38123, Trento, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Corso Bettini 31, 38068, Rovereto, TN, Italy. .,Centre for Medical Sciences, CISMed University of Trento, Via S. Maria Maddalena 1, 38122, Trento, Italy.
| |
Collapse
|
9
|
Innocenti GM, Schmidt K, Milleret C, Fabri M, Knyazeva MG, Battaglia-Mayer A, Aboitiz F, Ptito M, Caleo M, Marzi CA, Barakovic M, Lepore F, Caminiti R. The functional characterization of callosal connections. Prog Neurobiol 2021; 208:102186. [PMID: 34780864 PMCID: PMC8752969 DOI: 10.1016/j.pneurobio.2021.102186] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
The functional characterization of callosal connections is informed by anatomical data. Callosal connections play a conditional driving role depending on the brain state and behavioral demands. Callosal connections play a modulatory function, in addition to a driving role. The corpus callosum participates in learning and interhemispheric transfer of sensorimotor habits. The corpus callosum contributes to language processing and cognitive functions.
The brain operates through the synaptic interaction of distant neurons within flexible, often heterogeneous, distributed systems. Histological studies have detailed the connections between distant neurons, but their functional characterization deserves further exploration. Studies performed on the corpus callosum in animals and humans are unique in that they capitalize on results obtained from several neuroscience disciplines. Such data inspire a new interpretation of the function of callosal connections and delineate a novel road map, thus paving the way toward a general theory of cortico-cortical connectivity. Here we suggest that callosal axons can drive their post-synaptic targets preferentially when coupled to other inputs endowing the cortical network with a high degree of conditionality. This might depend on several factors, such as their pattern of convergence-divergence, the excitatory and inhibitory operation mode, the range of conduction velocities, the variety of homotopic and heterotopic projections and, finally, the state-dependency of their firing. We propose that, in addition to direct stimulation of post-synaptic targets, callosal axons often play a conditional driving or modulatory role, which depends on task contingencies, as documented by several recent studies.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Kerstin Schmidt
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - Chantal Milleret
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U 1050, Label Memolife, PSL Research University, Paris, France
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Maria G Knyazeva
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Leenaards Memory Centre and Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | - Francisco Aboitiz
- Centro Interdisciplinario de Neurociencias and Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maurice Ptito
- Harland Sanders Chair in Visual Science, École d'Optométrie, Université de Montréal, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Caleo
- Department of Biomedical Sciences, University of Padua, Italy; CNR Neuroscience Institute, Pisa, Italy
| | - Carlo A Marzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Muhamed Barakovic
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale (EPFL), Lausanne, Switzerland
| | - Franco Lepore
- Department of Psychology, Centre de Recherche en Neuropsychologie et Cognition, University of Montréal, Montréal, QC, Canada
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome SAPIENZA, Rome, Italy; Neuroscience and Behavior Laboratory, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
10
|
Griffa A, Bommarito G, Assal F, Herrmann FR, Van De Ville D, Allali G. Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility by CSF tap test. Hum Brain Mapp 2020; 42:1485-1502. [PMID: 33296129 PMCID: PMC7927299 DOI: 10.1002/hbm.25308] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
Idiopathic Normal Pressure Hydrocephalus (iNPH)—the leading cause of reversible dementia in aging—is characterized by ventriculomegaly and gait, cognitive and urinary impairments. Despite its high prevalence estimated at 6% among the elderlies, iNPH remains underdiagnosed and undertreated due to the lack of iNPH‐specific diagnostic markers and limited understanding of pathophysiological mechanisms. INPH diagnosis is also complicated by the frequent occurrence of comorbidities, the most common one being Alzheimer's disease (AD). Here we investigate the resting‐state functional magnetic resonance imaging dynamics of 26 iNPH patients before and after a CSF tap test, and of 48 normal older adults. Alzheimer's pathology was evaluated by CSF biomarkers. We show that the interactions between the default mode, and the executive‐control, salience and attention networks are impaired in iNPH, explain gait and executive disturbances in patients, and are not driven by AD‐pathology. In particular, AD molecular biomarkers are associated with functional changes distinct from iNPH functional alterations. Finally, we demonstrate a partial normalization of brain dynamics 24 hr after a CSF tap test, indicating functional plasticity mechanisms. We conclude that functional changes involving the default mode cross‐network interactions reflect iNPH pathophysiological mechanisms and track treatment response, possibly contributing to iNPH differential diagnosis and better clinical management.
Collapse
Affiliation(s)
- Alessandra Griffa
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Center of Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Giulia Bommarito
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Bioengineering, Center of Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Frédéric Assal
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R Herrmann
- Department of Rehabilitation and Geriatrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center of Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.,Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Gilles Allali
- Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurology, Division of Cognitive & Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| |
Collapse
|
11
|
Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct Funct 2020; 225:2387-2402. [PMID: 32816112 DOI: 10.1007/s00429-020-02129-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
MR Tractography, which is based on MRI measures of water diffusivity, is currently the only method available for noninvasive reconstruction of fiber pathways in the brain. However, it has several fundamental limitations that call into question its accuracy in many applications. Therefore, there has been intense interest in defining and mitigating the intrinsic limitations of the method. Recent studies have reported that tractography is inherently limited in its ability to accurately reconstruct the connections of the brain, when based on voxel-averaged estimates of local fiber orientation alone. Several validation studies have confirmed that tractography techniques are plagued by both false-positive and false-negative connections. However, these validation studies which quantify sensitivity and specificity, particularly in animal models, have not utilized prior anatomical knowledge, as is done in the human literature, for virtual dissection of white matter pathways, instead assessing tractography implemented in a relatively unconstrained manner. Thus, they represent a worse-case scenario for bundle-segmentation techniques and may not be indicative of the anatomical accuracy in the process of bundle segmentation, where streamline filtering using inclusion and exclusion regions-of-interest is common. With this in mind, the aim of the current study is to investigate and quantify the upper bounds of accuracy using current tractography methods. Making use of the same dataset utilized in two seminal validation papers, we show that prior anatomical knowledge in the form of manually placed or template-driven constraints can significantly improve the anatomical accuracy of estimated brain connections. Thus, we show that it is possible to achieve a high sensitivity and high specificity simultaneously, and conclude that current tractography algorithms, in combination with anatomically driven constraints, can result in reconstructions which very accurately reflect the ground truth white matter connections.
Collapse
|
12
|
Deslauriers-Gauthier S, Zucchelli M, Frigo M, Deriche R. A unified framework for multimodal structure-function mapping based on eigenmodes. Med Image Anal 2020; 66:101799. [PMID: 32889301 DOI: 10.1016/j.media.2020.101799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Characterizing the connection between brain structure and brain function is essential for understanding how behaviour emerges from the underlying anatomy. A number of studies have shown that the network structure of the white matter shapes functional connectivity. Therefore, it should be possible to predict, at least partially, functional connectivity given the structural network. Many structure-function mappings have been proposed in the literature, including several direct mappings between the structural and functional connectivity matrices. However, the current literature is fragmented and does not provide a uniform treatment of current methods based on eigendecompositions. In particular, existing methods have never been compared to each other and their relationship explicitly derived in the context of brain structure-function mapping. In this work, we propose a unified computational framework that generalizes recently proposed structure-function mappings based on eigenmodes. Using this unified framework, we highlight the link between existing models and show how they can be obtained by specific choices of the parameters of our framework. By applying our framework to 50 subjects of the Human Connectome Project, we reproduce 6 recently published results, devise two new models and provide a direct comparison between all mappings. Finally, we show that a glass ceiling on the performance of mappings based on eigenmodes seems to be reached and conclude with possible approaches to break this performance limit.
Collapse
Affiliation(s)
| | - Mauro Zucchelli
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, France
| | - Matteo Frigo
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, France
| | - Rachid Deriche
- Inria Sophia Antipolis - Méditerranée, Université Côte d'Azur, France
| |
Collapse
|
13
|
Deslauriers-Gauthier S, Costantini I, Deriche R. Non-invasive inference of information flow using diffusion MRI, functional MRI, and MEG. J Neural Eng 2020; 17:045003. [PMID: 32443001 DOI: 10.1088/1741-2552/ab95ec] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To infer information flow in the white matter of the brain and recover cortical activity using functional MRI, diffusion MRI, and MEG without a manual selection of the white matter connections of interest. APPROACH A Bayesian network which encodes the priors knowledge of possible brain states is built from imaging data. Diffusion MRI is used to enumerate all possible connections between cortical regions. Functional MRI is used to prune connections without manual intervention and increase the likelihood of specific regions being active. MEG data is used as evidence into this network to obtain a posterior distribution on cortical regions and connections. MAIN RESULTS We show that our proposed method is able to identify connections associated with the a sensory-motor task. This allows us to build the Bayesian network with no manual selection of connections of interest. Using sensory-motor MEG evoked response as evidence into this network, our method identified areas known to be involved in a visuomotor task. In addition, information flow along white matter fiber bundles connecting those regions was also recovered. SIGNIFICANCE Current methods to estimate white matter information flow are extremely invasive, therefore limiting our understanding of the interaction between cortical regions. The proposed method makes use of functional MRI, diffusion MRI, and M/EEG to infer communication between cortical regions, therefore opening the door to the non-invasive exploration of information flow in the white matter.
Collapse
|
14
|
Hinault T, Kraut M, Bakker A, Dagher A, Courtney SM. Disrupted Neural Synchrony Mediates the Relationship between White Matter Integrity and Cognitive Performance in Older Adults. Cereb Cortex 2020; 30:5570-5582. [DOI: 10.1093/cercor/bhaa141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Our main goal was to determine the influence of white matter integrity on the dynamic coupling between brain regions and the individual variability of cognitive performance in older adults. Electroencephalography was recorded while participants performed a task specifically designed to engage working memory and inhibitory processes, and the associations among functional activity, structural integrity, and cognitive performance were assessed. We found that the association between white matter microstructural integrity and cognitive functioning with aging is mediated by time-varying alpha and gamma phase-locking value. Specifically, better preservation of the inferior fronto-occipital fasciculus in older individuals drives faster task-related modulations of alpha and gamma long-range phase-locking value between the inferior frontal gyrus and occipital lobe and lower local phase-amplitude coupling in occipital lobes, which in turn drives better cognitive control performance. Our results help delineate the role of individual variability of white matter microstructure in dynamic synchrony and cognitive performance during normal aging.
Collapse
Affiliation(s)
- T Hinault
- U1077 INSERM-EPHE-UNICAEN, Caen, 14000, France
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - M Kraut
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - A Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal QC, H3A 2B4, Canada
| | - S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Tarun A, Behjat H, Bolton T, Abramian D, Van De Ville D. Structural mediation of human brain activity revealed by white-matter interpolation of fMRI. Neuroimage 2020; 213:116718. [PMID: 32184188 DOI: 10.1016/j.neuroimage.2020.116718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding how the anatomy of the human brain constrains and influences the formation of large-scale functional networks remains a fundamental question in neuroscience. Here, given measured brain activity in gray matter, we interpolate these functional signals into the white matter on a structurally-informed high-resolution voxel-level brain grid. The interpolated volumes reflect the underlying anatomical information, revealing white matter structures that mediate the interaction between temporally coherent gray matter regions. Functional connectivity analyses of the interpolated volumes reveal an enriched picture of the default mode network (DMN) and its subcomponents, including the different white matter bundles that are implicated in their formation, thus extending currently known spatial patterns that are limited within the gray matter only. These subcomponents have distinct structure-function patterns, each of which are differentially observed during tasks, demonstrating plausible structural mechanisms for functional switching between task-positive and -negative components. This work opens new avenues for the integration of brain structure and function, and demonstrates the collective mediation of white matter pathways across short and long-distance functional connections.
Collapse
Affiliation(s)
- Anjali Tarun
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland.
| | - Hamid Behjat
- Center for Medical Image Science and Visualization, University of Linköping, Linköping, 58183, Sweden
| | - Thomas Bolton
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland
| | - David Abramian
- Department of Biomedical Engineering, University of Linköping, Linköping, 58183, Sweden; Department of Biomedical Engineering, Lund University, Lund, 22100, Sweden
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, 1202, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, 1202, Switzerland
| |
Collapse
|
16
|
Neurophysiological basis of contrast dependent BOLD orientation tuning. Neuroimage 2020; 206:116323. [PMID: 31678228 DOI: 10.1016/j.neuroimage.2019.116323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022] Open
Abstract
Recent work in early visual cortex of humans has shown that the BOLD signal exhibits contrast dependent orientation tuning, with an inverse oblique effect (oblique > cardinal) at high contrast and a horizontal effect (vertical > horizontal) at low contrast. This finding is at odds with decades of neurophysiological research demonstrating contrast invariant orientation tuning in primate visual cortex, yet the source of this discrepancy is unclear. We hypothesized that contrast dependent BOLD orientation tuning may arise due to contrast dependent influences of feedforward (FF) and feedback (FB) synaptic activity, indexed through gamma and alpha rhythms, respectively. To quantify this, we acquired EEG and BOLD in healthy humans to generate and compare orientation tuning curves across all neural frequency bands with BOLD. As expected, BOLD orientation selectivity in V1 was contrast dependent, preferring oblique orientations at high contrast and vertical at low contrast. On the other hand, EEG orientation tuning was contrast invariant, though frequency-specific, with an inverse-oblique effect in the gamma band (FF) and a horizontal effect in the alpha band (FB). Therefore, high-contrast BOLD orientation tuning closely matched FF activity, while at low contrast, BOLD best resembled FB orientation tuning. These results suggest that contrast dependent BOLD orientation tuning arises due to the reduced contribution of FF input to overall neurophysiological activity at low contrast, shifting BOLD orientation tuning towards the orientation preferences of FB at low contrast.
Collapse
|